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Abstract. We exhibit limit-periodic Schrödinger operators that are uni-

formly localized in the strongest sense possible. That is, for these operators
there are uniform exponential decay rates such that every element of the hull

has a complete set of eigenvectors that decay exponentially off their centers of

localization at least as fast as prescribed by the uniform decay rate. Conse-
quently, these operators exhibit uniform dynamical localization.

1. Introduction

This paper is a part of a sequence of papers exploring the spectral properties
of discrete one-dimensional limit-periodic Schrödinger operators; see [7, 8] for the
earlier papers in this sequence. The overarching goal is to obtain a spectral picture
that is as complete as possible, that is, we explore which spectral phenomena can
occur in this class of operators and how often they do so. The present paper is
devoted to cases that display a strong form of localization.

Localization is a topic that has been explored in the context of Schrödinger
operators to a great extent. By now several mechanisms are known that lead
to localization, at least in suitable energy regions. The most important one is
randomness or, more generally, weak correlations. This aspect goes back to the
seminal paper [1] of Anderson. Another important mechanism is strong coupling
and, related to this, positive Lyapunov exponents. The latter approach can be used
to prove localization for strongly correlated potentials.

On the other hand, localization does not occur for periodic potentials. Limit-
periodic potentials are closest to periodic potentials (at least among the stationary
ones) and hence for them, one would expect either the absence of localization or
a difficult localization proof in the rare cases where it holds. Indeed, most of
the work on limit-periodic potentials up to this point has focused on establishing
continuous spectral type. There are two notable exceptions. The first is a pa-
per by Chulaevsky and Molchanov, [18], which unfortunately does not contain a
proof of the theorem on the presence of pure point spectrum for some continuum
one-dimensional limit-periodic Schrödinger operators stated there. Moreover, their
examples have zero Lyapunov exponent and hence are not localized in the standard
sense. The other relevant paper is Pöschel’s work [20], where he proves a general
theorem that provides a sufficient condition for uniform localization along with two
examples showing that the general result is applicable to limit-periodic potentials.
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Incidentally, the Chulaevsky-Molchanov paper uses features of randomness while
Pöschel’s paper uses strong coupling.

Our goal in this paper is to explore the applicability of Pöschel’s general theorem
in the realm of limit-periodic potentials. The setting we will use here was initially
suggested by Avila in [2] and has been consistently pursued in our previous papers
[7, 8]. The idea is to regard limit-periodic potentials as dynamically defined po-
tentials, where the base dynamics is a minimal translation of a Cantor group and
the sampling function is continuous. By separating base dynamics and sampling
function in this way, it becomes easy and natural to answer questions of the type
how often does phenomenon X occur? Here we will show that Pöschel’s results can
be applied to a certain type of base dynamics and suitable sampling function.

This should be contrasted with our earlier results from [7, 8]: For every given
base dynamics, the spectrum is purely singular continuous for a dense Gδ set of
continuous sampling functions and it is purely absolutely continuous for a dense set
of continuous sampling functions, with both statements holding uniformly in the
choice of the initial point (i.e., element of the hull). Thus, the generic spectral type
is singular continuous and from this perspective, the other spectral types must be
rare. It is an open problem whether pure point spectrum occurs for a dense set of
continuous sampling functions.

We would also like to emphasize that Pöschel’s general theorem applies to sin-
gle Schrödinger operators and, whenever it applies, yields one such operator with
uniformly localized eigenfunctions. In the context of Schrödinger operators with
dynamically defined potentials, however, it is more natural to study the typical
behavior of a member of the family of operators that results by varying the initial
point. It is known that the spectral type is independent of it almost surely with re-
spect to any ergodic measure. Limit-periodic (or, more generally, almost periodic)
potentials in turn are uniquely ergodic, that is, there is a unique choice of such a
measure – the Haar measure on the hull. In our examples, we will even go beyond
that and prove uniform localization results that hold uniformly for all elements of
the hull. This is a novel phenomenon. Indeed, usually localization can be proved,
and in fact holds, only almost surely. For random potentials, this is obvious since
there are periodic realizations of the potential. For certain almost periodic poten-
tials, there are results to this effect due to Jitomirskaya-Simon [17] and Gordon [14].
Regarding results establishing pure point spectrum for all elements of the family,
we are aware of the following: For the Maryland model, see [11, 12, 15, 21, 23],
which has an unbounded potential (and hence is not almost periodic), pure point
spectrum was shown for the whole family but without uniform decay of eigenfunc-
tions. There is some unpublished work of Jitomirskaya establishing a similar result
for a bounded non-almost periodic model. To the best of our knowledge, in this
paper we exhibit the first almost periodic example that is uniformly localized across
the hull and the spectrum.

2. Model and Result

We consider Schrödinger operators Hω acting on `2(Z) with dynamically defined
potentials Vω given by

(1) [Hωu](n) = u(n + 1) + u(n− 1) + Vω(n)u(n),
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where

(2) Vω(n) = f(Tn(ω)), ω ∈ Ω, n ∈ Z
with a homeomorphism T of a compact space Ω and a continuous sampling function
f : Ω → R.

Definition 2.1. We say that a family {uk} ⊂ `2(Z) is uniformly localized if there
exist constants r > 0, called the decay rate, and c < ∞ such that for every element
uk of the family, one can find mk ∈ Z, called the center of localization, so that
|uk(n)| ≤ ce−r|n−mk| for every n ∈ Z. We say that the operator Hω has ULE if it
has a complete set of uniformly localized eigenfunctions.1

The notion of uniformly localized eigenfunctions and related ones were intro-
duced by del Rio et al. in their comprehensive study of the question “What is
localization?” [9, 10]. As explained there, ULE implies uniform dynamical local-
ization, that is, if Hω has ULE, then

(3) sup
t∈R

∣∣〈δn, e−itHωδm

〉∣∣ ≤ Cωe−rω|n−m|

with suitable constants Cω, rω ∈ (0,∞). While both properties are desirable, they
are extremely rare. To quote from [9], “the problem is that ULE does not occur”
and “it is an open question, in fact, whether there is any Schrödinger operator
with ULE.” Del Rio et al. may not have been aware of Pöschel’s work [20] since it
predates theirs and provides some examples of Schrödinger operators with ULE.

The occurrence of pure point spectrum for the operators {Hω}ω∈Ω is called phase
stable if it holds for every ω ∈ Ω. It is an unusual phenomenon since most known
models are not phase stable. It is known that uniform localization of eigenfunctions
(ULE) has a close connection with phase stability of pure point spectrum; compare
the following theorem.

Theorem 2.2. [10, Theorem C.1] If Hω has ULE for ω in a set of positive µ-
measure, then Hω has pure point spectrum for every ω ∈ supp(µ), where supp(µ)
is the complement of the largest open set S ⊂ Ω for which µ(S) = 0.

In what follows, we will further assume that Ω is a Cantor group that has a
minimal translation T . Let us recall the necessary definitions.

Definition 2.3. We say that Ω is a Cantor group if it is a totally disconnected
compact Abelian topological group with no isolated points. A map T : Ω → Ω is
called a translation if T (ω) = ω · ω0 for some ω0 ∈ Ω, and moreover, it is called
minimal if the orbit {Tn(ω) : n ∈ Z} of every ω ∈ Ω is dense in Ω.

Jitomirskaya pointed out in [16] that Theorem 2.2 can be strengthened for a
minimal T in the sense that if there exists some ω0 such that Hω0 has ULE, then
Hω has pure point spectrum for every ω ∈ supp(µ).

As explained by Gan in [13], Cantor groups that have minimal translations are
procyclic groups. We can classify such Cantor groups by studying their frequency
integer sets. Every Cantor group with a minimal translation has a unique maximal
frequency integer set S = {nk} ⊆ Z+ with the property that nk+1/nk is prime for
every k. We will give more details concerning this issue in a later section.

1Recall that a set of vectors is called complete if their span (i.e., the set of finite linear combi-
nations of vectors from this set) is dense.
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Definition 2.4. For a Cantor group that has a minimal translation, we say that it
satisfies the condition A if its maximal frequency integer set S = {nk} ⊆ Z+ has
the following property: there exists some integer m ≥ 2 such that for every k, we
have nk < nk+1 ≤ nm

k , that is, log nk+1/ log nk is uniformly bounded.

We can now state our main result:

Theorem 2.5. Suppose Ω a Cantor group that admits a minimal translation T
and satisfies the condition A . Then there exists some f ∈ C(Ω, R) such that for
every ω ∈ Ω, the Schrödinger operator with potential f(Tn(ω)) has ULE with ω-
independent constants. In particular, we have uniform dynamical localization (3)
for every ω with ω-independent constants as well.

We will heavily use Pöschel’s results in [20], which will be recalled in Section 5,
to obtain the above theorem. Pöschel used an abstraction of KAM methods, with
some of the basic ideas going back to Craig [6], Rüssmann [22] and Moser [19]. In
this approach, there is an important concept, that of a distal sequence, which we
will discuss in Section 4. The first step in proving Theorem 2.5 is to construct a
distal limit-periodic potential in our framework. In Section 3, we will recall the con-
nection between hulls of limit-periodic potentials and Cantor groups, which makes
it possible to embed our constructed distal limit-periodic potential isometrically in
C(Ω, R).

3. Limit-Periodic Potentials and Cantor Groups

This section addresses the connection between hulls of limit-periodic potentials
and Cantor groups that have minimal translations, first introduced by Avila in [2],
discussed to the extent needed in [7, 8], and discussed in detail in [13]. Since it will
play an important role in this paper, we present some aspects of it here.

Let σ be the left shift operator on `∞(Z), that is, (σ(d))n = dn+1 for every
d ∈ `∞(Z). Let orb(d) = {σk(d) : k ∈ Z} and denote by hull(d) the closure of
orb(d) in `∞(Z). Let us recall the following standard definitions:

Definition 3.1. Consider a sequence d ∈ `∞(Z). It is called periodic if orb(d)
is finite, it is called limit-periodic if it belongs to the closure of the set of periodic
sequences, and it is called almost periodic if hull(d) is compact.

Every periodic sequence is limit-periodic and every limit-periodic sequence is
almost periodic. For a limit-periodic d ∈ `∞(Z), every d

′ ∈ hull(d) is still limit-
periodic. More precisely, we have the following result.

Proposition 3.2. [2, Lemma 2.1] Suppose d is limit-periodic. Then, hull(d) is
compact and has a unique topological group structure with identity σ0(d) = d such
that

φ : Z → hull(d), k 7→ σk(d)

is a homomorphism. Also, the group structure is Abelian and there exist arbitrarily
small compact open neighborhoods of d in hull(d) which are finite index subgroups.

The last statement in the above proposition tells us that hull(d) is totally discon-
nected. So if d is not periodic, hull(d) is a Cantor group. The translation T defined
initially on orb(d) by T (σi(d)) = σi+1(d) and extended to hull(d) by continuity is
minimal. There may be other minimal translations in hull(d).
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Remark 3.3. Note that not every Cantor group admits a minimal translation. For
example,

Ω =
∞∏

j=0

Z2,

where Z2 is a cyclic 2-group, is a Cantor group with the product topology, but it has
no minimal translations.

Proposition 3.4. [2, Lemma 2.2.] Given a Cantor group Ω, a minimal translation
T , and f ∈ C(Ω, R), define F : Ω → `∞(Z), F (ω) = (f(Tn(ω)))n∈Z. Then we have
that F (ω) is limit-periodic and F (Ω) = hull(F (ω)) for every ω ∈ Ω.

The following lemma will play an important role below.

Lemma 3.5. [13, Lemma 4.1] There exists some f ∈ C(Ω, R) such that
hull(F (e)) ∼= Ω (where we denote, as above, F (e) = (f(Tn(e)))n∈Z).

Moreover, we have

Proposition 3.6. [3, Corollary A.1.5] If d ∈ `∞(Z) is limit-periodic, then there
exists a set Sd = {nj}j≥1 ⊂ Z+ with nj |nj+1 for every j such that

(4) d(k) =
∞∑

j=1

pj(k),

with nj-periodic pj ∈ `∞(Z). This convergence is uniform.

A set Sd = {nj} associated with d as in this proposition will be called a frequency
integer set of d. Since one of the defining properties is that nj divides nj+1 for every
j, the elements of frequency integer sets are always listed in increasing order.

Proposition 3.7. [13, Theorem 2.1] Given limit-periodic potentials d and d̃ ∈
`∞(Z) with infinite frequency integer sets Sd and Sd̃ respectively, hull(d) ∼= hull(d̃)
if and only if for any ni ∈ Sd there exists mj ∈ Sd̃ such that ni|mj and vice versa.

Since the expansion (4) is not unique, one may have many frequency integer
sets for d. A union of frequency integer sets is still a frequency integer set of d.
There exists a unique maximal frequency integer set Md in the sense that every
frequency integer set Sd is contained in Md, and the maximal frequency integer set
is of the form Md = {nj}, where nj+1/nj are all primes. (We refer the reader to [3,
Appendix 1] and [13, Section 2] for more details about the frequency integer sets
of limit-periodic potentials.)

By Lemma 3.5, we know that for every Cantor group Ω that has minimal trans-
lations, there exists a limit-periodic potential d such that hull(d) ∼= Ω. Thus, we
can also endow such an Ω with a maximal frequency integer set SΩ. Moreover, we
have

Lemma 3.8. [13, Theorem 2.1] Given two Cantor groups Ω and Ω̃ that have mini-
mal translations, Ω ∼= Ω̃ if and only if they have the same maximal frequency integer
set.

We need the following lemma.

Lemma 3.9. Suppose we are given a Cantor group Ω and a minimal translation T .
If hull(d) ∼= Ω with d ∈ `∞(Z), then there is an f ∈ C(Ω, R) such that f(T i(e)) = di

for every i ∈ Z.
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Proof. By Lemma 3.5 we have f̃ ∈ C(Ω, R) such that hull((f̃(T i(e)))i∈Z) ∼= Ω.
Since hull(d) ∼= Ω, we have a continuous isomorphism

h : hull((f̃(T i(e)))i∈Z) → hull(d)

with h((f̃(T i(e)))i∈Z) = d.

Clearly, for Tnk(e) ∈ Ω we have h((f̃(T i(Tnk(e))))i∈Z) = σnk(d) since

(f̃(T i(Tnk(e))))i∈Z = σnk((f̃(T i(e)))i∈Z).

If limk→∞ Tnk(e) = ω, then h((f̃(T i(ω)))i∈Z) = limk→∞ σnk(d), where the limit
exists since h and f̃ are both continuous. Define f by f(T i(e)) = σi(d)0 = di. We
extend f to the whole Ω by f(ω) = limk→∞ σnk(d)0 if ω = limk→∞ Tnk(e). By the
previous analysis, f is well defined and continuous. So there is an f ∈ C(Ω, R) such
that (f(T i(e)))i∈Z = d. �

We see that, given a Cantor group Ω and a minimal translation T , the elements
of C(Ω, R) parametrize a class of limit-periodic potentials. Next, let us describe the
periodic elements of this class. Since Ω is Cantor, there exists a decreasing sequence
of Cantor subgroups Ωk ⊂ Ω with finite index nk such that

⋂
Ωk = {e}. We say

that f ∈ C(Ω, R) is a periodic sampling function (of period n) if f(Tn(ω)) = f(ω)
for every ω ∈ Ω. For f ∈ C(Ω, R), we define

fk(ω) =
∫

Ωk

f(ω + ω̃) dµΩk
(ω̃),

where µΩk
is the Haar measure on Ωk. Then fk is an nk-periodic sampling function.

Clearly, there exist compact subgroups with finite index contained in arbitrarily
small neighborhoods of e, and this shows that the set of periodic sampling functions
is dense in C(Ω, R). Let Pk be the set of sampling functions which are defined on
Ω/Ωk. Then Pk ⊂ Pk+1, the elements of Pk are nk-periodic, and P =

⋃
Pk is the

set of all periodic sampling functions and it is dense in C(Ω, R).

4. Distal Sequences

In this section, we discuss approximation functions and distal sequences; compare
[20] and [22].

Definition 4.1. A function Q(x) : [0,∞) → [1,∞) is called an approximation
function if both

q(t) = t−4 sup
x≥0

Q(x)e−tx

and

(5) h(t) = inf
κt

∞∏
i=0

q(ti)2
−i−1

are finite for every t > 0. In (5), κt denotes the set of all sequences t ≥ t1 ≥ t2 ≥
· · · ≥ 0 with

∑
ti ≤ t.

Definition 4.2. A sequence d ∈ `∞(Z) is called distal if for some approximation
function Q, we have

inf
i∈Z

|di − di+k| ≥ Q(|k|)−1

for every k ∈ Z \ {0}.

Proposition 4.3. If d ∈ `∞(Z) is distal, then every d̃ ∈ hull(d) is also distal.
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Proof. This follows readily from the definition. �

The following lemma shows how to generate distal sequences in our framework.

Lemma 4.4. Given a Cantor group Ω satisfying the condition A and a mini-
mal translation T , there exists an f ∈ C(Ω, R) such that (f(T i(e)))i∈Z is a distal
sequence.

Proof. Given a Cantor group Ω and a minimal translation T , by Lemma 3.5 there
is a limit-periodic potential l such that hull(l) ∼= Ω. Since Ω satisfies the condition
A , there exists m ≥ 2 such that for the elements of its maximal frequency integer
set SΩ = {nk}, we have nk−1 < nk ≤ nm

k−1 for every k.
Consider SΩ. Here we let n1 > 1. For n1 ∈ SΩ, there must exist some

nk ∈ [n3
1, n

3m
1 ]. If not, we pick the largest ni ∈ [n1, n

3
1) and then ni+1 will be

strictly larger than n3m
1 . Then we have ni+1 > n3m

1 > nm
i which contradicts the

assumption. So we can pick nk such that n3
1 ≤ nk ≤ n3m

1 . By induction, we can
pick a subset of SΩ which we still denote by I0 = {nk} satisfying n3

k ≤ nk+1 ≤ n3m
k

for every k ∈ Z+. Without any contradiction, we take n0 = 1 for the following
computation.

Define av(i) = j where 0 ≤ j < nv and i = j (mod nv), so av is nv-periodic. Let
d = (di)i∈Z and d(k) = (d(k)

i )i∈Z, where

di =
∞∑

v=1

av(i)
n2

v−1nv
and d

(k)
i =

k∑
v=1

av(i)
n2

v−1nv
.

By the divisibility property of any frequency integer set, d(k) is an nk-periodic
sequence. Since for every i ∈ Z and k ∈ Z+ we have∣∣∣di − d

(k)
i

∣∣∣ =

∣∣∣∣∣
∞∑

v=k+1

av(i)
n2

v−1nv

∣∣∣∣∣ ≤
∞∑

v=k+1

1
n2

v−1

,

it follows that d(k) converges to d uniformly. Thus, d is limit-periodic and one of
its frequency integer sets is I0.

For any i1 6= i2, fix k so that nk−1 ≤ |i1− i2| < nk. If k = 1, then |d(1)
i1
− d

(1)
i2
| ≥

1
n1

. Also, we have

|(di1 − d
(1)
i1

)− (di2 − d
(1)
i2

)| ≤ n1

∞∑
v=2

1
n2

v−1nv

≤ 8
7n1n2

≤ 4
7n1

So it is easy to see that |di1 − di2 | ≥ 3
7n1

≥ 2
3n3m+1

1
.

If k ≥ 2, we have

(6)
1

n2
k−2nk−1

>
2(nk − 1)
n2

k−1nk
,
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since n3
i ≤ ni+1 ≤ n3m

i . Moreover, we have

|d(k)
i1

− d
(k)
i2
| =

∣∣∣∣∣
k∑

v=1

(av(i1)− av(i2))
n2

v−1nv

∣∣∣∣∣
=

∣∣∣∣∣
k−1∑
v=1

(av(i1)− av(i2))
n2

v−1nv
+

i1 − i2
n2

k−1nk

∣∣∣∣∣ .

From (6) we conclude that |
∑k−1

v=1
(av(i1)−av(i2))

n2
v−1nv

| is 0 or larger than 2(nk−1)
n2

k−1nk
. So

|d(k)
i1

− d
(k)
i2
| =

∣∣∣∑k−1
v=1

(av(i1)−av(i2))
n2

v−1nv
+ i1−i2

n2
k−1nk

∣∣∣ ≥ nk−1

n2
k−1nk

= 1
nk−1nk

. We also have

|(di1 − d
(k)
i1

)− (di2 − d
(k)
i2

)| =

∣∣∣∣∣
∞∑

v=k+1

(av(i1)− av(i2))
n2

v−1nv

∣∣∣∣∣
≤ nk

∞∑
v=k+1

1
n2

v−1nv

≤
∞∑

v=0

1
nknk+14v

=
4

3nknk+1
.

Thus, we get

|di1 − di2 | ≥
1

nknk−1
− 4

3nknk+1

≥ 2
3nknk−1

≥ 2
3n3m+1

k−1

≥ 2
3|i1 − i2|3m+1

.

Therefore, d is a distal sequence with an approximation function

Q(x) =

{
3n3m+1

1
2 , 0 ≤ x < n1;

3x3m+1

2 , x ≥ n1.

By Lemma 3.8, we have hull(d) ∼= hull(l) ∼= Ω. By Lemma 3.9 there is an
f ∈ C(Ω, R) such that (f(T i(e)))i∈Z = d. �

Remark 4.5. For any r ≥ 0, let

G(x) =

{
1, 0 ≤ x < 1;
xr, x > 1.

It is not hard to see that
h(t) ≤ ct−4−r
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by choosing ti = t2−i−1. The constant c depends on r. It follows that G(x) is an
approximation function. In particular, this also shows that Q(x) above is indeed an
approximation function.

5. Pöschel’s Results

In this section we rewrite some of Pöschel’s results from [20], tailored to our
purpose.

Let τ ≥ 1 be an integer and M a Banach algebra of real τ -dimensional se-
quences a = (ai)i∈Zτ with the operations of pointwise addition and multiplication
of sequences. In particular, the constant sequence 1 is supposed to belong to M
and have norm one. Moreover, M is required to be invariant under translation: if
a ∈ M, then ‖Tka‖M = ‖a‖M for all k ∈ Zτ , where Tkai = ai+k.

We denote by M the space of all matrices A = (ai,j)i,j∈Zτ satisfying Ak =
(ai,i+k) ∈ M, k ∈ Zτ , that is, Ak is the k-th diagonal of A and it is required to
belong to M. In M , we define a Banach space

Ms = {A ∈ M, ‖A‖s < ∞}, 0 ≤ s ≤ ∞,

where
‖A‖s = sup

k∈Zτ

‖Ak‖Me|k|s.

Obviously,
Ms ⊂ M t, ‖ · ‖s ≥ ‖ · ‖t, 0 ≤ t ≤ s ≤ ∞.

In particular, M∞ is the space of all diagonal matrices in M .

Theorem 5.1 (Theorem A, [20]). Let D be a diagonal matrix whose diagonal d is
a distal sequence for M. Let 0 < s ≤ ∞ and 0 < σ ≤ min{1, s

2}. If P ∈ Ms and
‖P‖s ≤ δ · h(σ

2 )−1, where δ > 0 depends on the dimension τ only, then there exists
another diagonal matrix D̃ and an invertible matrix V such that

V −1(D̃ + P )V = D.

In fact, V, V −1 ∈ Ms−σ and D̃ −D ∈ M∞ with

‖V − I‖s−σ, ‖V −1 − I‖s−σ ≤ C · ‖P‖s,

‖D̃ −D + [P ]‖∞ ≤ C2 · ‖P‖2s,
where C = δ−1 · h(σ

2 ), and [·] denotes the canonical projection Ms → M∞. If P

is Hermitian, then V can be chosen to be unitary on `2(Zτ ). Note that h is the
function (5) associated with d.

An important consequence of the preceding theorem for discrete Schrödinger
operators is the following.

Theorem 5.2 (Corollary A, [20]). Let d be a distal sequence for some translation
invariant Banach algebra M of τ -dimensional real sequences. Then for 0 ≤ ε ≤
ε0, ε0 > 0 sufficiently small, there exists a sequence d̃ with d̃−d ∈ M, ‖d̃−d‖M ≤ ε2

ε2
0
,

such that the discrete Schrödinger operator

(H̃u)i = ε
∑
|l|=1

ui+l + d̃iui, i ∈ Zτ

has eigenvalues {di : i ∈ Zτ} and a complete set of corresponding exponentially
localized eigenvectors with decay rate 1 + log ε0

ε .
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Next let us discuss how to apply the above results.

Pöschel’s Example. Fix τ ≥ 1, and let P be the set of all real τ -dimensional
sequences a = (ai) with period 2n, n ≥ 0, in each dimension; that is, ai = aj , i−j ∈
2nZτ . The closure of P with respect to the sup norm ‖ · ‖∞ is a Banach algebra,
which we denote by L. It is a subspace of the space of all limit periodic sequences.

Let αv, v ≥ 1, be the characteristic function of the set

Av =

{⋃
N∈Z[N · 2v, N · 2v + 2v−1), v even;⋃
N∈Z[N · 2v + 2v−1, N · 2v + 2v), v odd.

Then, αv has period 2v. Construct an τ -dimensional sequence d = (di) such that

di =
∞∑

v=1

τ∑
µ=1

αv(iµ)2−(v−1)τ−µ, i = (i1, · · · , iτ ) ∈ Zτ ,

belongs to L and lies dense in [0, 1]. It is a distal sequence for L with

‖(d− Tkd)−1‖∞ ≤ 16τ |k|τ , 0 6= k ∈ Zτ .

Applying Theorem 5.2 to this distal sequence d, we find that there exists d̃ ∈
L and ε0 > 0 such that for any 0 < ε ≤ ε0, the discrete Schrödinger operator
with potential ( d̃i

ε )i∈Z has the pure point spectrum {di

ε : i ∈ Zτ} and a complete
set of exponentially localized eigenvectors with decay rate 1 + log ε0

ε . Moreover,

the spectrum of this Schödinger operator as a set is {di

ε : i ∈ Zτ} = [0, 1
ε ] since

{di : i ∈ Zτ} = [0, 1].

6. Proof of Theorem 2.5

We are now ready to give the proof of Theorem 2.5. Given a Cantor group Ω
that admits a minimal translation T and satisfies the condition A , we fix a metric
‖ · ‖ compatible with the topology. We have already seen that there exists some
f ∈ C(Ω, R) such that d = (f(T i(e)))i∈Z is a distal sequence; compare Lemma 4.4.
Clearly, C(Ω, R) will induce a class of limit-periodic potentials. We denote it by
B, and one can check that this class is a translation invariant Banach algebra with
the `∞-norm. By Theorem 5.2, there exists a sufficiently small ε0 > 0 such that
for 0 < ε ≤ ε0, there is a sequence d̃ ∈ B with ‖d̃ − d‖∞ ≤ ε2

0
ε2 so that the discrete

Schrödinger operator

(Hu)i = ui−1 + ui+1 +
d̃i

ε
ui, i ∈ Z

has eigenvalues {di

ε , i ∈ Z} and a complete set of corresponding exponentially local-
ized eigenvectors with decay rate r = 1 + log ε0

ε . There exists a sampling function
f̃ ∈ C(Ω, R) such that f̃(T i(e)) = d̃i

ε since d̃ ∈ B.

For the Schrödinger operator H associated with potential f̃(T i(e)), denote its
matrix representation with respect to the standard orthonormal basis of `2(Z),
{δn}n∈Z, by the same symbol. Pöschel’s theorem also implies that there exists
a unitary V : `2(Z) → `2(Z) (with corresponding matrix denoted by the same
symbol) such that

(7) H · V = V ·D,
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where D is a diagonal matrix with the diagonal D0 = (di

ε )i∈Z. We write V =
(· · · , V−1, V0, V1, · · · ) where Vi is the i-th diagonal of V , and similarly, we write
H = (· · · , 0, 0,H−1,H0,H1, 0, 0, · · · ) and D = (· · · , 0, 0, D0, 0, 0, · · · ). Moreover,
by Theorem 5.1 we have that V ∈ Mr, where r > 0 and Mr is a space of matrices
associated with the Banach algebra B (see Section 5 for the description of this
space). (Note that V ∈ Mr follows from [20, Proof of Corollary A].) Since V ∈
Mr, we have ‖V ‖r = supi∈Z ‖Vi‖∞e|i|r < C where C is a constant. So ‖Vi‖∞ <

Ce−r|i|,∀i ∈ Z. Let V (j) be the j-th column of V , that is, V (j) is an eigenfunction
of H. Since V (j)(k) = V (k+(j−k))(k), V (j)(k) is also an entry in Vj−k, and so
|V (j)(k)| < Ce−r|j−k|. C is independent of j, so the corresponding Schrödinger
operator H has ULE. This property is strong enough to imply that the pure point
spectrum of H is independent of ω [16], that is, it is phase stable. In order to see
this more explicitly, we would like to prove it in our framework, and furthermore,
show that for other ω, the associated Schrödinger operator still has ULE with the
same constant C. Note that the latter property does not follow from Theorem 2.2.

We have the following lemma.

Lemma 6.1. Suppose we are given matrices A,B ∈ RZ×Z, one of which has only
finitely many non-zero diagonals. Then, we have for the k-th diagonal of Z = AB,

Zk =
∑
l∈Z

Al · T l(Bk−l),

where · is the pointwise multiplication (i.e., Al ·T l(Bk−l) is still a sequence) and T
is the translation defined by (T (Bk−l))i = (Bk−l)i+1 for i ∈ Z.

Proof. Since for i, k ∈ Z, we have

zi,i+k =
∑
t∈Z

ai,tbt,i+k

=
∑
l∈Z

ai,i+lbi+l,i+k

=
∑
l∈Z

ai,i+lbi+l,i+l+k−l,

the lemma follows. �

Now consider a given ω ∈ Ω. By Proposition 3.4 we have (f̃(T i(ω)))i∈Z ∈
hull((f̃(T i(e)))i∈Z). If ω is in the orbit of e, that is, ω = T t(e) for some t ∈ Z, ULE
with the same constants and eigenvalues follows from unitary operator equivalence
directly. However, we write this out in detail so that we see clearly what happens
in the case where ω can only be approximated by elements of the form T t(e).

By the previous lemma, (7) is equivalent to the following form:

∀k ∈ Z :
∑
l∈Z

Hl · T l(Vk−l) =
∑
l∈Z

Vl · T l(Dk−l).

Since Dj = 0 for j 6= 0 and H±1 are both constant equal to one, this simplifies as
follows,

∀k ∈ Z : T−1Vk+1 + H0 · Vk + TVk−1 = Vk · T k(D0).

If the potential is replaced by f̃(T i+t(e)), with the matrix H̃ =
(· · · , 0, 0, H̃−1, H̃0, H̃1, 0, 0, · · · ) such that H̃j(i) = Hj(i + t), j ∈ {−1, 0, 1}, we
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still have

∀k ∈ Z : T−1Ṽk+1 + H̃0 · Ṽk + T Ṽk−1 = Ṽk · T k(D̃0),

where Ṽk(i) = Vk(i + t), k ∈ Z and D̃0(i) = D0(i + t). Reversing the steps above,
this means that

H̃ · Ṽ = Ṽ · D̃.

We can conclude that H̃ has the pure point spectrum {di+t

ε : i ∈ Z} = {di

ε : i ∈ Z}.
Moreover, Ṽ = (· · · , Ṽ−1, Ṽ0, Ṽ1, · · · ) is the eigenfunction matrix of H̃, and for any
i, k ∈ Z, |Ṽk(i)| = |Vk(i + t)| ≤ Ce−r|k|. So for the eigenfunction Ṽ (j) of H̃, we still
have |Ṽ (j)(i)| < Ce−r|j−i|, and hence ULE with the same constants follows.

If limm→∞ T tm(e) = ω, that is, f̃(T i(ω)) = limm→∞ f̃(T i+tm(e)), then for
f̃(T i+tm(e)), we have already seen that

(8) H̃(m) · Ṽ (m) = Ṽ (m) · D̃(m).

Let Ṽ
(m)
k be the k-th diagonal of Ṽ (m), so that Ṽ

(m)
k (i) = Vk(i + tm). There

exists some f̃k ∈ C(Ω, R) such that Ṽ
(m)
k (i) = Vk(i + tm) = f̃k(T i+tm(e)). So

limm→∞ Ṽ
(m)
k (i) = limm→∞ f̃k(T i+tm(e)) = f̃k(T i(ω)), and we denote f̃k(T i(ω))

by Ṽ
(∞)
k (i). Similarly, limm→∞ D̃(m) exists and D̃

(∞)
0 (i) = f(T i(ω)), where D̃

(∞)
0

is the 0-th diagonal of D̃(∞). Thus, as we let m →∞, (8) takes the following form:

(9) H̃(∞) · Ṽ (∞) = Ṽ (∞) · D̃(∞),

where H̃(∞) is (the matrix representation of) the Schrödinger operator with po-
tential f̃(T i(ω)). Equation (9) implies that H̃(∞) has the pure point spectrum
{di

ε : i ∈ Z}, and its eigenfunctions are uniformly localized since |(Ṽ (∞))(j)(k)| <

Ce−r|j−k| for any j, k ∈ Z, where (Ṽ (∞))(j) is the j-th column of Ṽ (∞). This
completes the proof of Theorem 2.5. �

7. Open Problems

We conclude this paper with a number of open problems concerning the spectral
properties of limit-periodic Schrödinger operators that we regard as interesting.

Given the results of [7, 8], it would be desirable to complete the topological
picture. Thus, given a minimal translation T of a Cantor group Ω, consider for
f ∈ C(Ω, R) and ω ∈ Ω the spectral type of the associated Schrödinger operator
Hω with potential given by Vω(n) = f(Tn(ω)).

Problem 1. Is it true that for f from a suitable dense subset of C(Ω, R), Hω has
pure point spectrum for (Haar-) almost every ω ∈ Ω?

We already know that for generic f ∈ C(Ω, R), Hω has purely singular continuous
spectrum for every ω ∈ Ω, and also that for f from a suitable dense subset of
C(Ω, R), Hω has purely absolutely continuous spectrum for every ω ∈ Ω. Thus,
an affirmative answer to Problem 1 would clarify the effect of the choice of f on
the spectral type. Since the methods of Pöschel are essentially restricted to large
potentials, one should not expect them to yield an answer to Problem 1 and one
should in fact pursue methods involving some randomness aspect.

Note, however, the different quantifier on ω in Problem 1, compared to the
results just quoted. In this paper, we exhibit (Ω, T, f) for which Hω has pure point
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spectrum for every ω ∈ Ω. From this perspective, the following problem arises
naturally:

Problem 2. Is the spectral type of Hω always the same for every ω ∈ Ω?

For quasi-periodic potentials, this is known not to be the case (cf. [17]). However,
the mutual approximation by translates for two given elements in the hull is stronger
in the limit-periodic case than in the quasi-periodic case, so it is not clear if similar
counterexamples to uniform spectral types exist in the limit-periodic world.

Another related problem is the following:

Problem 3. Is the spectral type of Hω always pure?

Again, in the quasi-periodic world, this is known not to be the case: there
are examples that have both absolutely continuous spectrum and point spectrum
(cf. [4, 5]).

Returning to the issue of point spectrum, one interesting aspect of the result
stated (in the continuum case) by Molchanov and Chulaevsky in [18] is the coexis-
tence of pure point spectrum with the absence of non-uniform hyperbolicity. That
is, in their examples, the Lyapunov exponent vanishes on the spectrum and yet
the spectral measures are pure point. This is the only known example of this kind
and it would therefore be of interest to have a complete published proof of a result
exhibiting this phenomenon. Especially since our study is carried out in a different
framework, we ask within this framework the following question:

Problem 4. For how many f ∈ C(Ω, R) does the Lyapunov exponent vanish
throughout the spectrum and yet Hω has pure point spectrum for (almost) every
ω ∈ Ω?

Given the existing ideas, it is conceivable that Problems 1 and 4 are closely
related and may be answered by the same construction. If this is the case, it will
then still be of interest to show for a dense set of f ’s that there is almost sure pure
point spectrum with positive Lyapunov exponents.
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