
MANDATORY SECURITY IN OBJECT-ORIENTED DATABASE SYSTEMS

M.B.Thuraisingham
The MITRE Corporation, Bedford, MA, 01730

Abstract

A multilevel secure object-oriented data model (using
the ORION data model) is proposed for which mandatory
security issues in the context of a database system is
discussed. In particular the following issues are dealt with:
(1) the security policy for the system, (2) handling
polyinstantiation, and (3) handling the inference problem.

A set of security properties that has been established in
this paper is more complete than those that have been
proposed previously. Finally we describe how certain
security constraints are handled by our model.

1. Introduction

In an object-oriented system, any entity such as an
integer, automobile, person or city is modelled as an
object. This power of representation enables new
generation applications such as CAD/CAM, Image
Processing, Artificial Intelligence and Process Control to
be developed (see for example [KONA89]). For many of
these applications it is becoming very important that they
operate securely, while for some others it is also necessary
to incorporate multilevel security. This is to overcome
any malicious corruption of data as well as prohibit
unauthorized access to and use of classified data.

At present no standard data model for object-oriented
systems has been proposed. Until one becomes available,
the choice of an object-oriented data model is an arbitrary
one that is determined by the application. Thus the
adoption of a standard secure object-oriented model would
have to be delayed until a consensus is formed. That is,
for the present security features have to be incorporated into
an object-oriented system only on a model by model basis.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 089791-333-7/89/OOlO/O203 $1.50

In this paper we consider only the ORION
object-oriented data model which was developed at MCC
[BANE871 and describe how security properties might be
incorporated into such a model. We will call this model
SORION. We then formulate a security policy for a
database system based on this model and discuss other
mandatory security issues such as polyinstantiation and
handling the inference problem. Finally we describe how
mandatory security constraints, which are rules assigning
security levels to data, may be handled.

The organization of this paper is as follows: In section
2 we will describe concepts in multilevel secure database
management systems (MLS/DBMS). In section 3 we will
give an informal overview of the ORION data model. In
section 4 we will describe SORION (Secure ORION), a
multilevel secure object-oriented dam model. This model
extends ORION by incorporating security properties. In
section 5 we will discuss the mandatory security issues in
an object-oriented database system based on SORION.
Handling security constraints are addressed in section 6.
Finally the paper is concluded in section 7.

2. A Brief Account of Multilevel Secure
Database Systems

In a multilevel secure database management system
(MLS/DBMS) users cleared to different security levels
access and share a database consisting of data at different
sensitivity levels. The sensitivity levels (which we will
also refer to as security levels) may be assigned to the data
depending on content, context, aggregation and time. An
effective security policy for MIS/DBMS should ensure
that users only acquire the information to which they are
authorized. The earliest of security policies, the Bell and
LaPadula security model [BELL75], is stated below.

(i) Subjects are the active entities (such as processes) and
objects are the passive entities (such as files)
(ii) Subjects and objects are assigned security levels. The
set of security levels form a partially ordered lattice.(e.g.
Unclassified < Confidential c Secret < TopSecret).

October 1-6, 1989 OOPSLA ‘89 Proceedings 203

(iii) simple security property: A subject has read access to
an object if the subject’s security level dominates the
security level of the object
(iv) *-property: A subject has write access to an object if
the subject’s security level is dominated by the security
level of the object.
This security model is not sufficient to ensure multilevel
security in a DBMS as users can pose multiple queries and
infer unauthorized information from the legitimate
responses that they receive. Despite its shortcomings,
extensions to the Bell and LaPadula security model have
since been proposed for MLS/DBMSs [DwyE88].

The relational data model has dominated much of the
work on MLS/DBMSs (See for example DWYE87,
STAC89a, STAC89b). As a result of such work,
multilevel secure relational database systems have been
developed not only as prototypes but also as products
]ROUG87]. In recent times security issues have also been
investigated in other systems such as object-oriented
systems [KEEF88, THUR89a], functional database
systems [THUR88a], entity relationship systems
[GAJN88] and knowledge based systems [THUR89b]
among others. A detailed description of the recent
development in database security is given in ~HUR89cl.

An attempt was previously made to incorporate security
features into the ORION object model from which a
preliminary set of security properties was developed
[LUNT88]. However, this work did not deal with many of
the features essential to an object-oriented model such as
aggregate objects and set constructs; neither did it address
inheritance mechanisms adequately. In the present paper
these issues as well as others (such as mandatory security
policy, polyinstantiation and the inference problem) are
addressed. Consequently the set of security properties
developed here are more complete and could lead to a secure
model that is easier to implement.

3. Overview of ORION

As stated in [BANE87], all conceptual entities in
ORION are modeled as objects. A group of objects with
similar properties form a class that is also an object. A
class could be a system-defined class, such as a class of
integers or strings, or it could be a user-defined class such
as a class of documents or employees. The objects of a
class are called its instances. Associated with each class is a
set of instance variables that describe the state of the
instances of the a class. Object-ID, which uniquely
identifies an object of the class is also an instance variable.
For example, a class of employees could have Object-Id,
social security number, name, salary and department as its
instance variables. An instance variable is also an object.

Name

BirthDate

I I-- Department

Projed
Engineer

- Class Employee List

Figure la IS-A Hierarchy

Figure lb ISsPARTmOF Aierarchy

A class also has methods associated with it that
encapsulate the behavior of the objects associated with the
class. For example, a message may be sent to the class of
employees to retrieve the salary of a particular employee.
The ORION data model also supports the set construct. For

204 OOPSLA ‘89 Proceedings October 1-6, 1989

example the class EMPS could be defined so that it Pl: If o is a object, then there is a level L such that
consists of sets of employees as its instances. Level(o) = L

Two types of class hierarchies may be formed. One is the
IS-A hierarchy where a class has subclasses associated with
it. The subclass inherits all of the instance variables and
methods associated with its superclass. For example, the
class of all human beings has the class of all employees as
its subclass. This subclass will inherit all the instance
variables from its superclass plus have additional instance
variables such as social security number, salary and
department. If a class has more than one superclass and two
or more superclasses have the same instance variable
names, then the value of the instance variable inherited by
the class depends on some apriori rule enforced. This is
called multiple inheritance. The IS-A hierarchy described
here is illustrated in Figure la.

P2: If o is a basic object, then Level(o) = system-low (this
is usually the Unclassified level in the military
environment)

P3: The security level of the name must dominate the
security level of its value.
That is, salary object could be Secret while its value of
20K is Unclassified. Note that the value 20K is a basic
object and therefore its level is system-low.

The second class hierarchy is the IS-PART-OF hierarchy.
Here an object of a class is considered to be the aggregation
of a set of objects, each of which belongs to some class.
Such an aggregate object is also called a composite object.
For example, a document object, which is a member of
the document class, consists of a title, table of contents,
set of chapters and references. A chapter object that belongs
to the chapter class has a title and set of sections as its
components. A section object that belongs to the section
class has a title and set of paragraphs as its components.
The IS-PART-OF hierarchy described here is illustrated in
Figure lb.

P4: If o is a set object (al,a2,......an), then Level(o) >=
l.u.b.(Level(al), Level(a2), Level@))
That is, if o is a set of employees {John, Mary , James)
and the security levels of John, Mary and James are
Unclassified, Secret and TopSecret respectively, then the
security level of o must be at least TopSecret.

P5: The security levels of the instance variables of an
object are the same as that of the object.
For example, let an employee object be classified at the
Secret level. Let the instance variables of Employee object
be Name, Salary and SS#. Then all three instance variables
are also Secret. However, the values of these instance
variables such as “John”, 20K and “000-00-000” could be
assigned security levels less than the Secret level.

Classes

4. SORION - A Multilevel Secure
Object-oriented Data Model

SORION has evolved from ORION by incorporating
security levels for all entities and enforcing security
properties that must be satisfied. The issues are discussed
in this section.. We discuss multilevel objects, multilevel
classes, the rules enforced on classes and subclasses,
multilevel methods, multiple inheritance and aggregate
classes and objects. We also discuss security properties of
relationships objects, a construct introduced to model
multimedia systems IwOEL863.

A class has two components associated with it; a
structure and a set of methods. Structure of a class is
described by the instance variables defined on the class.
Methods are the operations that are performed on the
instances of the class. We first define the security
properties associated with the structure portion of a class
and then describe the security properties associated with the
methods.

Following are the security properties for class:

P6: If C is a class, then there is a security level L such that
Level(C) = L

Objects P7: The security levels of the instances of a class must
dominate the security level of the class.

The entities of classification are all kinds of objects.
These include the objects, the classes, the methods, and the
instance variables. An object could be a basic object or a
complex object. A basic object could be either an integer,
boolean, real or string. A complex object is any object
which is not basic. This also includes a set object. The
following security properties hold for the objects.

P8: Anyone who can read the name of a class should also
be able to read the names of instance variables of class C.
That is, the security levels of the instance variables are that
of the class. However, if a user cannot read an instance of a
class, then this user cannot read the instance variables of
this instance also.
For example, let EMP be a class with instance variables

October 1-6, 1989 OOPSLA ‘89 Proceedings 205

Name, Salary and SS#. Let EMP be classified at the Secret
level. Then all three instance variables will also be
classified at the Secret level. Suppose EMP has an
instance say o at the TopSecret level. Then the name,
salary and SS# for o will be classified at the TopSecret
level. As mentioned earlier, the values themselves need not
be TopSecret.We enforce rule P8 in order to avoid the

multilevel update problem. We will address this point later
in section 6.

Multiple Inheritance

As described earlier, a class may inherit the methods
and instance variables from one or more superclasses. In
the case of conflict, some apriori rule should determine
how to resolve it. In the case of SORION, the following
properties will determine how conflicts should be resolved.

P9: The security level of a subclass must dominate the
security level of the superclass.
For example, if SENIOR-EMP is a subclass of EMP, and
if EMP is Secret, then SENIOR-EMP must be at least
Secret. Stated more formally, for every security level L, the
model of a superclass must contain the model of a
subclass,where a model of a class at a security level L is
the set of all instances of that class whose security levels
are dominated by L. A model of a class C at level L is
denoted by M(C,L).

P15: Let C be a subclass of Cl, C2, Cn. Let the
instance variable V be associated with Cl, C2......Cn. C
will inherit the instance variable associated with class Cj (1
<= j <= n) such that Level(Cj) dominates the levels of the
remaining classes. If there are more than one such Cj, then
some apriori rule should be enforced to resolve the conflict.

P16: Let C be a subclass of Cl, C2, Cn. Let the
method m be associated with Cl, C2 Cn. C will
inherit the method associated with class Cj (1 <= j c= n)
such that Level(Cj) dominates the levels of the remaining
classes. If there are more than one such Cj, then some
apriori rule should be enforced to resolve the conflict.

PlO: The instance variables of a subclass (whether inherited
or defined) have the same security level as that of the
subclass. For example, SENIOR-EMT’ will inherit the
name instance variable form EMP. If EMP is Secret and
SENIOR-EMP is TopSecret, then name in SENIOR-EMP
is still TopSecret although name in EMP is Secret.

Aggregate Classes and Objects

Methods

The domain of methods could be multiple classes. The
range of a method is a class. A method can be regarded as a
function object. The following are the security properties
of methods.

Pl 1: If m is a method, then there is a security level L such
that Level(m) = L

This is the IS-PART-OF hierarchy which could be
defined on classes as well as class instances. In the case of
class aggregation, a class C may be an aggregate of classes
Cl, c2 , Cn.. Then each instance of C is an aggregate
of the instances of Cl, C2,Cn respectively. For
example consider the automobile class. This class could be
an aggregate of the classes Engine, Chassis and Wheels.
The instances of Engine class are the various types of
engines, the instances of Chassis are the various types of
car structures and the instances of Wheels are the various
sets of four wheels. Any car is composed of an engine, a
set of wheels and a chassis. The following security
property holds:

P12: If a method m is defined on Cl X C2 XCn and P17: Level(C) >= l.u.b.(Level(Cl), level(C2),
its range is C, then Level(Cn))
Level(m) >= l.u.b.(Cl, C2, Cn, C)

P13: A model of a method m (Cl x C2 xCn -> C) at
a security level L (denoted M(m,L)) is the set of all partial
functions from M(Cl,L) x M(C2,L) x M(Cn,L) into
WCJ-1.
A method m 1 is a submethod of a method m2, if M(m 1 ,L)
is a subset of M(m2,L) for all security levels L.

P14: If Cl is subclass of C2 and m2 is a method of C2,
then there is a method ml of Cl with the same name as
m2 such that ml is a submethod of m2.This is the
method inheritance property. The following condition also
holds:
Level(m 1) = l.u.b.(Level(m2), Level(C 1))

In the case of aggregate objects, an object o may be
composed of objects 01, 02,on. This does not mean
that if o belongs to class C and 01, o2...on belong to
classes Cl, C2 ,Cn respectively, then C is an aggregate
of the classes Cl, C2 , Cn. An example of aggregate
object is a book object which consists of a title,
introduction, chapter 1, chapter 2 and conclusion. Another
book object may consist of a title, introduction, body and
conclusion. Both books will belong to the book class; but
they have different structures. The following security
property holds.

P18: Level(o) >= 1.u.b. (Level(ol), Level(o’L),
. Level(on))

Properties P17 and P18 imply the following property:

206 OOPSLA ‘89 Proceedings October 1-6, 1989

P19: If (i) 0 is an instance of C
(ii) 01, 02, on are instances of C 1, C2, Cn
respectively

only if the execution level of ml dominates both he
security level of m2 and the security level of the type on
which m2 is defined.

(iii)C is an aggregate of cl, C2,Cn and (vii) If a new object has to be created as a result of
(iv) 0 is an aggregate of 01, 02 ,..... on executing a method, the object is created at the security
then Level(o) >= l.u.b.(Level(ol), Level(02, level of the subject who initiated the execution of the
.Level(on)) method.

Relationship Objects

Relationship objects are necessary to represent
multimedia information. For example, there could be a link
from a line instance to the voice instance associated with
the line. The two objects (line and voice) are connected by
a relationship object which is basically the link from the
line to the voice. The following security property holds for
relationship objects.

Property (ii) is the simple property specified in the Bell
and LaPadula security policy. Property (iii) is different
from the *-property because writeup is not permitted (this
is because it does not seem natural for a subject to write
some data and not be able to read it later). The remaining
properties are enforced due to method execution.

5.2 Polyinstantiation

P20: Let R be a relationship object which describes a
relationship between two objects 01 and 02. Then
Level(R) >= l.u.b.(Level(Ol), Level(02))

5. Mandatory Security Issues in a
SORION-based Object-Oriented Database
System

Polyinstantiation generally occurs when two subjects
at different security levels have different views of a single
entity in the real world. In an object-oriented world, the
different views could relate to different object values,
different class structures, different class methods and
different method definitions. We will describe each type of
polyinstantiation below.

In this section we will describe the mandatory security
issues in an object-oriented database system which is based
on SORION. In section 5.1. we will describe our
mandatory security policy. Polyinstantiation issues will
be describe in section 5.2. Finally in section 5.3 we will
describe how the inference problem in database security
could be handled.

5.1 Security Policy

The security policy for an object-oriented database
system based on SORION consists of the following
properties:

(i) Subjects and entities (we use the term entity instead of
an object as it is usually stated in security policies in order
to not confuse between the object in security policies and
object in an object-oriented system) are assigned security
levels.
(ii) A subject has read access to any entity if the subject’s
security level dominates the security level of the entity.
(iii) A subject has write access to an entity, if the subject’s
security level equals the security level of the entity.
(iv) A subject can execute a method if the subject’s security
level dominates both the security level of the method and
the type on which the method is defined.
(v) A methods executes at the security level of the subject
who initiated the execution,
(vi)During the execution of a method ml, if another
method m2, has to be executed, then m2 can execute

Object Value polyinstantiation: an Unclassified user views
the object o as (John, 20K, 333) while a Secret subject
views o as (John, 30K, 333).
Class Structure polyinstantiation: an Unclassified subject
views the EMP class as consisting of the instance variables
(name, SS#) while a Secret subject views EMP as
consisting of (name, SS#, salary).
Class method polyinstantiation: an Unclassified user views
EMP as having the methods get-name, change-name while
the Secret subject views EMP as having methods
get-name, change-name, get-salary, change-salary.
Method polyinstantiation: an Unclassified user views a
method update-salary to have one parameter which is the
amount by which the salary should be increased. A Secret
user views this method as having two parameters; one is
the amount and the other is the new salary value which is
returned to the user.

Polyinstantiation is still a major research issue even in
multilevel relational database systems. We will briefly
describe possible scenarios for object polyinstantiation and
give a possible solution.

Polyinstantiation occurs when
(i)) an Unclassified subject has created an object, say, 01
and a Secret subject creates a second object, say, 02 to
represent the same entity and the Secret subject gives a
different value or structure to the object created.
(ii) a Secret subject has created an object 01. The
Unclassified subject is unaware of the existence of 01 and
it creates another object to represent the same entity in the
real world.The structure or value of the obiect

October i-6, 1989 OOPSLA ‘89 Proceedings 207

created by the Unclassified subject may be different from
those of o 1.
(iii) an Unclassified subject has created an object say 01 and
a Secret subject uses the name of 01 to represent a
different entity in the real world.
(iv) a Secret subject has created an object say 01 and an
Unclassified subject uses the name ol(which we assume is
an Unclassified name) to represent a different entity in the
real world.

A possible solution to handle the various types of
polyinstantiations could be the following:

(1) A Secret subject requests to use the same name that is
already used for an Unclassified objst only when it wants
to polyinstantiate the Unclassified object. Otherwise a
different name is used.

(2) When a Secret subject creates an object (which is not a
polyinstantiated object) then the Secret subject should use a
Secret name for that object (that is, we assume that the
identifiers used for objects are also assigned security
levels).

(3) If an Unclassified subject wants to create an object say
01 to represent the same entity which is already represented
by a Secret object say 02, then the Unclassified subject
will use an Unclassified name for 01. By 2), this will be
different from the Secret name used by 02. However, with
this approach there is no way to determine that 02 is a
polyinstantiated version of 01 (unless we introduce the
notion of primary key of an object which is not part of an
object model).

We can justify (3) by taking Reiter’s Closed World
Assumption (CWA) IREIT into consideration. CWA
states that information is represented in the database if and
only if it is true in the real world. Therefore for an entity
to be represented by some Secret object and not by au
Unclassified object means that the entity which exists in
the Secret world does not exist in the Unclassified world.
For the entity to be brought into the Unclassified world it
has to be downgraded (by some trusted subject). Then the
Secret object which represents the entity must be deIeted as
the entity is now in the Unclassified world. An
Unclassified object is created to represent this entity.
However, this same entity can have different values or
structures in the Secret world. Then a Secret object can be
created later to represent the same entity with the same
name as that of the Unclassified object.

With the solution that we have proposed we do not
have to handle the case where two subjects at different
security levels request the same identifier for two different
objects which represent two different entities.

5.3 Inference problem

Security violations via inference occurs when users
pose multiple queries and acquire unauthorized information
CTHUR87, MORG871. A solution to handling the
inference problem in relational systems is to augment a
relational DBMS with a logic-based inference engine and a
knowledge base. The inference engine will detect security
violations via inference when processing queries
[THUR88c, KEEF891. A similar inference controller can
be built for object-oriented systems also [THUR89d]. Two
approaches to implementing such an inference controller
are as follows: In the first approach, the database as well
as the security constraints are expressed in a logic
programming language with support for representing and
manipulating objects. An example of such a language is
object-prolog [ZANI84]. In the second approach, an
object-oriented database system is augmented with an
inference engine and a rule base. The inference engine is
based on an extension to first order logic. The queries are
modified first by the inference engine before the
object-oriented DBMS processes them. The techniques
proposed in this second approach can be used to augment a
SORION-based object-oriented database system with a
logic-based inference engine which will detect security
violations.

6. Handling Security Constraints

In our discussion on ORION we enforced the condition
that the instance variables of a class are assigned the same
security levels as that of a class. An advantage of this
approach is that we do not have to handle the multilevel
update problem. For example, let the EMP class have
instance variables Name, SS# and Salary with the Salary
instance variable being cIassified at the Secret level (EMR
as well as the other two instance variables are classified
Unclassified). Only a Secret subject can read all the
instance variables of EMF. Suppose a Secret subject wants
to update the object (John, 20K, 333) to (James, 30K,
333). That is John’s name and salary should be changed.
The security policy will not permit this Secret subject
changing the name John to James because Name instance
variable is Unclassified. The Secret subject can however
change 20K to 30K. In order to change the name, the
Secret subject may have to log-in later at the Unclassified
level and perform the update. Another solution is for the
Secret subject to polyinstantiate the same object with
different values. In general neither solution is desirable.

With our approach, since all of the instance variables of
an object are assigned the same level as that of the object,
only a subject at the same level can perform the update.
However in the real world, it may be necessary to classify
the salary instance variable at the Secret level. Our solution

OOPSLA ‘89 Proceedings October 1-6, 1989

to this problem is to design the schema (which consists of
the classes) in such a way that various security constraints
which classify instance variables could be handled. We
briefly illustrate this solution for three constraints.

Object-ID
SS#
SdarY

I S-EMP Subclass t Name

Secret

Figure 2a Simple Constraint

Figure 2b Content Constraint

Object-id
SS#

Salary

Figure 2c Context Constraint

Example 1: Name instance variable of EMP is Secret - this
is an example of a simple constraint.
Solution: Create two classes EMP and S-EMP. The level
of EMP is Unclassified and the level of S-EMP is Secret.
Make S-EMP a subclass of EMF. The instance variables of
EMP are Salary, SS# and Object-ID (note that the
object-ID is an instance variable of all objects). The
additional instance variable of S-EMP is Name (See Figure
24.

With this solution, only the Secret subjects (or
TopSecret subjects) can read the Name values of

employees. The Salary and SS# values can be read by all
subjects whose security levels dominate the Unclassified
level. If a Secret subject wants to update say
(John, 20K, 333) to (James, 30K, 333) then all he has to
do is to update the instance in S-EMP.

Example 2: Name instance variable of EMP is Secret
if the salary value is greater than 1OOK - this is an example
of a content-based constraint.
Solution: Create three classes; EMP, EMP and U-EMP
Make S-EMP and U-EMP to be subclasses of EMP. EMP
has instance variables Salary, SS# and Object-ID. S-EMP
and U-EMP have Name as an additional instance variable
(see Figure 2b).

With this solution, all employees who earn more than
1OOK will be instances of S-EMF while the remaining
employees will be instance of U-EMP. However, EMP
will have as its instances all employees with instance
variables SS#, Salary and Object-ID.

Example 3: Name and Salary instance variables taken
together is Secret; individually they are Unclassified; - this
is an example of a context-based constraint.
Solution: Create the classes EMP, SAL and EMP-SAL.
EMP is Unclassified with instance variables Object-ID,
SS# and Name. SAL is also Unclassified with instance
variables Object-ID and Salary. EMP-REL is Secret. Its
instance variables are Object-ID, SS# and Salary. That is,
each instance in EMP-REL is the relationship between an
object in EMP and the corresponding object in SAL (this
gives the name-salary relationship and is therefore classified
at the Secret level) (See Figure 2~).

7. Conclusion

We have developed a multilevel secure object-oriented
data model, SORION, which has evolved from the ORION
object model. We have also described the essential features
of SORION with examples. Like ORION, SORION is
based on the class, object, instance variable and method
constructs. In addition, the set construct, IS-A hierarchy
and IS-PART-OF hierarchy are also supported by
SORION.

We have also discussed mandatory security in an
object-oriented system based on SORION. We first
described a multilevel security policy and then discussed
issues such as handling polyinstantiation and handling the
inference problem. Finally we discussed ways of handling
security constraints. In this way, it is not necessary to
classify the instance variables at levels different to that of
the class. Such an approach will solve some of the update
problems in secure database systems.

October l-6, 1989 OOPSLA ‘89 Proceedings 209

REFERENCES

[BANE871 Banerjee J. et al., “Data Model Issues for
Object-Oriented Applications”, ACM Transactions on
Office Information Systems, Vol. 5, #l, April 1987, pp.
3-26.

[STAC89a] Stachour P. and Thuraisingham M.B. “Design
of LDV - A Multilevel Secure Relational Database
Management System”, Accepted for publication in IEEE
Transactions on KnowledPe and Data Enrzineering.

[BELL751 Bell D.E and LaPadula L.J., “Secure Computer
Systems: Unified Exposition and Multics Interpretation”,
Technical Report MTIS AD-A023588, The MITRE
Corporation, July 1975.

[STAC89b] Stachour P. and Thuraisingham M.B., SQL
Extensions for Security Assertions”, Accepted for
publication in Cornouter Standards and Interfaces Journal.

[DWYE87] Dwyer P., G.Jelatis and M.B.Thuraisingham,
“Multilevel Security in Database Management Systems”,
Co puters and Securitv, Vol. 6, #3, June 1987, pp.
25:260.

[THUR87] Thuraisingham M.B., “Security Checking in
Relational Database Management Systems Augmented
with Inference Engines”, Commuters and Securitv, Vol. 6,
#6, December 1987, pp.479-492.

[DWYE88] Dwyer P., Onuegbe E., Stachour P. and
Thuraisingham M.B., “Query Processing in LDV - A
Multilevel Secure Relational database management
System”, Proceedings of the 4th Aerospace Computer
Security Conference, Orlando, FL, December 1988.

[THUR88a] Thuraisingham M.B, “A Functional View of
Multilevel Databases”, Honeywell Corporate Systems
Development Division Internal Notes, April 1988; also to
appear in Comnuters and Security.

[THUR88b] Thuraisingham M.B, Tsai W.T. and Keefe
T-F., “Secure Query Processing using AI Techniques”,
Proceedings of the 21st Hawaii International Conference on
Systems Sciences, January 1988.

[KEEF88] Keefe T.F., Tsai W.T. and Thuraisingham
M.B., “A Multilevel Security Policy for Object-Oriented
Systems”, Proceedings of the 11th National Computer
Security Conference, Baltimore, MD, October 1988.

[THUR88c] Thuraisingham M.B., “Foundations of
Multilevel Databases”, Presented at the 1st RADC
Database Security Invitational Workshop, Menlo Park,
CA, May 1988.

[KEEF89] Keefe T.F., Thuraisingham M.B. and Tsai
W.T., “Secure Query Processing Strategies”, IEEE
w, Vol. 22, #3, March 1989, pp.63-70

/THUR89a] Thuraisingham M.B., “Security in
Object-Oriented Database Systems”, Accepted for
publication in lhe Journal of Object-Oriented Pronramming

[KONA89] Konar A.F., Felix P. and Thuraisingham M-B.,
“XIMKON - An Expert Simulation and Control
Program”, Proceedings of the American Control
Conference, Pittsburg, PA, June 1989.

[THUR89b] Thuraisingham M.B., “Towards the Design of
a Secure Data/Knowledge Base Management System”,
Accepted for publication in Data and Knowledge
Engineering Journal.

[LUNT88] Lunt T.F. and Thuraisingham M.B., “Security
for Hypermedia Systems”, Unpublished Manuscript,
November 21, 1988; also submitted to Computers and
Security.

[THUR89c] Thuraisingham M.B., “Recent Developments
in Database Security”, Tutorial Proceedings of the (IEEE)
COMPSAC Conference, Orlando, FL, September 1989.

[MORG87] Morgenstem M., “Security and Inference in [THUR89d] Thuraisingham M.B., “Security Checking
Multilevel Database and Knowledge-Base Systems”, with Prolog Extensions”, Presented at the 2nd RADC
Proceedings of the ACM SIGMOD Conference, San Database Security Invitational Workshop, Franconia, NH,
Francisco, CA, May 1987. May 1989.

[REIT78] Reiter R., “On Closed World Databases”, in
Logic and Databases, Ed: Gallaire H. and Minker J.,
Plenum Press, 1978.

[WOEL861 Woelk D. et al., “An Object-oriented Approach
to Multimedia Databases”, Proceedings of the ACM
Sigmod Conference, 1986.

[ROUG87] Rougeau P. and Stearns, “The Sybase Secure
Database Server”, A Solution to the Multilevel Secure
DBMS Problem”, Proceedings of the 10th National
Computer Security Conference, Baltimore, MD, October
1987.

[ZANI84] Zaniolo C., “Object-Oriented Programming in
Prolog”,Proceedings of the IEEE Logic Programming
Symposium, 1984.

210 OOPSLA ‘89 Proceedings October 1-6, 1989

