
Building Intelligent Web Applications

Using Lightweight Wrappers

Arnaud Sahuguet a, Fabien Azavant b

a Department of Computer and Information Science, University of Pennsylvania

Moore School Building, 200 South 33rd Street Philadelphia, PA 19104-6389, USA

b Ecole Nationale Sup�erieure des T�el�ecommunications

46, rue Barrault, Paris 75634 Cedex 13, France

Abstract

The Web so far has been incredibly successful at delivering information to human

users. So successful actually, that there is now an urgent need to go beyond a

browsing human. Unfortunately, the Web is not yet a well organized repository of

nicely structured documents but rather a conglomerate of volatile HTML pages.

To address this problem, we present the World Wide Web Wrapper Factory

(W4F), a toolkit for the generation of wrappers for Web sources, that o�ers: (1)

an expressive language to specify the extraction of complex structures from HTML

pages; (2) a declarative mapping to various data formats like XML; (3) some visual

tools to make the engineering of wrappers faster and easier.

Keywords: web; XML; information extraction; wrappers

1 Introduction

The Web has become a major conduit to information repositories of all kinds.

Because it is based on open standards, has low entry costs for publishers and

o�ers free navigation tools for end-users, it has become the de-facto standard

for publishing information. It allows at the same time individuals, companies,

independent and governmental organizations to publish information { for re-

search, fun, pro�t { at a very low cost. Individuals create Web sites dedicated

to their hobbies. Companies put on-line annual reports, catalogues, marketing

brochures, product speci�cations. Government agencies publish new regula-

tions, tax forms, etc. Independent organizations make available latest research

results (e.g. the Human Genome Project). As of today, for some speci�c do-

mains, the "reference" information can only be found on the Web and this is

even truer for real-time data such as stock-market (e.g. The New-York Stock

Exchange or NASDAQ), weather forecasts, etc.

Preprint submitted to Elsevier Science 11 July 2000

Information on the Web consists of multimedia components (pictures, movies,

sounds, applets, etc.) glued together in pages (documents). These documents

are interconnected by hyperlinks and vary from pages generated on-the-y by

computer programs or database systems, to stand-alone pages hand-crafted by

individuals. Both categories o�er valuable information such as links, reviews,

digests, etc.

All Web information sources have two things in common: (1) text content is

delivered using HTML; and (2) access to content is made available through

browsing (hopping from hyperlink to hyperlink) or form-based querying.

First, HTML has been mainly designed to tag information for display purposes

and is not suitable to represent structure: HTML tags are more concerned with

font size, color, position, etc. The structure of a document (if any) is de�ned

implicitly by these tags. As consequence, for data coming from underlying

databases and published on the Web, its structure is lost in the transformation

from a database record into an HTML document, and to recover the structure,

one has somehow to reverse engineer it from the HTML.

Second, access to content is twofold: browsing and querying. Browsing means

that a document contains some links to some other documents: by navigating

pointers, it is possible to reach some speci�c information (like following a

path in a �le system). Querying means that it is possible to go directly to

a document: the navigation has been shortcut. It is important to make the

distinction between Web querying from the traditional database querying.

Web querying is versatile, in the sense that similar queries are not guaranteed

to o�er similar results. For instance, when looking up a book from an on-

line bookstore, depending on the input title, one can get the description of

the book, a list of candidate matches or an empty result. This is radically

di�erent from a database query where the type of the result is always known

in advance.

1.1 Challenges

� Automation. Human users are now overloaded with Web information.

Services like the AltaVista search-engine are terribly useful, but how many

users have enough patience to go through the tens of Web pointers returned for

a given query. For each of them, the human user has to click on the link, wait

for the page to be downloaded to the browser and read the content: the entire

process is done by hand. It is now crucial to have some tools to automate Web

information processing on behalf of the human user. By automation, we do

not necessarily mean the need for a heavy machinery: many automation issues

do not concern huge amount of data but an amount of data it is too tedious to

manipulate by hand like �ltering hundreds of results from an AltaVista query,

comparing dozens of products from an on-line catalogue, etc.

� User-friendly vs application-friendly. The Web is now being used as a

medium of communication for humans but also for computer applications. It

2

has to evolve from a user-friendly only medium to a both user- and application-

friendly one (the push towards XML is an attempt to solve the problem). The

development of E-Commerce (both Business-to-Consumer and Business-to-

Business) and Electronic Document Interchange will see computer programs

exchange information using the Web.

�Value added networks. The future of the Web is already focused on value

added networks (VAN) that aggregate information from various sources and

o�er better access, better analysis, etc. Search engines and portals are �rst

attempts in this direction. However, accessing the data in order to enhance it

is a challenge.

1.2 Web Applications

Web applications aim to add value to Web data that is (largely and freely)

already published. They are the means for automating information processing

on behalf of the user and creating the valued added networks we have discussed

above. The process of adding value consists of pulling the data together from

various sites, then �ltering, comparing, and analyzing it, and �nally publishing

the results of the analysis as new Web data. The resulting synthetic informa-

tion is likely to become in turn raw data for other Web applications!

These applications have to cope in particular with the following constraints,

inherent to Web environments: uniform access, scalability, evolution, compos-

ability and autonomy.

� Autonomy. Applications cannot make strong assumptions about Web

sources. The latter are unlikely to be modi�ed just for the sake of one appli-

cation. Yahoo! is not willing to change its quote services to make it easier for

computer programs to extract quote values. Web content has to be accessed

as it is presented to the human user.

� Composability. Web applications will consist of small components that

can be assembled together. A good analogy is Unix shell scripts { that are

very simple programs that can be combined to perform smart processing {

or GUI components. Web applications should be lightweight and portable in

order to be run in diverse environments from desktop to nomad computing

devices.

� Evolution. Evolution is a key in this Web environment in perpetual mo-

tion. Web applications need to rely on abstractions and interfaces that can be

modi�ed quickly and independently, in order to support the versatility of the

Web.

� Scalability. Processing can be split into simpler tasks that can be resolved

in a distributed way. Web applications need to be built around Web APIs that

o�er a transparent access to Web data.

� Uniform Access. Web applications have to use Web standards in order

3

to access and serve information.

1.3 Overview of this paper

In this paper, we present an approach for the design of Web applications that

relies on the World Wide Web Wrapper Factory (W4F), a toolkit for the rapid

design, generation and integration of Web wrappers.

The rest of the paper is organized as follows. In Section 2, we give an overview

of the W4F approach. Sections 3, 4, 5 and 6 present informally details of the

toolkit, including the HEL language used to extract information from HTML

documents, our internal data-model, some mappings to other data-format and

the visual support we o�er with the toolkit.

In Section 7, we give a concrete example of a Web application for information

integration, that takes advantage of the W4F approach. Section 8 describes

other examples of applications and experiences with W4F. Some related work

is presented in Section 9 before we o�er some concluding remarks. The for-

mal description (denotational semantics) of the core of the HEL extraction

language is presented in the appendices.

Along this article, examples will be motivated by the case-study of Section 7 that

involve movie and TV program resources. Movie information will be extracted from

the Internet Movie Database 1 (IMDb). TV program information will be extracted

from the Yahoo! TV Coverage 2 .

2 The W4F Approach

In this section we present the approach we use to build Web applications. It

is based on a middleware [29] architecture with Web wrappers as illustrated

in Figure 1. Wrappers { also often called adapters { are computer programs

that o�er high-level view and access to some data. Using them, the data can

be handled transparently in a uniform and structured way. We qualify our

wrappers lightweight because they are meant to execute simple tasks, require

little resources and are de�ned in a concise way. The role of a wrapper is to

o�er to mediators an access to information that is independent of the structure

of the source (HTML formatting in the case of Web wrappers). Mediators can

later on export an enriched view of the data to clients. For instance a mediator

will o�er a uni�ed view over multiple Web sources.

Key issues when dealing with Web sources are versatility and scalability. It

is important to have tools that make the generation and maintenance of such

wrappers easy. The World Wide Web Wrapper Factory (W4F) is a develop-

1 IMDb is the biggest information repository about movies and is freely available

at http://www.imdb.com.
2 http://tv.yahoo.com

4

Client1 Client3Client2 Client4

Mediator

Information

Source

Wrapper

Information

Source

Wrapper

Information

Source

Wrapper

Information

Source

Wrapper

Mediator

Fig. 1. Middleware architecture with wrappers and mediators.

ment environment that permits application developers to author a wrapper

using a declarative speci�cation language, compile it as a Java component

and deploy it as part of a bigger application. The toolkit also o�ers some vi-

sual wizards to assist him during the design, testing and deployment of the

wrapper.

Our Web wrappers are in charge of four independent tasks: retrieving a Web

document, cleaning it, extracting some information from it and mapping this

information into a pre-de�ned data-structure for further use. The details of

these interactions are presented in Figure 2.

NSL

NSL

NSL

Retrieval Rules

Extraction Rules

Parser

NSL

NSL

NSL

String

String[]

Actor[]

DOM tree

HTML page

title

genre

cast

<MOVIE>
<TITLE>Casablanca</TITLE>
<GENRE>Drama, War, Romance</GENRE>
<CAST>
<ACTOR>Humphrey Bogart</ACTOR>
<ACTOR>Ingrid Bergman</ACTOR>
...

Mapping to Java objects

Mapping to XML

The Java objects can now be
used by any Java application.

Retrieval
wizard

Extraction
Wizard

Mapping
wizard

Mapping Rules

Extraction
Engine

Retrieval Agent

Mapper

World
Wide
Web

XML document

Fig. 2. W4F architecture

� Retrieving a Web document. This task is simply to mimic the action

of a human fetching the page from his Web browser. Any page that can be

accessed by a human is accessible to the wrapper. The retrieving is performed

by our RetrievalAgent using the HTTP protocol.

� Cleaning. Unlike the XML speci�cation [30] that enforces some constraints

on the syntax of XML documents (well-formedness, validity), HTML has been

5

"hijacked" by users: a "good" HTML document is simply a document that

"looks good" when viewed in a Web browser. Unfortunately, HTML docu-

ments are often not well-formed, in the sense that tags are not always properly

nested (missing closing tags or overlapping tags). The cleaning stage trans-

forms the HTML document into a well-formed document, that can be mapped

in a DOM [31] tree.

� Extracting information. Once the HTML document has been retrieved

and cleaned, it is parsed and an abstract tree representation is built out of it.

Some extraction rules are then applied to extract some pieces of information

from the tree.

Extraction rules are expressed using our high-level extraction language HEL

(HTML Extraction Language). An extraction rule will express a navigation

along the tree and will specify which pieces of information to collect and how

to put them together. It is important to understand that an extraction rule

simply expresses some interest for a piece of information in the document

but does not mention anything about how this piece of information has to

be used. The extracted information is stored in our internal data-structure

(nested string list or NSL) before being used.

� Mapping information. The information extracted and stored in our in-

ternal representation is still not really usable and need to be mapped into an

exportable structure suitable for the application.

The toolkit o�ers various ways to de�ne mappings from our internal represen-

tation into user-de�ned data-structures, via either a declarative or a program-

matic mapping speci�cation.

Using W4F, we can now describe a wrapper in a fully a declarative way. The

speci�cation consists of 3 sections that correspond to the 3 layers mentioned

above. An example of such a speci�cation is presented in Figure 3.

SCHEMA

{

String title;

int year;

String[] genres;

String[][] cast;

}

EXTRACTION_RULES

{

title = html.body->h1.txt, match/(.*?) [(]/;

year = html.body->h1.txt, match/.*?[(]([0-9]+)[)]/;

genres = html.body->td[i:0].a[*].txt

WHERE html.body->td[i].b[0].txt = "Genre";

cast = html.body->table[i:0].tr[j:*].td[0].txt, match/(\S+)\s(.*)/

WHERE html.body->table[i].tr[0].td[0].txt =~ "Cast"

AND html.body->table[i].tr[j].getNumberOf(td) = 3;

}

RETRIEVAL_RULES

{

get(String url) { GET "url"; }

}

Fig. 3. The full wrapper speci�cation for Internet Movie Database (IMDb).

6

The RETRIEVAL RULES section de�nes methods to access the Web source. In

the example, a valid movie url 3 needs to be provided. This is one mandatory

input of the wrapper.

The EXTRACTION RULES section de�nes what information to extract from the

Web source. An extraction rule consists of (1) a name that is used to refer to

this speci�c data and (2) an HEL extraction path.

The SCHEMA section de�nes the mapping, i.e. how extracted elements will be

available from the wrapper. In the case of the �gure, the wrapper will export

a title as a Java String, a year as an int, a list of genres as a String[] and

a cast as String[][].

A wrapper is speci�c to a class of Web pages. For the examples presented

in upcoming sections, we will need one wrapper to handle HTML pages for

the TV program, one wrapper to handle HTML pages for movies, etc. Now,

for a given Web source, the speci�cation is compiled into a Java component

that can be used as is or integrated in a larger application. The toolkit per-se

consists of an HTML parser that generates parse trees out of HTML pages

(using various heuristics to handle ill-formed pages), a compiler to produce

Java code for each layer and various visual wizards (see Section 6) to assist

the user in writing the speci�cations. The various components of the toolkit

are described in more details in the following sections.

3 The HTML Extraction Language (HEL)

In this section, we describe informally some features of HEL (HTML Ex-

traction Language) used for the speci�cation of the extraction layer. The full

syntax of the language is available in [5]. A formal description of the core

language can be found in Appendix A. Features presented here after are mo-

tivated by the examples of �gures 3, 6 and 7.

HEL is a DOM-centric [31] language where a document is represented as a

labeled graph. In this article, we will use HEL to navigate HTML documents,

but more generally it can be used for any information that can be represented

as a labeled-tree. Each Web document is parsed and an abstract tree corre-

sponding to its HTML hierarchy is built out of it.

A tree consists of a root, some internal nodes and some leaves. Each node cor-

responds to an HTML tag (text chunks correspond to PCDATA nodes). Nodes

can have children and these can be accessed using their label and their index.

A leaf can be either a PCDATA or a bachelor tag 4 .

� Navigation. Navigation along the abstract tree is performed using path-

expressions ([7,1]). A unique feature of HEL is that it comes with two ways

3 like http://us.imdb.com/Title?Ridicule+(1996)
4A bachelor tag (aka empty tag) is a tag that does not require a closing tag, like

 or
.

7

to navigate.

The �rst navigation is along the document hierarchy using the "." operator.

Path 'html.head.title' will lead to the node corresponding to the <TITLE>

tag, inside the <HEAD> tag, from the root of the document. This type of navi-

gation o�ers a unique (i.e. canonical) way to reach each information token.

The second way to navigate is along the document ow, using the "->"

operator. Path 'html->pcdata[1]' will lead to the second chunk of text found

in the depth-�rst traversal of the abstract tree starting from the root of the

document. This operator is very useful to create navigation shortcuts. More-

over, it permits to traverse the entire tree.

Using both complementary navigation styles, most structures can be easily

identi�ed as extraction paths. To the best of our knowledge, HEL is the only

language that captures both structures of a page.

Path expressions can also use index ranges to return a collection 5 of nodes,

like [1,2,3], [7-] or the wild-card [*]. When there is no ambiguity, the index

value can be omitted and is assumed to be zero.

For our extraction purposes, we are not really interested in nodes themselves

but rather in the values they carry. From a tree node, we can extract its text

value ".txt". The text content of a leaf is empty for a bachelor tag and cor-

responds to the chunk of text for PCDATA. For internal nodes, the text value

corresponds to the recursive concatenation of the sub-nodes, in a depth-�rst

traversal.

In the same way, the underlying HTML source is extracted using ".src".

Some other properties like attribute values (e.g. "HREF") or the number of

children can also be retrieved from nodes.

� Index Variables and Conditions. Another key feature of the language

is the ability to have path index variables that can be resolved with respect to

some conditions when the path is evaluated on a given page. Index variables

can return the �rst index value (like [i:0] 6) or an index range (like [i:*], for

all of them) that satis�es the condition. Conditions are introduced using index

variables and WHERE clauses separated by AND. Disjunctions are not supported.

Conditions cannot involve nodes themselves but only their properties. Various

comparison operators are o�ered by the language, including regular expression

matching.

Conditions can be marked with the cut operator "!" 7 , meaning that the search

for index values will be stopped the �rst time the condition is evaluated to

false. This operator turns out to be extremely useful when used with "->" to

limit the exploration of the tree.

Conditions are crucial in table contexts, where row and column positions are

not known in advance for instance. Let us look at the structure of a movie entry

5 list, since we care about the order of nodes.
6This is the default behavior.
7 In the spirit of the Prolog cut.

8

from IMDb as shown in Figure 4, with the corresponding table structure 8 in

Figure 5. To extract the genre of the movie, we need to �nd the table cell

Fig. 4. The Web page

Ridicules (1996)

Written credits:

Genre: Drama

Cast

Charles Berling ... Ponceludon

Jean Rocherfort ... Bellegarde

Rest of cast in alphabetical order

Runtime: France:102 / Argentina:102

Fig. 5. The table structure

html.body->td[i:0].a[*].txt

WHERE html.body->td[i].b[0].txt = "Genre";

html.body->table[ii:0].tr[jj:*].td[0].txt, ...

WHERE html.body->table[ii].tr[0].td[0].txt =~ "Cast"

AND html.body->table[ii].tr[jj].getNumberOf(td) = 3;

Fig. 6. The extraction rules.

of the document that starts with the string "Genre:" in boldface. Since we

do not know the exact hierarchical structure of the nesting, we use the arrow

operator with an index variable i. It also makes the extraction rule robust

to any nesting modi�cation. To extract the cast of the movie, we �rst need

to identify the corresponding table. To do so, we introduce an index variable

ii that gets resolved at runtime for the table that contains the string "Cast"

in the �rst column of its �rst row. The extraction of the cast is generally

straightforward except that for some movies the cast is split into a main cast

and secondary cast 9 . In any case, we want to make sure that we do not extract

the separator ("Rest of cast in alphabetical order"). To do so, we introduce a

condition jj with a table row index variable that checks that the extracted

8Tables are useful in HTML to enforce text alignment.
9 It is not the case for the movie presented in Figure 4.

9

row contains exactly 3 cells (numberOf(td)). The use of index variables makes

extraction rules slightly more complex to write, but much more robust.

� Regular expressions. So far we have used only the HTML hierarchy to

extract information. However, in many cases, the tag granularity is too rough

and we need something thinner to capture more precise information. For in-

stance, in the table example of Figure 5, we might want to extract the title

("Ridicule") itself and trim the year ("1996").

To capture this level of details, our language comes with standard regular ex-

pressions �a la Perl [28] that can be accessed through the two operators match

and split. The match operator takes a string and a pattern, and returns the

result of the matchings (there can be more than one). Depending on the nature

of the pattern (the number of parenthesized sub-pattern binders indicates the

number of items returned by the match.) the result can be a string or a list of

strings. The split operator takes a string and a separator, and returns a list

of substrings. These operators can also be used in cascade.

In the example of Figure 3, match is used to extract separately the title and

the year of the movie. split would be used when for instance the information

is returned as a string with a delimiter. In the movie example, the runtime in-

formation could be extracted using two splits in cascade: split ///, split

/:/. The string "France:102/Argentina:102" will be extracted as a list of

pairs: (("France", "102"), ("Argentina", "102")).

� Building Complex structures.

movie = html.body(

->h1.txt, match/(.*?) [(]/

->h1.txt, match/.*?[(]([0-9]+)[)]/

->td[i:0].a[*].txt

->table[ii:0].tr[jj:*].td[0].txt, match/(\S+)\s(.*)/

)

where html.body->td[i].b[0].txt = "Genre"

and html.body->table[ii].tr[0].td[0].txt =~ "Cast"

and html.body->table[ii].tr[jj].getNumberOf(td) = 3;

Fig. 7. Building complex structures.

As pointed out previously, extraction should not be limited to isolated pieces

of information but should be able to capture complex structures. From this

perspective, HEL is di�erent from XPath [26] { the XML navigation language

{ that can only return a set of nodes.

The HEL language therefore provides the fork operator "#" (like a record con-

structor) to build complex structures based on extraction rules. The meaning

of the operator is somehow to follow multiple sub-paths at the same time and

concatenate the results using a list semantics. Forks can be applied in cascade.

This is particularly useful when information spread across the page need to

be put together like in the movie examples of Figure 3. Instead of extracting

pieces of information separately, we might want to get them as a whole. For a

movie, we would write a slightly di�erent extraction rule (Figure 7).

10

4 Storing information as NSLs

A key motivation of W4F is to be able to capture complex structures expressed

inside HTML pages. The extraction language presented in the previous section

o�ers rich constructs, but we also need a exible and expressive way to store

the extracted information. Within W4F, information is stored in Nested String

Lists (NSL), the datatype de�ned by:

NSL = null j NSL0

NSL0 = String j list(NSL0)

It is important to note that items within a list can have di�erent structures.

The datatype has been chosen on purpose to be simple, anonymous { in the

sense that the NSL does not have any label { and capable of expressing any

level of nesting.

For a given extraction rule, the structure of the corresponding NSL is ful-

ly determined by the rule itself (the WHERE clause has no inuence). Strings

are created by leaves. Lists are created from index ranges, forks and regular

expression operators split and match (only when the number of matches is

greater than one).

By looking at the extraction rules of Figure 7 we can infer that for a movie

the corresponding NSL will be a list of 4 items (3 top level forks). The �rst

and second items are strings that represent respectively the title and year of

the movie. The third item is a list of strings (.a[*].txt). The last is a list

(tr[jj:*]) of pairs (match operator with two bindings) for the �rst name and

last name of the actors in the movie.

NSLs are very low-level structures that can be manipulated via an API (list

iterators and coercion operators). NestedStringList objects can be either

NSL List (list) or NSL String (leaf). Lists can be iterated upon using getItem,

while string values can be extracted from leaves using getValue(). An overview

of the API is presented in Figure 8. A concrete application of the API will be

presented in the next section (see Figure 9) as an illustration of the mapping.

abstract class NestedStringList

|

+----- class NSL_List

| int getLength()

| NestedStringList getItem(int i)

|

+----- class NSL_String

String getValue()

Fig. 8. The NSL API.

11

5 Mapping information

As presented above, it is possible to manipulate the extracted information

using the NSL API. But it is not very convenient and for a programming

point of view we would prefer to handle Java types, where a movie title is

represented as a character string and the year of release as an integer. W4F

o�ers a mapping to Java objects and also ways to de�ne mappings to some

data formats such as XML, ASN.1, OIF [6], etc. In both cases, it is important

to keep in mind that the structure generated out of mapping is constrained

by the input NSL. Mappings can be seen as tree-transducers with limited

restructuring capabilities.

� Java mappings. W4F o�ers a way to de�ne mappings to Java. The user

can specify a mapping to Java base types { and their array extensions { by

simply indicating that the result of an extraction rule needs to be coerced to

this type. The user can also specify a mapping to some user-de�ned Java types.

In this case, the user needs to provide a valid Java class with a constructor

that can convert the NSL input into an instance of this class.

The wrapper presented in Figure 3 takes advantage of Java mappings to ex-

tract the title as a String, the year as an int, the genres as a String[] and

the cast as a String[][] (see Figure 9a).

If we decide to go for the complex structure presented in Figure 7, we would

like the wrapper to export movie as a instance of a user-de�ned class Movie.

We need to de�ne class Movie with a valid constructor that takes the input

NSL and manipulates it via the API to build the corresponding Java object.

The API provides some methods to make it easy to build array types, using the

Java reection library. The content of the mapping section and the de�nition

of the user-de�ned class are presented in Figure 9(a,b,c).

� XML mappings with XML templates. The ultimate goal of a wrapper

is to export information according to a prede�ned interface. For Web sources,

the XML format appears to be a good candidate to represent and exchange

information. Having an automatic mapping from NSL to XML would be really

convenient. From the last section, it is clear that such a mapping can be { quite

{ easily done by enriching each user-de�ned Java class with some methods

to output XML. But as mentioned, such a mapping is neither generic nor

declarative. In this section we explain how XML mappings can be de�ned

inside W4F. Extensions to other data formats would be handled in a similar

way.

An XML mapping expresses how to create XML elements out of NSLs. Before

going further it is crucial to understand that the shape of XML elements we

can generate is constrained by the structure of the NSL itself. XML mappings

can be seen as tree transducers that take an NSL as an input and output an

XML tree.

An XML mapping is described via declarative rules called templates. Tem-

12

(a) Mapping to Java base types (b) Mapping to a user-de�ned Java class
SCHEMA

{

String title;

int year;

String[] genres;

String[][] cast;

}

SCHEMA

{

Movie movie;

}

(c) Implementing the user-de�ned mapping

public class Movie

{

String title;

int year;

String[] genre;

Actor[] cast;

public Movie(NestedStringList nsl)

{

NSL_List list = (NSL_List) nsl;

title = ((NSL_String) list.getItem(0)).getValue();

year = Integer.parseInt(((NSL_String) list.getItem(1)).getValue());

genre = (String[]) NSL.toObjectArray(list.getItem(2));

cast = (Actor[]) NSL.toObjectArray(list.getItem(3), Actor);

}

}

public class Actor

{

String firstName, lastName;

public Actor(NestedStringList nsl)

{

NSL_List list = (NSL_List) nsl;

firstName = ((NSL_String) list.getItem(0)).getValue();

lastName = ((NSL_String) list.getItem(1)).getValue();

}

}

Fig. 9. Java Mappings.

movie_t =

.Movie (.Title

.Year

.Genres*.Genre

.Cast*.Actor (.FirstName

.LastName));

<!ELEMENT Movie (Title,Year,Genres,Cast)>

<!ELEMENT Title (#PCDATA)>

<!ELEMENT Year (#PCDATA)>

<!ELEMENT Genres (Genre)*>

<!ELEMENT Genre (#PCDATA)>

<!ELEMENT Cast (Actor)*>

<!ELEMENT Actor (FirstName,LastName)>

<!ELEMENT FirstName (#PCDATA)>

<!ELEMENT LastName (#PCDATA)>

<Movie>

<Title>Ridicules</Title>

<Year>1996</Year>

<Genres>

<Genre>Drama</Genre>

</Genres>

<Cast>

<Actor>

<FirstName>Charles</FirstName>

<LastName>Berling</LastName>

</Actor>

<Actor>

<FirstName>Jean</FirstName>

<LastName>Rochefort</LastName>

</Actor>

...

</Cast>

</Movie>

Fig. 10. The template, the DTD and document

13

plates are nested structures composed of leaves, lists and records and are de-

�ned using the XML Template language. Templates always start with a "."

because we assume that the generated XML elements will be inserted as part

of an already existing XML document. Before we explain in details the con-

structs of the language, let us consider a simple XML mapping for the movie

example. Figure 10 presents a template, the corresponding DTD and the XML

document it would produce when applied to the movie "Ridicules". The �rst

thing to notice is that the structure of the template is closely related to the

structure of the extraction rule. The mapping will create a <Movie> element

with four sub-elements: <Title>, <Year>, <Genres> and <Cast>. <Title> and

<Year> are string-valued (PCDATA). <Genres> is a repetition of zero or more

<Genre> sub-elements (string-valued). <Cast> is a repetition of <Actor> sub-

elements, where an actor contains two string-valued sub-elements (<FirsName>

and <LastName>). The details of the template language are de�ned below. The

semantics can be found in the appendices, for both the translation of a tem-

plate into a DTD (B) and for the generation of an XML document out of an

NSL, for a given template (C).

Template := Leaf j Record j List

Leaf := "." Tag j "." Tag "^" j "." Tag "!" Tag

List := "." Tag Flatten Template

Record := "." Tag "(" TemplList ")"

Flatten := "*" j "*" Flatten

TemplList := Template j Template "#" TemplList

Tag := string

Fig. 11. The XML template BNF.

We detail next each type of template. In �gures 12 and 13, we present for

each type of template the various constructs. Each construct is described on

three rows: the �rst row is the template construct; the second row is the

corresponding DTD element declaration; and the third row is an instance of

an XML element produced by the mapping.

A leaf template consumes an NSL that is a string. Various target XML elements

can be desirable. The string can be represented as PCDATA, as an attribute of

a parent element or as attribute of a bachelor element. The sequence in the

examples below simply means "anything".

A list template like .Movies*.templ consumes a list of NSL items. It �rst opens

a new element <Movies>. Then it applies the same template templ to each

list item, using concatenation. Finally the element is closed with </Movies>.

In the list template, the number of '*' indicates if any attening has to be

performed on the NSL list, before applying the template.

14

.Movie

<!ELEMENT Movie #PCDATA>

<Movie>Ridicule</Movie>

.Movie(.Title^ #)

<!ELEMENT Movie ()>

<!ATTLIST Movie Title CDATA #IMPLIED>

<Movie Title="Ridicule" > </Movie>

.Movie!Title

<!ELEMENT Movie EMPTY>

<!ATTLIST Movie Title CDATA #IMPLIED>

<Movie Title="Ridicule"/>

Fig. 12. Leaf templates.

.Movie(T1 # # Tn)

<!ELEMENT Movie (T1, ..., Tn)>

<Movie>

<T1> ... </T1>

...

<Tn> ... </Tn>

</Movie>

.Movies*.templ

<!ELEMENT Movies (templ)*>

<Movies>

<templ> ... </templ>

...

<templ> ... </templ>

</Movies>

Fig. 13. Record (left) and List (right) templates

A record template like .Movie(t1 # # tn) consumes a list of n NSL items.

It �rst creates a new element <Movie> and applies each inner template to

its corresponding list item, using concatenation. Finally the element is closed

with </Movie>.

For a record, a di�erent template is applied to each NSL item; for a list, it is

the same template.

From an XML mapping, W4F will generate some Java code that represents

a template. The template can later on be used to consume the NSL and

produce XML documents. The construction of the DTD is straightforward

from the speci�cation itself. The semantics of the translation is described in

the appendix.

Two important remarks about the mapping are worth mentioning.

First, the mapping is directed by the extraction. A mapping is a way to con-

sume the NSL and a NSL piece can only be consumed once. If the user wants

15

to have an Actor element with two sub-elements FirstName and LastName

and an attribute Name, he must make sure that the NSL carries these three

items. For a given purpose, it might be necessary to change the extraction

rule, to come up with the desired XML element.

Second, the template language can only create a subset of all the possible

DTDs. For instance it is not possible to produce DTDs with a content-model

that makes use of +, ? and |.

6 Visual Support

The last component of the system we present is the suite of visual tools that

assist the user during the various stages of the wrapper construction. The

critical part of the design of the wrapper is the de�nition of extraction rules

since it requires a good knowledge of the underlying HTML.

� Support for Writing Extraction Rules. The role of the extraction

wizard (see Figure 14) is to help the user write such rules. For a given HTML

document, the wizard feeds it into the HTML parser and returns the document

to the user with some invisible annotations: the document appears exactly as

the original from Figure 4.

Now, when the user points to "Ridicule", the corresponding text element gets

high-lighted (the user can identify information boundaries enforced by the

HTML tagging) and the canonical 10 extraction rule pops-up. The "magic"

Fig. 14. The extraction wizard in action on the movie page.

behind it takes advantage of our DOM-centric approach: when the page is

fed into the parser, each text chunk (i.e. PCDATA) gets annotated with its

corresponding canonical path in the document tree. As an illustration, the

annotation of a tree for the movie example looks like the following:

10 By canonical we mean that it uses only hierarchy based navigation.

16

...<H1>Ridicule</H1>...

gets annotated as

...<H1>

Ridicule

</H1>...

This systematic annotation strategy carries some restrictions. First, the path

produced is the canonical path: it does not use all the powerful constructs of

the HEL language like "->", index ranges, conditions or regular expressions.

Second, the annotation is done on a per element basis. In the example of

Figure 14, it would be convenient to be able to point to all the items from the

cast list { not just one { and get the extraction rule for the entire cast.

But even if the wizard is not capable of providing the best extraction rule, it

is always a good start. Compare what is returned by the wizard and what we

actually use in our wrapper (see Figure 3). For the title, in the actual wrapper

we have short-circuited the canonical path using the "->" operator. For the

cast, the actual extraction rule has a similar structure as the one returned by

the wizard, where index constants have been replaced by index variables.

In any case, the extraction wizard always provide some useful local informa-

tion.

� Visualizing the Wrapper. Another useful interface permits to test and

re�ne the wrapper interactively before deployment. Figure 15 shows the wiz-

ard which visualizes the 3-layer architecture of the wrapper. In the �rst layer,

the user inputs the location of the Web source and the retrieval method (a GET

by default). The second layer displays the extraction rule { expressed in the

HEL language { to be applied on the retrieved HTML page. In this example,

the rule tries to extract the title, the year and the cast of the movie. The third

layer presents the XML mapping to be applied to the information extracted.

The last layer displays the extracted NSL on the left and on the right the

XML document produced out of it.

The wizard is especially useful because extraction rules can be re�ned inter-

actively.

7 Information Integration Using W4F: Building a TV Agent

After exposing the technical details of the toolkit, we now show how it can

be used to solve a typical information integration problem involving Web

information sources. We �rst detail a motivating scenario, before we explain

how to build the TV Agent using Web wrappers and XML-based integration

tools.

� The scenario. It is 7pm and you are about to go back home. But before

17

Fig. 15. A Visual View of the Wrapper.

leaving you would like to know if there is a good movie around 9pm tonight.

As a Web savvy, you go to get the TV listing on your favorite Web site.

For a given time frame, the Web site displays the list of programs available for

each channel. A table cell de�nes the beginning and the ending of a program.

Types of programs are identi�ed by a color code. A screen-shot of the TV

program is presented below in Figure 16. As a human being processing the

information, you �rst decide to ignore channels that you do not pay for. Then,

for each movie, you want to gather some detailed information. The TV guide

o�ers a brief description of the movie, but unfortunately, this is not enough

for your needs. Therefore, you decide to grab some extra details from the

Internet Movie Database. You connect to the web site and type the title in

the input form and get back the movie description with all the details you

need: genre, cast, director, language, country, rating, etc. (see Figure 4). If

you are a thorough movie fan, you will also go to one or more movie review

Web sites to gather some critics about this speci�c movie. And you would have

to repeat the same process, for every movie of the listing. What you would

really like is to have a personal assistant that would know your pro�le and

ask for your today's requirements: it would perform the entire process for you

and would notify you with a brief report.

In the following, we show how this problem can be tackled using W4F and we

present a concrete solution.

� The wrappers. For the TV listing, we need to capture the table structure.

18

Fig. 16. TV listings Web page (from http://tv.yahoo.com).

By looking 11 at Figure 16, we see that the TV listings consist of tables (1

table per chunk of 10 channels). The �rst table is just used for navigation. For

each table, the �rst row displays the time frames. The other rows represents

the programs, one row per channel. The �rst and the last column contain

the name of the channel. The columns in between contain the name of the

program. The size of the column indicates the duration of the program (1

column unit corresponds to 30 minutes).

The problem is now to extract enough structure in order to be able to recon-

struct the entire TV listings inside our application. The extraction rule for

the TV program is presented in Figure 17. The condition is used to make sure

that the last column is always thrown away. The last column happens to use

bold-face characters, hence the font[0].numberOf(b) == 0 predicate.

html.body.table[1-].tr[1-](

.td[0].txt // channel name

.td[i:*] (.txt // program name

.getAttr(colspan) // duration

.getAttr(bgcolor) // program genre

))

WHERE html.body.table[1-].tr[1-].td[i].font[0].numberOf(b) == 0;

Fig. 17. Extraction rule for TV listing.

The data-structure extracted from the page consists of a list of channel chunks.

A channel chunk is a list of channels. A channel is a list of two items. The

�rst item is the name of the channel; the second item is a list three items:

program name, duration and program genre. It is important to remark that

11 The extraction wizard turns out to be extremely useful to help discover the

structure of Web pages.

19

there is no magic here. The extracted structure is not enough to reconstruct

the information available from the HTML page. First we need to remember

the starting time of the TV grid. We could extract it from the page but it is

better to assume that we know it since we access the TV listing by providing

this piece of data as an input value. Second, we need to remember some details

about the TV listing such as the fact that a column represents 30 minutes as

well as the color code for TV programs. We will assume that these details are

taken care of by the rest of the application.

We also need to design a similar wrapper for the movie source. The details of

the wrapper for the Internet Movie Database have already been presented in

Section 3 and appear in Figure 3.

� Integration using XML and related tools. A good and elegant way to

perform the integration is to de�ne an XML representation for all the entities

involved in the application and de�ne some mediation at the level of XML.

For this task, we will use XML-QL [9], a query language proposed to query

XML documents. Some interesting features of the XML-QL query language

are: it is declarative; it is "relational complete"; it is compositional (takes one

or more XML documents and generates a new XML document); and it can

support both ordered and unordered views on an XML document.

First we need to map the information extracted by our wrappers into some

XML structure. Using W4F, we can de�ne a mapping (Figure 18) for the

information about the TV listings. A piece of the XML document generated

is presented in Figure 19, with its DTD.

TV_Listing.Channels**.Channel(.ID^

.ProgramList*.Program (.Title

.Duration^

.Code^))

Fig. 18. XML mapping for the TV listings.

<TV_Listing>

<Channels>

<Channel ID="SUNDAE 1">

<ProgramList>

<Program Duration="4" Code="#b0e0e6">

<Title>Ridicule (1996) *** (R)</Title>

</Program>

<Program Duration="2" Code="#b0e0e6">

<Title>Thieves (1996) *** (R)</Title>

</Program>

</ProgramList>

</Channel>

<Channel ID="FOX 2">

<ProgramList>

<Program Duration="2" Code="#b0e0e6"> ..

<!ELEMENT TV_Listing (Channels)>

<!ELEMENT Channels (Channel)*>

<!ELEMENT Channel (ProgramList)>

<!ATTLIST Channel ID CDATA #IMPLIED>

<!ELEMENT ProgramList (Program)*>

<!ELEMENT Program (Title)>

<!ATTLIST Program

Duration CDATA #IMPLIED

Code CDATA #IMPLIED>

<!ELEMENT Title (#PCDATA)>

Fig. 19. The XML document and its DTD

As mentioned above, we need to enrich a little bit the XML structure to

capture all the information from the original document. We have to walk the

tree and replace duration by the actual starting and ending time of the movie,

20

based on the global information we know about the TV Guide. We then do

the same for movies. The details of the mapping have already been presented

in Section 5.

� Putting everything together in a XML-QL query. We can now

express integration as an XML-QL 12 query. More details about the semantics

of XML-QL can be found in [9].

The query appears in Figure 20 with its output in Figure 21. The WHERE clause

consists of 3 tasks: (1) retrieving the TV Listing as an XML document and

create some bindings for $channel id, $start, $end and $t, based on the

structure of the document; (2) retrieving each movie according to binding

$t and creating some bindings for $title, $genre and $country, based on

the structure of the document; (3) enforcing some constraints for the various

bindings. The result of the WHERE clause can be seen as a relation with a column

for each variable name and a row entry for each binding. The CONSTRUCT clause

simply consumes the bindings and generates an XML document accordingly.

The result consists of one unique XML document.

CONSTRUCT

<CHOICE START=$start END=$end CHANNEL=$channel_id>

<MOVIE>

<TITLE>$title</>

<YEAR>$year</>

<Country>$country</>

</>

</>

WHERE

<TV_Listing.Channels.Channel ID=$channel_id>

<ProgramList>

<Program START=$start END=$end>

<Title>$t</>

</>

</>

</> in URL:TV_Listing(date, time),

$channel_id = "Sundance"

<Movie>

<Title>$title</>

<Year>$year</>

<Genres.Genre>$genre</>

<Country>$country</>

</> in URL:IMDB_Movie($t),

$year < 1990,

$genre != "Sci-Fi",

$country = "France"

Fig. 20. The XML-QL query.

8 Experience with W4F

In this section we describe some other applications that have been (or could

be) designed using W4F and mention some strengths and weaknesses of the

12 The query assumes an extension of XML-QL to handle dependent joins.

21

<?xml version="1.0" encoding="ISO-8859-1"?>

<CHOICE START="9PM" END="11PM" CHANNEL="SUNDAE1">

<MOVIE>

<TITLE>Ridicules</TITLE>

<YEAR>1996</YEAR>

<COUNTRY>France</COUNTRY>

</MOVIE>

</CHOICE>

<CHOICE START="11PM" END="?" CHANNEL="SUNDAE1">

<MOVIE>

<TITLE>Voleurs, Les</TITLE>

<YEAR>1996</YEAR>

<COUNTRY>France</COUNTRY>

</MOVIE>

</CHOICE>

Fig. 21. The XML document that represents the result of the query.

toolkit based on our own practical experience and some feedback from research

and corporate users.

8.1 Examples of applications developed using W4F

� Conversion Tools. Lightweight wrappers can be used to convert HTML

data into anything. The toolkit already o�ers a default mapping to Java ob-

jects. It also o�ers a declarative speci�cation to map HTML into XML as

presented in the previous section. New mappings can be easily added using

Java classes.

W4F has been particularly successful to write XML gateways that o�er on-

the-y conversion from HTML to XML. Thanks to such gateways, Web in-

formation sources can be looked at through XML glasses [23] for structured

processing and HTML pages can be recycled [24] as XML documents.

�Data migration. Lightweight wrappers are also suitable for migratingWeb

content into a data warehouse architecture. Wrappers handle at the same time

extraction, cleaning and restructuring. They can be used for instance to mi-

grate the content of databases available on the Web into corporate repositories,

virtual or materialized.

Data migration can also include the building of large knowledge bases pop-

ulated with information gleaned on the Web. For instance, On2Broker [10]

and SIMS [20] which o�er a query interface to the CIA World Factbook could

make use of the wrapper presented in [24] instead of hand-crafted ones.

� Information gathering agents. With minimal e�ort, using W4F it is

possible to write a meta-search engine on top of AltaVista, HotBot and Excite,

a shopping agent like Jango (http://www.jango.com) or a portfolio manager.

The major bene�t of W4F for this domain is that it permits to make the

content of any Web information source available to the application.

� Value-added network / portal development. Value added networks

can leverage the value of single Web sources by making them work together

through lightweight wrappers. Portals o�er an entry point to information from

22

various resources. In both cases, W4F wrappers can make the integration of

new resources quick and easy.

8.2 Other issues

� Expressiveness of the language. One major strength of the toolkit is the

expressiveness of the extraction language, especially the use of index variables

and complex structure. By using index variables, it is possible to postpone

until runtime the decision about which value to pick. This is useful when the

structure of the page depends on the nature of the query. When a relational

database outputs the results of a user query in HTML, the ordering on the

columns depends on the structure of the query. Using index variables, the

column can be de�ned based on its name, not its position. Complex structures

are also valuable because they permit to take advantage of locality. Instead of

returning one piece of information, the fork construct permits to identify the

information and return surrounding pieces in a structured way.

The main limitations we have encountered involves text content that uses

tags as standalone delimiters rather than containers. For instance, TABLE

completely de�nes a region (contained between <TABLE> and </TABLE> while

<H1></H1> just de�nes the beginning of a region. The structure of some HTML

pages is implicitly de�ned by patterns of standalone delimiters and it is some-

times diÆcult to write extraction rules elegantly. The "!" operator turns out

to be a way to solve this problem.

Fortunately, W4F usually o�ers more than one way to tackle such problems.

When the structured navigation is not suitable, it is always possible to identify

a larger region that contains the information, get the corresponding HTML

source (using the .src property) and then apply NSL operators.

�More semantics. For some domain speci�c applications, some users have

asked for extraction functions with more semantics, in order to be able to

extract dates, invoice numbers, DNA sequences, etc. These requirements �ts

perfectly in our framework through user-de�ned functions. Like for the previ-

ous point, the structured navigation can be used as far as it can, and the rest

of the processing is handed to some speci�c Java code.

Semantics also means to be able to de�ne some classes of tags. For instance

, <I> and have a similar purposes and our extraction language should

take advantage of it.

� Robustness of extraction rules. A big concern when dealing with wrap-

pers is not the authoring of wrappers but their maintenance. As reported in

[16], the lifetime of a wrapper is around one month. Our solution is to make

the authoring fast which means that maintenance often means rewriting the

wrapper. The trade-o� is between robustness and simplicity of the wrapper.

We do not have empirical evidence, but the use of an HTML speci�c extrac-

tion language combined with some powerful constructs makes our wrappers

23

quite robusts.

� Performance. For most processing, the �rst bottleneck is the network

connection. When processing local �les (which is often the case when W4F

wrappers are used in an intranet environment), the second bottleneck is the

use of DOM. DOM requires the entire document to be built in memory. For the

large majority of our applications where the size of the documents is small (a

few KBytes), the bottleneck has been network delays. The cleaning of HTML

is also sometimes very expensive, depending on the ill-formedness of the doc-

ument.

The evaluation of our extraction rules already uses some optimization tech-

nique that avoid multiple navigations of the tree. Some improvements we are

looking at concern the cleaning and pruning of the original document. In most

cases, we know at compile time that some attributes or elements are not going

to be used by the extracting rule: therefore there is no need to include them

in the DOM tree.

� Other issues. Not surprisingly, a main limitation of the framework con-

cerns the retrieval of HTML documents. In some cases, the only way to get to

the HTML document is through frames, JavaScript interaction and cookies,

none of which are not yet supported by W4F.

� Empirical evidence. As of this writing, we have no scienti�c empirical

evidence about the bene�ts of our approach in terms of user-friendliness. The

only argument we can make is based on the size of the W4F wrappers com-

pared to other frameworks and the number of wrappers authored by people.

9 Related work

In this section, we compare our approach to others, with respect to various

components of the system.

� Retrieval. Frameworks like WebL [13] and WIDL [3] o�er some ad-

vanced features for retrieving Web pages. In WIDL, Web sources are described

declaratively in term of services, including recovery from failure with retries

and alternate retrieval. In WebL (which is a general purpose programming lan-

guage for the Web), the retrieval consists of writing code using some high-level

methods provided by the language.

In W4F, the retrieval is described declaratively, but issues like recovery or the

exact semantics of the retrieval are not addressed 13 , in order to keep wrappers

as simple as possible.

� Extraction. An important aspect of extraction deals with how the docu-

ment is represented. On the one hand, a Web document can be viewed as a ow

of tokens that can be processed through regular expressions (Tsimmis [12]), ex-

13 Such issues are the responsibility of the higher-level application.

24

pressive grammars (Araneus [18], SIMS [19,20]), or text algebras (WebL [13]).

But HTML has somehow to be reinvented for each wrapper. On the other

hand, a document hierarchy implied by tags can be used like DOM ([11],

[3], XQL [25]) or a similar semi-structured data-model (XML-QL [9], Web-

OQL [4]). However, navigation along this explicit structure is sometimes re-

stricted to the hierarchy itself and cannot capture �ner granularity informa-

tion.

W4F tries to combine both approaches by allowing tree navigation and reg-

ular expressions. We try to make the most of the HTML structure using the

DOM object-model. This knowledge is a built-in feature of the system. It o�ers

the power of regular expressions, some rich navigation capabilities with con-

straints and some constructs to access some �ner grain information in order

to capture as much structure (including nesting) as it can. Moreover, it allows

to extract complex constructs and not just atomic nodes { or at collection of

nodes { from the DOM tree, in order to capture the implicit structure of the

information of the document. To the best of our knowledge, HEL captures all

the features of the other DOM-based languages.

� Mapping. Wrappers are in charge of providing a structured access to the

extracted information. For Web-OQL [4], a Web document is an OQL instance

from the beginning. In Tsimmis [12] the extracted information is converted

into the OEM format. [11] o�ers CORBA-like interfaces. YAT [8] o�ers a

very expressive rule-based framework (fully declarative) to express mapping

as generic tree transformations. Clearly our mappings are not as expressive as

the ones o�ered by YAT for instance, but our framework is exible enough to

export its structures for further processing by other tools.

� XML. Our tackling of XML is di�erent from the one of XML-QL [9] based

on patterns and explicit constructs because we derive it from our extraction

process that handles HTML pages with no explicit structure. For the same

reason, our XML templates are more restrictive than XWrap [17]. As pointed

previously, the range of XML documents we can create is very limited, due the

choice of our template language. We think that it is important to o�er an easy

way to specify one mapping, knowing that it is always possible to transform

the generated XML document(s) using other tools.

�Wrapper Engineering Strategies. The manual generation of a wrapper

often involves the writing of ad-hoc code ([12] and [18]). Web-OQL [4] takes

advantage of a generic mapping between the HTML structure and the OQL

object-model but it means writing complicated select-from-where queries.

Semi-automatic generation bene�ts from support tools to help design wrap-

pers. In WIDL [3], the entire structure understood by the system is presented

to the user who has to pick what he wants. In [2] and [17], the user is pre-

sented a dual view of the document with its layout and its corresponding tree.

SIMS [20] and LiveAgent [14] o�er a demonstration-oriented interface where

the user shows the system what information to extract. In [16] and [15], Kush-

merick uses machine-learning techniques to generate wrappers automatically.

25

Extraction is de�ned according to some classes of wrappers that need to be

trained with some examples, under human supervision. Machine-learning is

used at the level of tokens and has no real understanding of the document

structure, which makes wrappers more generic (for any text content) but also

less robust. These techniques are really promising but only support a subset

of our extraction primitives.

In W4F, we rely on human expertise but o�er support to make this creation

accessible through some wizards (semi-automatic construction). The choice of

the DOM object model gives us for free a real wysiwyg interface.

� Visual support. Like [3,2,17,20], W4F o�ers some visual support to help

the generation of wrappers. However, the level of visual support is unable to

match the expressivity of our extraction language, which is not a concern for

the other approaches.

Like XWrap [17], we o�er a wysiwyg support where the user selects the infor-

mation to extract from the original document.

� Mediation. Finally in W4F, we do not address problems that are speci�c

to mediators but we believe that our wrappers can be easily included into

existing integration systems like TSIMMIS [12], Garlic [21], etc.

10 Conclusion and future work

We have presented the World Wide Web Wrapper Factory, a toolkit for gener-

ating wrappers for Web information sources. Our main contributions are: (1)

a fully declarative speci�cation of all the components of a wrapper; (2) a very

expressive extraction language based on the Document Object Model, with

two types of navigation, variables, conditions, regular expressions and some

constructs to build complex structures; (3) a simple speci�cation to map the

extracted information into various data-formats such as XML; (4) a robust

framework to engineer wrappers for Web sources, that o�ers the generation of

ready-to-use Java classes and some visual tools to assist the user.

We have demonstrated that our Web wrappers are useful ingredients for the

development of Web applications. They permit access to data without requir-

ing the the Web source to be changed. They interoperate with other integration

components via mapping to Java or XML. Their simplicity makes it quite easy

to cope with the versatility of Web sources. They are scalable because they

are easy to deploy on a wide range of platforms and require little resources.

Finally, they use Web standards like HTTP and XML and can be directly in-

tegrated into bigger information systems. We have also presented some types

of applications that have already or could bene�t from the use of such wrapper

methodology.

There are some evident directions for future work. First, it is important to of-

fer better support to wrapper authors. Crafting extraction rules still requires

26

signi�cant expertise. We need to investigate the use of machine-learning tech-

niques to de�ne robust shortcuts for complicated extraction paths. Second, we

need to enrich our extraction language. For instance the possibility of follow-

ing hyperlinks at the level of the extraction language has to be investigated:

it permits to put two wrappers in the same extraction rule, but it forces to

look at a page as a graph and not as a tree. Another interesting issue is how

to o�er an extraction language that combines structured navigation using

path expressions with text-algebra manipulation as in [13]. Third, we think

that maintenance is a crucial aspect that has to be addressed properly. Among

other things, it involves de�ning some heuristics to identify when a Web source

has been changed (not in terms of content, but of layout), and being able to

simulate changes to see how robust extraction rules are. Finally, we would like

to migrate the wrapper framework from a database oriented to an agent-based

environment, where tasks are more collaborative and goal-oriented.

W4F has been successfully used to generate a large variety of Web wrappers for

information sources and build Web applications. The toolkit [22] can be downloaded

from the Penn Database Research Group Web site 14 . On-line examples of W4F

applications (including the wrappers presented in this article) can be found at the

same location.

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J.L. Wiener. The Lorel

Query Language for Semistructured Data. Journal on Digital Libraries, 1997.

[2] Brad Adelberg. NoDoSE { A Tool for Semi-Automatically Extracting Semi-

Structured Data from Text. In Proc. of the SIGMOD Conference, Seattle,

June 1998.

[3] Charles Allen. WIDL: Application Integration with XML. World Wide Web

Journal, 2(4), November 1997.

[4] Gustavo Arocena and Alberto Mendelzon. WebOQL: Restructuring

Documents, Databases, and Webs. In Proc. ICDE'98, Orlando, February 1998.

[5] Fabien Azavant and Arnaud Sahuguet. W4F User Manual. Tropea Inc., 2000.

Availalble from http://www.tropea-inc.com.

[6] R.G.G. Cattell, editor. Object Database Standard ODMG 2.0. Morgan

Kaufmann, 1997.

[7] Vassilis Christophides. Documents structur�es et bases de donn�ees objet. PhD

dissertation, Conservatoire National des Arts et Metiers, October 1996.

[8] Sophie Cluet, Claude Delobel, J�erôme Sim�eon, and Katarzyna Smaga. Your

Mediators Need Data Conversion! In Proc. SIGMOD Conference, Seattle, 1998.

14 http://db.cis.upenn.edu/W4F

27

[9] Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy, and Dan Suciu.

XML-QL: A Query Language for XML, 1998. http://db.cis.upenn.edu/XML-QL.

[10] Dieter Fensel and al. On2broker: Semantic-Based Access to Information Sources

at the WWW. In Workshop on Intelligent Information Integration (III99),

August 1999.

[11] Jean-Robert Gruser, Louiqa Raschid, M. E. Vidal, and L. Bright. Wrapper

Generation for Web Accessible Data Sources. In COOPIS, 1998.

[12] J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, and A. Crespo. Extracting

Semistructured Information from the Web. In Proceedings of the Workshop on

Management of Semistructured Data. Tucson, Arizona, May 1997.

[13] Thomas Kistlera and Hannes Marais. WebL: a

programming language for the Web. In WWW7, Brisbane, Australia, 1998.

http://www.research.digital.com/SRC/WebL/index.html.

[14] Bruce Krulwich. Automating the Internet: Agents as User Surrogates. IEEE

Internet Computing, 1997.

[15] Nicholas Kushmerick. Gleaning the Web. IEEE Intelligent Systems, 14(2),

1999.

[16] Nicholas Kushmerick. Wrapper induction: EÆciency and expressiveness.

Arti�cial Intelligence, 118(1-2), 2000.

[17] Ling Liu, Calton Pu, Wei Han, David Buttler, and Wei Tang. An XML-

based Wrapper Generator for Web Information Extraction. In ACM SIGMOD

International Conference, June 1999.

[18] G. Mecca, P. Atzeni, P. Merialdo, A. Masci, and G. Sindoni. From Databases

to Web-Bases: The ARANEUS Experience. Technical Report RT-DIA-34-1998,

Universita Degli Studi Di Roma Tre, May 1998.

[19] Ion Muslea, Steven Minton, and Craig A. Knoblock. Wrapper Induction for

Semistructured, Web-base Information Sources. Conference on Automated

Learning and Discovery, June 1998.

[20] Naveen Ashish and Craig A. Knoblock. Semi-automatic Wrapper Generation

for Internet Information Sources. In Proc. Second IFCIS Conference on

Cooperative Information Systems (CoopIS), Charleston, South Carolina, 1997.

[21] Mary Tork Roth and Peter Schwartz. A Wrapper Architecture for Legacy Data

Sources. Technical Report RJ10077, IBM Almaden Research Center, 1997.

[22] Arnaud Sahuguet and Fabien Azavant. Building light-weight wrappers for

legacy Web data-sources usingW4F. In International Conference on Very Large

Databases (VLDB), 1999.

[23] Arnaud Sahuguet and Fabien Azavant. Looking at the Web through XML

glasses. In CoopIs, 1999.

28

[24] Arnaud Sahuguet and Fabien Azavant. Web Ecology: Recycling HTML pages

as XML documents using W4F. In WebDB, 1999.

[25] David Schach, Joe Lapp, and Jonhatan Robie. XML Query Language (XQL),

1998. QL'98 - The Query Languages Workshop.

[26] W3C. XML Path Language (XPath) 1.0. W3C Recommendation 16 November

1999. Available from http://http://www.w3.org/TR/xpath.

[27] Philip Wadler. A formal semantics of patterns in XSLT. In Markup

Technologies, Philadelphia, December 1999.

[28] Larry Wall, Tom Christiansen, and Randal L. Schwartz. Programming Perl.

O'Reilly & Associates, 1996.

[29] Gio Wiederhold. Mediators in the architecture of future information systems.

IEEE Computer, pages 38{49, March 1992.

[30] World Wide Web Consortium (W3C). Extensible Markup Language (XML)

1.0, 1998.

http://www.w3.org/TR/1998/REC-xml-19980210.

[31] World Wide Web Consortium (W3C). The Document Object Model, 1998.

http://www.w3.org/DOM.

A Semantics of the HEL language

To describe the semantics of the HEL extraction language, we will use a data-

model similar to the one presented by Phil Wadler in [27] for the semantics of

XSL-T.

An HTML document is represented as a collection of Nodes that de�ne a tree

structure. Our data-model does not make a special case out of references and

treats ID and IDREFs as regular attributes.

Every node has a name and can be of one the following kinds: element (for

HTML elements), attribute (for HTML attributes) or text (for PCDATA).

Every node has a value: for text nodes, it corresponds to the text content;

for attribute nodes, to the attribute value; and for element nodes, to the

concatenation of the values of its children nodes (visited recursively in order).

For each kind, we assume the existence of a boolean function of type Node

! bool that tests the kind of a node. The tree structure of the document

is de�ned by the parent, children and attributes relationships between nodes.

The content of the document is de�ned by node values. These relationships

and values are described by the following functions, where Set1 represents sets

with 0 or 1 element:

We also de�ne a total order (noted �doc) on document nodes. The ordering

corresponds to a depth-�rst traversal of the document tree.

29

parent : Node !Set1(Node)

children : Node !list(Node)

attributes : Node !list(Node)

root : Node !Node

tagName : Node !String (tag name or attribute name)

value : Node !String

It is worth noting that for a given element, its attributes (if any) are not part

of its children, but are reached via the attributes function. We will also de�ne

the function successors: Node !list(Node) that returns the list of nodes that

are found after a given node (in the sense of the �doc order).

Figure A.1 is an example of an HTML document and its encoding in this

data-model. The document is encoded as a collection of nodes (o1::o8) and

some functions. For clarity we omit the value of nodes that have children. The

Root function is constant and returns o1.

<HTML>

<HEAD>

<TITLE>Example</TITLE>

</HEAD>

<BODY>

<H1 ALIGN='center'>Welcome</H1>

</BODY>

</HTML>

node name kind parent child. attr. value
(�)

o1 HTML Elem ; [o2; o5] []

o2 HEAD Elem o1 [o3] []

o3 TITLE Elem o2 [o4] []

o4 PCDATA Text o3 [] [] Example

o5 BODY Elem o1 [o6] []

o6 H1 Text o5 [o7; o8] o6

o7 ALIGN Attr o6 [] [] center

o8 PCDATA Text o6 [] [] Welcome

Fig. A.1. Encoding

We now give semantics to HEL expressions by specifying how they map in-

stances of HTML data into NSL structures. An HEL expression will operate

on this data-model to return an NSL. NSL structures are de�ned by the fol-

lowing:

NSL = null j NSL0

NSL0 = String j list(NSL0)

In order to describe the semantics we also need to introduce another data-type

called Nested Node List (NNL) and de�ned as:

NNL = null j NNL0

NNL0 = Node j list(NNL0)

We will use :: as the list constructor for list construction and list pattern

matching and @ for list concatenation. Lists will be represented between []. It

is important to note that these datatypes treat null and [] (the empty list) as

di�erent. When there is an ambiguity between both datatypes, we will write

[]NNL and []NSL.

30

The use of NSLs has already been motivated in a previous section. As for

NNLs, they are intermediate structures used when evaluating HEL expres-

sions. It is important to understand that NNL are not used to represent the

structure of the document, but to represent the structured state of the HEL

navigation on the HTML document. Should we use unstructured states in-

stead of NNLs, we would not be able to construct complex nested structures.

For instance, using NNLs, html->tr[*].td[*] can be represented as a list

of list of nodes instead of a at list of nodes. NNLs are used to keep track

of the navigation inside the document, based on the path components of the

extraction rule.

We now introduce an abstract syntax for a subset of our extraction language

(Figure A.2). This subset describes condition-free extraction paths, with node

operators (nodeOp) and NSL operators (nslOp). The issues related to condi-

tions will be dealt with later on in the section.

rule = name "=" "html" path ";"

path = "." tag "[" index range "]" path

j "->" tag "[" index range "]" path

j path1 "#" path2

j op

op = nodeOp j nodeOp "," nslOps

nodeOp = ".txt" j ".src"

j ".getAttr(" attrName ")" j ".getNumberOf(" tag ")"

nslOps = nslOp j nslOp "," nslOps

nslOp = "regex(" regex ")" j "split(" regex ")" j user function

tag = string

name = string

attrName = string

regex = string

index range = e range j i range j i range "," index range

e range = "*" j integer "-"

i range = integer "-" integer j integer

Fig. A.2. Simpli�ed grammar of the extraction language

The semantics of the extraction language is de�ned via 3 curried 15 functions:

15A function of N arguments can be considered as a function of one argument which

returns another function of N-1 arguments.

31

{ E [[]] : path!NNL!NSL represents the evaluation of an extraction path on

a document. Given a path and a NNL, it will return an NSL. An extraction

rule de�ned by path p will be evaluated by calling E [[]] on path p with the

NNL that consists of the root node of the HTML document.

{ EN [[]] : nodeOp!NNL !NSL represents the application of node operators

to extract node information and convert it to string values (NSL).

{ E S [[]] : nslOp!NSL!NSL represents the application of NSL operators on

Nested String Lists, like regular expression operators or user-de�ned func-

tions.

� HEL navigation and evaluation. HEL navigation is tricky because it

constructs complex nested structures and not at sets. Complex structures

are created { as mentioned before { using index ranges or forks.

For index ranges, we need to distinguish between singleton index ranges (that

expect a single element) and multiple index ranges. It is crucial to under-

stand that html->a[0] should return a single node (or null) while html->a[*]

should always return a list. In the case of a document with only one <A> tag,

the �rst extraction should return a single node while the second should return

a list with one single element.

In our semantics, we capture both cases in a uniform way by abstracting on

index ranges. � represents an index range that can be an integer, an interval

or a union of them. Index ranges can also be in�nite like "�" or "2�".

To make things simpler, we normalize index ranges into range lists, which are

list of positive integers in increasing order, optionally terminated by the "�"

symbol. We de�ne the function N : index range ! range list. Normalization

simply consists of expanding intervals and getting rid of the "�" symbol.

The normalization is de�ned as follows:

N ("i") = [i]

N ("i � j") = [i; i + 1; ::; j]

N ("i � ") = [i; �]

N (" � ") = [�]

N ("i; index range") = i::N (index range)

N ("i � j; index range") = [i; i + 1; ::; j]@N (index range)

Fig. A.3. Normalization of index ranges

Depending on the nature of the range list (i.e. index range), the result of

applying � to an NNL and noted R(nnl; �) is going to be di�erent. R is a

function with signature: NNL ! range list! NNL.

The notation means that the index range must be applied to the list in the

following sense:

{ if � is an integer, applying it to a list means to return the �th element of

32

the list if it exist, or null.

{ if � is a range, applying it to a list means to extract the corresponding

elements and return them as a list.

More precisely, the semantics of index ranges is de�ned in Figure A.4, where

we assume the existence of the dec function that takes a (strictly positive)

range list and decrements each element by one.

R(nnl; []) = []

R(nnl; [�]) = nnl

R(n :: nnl; 0 :: rangeList) = n :: R(nnl; rangeList)

R(n :: nnl; i :: rangeList) = R(nnl; (i� 1) :: dec(rangeList)) for i > 0

R([]; i :: rangeList) = FAIL

Fig. A.4. Index Range Semantics

For the last case, we will throw an exception that will be handled at the level

of NSLs. The issue is the same as dealing with division by zero when de�ning

the semantics of arithmetic expressions.

At the level of NSL, in the case where the node to which we try to apply the

path is null, the result depends on the nature of the path. If the expected

result of the path should be a single-valued NSL, the result is null. If the the

expected result of the path should be list, the result is the empty list. We

de�ne the function isSingleValued: path ! bool that returns true is the left

most index range in the path is single valued.

The semantics is presented in Figure A.5.

E [[path]] FAIL = nullNSL (handles the exception)

E [[path]]nullNNL = if isSingleValued(path) then nullNSL else []NSL

E [[path]] []NNL = if isSingleValued(path) then nullNSL else []NSL

E [[p1 # p2]]node = E [[p1]]node :: E [[p2]]node

E [[.tag[�] path]]node =

E [[path]]R([x j x children(node) ^ name(x) = tag];N (�))

E [[->tag[�] path]]node =

E [[path]]R([x j x successor(node) ^ name(x) = tag];N (�))

E [[NodeOp]]node = EN [[NodeOp]]node

E [[path]] (node :: l) = (E [[path]]node) :: (E [[path]] l)

Fig. A.5. Path Evaluation Semantics

�Node Operators. As mentioned in the informal description of the language

(see Section 3), extraction rules are not concerned by nodes themselves but

33

by values they carry. Node operators are extracting such values.

EN [[op]]null = null

EN [[op]] [] = []

EN [[.txt]]node = getText(node)

EN [[.attr(name)]]node = getAttribute(node,name)

EN [[.src]]node = getHTMLSource(node)

EN [[.numberOf(n)]]node = count [x j x attributes(node) ^ name(x) = n]

EN [[op]] (h :: t) = (EN [[op]]h) :: (EN [[op]] t)

EN [[op; NSL op]]n = E S [[NSL op]] (EN [[op]]n)

Fig. A.6. Node Operators Semantics

We assume the existence of ancillary functions getText, getAttribute and

getHTMLSource. These functions can be easily represented using the functions

from the data-model. We do not describe them in details because they are not

relevant to the semantics per se of the language. We could assume they are

built-in. Informally, for getText, we start from the node, visit its children in

a depth �rst strategy and concatenate the text values; for getHTMLSource, we

do the same but also include attributes and tagging symbols.

� NSL Operators. NSL operators are functions that takes an NSL { and

maybe other parameters { as an input and return an NSL. Examples of such

operators are user-de�ned functions and built-in regular expression functions.

ES [[op]]null = op(null)

ES [[op]] string = op(string)

ES [[op]] (h :: t) = (E S [[op]]h) :: (E S [[op]] t)

ES [[op1; op2]]n = E S [[op2]] (E S [[op1]]n)

Fig. A.7. NSL Operators Semantics

Built-in regular expression operators in W4F are regex and split, as de�ned

in Perl5 [28]. The evaluation of regex or split on null produces nullNSL.

When applied to a string, regex(pat) will return null if the string does not

match the pattern pat. If the string does match, regex will return the strings

that correspond to the binders (if any) inside the pattern, or the string itself.

When applied to a string, split(pat) will return the substrings that are

separated by pat inside the string.

� Conditions. The denotational semantics of the extraction path language

has carefully ignored conditions. It is not easy to plug them elegantly in this

formal framework. One important thing to keep in mind is that conditions

have no inuence over the structure of the �nal result (in terms of nesting).

34

As far as the syntax is concerned, conditions are an extension of index ranges.

When used in the WHERE clause of the extraction rule, variables appear alone,

with no index range.

index range with condition = index variable ":" index range

index variable = string

As far as the structure of conditions is concerned, there are two main con-

straints:

(i) it is always possible to sort conditions topologically and resolve them one

at a time

(ii) if a non singleton range appears either on the left or right side of the

index variable, it must be identical to the one present in the extraction

path.

To make things simple, we will assume that conditions are being resolved �rst

and that when the extraction paths are applied, the correct values for index

variables is already known. Let us consider the evaluation of the index range

i : �. Conditions related to variable i (for paths in the WHERE clause that

mention i or that mention variables that need to be resolved before i) are

resolved to produce a list Li of integers. This list is then transformed using 16

R(Li; �) to produce the NNL.

The path evaluation semantics can now be rewritten as:

E [[.tag[i : �] path]]node =

E [[path]]R([x j x children(node) ^ name(x) = tag];R(Li;N (�)))

E [[->tag[i : �] path]]node =

E [[path]]R([x j x successor(node) ^ name(x) = tag];R(Li;N (�)))

B Template-to-DTD translation semantics

The semantics of the translation from the template language into a DTD is

de�ned by two functions:

T[[]] (Template ! string ! DTD declaration) translates a Template into a

DTD declaration (element or attribute).

N [[]] (Template! string) simply returns the name of the top-level template.

For the record rule, we assume that a sequence of empty names corresponds

to EMPTY. This might be the case when the templates describe attributes. For

the list rule, the presence of multiple "*" in the left-hand side has no e�ect

on the produced DTD.

16 Even though the function R has been de�ned for NNL, we will extend it for lists

of integers.

35

T[[:tag(t1#::# tk)]]n = <!ELEMENT tag (N[[t1]],..,N [[tk]]) >

T[[t1]]tag .. T[[tk]]tag

T[[:tag* t]]n = <!ELEMENT tag (N[[t]])*>

T[[t]]tag

T[[:tag]]n = <!ELEMENT tag (#PCDATA)>

T[[:tag^]]n = <!ATTLIST n tag #CDATA #IMPLIED>

T[[:tag!att]]n = <!ELEMENT tag EMPTY>

<!ATTLIST tag att CDATA #IMPLIED>

Fig. B.1. Template-to-DTD translation (T[[]])

N[[:tag]] = tag

N[[:tag^]] = ;

N[[:tag!att]] = tag

N[[:tag*t]] = tag

N[[:tag(t1#::# tk)]] = tag

Fig. B.2. Template-to-DTD translation (N[[]]

C NSL-to-XML translation semantics

We now describe how templates are applied to NSL to produce XML docu-

ments. The semantics is de�ned by one function T[[]]: template!Nested String

List!bool!string. The function takes a template and an NSL to produce an

XML document (string). The third argument is a boolean ag used to distin-

guish between NSL items that will produce attribute content (flag = true)

and items that will produce element content (flag = false).

For each case, we describe with some pseudo-code how the XML document is

produced.

Unlike the DTD mapping that will always produce a DTD, the XML mapping

might fail if the template and the NSL do not match. There are two cases of

mismatches: (1) when a record template does not get the correct number of

elements and (2) when a leaf template gets a list instead of a string.

For the list rule, the presence of multiple "*" in the left-hand side will force

the input nsl to be attened (as many times as there are stars).

36

T[[:tag(t1#::# tk)]](nsl; b) =

8>>><
>>>:

if size(nsl) != k then FAIL else

if b = true then "" else

<tag T[[t1]](nsl[1]; true) .. T[[tk]](nsl[k]; true) >

T[[t1]](nsl[1]; false) .. T[[tk]](nsl[k]; false)

<tab/>

T[[:tag* t]](nsl; b) =

8><
>:

if b = true then "" else

<tag>

for i=1 to size(nsl) T[[t]](nsl[i]; b)

</tag>

T[[:tag]](nsl; b) =

(
if nsl instanceof string then

if b = true then "" else <tag> n </tag>

else FAIL

T[[:attr^]](nsl; b) =

(
if nsl instanceof string then

if b = true then attr="nsl" else ""

else FAIL

T[[:tag!att]](nsl; b) =

�
if nsl instanceof string then

if b = true then "" else <tag att="nsl"/> else FAIL

Fig. C.1. NSL-to-XML translation

37

