
f
-
s
e

PHYSICAL REVIEW E, VOLUME 64, 046135

10
Search in power-law networks
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Many communication and social networks have power-law link distributions, containing a few nodes that
have a very high degree and many with low degree. The high connectivity nodes play the important role o
hubs in communication and networking, a fact that can be exploited when designing efficient search algo
rithms. We introduce a number of local search strategies that utilize high degree nodes in power-law graph
and that have costs scaling sublinearly with the size of the graph. We also demonstrate the utility of thes
strategies on theGNUTELLA peer-to-peer network.
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I. INTRODUCTION

A number of large distributed systems, ranging from s
cial @1# to communication@2# to biological networks@3# dis-
play a power-law distribution in their node degree. This di
tribution reflects the existence of a few nodes with very hi
degree and many with low degree, a feature not found
standard random graphs@4#. A large-scale illustration of such
a network is given by the AT&T call graph. A call graph i
a graph representation of telephone traffic on a given day
which nodes represent people and links the phone c
among them. As shown by@1#, the out-link degree distribu-
tion for a massive graph of telephone calls between individ
als has a clean power-law form with an exponent of appro
mately 2.1. The same distribution is obtained for the case
in links. This power law in the link distribution reflects the
presence of central individuals who interact with many ot
ers on a daily basis and play a key role in relayin
information.

While recent work has concentrated on the properties
these power-law networks and how they are dynamica
generated@5–7#, there remains the interesting problem o
finding efficient algorithms for searching within these pa
ticular kinds of graphs. Recently, Kleinberg@8# studied
search algorithms in a graph where nodes are placed o
two-dimensional~2D! lattice and each node has a fixed num
ber of links whose placement is correlated with lattice d
tance to the other nodes. Under a specific form of the cor
lation, an algorithm with knowledge of the target’s locatio
can find the target in polylogarithmic time.

In the most general distributed search context howev
one may have very little information about the location
the target. Increasingly a number of pervasive electronic n
works, both wired and wireless, make geographic locati
less relevant. A particularly interesting example is provid
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by the recent emergence of peer-to-peer networks, wh
have gained enormous popularity with users wanting to sh
their computer files. In such networks, the name of the tar
file may be known, but due to the network’sad hocnature,
the node holding the file is not known until a real-time sear
is performed. In contrast to the scenario considered by Kle
berg, there is no global information about the position of t
target, and hence it is not possible to determine whethe
step is a move towards or away from the target. One sim
way to locate files, implemented byNAPSTER, is to use a
central server that contains an index of all the files eve
node is sharing as they join the network. This is the equiv
lent of having a giant white pages for the entire Unite
States. Such directories now exist online, and have in a se
reduced the need to find people by passing messages. Bu
various reasons, including privacy and copyright issues, i
peer-to-peer network it is not always desirable to have
central server.

File-sharing systems that do not have a central server
cludeGNUTELLA andFREENET. Files are found by forwarding
queries to one’s neighbors until the target is found. Rec
measurements ofGNUTELLA networks @9# and simulated
FREENET networks@10# show that they have power-law de
gree distributions. In this paper, we propose a number
message-passing algorithms that can be efficiently used
search through power-law networks such asGNUTELLA. Like
the networks that they are designed for, these algorithms
completely decentralized and exploit the power-law link di
tribution in the node degree. The algorithms use local info
mation such as the identities and connectedness of a no
neighbors, and its neighbors’ neighbors, but not the targe
global position. We demonstrate that our search algorith
work well on real GNUTELLA networks, scale sublinearly
with the number of nodes, and may help reduce the netw
search traffic that tends to cripple such networks.

The paper is organized as follows. In Sec. II, we prese
analytical results on message passing in power-law grap
followed by simulation results in Sec. III. Section IV com
pares the results with Poisson random graphs. In Sec. V
consider the application of our algorithms toGNUTELLA, and
Sec. VI concludes.
©2001 The American Physical Society35-1
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II. SEARCH IN POWER-LAW RANDOM GRAPHS

In this section we use the generating function formalis
introduced by Newman@7# for graphs with arbitrary degree
distributions to analytically characterize search-cost scali
in power-law graphs.

A. Random Walk Search

Let G0(x) be the generating function for the distribution
of the vertex degreesk. Then

G0~x!5(
0

`

pkx
k, ~1!

wherepk is the probability that a randomly chosen vertex o
the graph has degreek.

For a graph with a power-law distribution with exponen
t, minimum degreek51 and an abrupt cutoff atm5kmax,
the generating function is given by

G0~x!5c(
1

m

k2txk ~2!

with c a normalization constant that depends onm andt to
satisfy the normalization requirement

G0~1!5c(
1

m

k2t51. ~3!

The average degree of a randomly chosen vertex is giv
by

^k&5(
1

m

kpk5G08~1!. ~4!

Note that the average degree of a vertex chosen at rand
and one arrived at by following a random edge are differen
A random edge arrives at a vertex with probability propo
tional to the degree of the vertex, i.e.,p8(k);kpk . The cor-
rectly normalized distribution is given by

(
k

kpkx
k

(
k

kpk

5x
G08~x!

G08~1!
. ~5!

If we want to consider the number of outgoing edges fro
the vertex we arrived at, but not include the edge we ju
came on, we need to divide by one power ofx. Hence the
number of new neighbors encountered on each step of a r
dom walk is given by the generating function

G1~x!5
G08~x!

G08~1!
, ~6!

where G08(1) is the average degree of a randomly chose
vertex as mentioned previously.
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In real social networks, it is reasonable that one on
would have at least some knowledge of one’s friends
friends. Hence, we now compute the distribution of secon
neighbors. The probability that any of the second neighbor
connect to any of the first neighbors or to one another goe
asN21 and can be ignored in the limit of largeN. Therefore,
the distribution of the second neighbors of the original ran
domly chosen vertex is determined by

(
k

pk@G1~x!#k5G0„G1~x!…. ~7!

It follows that the average number of second neighbors i
given by

z2A5F ]

]x
G0„G1~x!…G

x51

5G08~1!G18~1!. ~8!

Similarly, if the original vertex was not chosen at random,
but arrived at by following a random edge, then the numbe
of second neighbors would be given by

z2B5F ]

]x
G1„G1~x!…G

x51

5@G18~1!#2. ~9!

In both Eqs.~8! and~9! the fact thatG1(1)51 was used.
Both these expressions depend on the valuesG08(1) and

G18(1) so we calculate those for givent andm. For simplic-
ity and relevance to most real-world networks of interest we
assume 2,t,3,

G08~1!5(
1

m

ck12t;E
1

m

xt21dx5
1

t22
~12m22t!, ~10!

G18~1!5
1

G08~1!

]

]x (
1

m

ck12txk21 ~11!

5
1

G08~1!
(

2

m

ck12t~k21!xk22 ~12!

;
1

G08~1!

m32t~t22!2222t~t21!1m22t~32t!

~t22!~32t!

~13!

for large cutoff valuesm. Now we impose the cutoff of
Aiello et al. @1# at m;N1/t. Sincem scales with the size of
the graphN and for 2,t,3 the exponent 22t is negative,
we can neglect terms constant inm. This leaves

G18~1!5
1

G08~1!

m32t

~32t!
. ~14!

Substituting into Eq.~8! ~the starting node is chosen at
random! we obtain

z2A5G08~1!G18~1!;m32t. ~15!
5-2
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SEARCH IN POWER-LAW NETWORKS PHYSICAL REVIEW E64 046135
We can also derivez2B , the number of second neighbor
encountered as one is doing a random walk on the graph

z2B5@G18~1!#25F t22

12m22t

m32t

32t G 2

. ~16!

Letting m;N1/t as above, we obtain

z2B;N2(3/t21). ~17!

Thus, as the random walk along edges proceeds nod
node, each node reveals more of the graph since it has in
mation not only about itself, but also of its neighborhoo
The search costs is defined as the number of steps un
approximately the whole graph is revealed so thats
;N/z2B , or

s;N3(122/t). ~18!

In the limit t→2, Eq. ~16! becomes

z2B;
N

ln2~N!
~19!

and the scaling of the number of steps required is

s; ln2~N!. ~20!

B. Search utilizing high degree nodes

Random walks in power-law networks naturally gravita
towards the high degree nodes, but an even better scalin
achieved by intentionally choosing high degree nodes. Fot
sufficiently close to 2 one can walk down the degree
quence, visiting the node with the highest degree, follow
by a node of the next highest degree, etc. Letm2a be the
degree of the last node we need to visit in order to sca
certain fraction of the graph. We make the self-consist
assumption thata!m, i.e., the degree of the node has n
dropped too much by the time we have scanned a fraction
the graph. Then the number of first neighbors scanned
given by

z1D5E
m2a

m

Nk12tdk;Nam12t. ~21!

The number of nodes having degree betweenm2a and
m, or equivalently, the number of steps taken is given
*m2a

m k2t;a. The number of second neighbors when o
follows the degree sequence is given by

z1D* G18~1!;Nam2(22t), ~22!

which gives the number of steps required as

s;m2(t22);N224/t. ~23!

We now consider when and why it is possible to go dow
the degree sequence. We start with the fact that the orig
degree distribution is a power law
04613
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p~x!5S (
1

m

x2tD 21

x2t, ~24!

wherem5N1/t is the maximum degree. A node chosen b
following a random link in the graph will have its remaining
outgoing edges distributed according to

p8~x!5F (
0

m21

~x11!(12t)G21

~x11!(12t). ~25!

At each step one can choose the highest degree n
among then neighbors. The expected number of the outgo
ing edges of that node can be computed as follows. In ge
eral, the cumulative distribution~CDF! Pmax(x,n) of the
maximum ofn random variables can be expressed in term
of the CDF P(x)5*0

xp(x8)dx8 of those random variables:
Pmax(x,n)5P(x)n. This yields

pmax8 ~x,n!5n~11x!12t~t22!@12~x11!22t#n21

3~12N2/t21!2n ~26!

for the distribution of the number of links the richest neigh
bor amongn neighbors has.

Finally, the expected degree of the richest node amongn
is given by

E@xmax~n!#5(
0

m-1

xpmax8 ~x,n!. ~27!

We numerically integrated the above equation to deriv
the ratio between the degree of a node and the expec
degree of its richest neighbor. The ratio is plotted in Fig.
For a range of exponents and node degrees, the expe
degree of the richest neighbor is higher than the degree of
node itself. However, eventually~the precise point depends
strongly on the power-law exponent!, the probability of find-
ing an even higher degree node in a neighborhood of a ve
high degree node starts falling.

What this means is that one can approximately follow th
degree sequence across the entire graph for a sufficien
small graph or one with a power-law exponent close to
(2.0,t,2.3). At each step one chooses a node with a d
gree higher than the current node, quickly finding the highe
degree node. Once the highest degree node has been vis
it will be avoided, and a node of approximately second hig
est degree will be chosen. Effectively, after a short initia
climb, one goes down the degree sequence. This is the m
efficient way to do this kind of sequential search, visitin
highest degree nodes in sequence.

III. SIMULATIONS

We used simulations of a random network with a powe
law link distribution oft52.1 to validate our analytical re-
sults. As in the analysis above, a simple cutoff atm;N1/t

was imposed. The expected number of nodes amongN hav-
ing exactly the cutoff degree is 1. No nodes of degree high
than the cutoff are added to the graph. In real-world grap
5-3
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ADAMIC, LUKOSE, PUNIYANI, AND HUBERMAN PHYSICAL REVIEW E 64 046135
one, of course, does observe nodes of degree higher than
imposed cutoff, so that our simulations become a worse c
scenario. Once the graph is generated, the largest conne
component~LCC! is extracted, that is the largest subset
nodes such that any node can be reached from any o
node. For 2,t,3.48 a giant connected component exis
@1#, and all our measurements are performed on the LCC.
observe that the LCC contains the majority of the nodes
the original graph and most of the links as well. The lin
distribution of the LCC is nearly identical to that of the orig
nal graph with a slightly smaller number of 1 and 2 degr
nodes.

Next we apply our message-passing algorithm to the n
work. Two nodes, the source and the target, are selecte
random. At each time step the node that has the mes
passes it on to one of its neighbors. The process ends w
the message is passed on to a neighbor of the target. S
each node knows the identity of all of its neighbors, it c
pass the message directly to the target if the target happe
be one of it’s neighbors. The process is analogous to
forming a random walk on a graph, where each node is ‘‘v
ited’’ as it receives the message.

There are several variants of the algorithm, depending
the strategy and the amount of local information availabl

~1! The node can pass the message onto one of its ne
bors at random or it can avoid passing it on to a node that
already seen the message.

~2! If the node knows the degrees of its neighbors, it c
choose to pass the message onto the neighbor with the
neighbors.

~3! The node may know only its neighbors or it may kno
who its neighbors’ neighbors are. In the latter case it wo
pass the message onto a neighbor of the target.

In order to avoid passing the message to a node that
already seen the message, the message itself must be s
by the nodes as they receive the message. Further, if a

FIG. 1. Ratior ~the expected degree of the richest neighbor o
node whose degree isn divided by n) vs n for t ~top to bottom!
52.0, 2.25, 2.5, 2.75, 3.00, 3.25, 3.50, and 3.75. Each curve ext
to the cutoff imposed for a 10 000 node graph with the particu
exponent.
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has passed the message and finds that all of its neighbor
already on the list, it puts a special mark next to its nam
which means that it is unable to pass the message onto
new node. This is equivalent to marking nodes as follow

White.Node has not been visited.
Gray. Node has been visited, but all its neighbors ha

not been visited.
Black. Node and all its neighbors have been visit

already.
Here we compare two strategies. The first performs a r

dom walk, where only retracing the last step is disallowed
the message passing scenario, this means that if Bob
received a message from Jane, he would not return the m
sage to Jane if he could pass it to someone else. The se
strategy is a self-avoiding walk that prefers high deg
nodes to low degree ones. In each case both the first
second neighbors are scanned at each step.

Figure 2~a! shows the scaling of the average search ti
with the size of the graph for the two strategies. The sca
~exponent 0.79 for the random walk and 0.70 for the h
degree strategy! is not as favorable as in the analytic resu
derived above (0.14 for the random walk and 0.1 for the h
degree strategy whent52.1) .

Consider, on the other hand, the number of steps it ta
to cover half the graph. For this measure we observe a s
ing that is much closer to the ideal. As shown in Figure 2~b!,
the cover time scales asN0.37 for the random walk strategy v
N0.15 from Eq.~18!. Similarly, the high degree strategy cov
time scales asN0.24 vs N0.1 in Eq. ~23!.

The difference in the value of the scaling exponents of
cover time and average search time implies that a majorit
nodes can be found very efficiently, but others demand h
search costs. As Figure 2~c! shows, a large portion of the
10 000 node graph is covered within the first few steps,
some nodes take as many steps or more to find as ther
nodes in total. For example, the high degree seeking stra
finds about 50% of the nodes within the first 10 steps~mean-
ing that it would take about 1012512 hops to reach 50% o
the graph!. However, the skewness of the search time dis
bution brings the average number of steps needed to 21

Some nodes take a long time to find because the ran
walk, after a brief initial period of exploring fresh node
tends to revisit nodes. It is a well-known result that the s
tionary distribution of a random walk on an undirected gra
is simply proportional to the distribution of links emanatin
from a node. Thus, nodes with high degree are often re
ited in a walk.

A high degree seeking random walk is an improvem
over the random walk, but still cannot avoid retracing
steps. Figure 2~d! shows the color of nodes visited on such
walk for a N51000 node power-law graph with expone
2.1 and an abrupt cutoff atN1/2.1. The number of nodes o
each color encountered in 50-step segments is recorde
the bar for that time period. We observe that the se
avoiding strategy is somewhat effective, with the total nu
ber of steps needed to cover the graph about 13 times sm
than the pure random walk case, and the fraction of visit
gray and black nodes is significantly reduced.

Although the revisiting of nodes modifies the scaling b

a

nds
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FIG. 2. ~a! Scaling of the average node-to-node search cost in a random power-law graph with exponent 2.1, for random walk~RW! and
high-degree seeking~DS! strategies. The solid line is a fitted scaling exponent of 0.79 for the RW strategy and the dashed is an exp
0.70 for the DS strategy.~b! The observed and fitted scaling for half graph cover times for the RW and DS strategies. The fits are to
exponents of 0.37 and 0.24, respectively.~c! Cumulative distribution of nodes seen vs the number of steps taken for the RW an
strategies on a 10 000 node graph.~d! Bar graph of the color of nodes visited in DS search of a random 1000 node power-law graph
exponent 2.1. White represents a fresh node, gray represents a previously visited node that has some unvisited neighbors,
represents nodes for which all neighbors have been previously visited.
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havior, it is the form of the link distribution that is respon
sible for changes in the scaling. If nodes were uniform
linked, at every step the number of new nodes seen woul
proportional to the number of unexplored nodes in the gra
The factor by which the search is slowed down through
visits would be independent of the size of the graph. Hen
revisiting alone does not account for the difference in sc
ing.

The reason why the simulated scaling exponents for th
search algorithms do not follow the ideal is the same rea
why power-law graphs are so well suited to search: the l
distribution is extremely uneven. A large number of lin
point to only a small subset of high degree nodes. Whe
new node is visited, its links do not let us uniformly samp
the graph, they preferentially lead to high degree nod
which have likely been seen or visited in a previous st
This would not be true of a Poisson graph, where all the lin
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are randomly distributed and hence all nodes have appro
mately the same degree. We will explore and contrast
search algorithm on a Poisson graph in the following sectio

IV. COMPARISON WITH POISSON DISTRIBUTED
GRAPHS

In a Poisson random graph withN nodes andz edges, the
probability p5z/N of an edge between any two nodes is th
same for all nodes. The generating functionG0(x) is given
by @7#

G0~x!5ez(x21). ~28!

In this special caseG0(x)5G1(x), so that the distribution of
outgoing edges of a node is the same whether one arrive
the vertex by following a link or picks the node at random
35-5
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ADAMIC, LUKOSE, PUNIYANI, AND HUBERMAN PHYSICAL REVIEW E 64 046135
This makes analysis search in a Poisson random graph
ticularly simple. The expected number of new links encou
tered at each step is a constantp. So that the number of step
needed to cover a fractionc of the graph iss5cN/p. If p
remains constant as the size of the graph increases, the c
time scales linearly with the size of the graph. This has be
verified via simulation of the random walk search as sho
in Fig. 3.

In our simulations the probabilityp grows slowly towards
its asymptotic value as the size of the graph is increa
because of the particular choice of cutoff atm;N(1/t) for the
power-law link distribution. We generated Poisson grap
with the same number of nodes and links for comparis
Within this range of graph sizes, growth in the average nu
ber of links per node appears asN0.6, making the average
number of second neighbors scale asN0.15. This means that
the scaling of the cover time scales asN0.85, as shown in Fig.
3. Note how well the simulation results match the analytic
expression. This is because nodes can be approxima
sampled in an even fashion by following links.

The reason why the cover time for the Poisson gra
matches the analytical prediction and the power-law gra
does not is illustrated in Fig. 3~inset!. If links were approxi-
mately evenly distributed among the nodes, then if at o
point in the search 50% of the graph has already been
ited, one would expect to revisit previously seen nodes ab
50% of the time. This is indeed the case for the Poiss
graph. However, for the power-law graph, when 50% of t
graph has been visited, nodes are revisited about 80% of
time, which implies that the same high degree nodes
being revisited before new low degree ones. It is this b
that accounts for the discrepancy between the analytic s
ing and the simulated results in the power-law case.

However, even the simulatedN0.35 scaling for a random,

FIG. 3. Squares are scaling of cover time for 1/2 of the graph
a Poisson graph with a constant average degree/node~with fit to a
scaling exponent of 1.0). Circles are the scaling for Poisson gra
with the same average degree/node as a power-law graph with
ponent 2.1~with fit to a scaling exponent of 0.85). The inset com
pares revisitation between search on Poisson vs power-law gra
as discussed in the text.
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minimally self-avoiding strategy on the power-law graph ou
performs the idealN0.85 scaling for the Poisson graph. It is
also important to note that the the high degree node seeki
strategy has a much greater success in the power-law gra
because it relies heavily on the fact that the number of link
per node varies considerably from node to node. To illustra
this point, we executed the high degree seeking strategy
two graphs, Poisson and power law, with the same numb
of nodes, and the same exponentt52. In the Poisson graph,
the variance in the number of links was much smaller, mak
ing the high degree node seeking strategy comparatively i
effective as shown in Fig. 4.

In the power-law graph we can start from a randomly
chosen node. In this case the starting node has only one lin
but two steps later we find ourselves at a node with th
highest degree. From there, one approximately follows th
degree sequence, that is, the node richest in links, followe
by the second richest node, etc. The strategy has allowed
to scan the maximum number of nodes in the minimum num
ber of steps. In comparison, the maximum degree node of t
exponential graph is 11, and it is reached only on the 81
step. Even though the two graphs have a comparable num
of nodes and edges, the exponential graph does not le
itself to quick search.

V. GNUTELLA

GNUTELLA is a peer-to-peer file-sharing system that treat
all client nodes as functionally equivalent and lacks a centr
server that can store file location information. This is advan
tageous because it presents no central point of failure. T
obvious disadvantage is that the location of files is unknow
When a user wants to download a file, she sends a query
all the nodes within a neighborhood of size ttl, the time to
live assigned to the query. Every node passes on the query
all of its neighbors and decrements the ttl by one. In thi
way, all nodes within a given radius of the requesting nod
will be queried for the file, and those who have matchin
files will send back positive answers.

r

hs
x-

hs,

FIG. 4. Degrees of nodes visited in a single search for powe
law and Poisson graphs of 10 000 nodes.
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This broadcast method will find the target file quick
given that it is located within a radius of ttl. However, broa
casting is extremely costly in terms of bandwidth. Eve
node must process queries of all the nodes within a give
radius. In essence, if one wants to query a constant frac
of the network, say 50%, as the network grows, each n
and network edge will be handling query traffic that is p
portional to the total number of nodes in the network.

Such a search strategy does not scale well. As query
fic increases linearly with the size ofGNUTELLA graph, nodes
become overloaded as was shown in a recent study by
Clip2 company@9#. 56k modems are unable to handle mo
than 20 queries a second, a threshold easily exceeded
network of about 1000 nodes. With the 56k nodes failing,
network becomes fragmented, allowing users to query o
small section of the network.

The search algorithms described in the previous sect
may help ameliorate this problem. Instead of broadcastin
query to a large fraction of the network, a query is on
passed onto one node at each step. The search algorithm
likely to be effective because theGNUTELLA network has a
power-law connectivity distribution as shown in Fig. 5~in-
set!.

Typically, aGNUTELLA client wishing to join the network
must find the IP address of an initial node to connect
Currently, ad hoc lists of ‘‘good’’ GNUTELLA clients exist
@9#. It is reasonable to suppose that thisad hocmethod of
growth would bias new nodes to connect preferentially
nodes that are already fairly well connected, since th
nodes are more likely to be ‘‘well known.’’ Based on mode
of graph growth @5,6# where the ‘‘rich get richer,’’ the
power-law connectivity ofad hocpeer-to-peer networks ma
be a fairly general topological feature.

By passing the query to every single node in the netwo
the GNUTELLA algorithm fails to take advantage of the co
nectivity distribution. To implement our algorithm th
GNUTELLA clients must be modified to keep lists of the fil

FIG. 5. Cumulative number of nodes found at each step in
GNUTELLA network. The inset shows the measured link distribut
of the realGNUTELLA network used in the search simulations an
fit to a power-law link distribution with exponent 2.
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stored by their first and second neighbors have.1 This infor-
mation must be passed at least once when a new node jo
the network, and it may be necessary to periodically upda
the information depending on the typical lifetime of nodes i
the network. Instead of passing the query to every nod
queries are only passed along to the highest degree nod
The IP numbers of the nodes already queried are appende
the query, and they are avoided.

The modified algorithm places an additional cost on eve
node, that of keeping track of the filenames of its neighbor
files. Since network connections saturated by query traffi
are a major weakness inGNUTELLA, and since computational
and storage resources are likely to remain much less exp
sive than bandwidth, such a tradeoff is readily made. How
ever, now instead of every node having to handle eve
query, queries are routed only through high connectivit
nodes. Since nodes can select the number of connections
they allow, high degree nodes are presumably high ban
width nodes that can handle the query traffic. The netwo
has in effect created local directories valid within a two link
radius. It is resilient to attack because of the lack of a centr
server. As for power-law networks in general@11#, the net-
work is more resilient than Poisson graphs to random no
failure, but less resilient to attacks on the high degree nod

Figure 5 shows the success of the high degree seek
algorithm on theGNUTELLA network. We simulated the
search algorithm on a crawl by Clip2 company of the actu
GNUTELLA network of approximately 700 nodes. Assuming
that every file is stored on only one node, 50% of the file
can be found in eight steps or less. Furthermore, if the fi
one is seeking is present on multiple nodes, the search w
be even faster.

To summarize, the power-law nature of theGNUTELLA

graph means that these search algorithms can be effect
As the number of nodes increases, the~already small! num-
ber of nodes that will need to be queried increases subl
early. As long as the high degree nodes are able to carry
traffic, theGNUTELLA network’s performance and scalability
may improve by using these search strategies.

We also note that even if a network of clients was no
power law, a search strategy that possesses knowledge o
neighbors of a network radius greater than two could st
improve search. For example, in the Poisson case, the al
rithm could attempt to hold more than the contents of
node’s first and second neighbors. How efficient this algo
rithm is on arbitrary network topologies is the subject o
future work. Here we have analyzed the naturally occurrin
power-law topology.

VI. CONCLUSION

In this paper we have shown that local search strategies
power-law graphs have search costs that scale sublinea

1This idea has already been implemented by Clip2 company in
limited way. 56k modem nodes attach to a high bandwidth Refle
tor node that stores the filenames of the 56k nodes and hand
queries on their behalf.
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with the size of the graph, a fact that makes them very a
pealing when dealing with large networks. The most favo
able scaling was obtained by using strategies that prefer
tially utilize the high connectivity nodes in these power-la
networks. We also established the utility of these strateg
for searching on theGNUTELLA peer-to-peer network.

It may not be coincidental that several large networks a
structured in a way that naturally facilitates search. Rath
we find it likely that these networks could have evolved
facilitate search and information distribution. Network
where locating and distributing information, without perfe
global information, plays a vital role tend to be power la
with exponents favorable to local search.

For example, large social networks, such as the AT&
call graph and the collaboration graph of film actors, ha
exponents in the range (t52.122.3) that according to our
analysis makes them especially suitable for searching us
our simple, local algorithms. Being able to reach remo
nodes by following intermediate links allows communicatio
systems and people to get to the resources they need
distribute information within these informal networks. At th
social level, our analysis supports the hypothesis that hig
connected individuals do a great deal to improve the effe
l
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tiveness of social networks in terms of access to releva
resources@12#.

Furthermore, it has been shown that the Internet backbo
has a power-law distribution with exponent values betwe
2.15 and 2.2@2#, and web page hyperlinks have an expone
of 2.1 @5#. While in the Internet there are other strategies f
finding nodes, such as routing tables and search engines,
observes that our proposed strategy is partially used in th
systems as well. Packets are routed through highly connec
nodes, and users searching for information on the Web t
to highly connected nodes, such as directories and sea
engines, which can bring them to their desired destination

On the other hand, a system such as the power grid of
western United States, which does not serve as a mess
passing network, has an exponentt;4 @5#. It would be
fairly difficult to pass messages in such a network without
relatively large amount of global information.
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