
Aircraft Engine Health Monitoring using Density Modelling and 
Extreme Value Statistics 

 
Srini Sundaram, Iain G.D. Strachan 

Oxford BioSignals Ltd. 
174, Milton Park, Abingdon, Oxfordshire, OX14 4SE, UK  

srini.sundaram@oxford-biosignals.com 
 

David A. Clifton, Lionel Tarassenko 
Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford 

Old Road Campus, Roosevelt Drive, Oxford, OX3 7DQ, UK 
 

Steve King 
Rolls-Royce plc, EHM Global Capability Group, PO Box 31, 

Derby, DE24 8BJ. 
 

Abstract 
Current practice in the operation and maintenance of an aircraft fleet requires analysis of data 
obtained from in-service engines in order to identify engine deterioration and provide 
preventative maintenance. Typically large quantities of engine vibration and performance data 
are available from various engine-mounted sensors.  The analysis of such data requires 
techniques for modelling these multivariate data allowing fleet specialists to establish profiles of 
engine behaviour under different operating conditions. Additionally, such techniques can be used 
to identify precursors of engine events to avoid loss of engine service.  

This paper describes density modelling techniques for the estimation of the multivariate 
unconditional data density of performance and vibration parameters acquired from aerospace 
gas-turbine engines. We set a probabilistic threshold using Extreme Value Theory (EVT). This 
framework is used to generate reliable, timely alerts concerning abnormal engine operation.  
Finally, case studies are presented that analyse performance and vibration data obtained from a 
representative set of civil aircraft engines. Our results show that such techniques can provide 
reliable identification of abnormal engine events.  

 

 

1 Introduction 
In order to reduce operational and maintenance costs, Engine Health Monitoring (EHM) experts 
apply various tools that can learn the behaviour of engines and alert before components reach a 
critical stage of failure. This paper presents a novelty detection based approach that constructs a 
model of normality using examples of “normal” engine behaviour and then detects deviations 
from the model. Novelty detection is ideally suited for condition monitoring of engines as most 
of the data available are typically from “normal” engine behaviour and failure examples are very 
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rare. This approach allows users to construct models of normality, calibrate them to the available 
engine data, and use the resultant models to identify abnormal events (1,2). A systematic 
investigation of visualisation and novelty detection techniques is presented in this paper using a 
representative set of engine data. The investigation is divided into four stages: (i) pre-processing 
of data for feature extraction, (ii) data understanding using methods of high-dimensional 
visualisation , (iii) construction of models of normality (multivariate Gaussian Mixture Models 
and Parzen window estimators), and (iv) principled setting of decision thresholds for novelty 
detection using multivariate extreme value theory (M-EVT). 

2 Feature Extraction and Visualisation  

In order to prepare a dataset for analysis, pre-processing must be performed in order to remove 
artefacts from the data due to errors in sensor measurements. Subsequently, data are then 
normalised using component-wise normalisation (i.e., a zero-mean, unit-variance transformation) 
to ensure that all parameters vary over similar ranges.  Next, the multidimensional data are 
inspected using the NeuroScale visualisation technique(3,4) in order to assist in model 
construction The NeuroScale neural network(1) allows the visualisation of high-dimensional 
vectors by mapping them to lower numbers of dimensions (typically two, for visual inspection). 
Feature vectors are extracted from the data that capture the difference between “normal” and 
“abnormal” engine operation.  

For every high-dimensional feature vector, the NeuroScale network provides a corresponding 
pair of ( , )i j  co-ordinates.  This is a projection from D > 2 dimensions to D’ = 2.  The training 
algorithm of the NeuroScale network attempts to preserve the inter-point Euclidean distances of 
high-dimensional vectors after projection into 2-dimensional space by minimizing the Stress 
metric, E , as defined in equation (1). 
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where is *
ijd the Euclidean distance between vectors i  and j  in data space, and ijd  is the 

Euclidean distance between corresponding vectors in the visualisation space.  The objective 
function, E  , is minimised by adjusting the locations of the visualisation vectors. The NeuroScale 
algorithm adjusts the output weights of an RBF network in order to reduce the value of E. Thus, 
n-dimensional feature vectors which are similar (i.e., close together in the original high-
dimensional data space) should be kept close together after projection into 2-dimensional space.  
Conversely, n-dimensional vectors that are significantly different from one another (i.e., far apart 
in high-dimensional space) should remain well-separated after projection into 2-dimensional 
space. The goal is to allow clusters of feature vectors corresponding to “normal” behaviour to be 
evident, with feature vectors corresponding to “abnormal” behaviour to be far removed from 
them (and thus detectable by some later analysis technique).  
 

                                                            
1 A Radial Basis Function (RBF) neural network. 

The Sixth International Conference on Condition Monitoring and Machinery Failure Prevention Technologies 920



3  Density Modelling using Gaussian Mixture Models and Parzen 
Window Estimators 
The next stage of the investigation is to construct a model of normality using “normal” training 
data. The model of normality is provided using two candidate techniques, Parzen window 
estimation and Gaussian Mixture Modelling (GMM). Both approaches estimate the 
unconditional probability density of the training data, p(x).  If we consider N training points 
from the input data x , the data density for the Parzen window estimator is defined to be 
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where σ is the width or bandwidth parameter and K(.) is the Gaussian kernel given by 
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The Parzen window model places an identical Gaussian kernel K on each of the N training data 
and uses a common width for each kernel(5,6). The width is calculated as the average distance to 
the 10 nearest neighbours(1). 

The GMM computes ( )p x using a linear combination of basis functions(7). The data density is 
defined to be  
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where p(x | j ) is the probability of x with respect to kernel j, and P(j) is the prior probability that 
x was generated by kernel j. 

To ensure that the result is a probability density function, p(x) must satisfy the following criteria: 

i) the function should be non-negative throughout, and 

ii) the function should integrate to 1. 

Choosing a normal density for ( | )p x j  results in a proper probability density function, as desired. 

4 Multivariate Extreme Value Statistics 
In most the real-world problems, ( )p x is multimodal and multivariate. The  “classical” approach 
to EVT is based on finding the extreme values from a distribution, where “extreme” is defined in 
terms of the magnitude of the data x.  It also states that each Gaussian density ( )p x in the 
mixture of Gaussians modelling the multivariate space along radius r varies according to 
univariate Gaussian and thus their EVD can be modelled using univariate Gumbel 
distributions(8).   
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(8) showed that this assumption does not hold in multivariate space. In order to use EVT for 
novelty detection, the aim is to identify events that are extreme in probability, with respect to 
some normal model, rather than detect events that are extreme in magnitude.   

Though outside the scope of this paper, multivariate EVT can be used to determine where the 
boundary of “normal” behaviour should lie, with respect to a model of normality, under 
“normal” engine conditions.  Then, if data are observed beyond this boundary, they are classified 
“abnormal”, and an alert is provided to the user.  Further reading is provided in (8). 

5  Experiments and Results  
We consider a set of 9 aerospace gas-turbine engines. From each engine, a set of performance 
parameters (such as pressures and temperatures) and vibration characteristics were acquired. 
These parameters are conventionally used as descriptive parameters of engine condition by 
domain experts.  Histograms of the distribution of performance and vibration parameters 
obtained for engine 1 are shown in Figures 1 and 2. It may be seen from the figures that the tails 
of each distribution differ for each parameter.  In multivariate space, this will require a more 
accurate method of modelling the extreme values distribution than a simple expert threshold such 
as 3 standard deviations with an assumption of Gaussian distribution.   

 

Figure 1 – Histograms Representation of Performance Parameters of engine 1 
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Figure 2 – Histogram Representation of Vibration Parameters of engine 1 

High-Dimensional Visualisation  
Each feature vector is defined to be a multivariate vector comprised of the input parameters.   We 
construct separate feature vectors for performance and vibration data.  (In this study, we have 
chosen 8-dimensional feature vectors in the case of performance data and 4-dimensional feature 
vectors in the case of vibration data). The overall behaviour of data in their native high-
dimensional space may be visualised in two dimensions using a NeuroScale network, as 
described previously. The following criteria were adopted for training the NeuroScale 
visualisation network:  

• If a dataset contains > 400 flights of data, 200 flights of data were used for training the 
model, and the number of hidden nodes in the NeuroScale RBF network was set to be 50.  

• If the engine dataset contains < 400 flights of data, 50% of the flights are taken for 
training, and the number of hidden units was set to be 20% of the number of training data 
points.  

We note that, though we have chosen large training sets for illustration of this technique, 
comprising many flights, practical systems would be able to construct models using much 
smaller numbers of flights.  Typically, a minimum of 5 flights is required in order to perform 
novelty detection(8). 
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The output of the NeuroScale network is a 2-dimensional map. Expert labels were provided for 
the 9 datasets used by the investigation describes by this paper, and we adopt the following 
colour scheme corresponding to these labels: 

• data used for training are shown in green;  

• data occurring after those used for training are shown in black or grey; 

• data occurring after conventional EHM systems identified an engine event are shown in 
red. 

Figures 3 and 4 show the visualisation of data from the 9 engines, showing performance and 
vibration data, respectively.  

 

Figure 3 –– Neuroscale Visualisation of Performance Parameters for nine engines (Green indicates data 
points taken for training, Black indicates post training data points until Event and Red indicates data points 

after Event) 
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Figure 4 –– Neuroscale Visualisation of Vibration Parameters for nine engines (Green indicates data points 
taken for training, Black indicates post training data points until Event and Red indicates data points after 

Event) 

For datasets in which one or more parameters deviate from the model of normality, it is expected 
that data corresponding to the event (shown in red) would be separated from the “normal” 
training data (shown in green).   Any precursors to this event in the data shown in black could be 
visible as excursions from the “normal” data.  

In Figure 3, visualisation of data from engines 1, 4, 6 and 7 shows that the data shown in red are 
significantly separated from the “normal” cluster. This may indicate that one or many 
performance parameters for these engines are indicative of abnormal behaviour, compared to the 
“normal” data from that engine.  In the case of the visualisation of data from engine 1, many of 
the data coloured in black, corresponding to the period after training, show significant separation 
from the “normal” data, and this may correspond to a precursor of the eventual engine event. 
Similarly in Figure 4, the visualisation of data from engines 3, 6, and 8 shows similar separation 
between engine event and “normal” data. 

Density Models 

The visualisation gives an approximation of the separation of feature vectors in their native high-
dimensional data space.  In order to study engine behaviour in more detail, the two candidate 
density estimation models, based on Parzen window estimation and GMMs, were constructed 
using the “normal” feature vectors for each engine.  Note that a separate model was trained for 
each engine.   
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We define a novelty score z(x) = -ln p(x), such that improbable events, which have low 
unconditional probabilities p(x), take high novelty scores, z(x).  

Figures 5 and 6 show novelty scores obtained using the Parzen window estimator for 
performance and vibration parameters, respectively  

 

Figure 5 –– Parzen Windows Model Novelty Scores obtained using dataset containing Performance 
Parameters for nine engines (Green indicates data points taken for training, Grey indicates post training data 

points until Event and Red indicates data points after Event)  

 

Figure 6 –– Parzen Windows Scores obtained using dataset containing Vibration Parameters for nine engines 
(Green indicates data points taken for training, Grey indicates post training data points until Event and Red 

indicates data points after Event) 
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In Figure 6, novelty scores from the Parzen window estimator clearly show an increase in the 
case of data from engines 3, 4, 6, 8 and 9.  This indicates that the corresponding vibration 
parameters in each case contain evidence of “abnormal” engine behaviour. In some cases, the 
novel events are observed in only one of the vibration or performance models.  For example, 
engine 1 shows increases in novelty score for the performance model and not the vibration 
model.  Engine 3 shows a significant rise in novelty score output by the performance model 
considerably earlier than the rise in novelty score output by the vibration model.  We note that in 
the case of engine 3, the engine event was detected by conventional methods using vibration 
data.  Novelty scores determined using the GMMs are shown in Figures 7 and 8 for performance 
and vibration parameters, respectively, where similar trends were observed.  (We note that both 
Parzen window estimation and GMMs provide similar estimates of p(x) and thus similar novelty 
scores for each engine.) 

 

Figure 7 –– Gaussian Model Novelty Scores obtained using dataset containing Performance Parameters for 
nine engines (Green indicates data points taken for training, Grey indicates post training data points until 

Event and Red indicates data points after Event)  
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Figure 8 –– Gaussian Model Novelty Scores obtained using dataset containing Vibration Parameters for nine 
engines (Green indicates data points taken for training, Grey indicates post training data points until Event 

and Red indicates data points after Event) 

The results from the density models shown above demonstrate that precursor events can be 
identified in performance and/or vibration data.  The next stage is to set a principled threshold 
using M-EVT, described in section 4. 

Models with M-EVT Threshold 

The model output (novelty scores) with M-EVT applied to performance data from engines 1 and 
2 are shown in Figures 9 and 10, respectively. It can be seen that in Figure 9, the threshold 
exceedance is observed some 200 points (approximately 50 flights) before the actual event was 
observed (around data point 800). 
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Figure 9 – Parzen Windows model Novelty Scores for Engine 1 Performance Parameters with M-EVT 
Threshold (Red dotted line) 

 

Figure 10 – Parzen Windows Novelty Scores for Engine 2 Perforamce Parameters with M-EVT Threshold 
(Red dotted line) 

Similarly in Figure 10, the M-EVT threshold exceedance occurs around data point 620, and 
continued to show exceedances thereafter.  We note that conventional methods observed the 
event much later, at around data point 1100. Similar results are obtained for data from other 
engines, which are not shown here. 

6 Conclusion 
This paper has presented a novelty detection methodology for aircraft engine health monitoring 
using visualisation, density modelling and extreme value statistics. First, a visualisation model 
was used to understand the multivariate data. Two candidate approaches to modelling normality, 
namely Parzen window estimation and GMMs, were constructed using “normal” data from each 
engine. These models were then shown to be used for detecting abnormal events in both 
vibration and performance parameters. Finally, a principled decision threshold was set using 
multivariate EVT.  Results show that this methodology can be used to provide early warning of 
engine events, typically far in advance of conventional EHM systems. 
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In the study described by this paper, we have made an a priori assumption that the first flights of 
the engine were “normal”, such that models of normality could be constructed for each engine.  
We note that, in practice, data from a much smaller number of flights is required in order to 
construct such models, and the large numbers of flights used for training models in this study are 
for the purposes of illustration only. 

Future work includes setting this multivariate methodology into a Bayesian framework, such that 
uncertainty in our data may be quantified in our model.  This can further help to drive down the 
false-positive novelty detection rate, which is already low in the case of robust multivariate 
techniques(8). 
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