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ABSTRACT 
 

 Built-in self-test (BIST) techniques enable an integrated circuit (IC) to test itself.  BIST reduces test 

and maintenance costs for an IC by eliminating the need for expensive test equipment and by allowing fast 

location of failed ICs in a system.  BIST also allows an IC to be tested at its normal operating speed which 

is very important for detecting timing faults.  Despite all of these advantages, BIST has seen limited use in 

industry because of area and performance overhead and increased design time.  This dissertation presents 

automated techniques for implementing BIST in a way that minimizes area and performance overhead. 

 A low-overhead approach for BIST is to use a linear feedback shift register (LFSR) to apply 

pseudo-random test patterns to the circuit-under-test.  Unfortunately, many circuits contain random-pattern-

resistant faults which limit the fault coverage that can be obtained for pseudo-random BIST.  Several 

different approaches for solving this problem are presented. 

 A logic synthesis procedure that performs testability-driven factoring to generate a random pattern 

testable design is presented.  By considering random pattern testability during the factoring process, the 

overhead can be minimized. 

 For hand-designed circuits or circuits that are not synthesizable, an innovative test point insertion 

procedure is described for inserting test points to make the circuit random pattern testable.  A path tracing 

procedure is used for test point placement.  A few of the existing primary inputs are ANDed together to 

form signals that drive the control points.  These innovations result in fewer test points than previous 

methods. 

 If it is not possible or not desirable to modify the circuit-under-test, then a procedure is described for 

synthesizing mapping logic that can placed at the output of the LFSR to transform the pseudo-random 

patterns so that they provide the required fault coverage.  Much less overhead is required compared with 

weighted pattern testing methods. 

 Lastly, a technique is described for placing bit-fixing logic at the serial output of an LFSR to embed 

deterministic test patterns for the random pattern resistant faults in the pseudo-random bit sequence.  This 

method does not require any performance overhead beyond what is needed for scan. 
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Chapter 1 
Introduction 

 

1.1 Background 
 In the production of integrated circuits, testing is done to identify defective chips.  This is very 

important for shipping high quality products.   Testing is also done to diagnose the reason for a chip failure 

in order to improve the manufacturing process.  In system maintenance, testing is done to identify parts that 

need to be replaced in order to repair a system. 

 Testing a digital circuit involves applying an appropriate set of input patterns to the circuit and 

checking for the correct outputs.  The conventional approach is to use an external tester to perform the test.  

However, built-in self-test (BIST) techniques have been developed in which some of the tester functions 

are incorporated on the chip enabling the chip to test itself.  BIST provides a number of well-known 

advantages.  It eliminates the need for expensive testers.  It provides fast location of failed units in a system 

because the chips can test themselves concurrently.  And, it allows at-speed testing in which the chip is 

tested at its normal operating clock rate which is very important for detecting timing faults.  Despite all of 

these advantages, BIST has seen limited use in industry because of its area and performance overhead, 

increased design time, and lack of BIST design tools.  These are problems that this dissertation addresses. 

 The research described in this dissertation is timely because the interest in BIST is growing rapidly.  

The increasing pin count, operating speed, and complexity of IC’s is outstripping the capabilities of 

external testers.  BIST provides solutions to these problems. 

1.2 Pseudo-Random BIST 
 Figure 1.1 is a block diagram showing the architecture for BIST.  The circuit that is being tested is 

called the circuit-under-test (CUT).  There is a test pattern generator which applies test patterns to the 

CUT and an output response analyzer which checks the outputs.  The test pattern generator must generate a 

set of test patterns that provides a high fault coverage in order to thoroughly test the CUT. 

 Pseudo-random testing is an attractive approach for BIST.  A linear feedback shift register (LFSR) can 

be used to apply pseudo-random patterns to the CUT.  An LFSR has a simple structure requiring small area 

overhead.  Moreover, an LFSR can also be used as an output response analyzer thereby serving a dual 

purpose.  BIST techniques such as circular BIST [Stroud 88], [Krasniewski 89], and BILBO registers 

[Koenemann 79] make use of this advantage to reduce overhead. 
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Output Response Analyzer

Test Pattern Generator

Circuit Under Test
(CUT)

 

 Figure 1.1. Block Diagram for BIST 

 

 There are limits on the test length, which is the number of pseudo-random patterns that can be applied 

during BIST.  One limit is simply the amount of time that is required to apply the patterns.  Another limit is 

the fault simulation time required to determine the fault coverage.  A third limit is heat dissipation for an 

unpackaged die.  Thus, in order for pseudo-random pattern testing to be effective, a high fault coverage 

must be obtained for an “acceptable” test length.  What is considered acceptable depends on the particular 

test environment. 

 The probability of detecting a fault with a single random pattern is defined as the detection probability 

for the fault and is given by the number of patterns that detect the fault divided by the total number of 

inputs patterns, 2n, where n is the number of inputs in the circuit.  Unfortunately, many circuits contain 

faults with very low detection probabilities.  Such faults are said to be random-pattern-resistant (r.p.r.) 

[Eichelberger 83] because they are hard to detect with random patterns and therefore limit the fault 

coverage for pseudo-random testing.  A circuit is said to be random pattern testable if it does not contain 

any r.p.r. faults. 

 If the fault coverage for pseudo-random BIST is insufficient, then there are two solutions.  One is to 

modify the circuit-under-test to make it random pattern testable, and the other is to modify the test pattern 

generator so that it generates patterns that detect the r.p.r. faults.  Innovative techniques for both of these 

approaches are described in this dissertation.  These techniques enable automated design of pseudo-random 

BIST implementations that satisfy fault coverage requirements while minimizing area and performance 

overhead.  These techniques have been incorporated in the TOPS (Totally Optimized Synthesis-for-test) 

tool being developed at the Center for Reliable Computing. 

1.3 Outline 
 This dissertation summarizes my work in pseudo-random BIST.  Detailed descriptions of results are 

found in the appendices which are reprints of published or submitted papers. 

 Chapter 2 describes techniques for modifying a circuit to make it random pattern testable.  A survey of 

previous work is presented followed by a summary of the new techniques. 
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 An innovative test point insertion technique is described which uses a path tracing procedure to place 

both control and observation points.  Rather than using extra scan elements to drive the control points, a 

few of the existing primary inputs are ANDed together to form signals that drive the control points.  This 

test point insertion procedure can be used to target both stuck-at and bridging faults. 

 Given a logic function, a logic synthesis procedure is described for generating a random pattern 

testable implementation.   By considering testability during the factor section process, the procedure 

performs testability-driven factoring to generate a random pattern testable implementation. 

 Chapter 3 describes techniques for modifying the test pattern generator so that it generates patterns that 

detect the r.p.r. faults.  A survey of the previous work for both weighted pattern testing and mixed-mode 

testing is presented followed by a summary of the new techniques. 

 A procedure is described for synthesizing mapping logic that can be placed at the output of the LFSR 

to transform the pseudo-random patterns that are generated so that they provide the required fault coverage.  

By considering a broader class of mapping functions, not just those that implement weight sets, the 

overhead is significantly minimized compared with weighted pattern testing methods. 

 A new approach for mixed-mode scan BIST is described.  Logic at the serial output of the LFSR to 

“fix” certain bits in the sequence in order to embed deterministic test patterns that detect the r.p.r. faults. 

 Chapter 4 concludes the dissertation. 
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Chapter 2 
Random Pattern Testable Design 

 

 If pseudo-random BIST does not provide sufficiently high fault coverage for a circuit, then one 

solution is to modify the circuit to make it random pattern testable.  This chapter begins with a survey of 

the previous work that has been done in this area and then summarizes the new techniques presented in 

Appendices I, IV, and V. 

2.1 Previous Work in Random Pattern Testable Design 
 Previous work in random pattern testable design focused on inserting test points into a circuit to make 

it random pattern testable.  Test point insertion involves adding control and observation points to the circuit 

in a way that the system function remains the same, but the testability is improved [Hayes 74].  An 

observation point is an additional primary output that is inserted in the circuit to increase the observability 

of faults in the circuit.  In the example in Fig. 2.1, an observation point is inserted at the output of gate G1 

such that faults are observable regardless of the logic value at node y.  A control point is inserted in the 

circuit such that when it is activated, it fixes the logic value at a particular node to increase the 

controllability of some faults in the circuit.  A control point can also affect the observability of some faults 

in the circuit because it can change the propagation paths in the circuit.  In the example in Fig. 2.2, a 

control point is inserted to fix the logic value at the output of gate G1 to a ‘1’ when the control point is 

activated (this is called a control-1 point).  This is accomplished by placing an OR gate at the output of 

gate G1.  In the example in Fig. 2.3, a control point is inserted to fix the logic value at the output of gate G1 

to a ‘0’ when the control point is activated (this is called a control-0 point).  This is accomplished by 

placing an AND gate at the output of gate G1.  During system operation, the control points are not activated 

and thus don't affect the system function.  However, control points do add an extra level of logic to some 

paths in the circuit.  If a control point is placed on a critical timing path, it can increase the cycle time of the 

circuit. 

 Since test points add both area and performance overhead, it is important to try to minimize the 

number of test points that are inserted to achieve the desired fault coverage.  Optimal test point placement 

for circuits with reconvergent fan-out has been shown to be NP-complete [Krishnamurthy 87].  An ad-hoc 

approach for placing test points was presented in [Eichelberger 83].  Briers and Totton [Briers 86] were the 

first to propose a systematic method for test point placement to increase pseudo-random pattern testability.  

They use simulation statistics to identify correlations between signals, and then insert test points to break 

the correlation.   The number of test points inserted by this method is large.  Iyengar and Brand 

[Iyengar 89] proposed an improved method that uses fault simulation to identify gates that block fault 

propagation, and then inserts test points to enable propagation.  Savaria et al., in [Savaria 91] and 
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[Youssef 93], use the COP testability measures 

[Brglez 84] to guide the placement of test points.  

They identify sectors of hard-to-detect faults and 

insert test points at the origins of the sectors.  Seiss 

et al., in [Seiss 91], form a cost function based on the 

COP testability measures and then compute, in linear time, 

the gradient of the function with respect to each possible 

test point.  The gradients are used to approximate the 

global testability impact for inserting a particular test 

point.  Based on these approximations, a test point 

is inserted and the COP testability measures are 

recomputed.  This process iterates until the testability is 

satisfactory.  Cheng and Lin, in [Cheng 95], enhance the 

procedure in [Seiss 91] to consider the performance 

impact of inserting a particular test point.  They 

showed that by avoiding control point insertion on 

critical timing paths, high fault coverage can be 

achieved with zero performance degradation. 

Observation
Point

y

G1
G2

Figure 2.1. Example of Observation Point 

 

Control
Point

Cntl
G1

 

Figure 2.2. Example of Control-1 Point 

 

Control
Point

Cntl
G1

 

Figure 2.3. Example of Control-0 Point 
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2.2 Test Point Insertion Based on Path Tracing 
 A new test point insertion method is presented in [Touba 96a].  It provides two innovations compared 

with previous methods.  Instead of using probabilistic techniques for test point placement, fault simulation 

and a path tracing procedure are used to place both control and observation points.  Instead of adding extra 

scan elements to drive the control points, a few of the existing primary inputs to the circuit are ANDed 

together to form signals that drive the control points. 

2.2.1 Using Path Tracing for Test Point Placement 

 Previous methods insert test points one at a time.  The test point that is inserted is selected by a greedy 

algorithm that estimates which test point would maximize the probability of detecting the undetected faults.  

The procedure described in [Touba 96a] is not based on probability.  Rather, fault-free simulation is 

performed for each pseudo-random pattern that is applied during BIST.  For each pattern, a set of test 

points that would enable each undetected fault to be detected is computed by tracing sensitized paths in the 

circuit.  After all the information about which test points enable detection of which undetected faults is 

gathered, a set covering procedure is used to select a set of test points that provides the required fault 

coverage.  Experimental results shown in Appendix IV for benchmark circuits indicate that the path tracing 

method inserts fewer test points to provide the same or better fault coverage than previous methods.  Fewer 

test points means less area and performance overhead for BIST. 

 The computation time for this procedure depends on the size of the circuit, the test length, and the 

number of r.p.r. faults.  For each pattern, fault simulation is performed followed by path tracing from each 

r.p.r. fault site.  The fast approximate procedure for tracing sensitized paths that is given in 

[Abramovici 84] can be used. 

 In [Touba 96a], a heuristic set covering procedure was used to select the test points.  Some 

experiments were performed to validate the heuristics.  Results are shown in Table 2.1 comparing the exact 

solution to the set covering problem versus the heuristic solution.  As can be seen, there was only one case, 

s1238, where using the exact procedure made a difference for these circuits. 
 

Table 2.1. Comparison Between Heuristic and Exact Set Covering Procedures 
 

Circuit Heuristic Set Covering Exact Set Covering 
Name Con Obs Con Obs 

 s420 2 0 2 0 
 s641 1 1 1 1 
 s713 1 1 1 1 
 s838 2 0 2 0 
 s1238 6 5 5 5 
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2.2.2 Control Point Activation 

 Once the test points have been inserted, the remaining task is to design the logic that drives the control 

points.  Previous test point insertion methods add extra scan elements to drive the control points.  This is 

illustrated in Fig. 2.4 where two extra scan elements are added to drive the two control points.  The 

pseudo-random generator is used to shift values into the extra scan elements.  Thus, a control point is 

randomly activated for roughly half of the patterns.  This approach limits the potential of each control 

point.  There may be some patterns for which a control point is not activated, but if the control point had 

been activated, some faults would have been detected.  Conversely, there may be some patterns for which 

the control point is activated, but if it hadn’t been activated, some faults would have been detected. 

 A new approach for driving the control points is presented in [Touba 96a].  As illustrated in Fig. 2.5, 

pattern decoding logic is used to select those patterns for which the control point is activated.  A procedure 

Control
Point 1

Control
Point 2

Circuit Under Test

Figure 2.4. Control Points Driven by Extra Scan Elements  

 

     

Control
Point 1

Control
Point 2

Circuit Under Test

Test
Mode

 

Figure 2.5. Control Points Driven by Pattern Decoding Logic  
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for synthesizing this logic in a way that maximizes the effectiveness of each control point for detecting 

undetected faults is described in [Touba 96a].  In the experimental results in [Touba 96a], on average, 

fewer than 2 gates were required per control point using this method.  This approach eliminates the need for 

extra scan elements to drive the control points while maximizing the effectiveness of each control point. 

 As indicated in Fig. 2.5, a test mode line is used to disable the control point during system operation.  

The test logic is activated during BIST by setting the test mode line to a '1'.  When synthesizing the pattern 

decode logic, all of the patterns that are not applied during BIST are placed in the don't care set.  This 

ensures that the resulting logic does not contain any redundant faults with respect to the patterns applied 

during BIST, thus the logic is fully tested during BIST. 

2.3 Test Point Insertion for Non-Feedback Bridging Faults 
 A common physical defect in MOS technologies is a short between two signal lines which results in a 

bridging fault [Shen 85], [Ferguson 88].  Although bridging faults are generally more random pattern 

testable than stuck-at faults [Millman 89], examples are shown in [Touba 96c] to illustrate that some 

bridging faults are much less random pattern testable than stuck-at faults.  Data is presented which indicates 

that even after inserting test points that result in 100% single stuck-at faults coverage, many bridging faults 

are still not detected.  A test point insertion procedure that targets both single stuck-at faults and bridging 

faults is presented in [Touba 96c]. 

 Bridging faults can be divided into two classes.  Feedback bridging faults are those in which there is a 

path in the fault-free circuit from one of the shorted lines to the other thereby creating feedback in the fault 

circuit.  Non-feedback bridging faults are those for which no feedback is introduced when the two lines are 

shorted together.  Feedback bridging faults may add state causing the circuit to no longer be combinational, 

and thus are more complicated to simulate.  Since feedback bridging faults have been found to be easier to 

detect than non-feedback bridging faults [Millman 88], only non-feedback bridging faults were considered 

in [Touba 96c].  However, the techniques described in [Touba 96c] can be applied to feedback bridging 

faults in a straightforward manner.  The only difference is the added complexity for simulation. 

 In [Touba 96c], a fast fault simulation procedure for identifying random-pattern-resistant non-feedback 

bridging faults is described.  Using this procedure, the path tracing method described in [Touba 96c] can be 

enhanced to target both single stuck-at faults and non-feedback bridging faults.  The experimental results 

shown in [Touba 96c] indicate that by considering both types of faults when selecting the location of the 

test points, higher fault coverage can be obtained with little or no increase in overhead.  Thus, the test point 

insertion procedure described in [Touba 96c] is a low-cost way to improve the quality of built-in self-test. 

2.4 Logic Synthesis of Random Pattern Testable Circuits 
 Instead of designing a circuit and then inserting test points to make it random pattern testable, why not 

consider random pattern testability during logic synthesis?  That is the idea presented in [Touba 94].  Given 

a two-level representation of a circuit and a constraint on the minimum fault detection probability 
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(threshold below which faults are considered r.p.r.), a testability-driven factoring procedure that satisfies 

the constraints while minimizing the literal count is described in [Touba 94].  The strategy is to identify 

r.p.r. faults in the two-level starting point, and then find factors that “eliminate” these faults.  Once the r.p.r. 

faults have been eliminated, normal logic optimization using random pattern testability preserving logic 

transformations can then proceed since such transformations will not introduce new r.p.r. faults.  It is 

proven in [Touba 94] that algebraic factoring is random pattern testability preserving and that random 

pattern testability preserving transformations are a superset of test-set preserving transformations. 

 As the minimum probability threshold is increased, a point is reached where some r.p.r. faults cannot 

be eliminated by algebraic factoring alone.  When this is the case, test points are inserted during the 

synthesis process in order to generate a random pattern testable implementation.  Factors are chosen which 

maximize the effectiveness of each test point thereby minimizing the total number of test points that are 

required. 

 Experimental results are shown in [Touba 94] comparing the implementations generated by the 

proposed procedure with the implementations generated using the algebraic and rugged scripts in SIS 1.1 

(an updated version of MIS [Brayton 87]).  The proposed procedure significantly reduces the 

pseudo-random pattern test length required for 100% fault coverage with only a modest increase in area.  

For many circuits, the test length was reduced by an order of magnitude or more with less than 10% 

increase in area.  The reason for the area overhead is the fact that in order to satisfy the random pattern 

testability constraints, the proposed procedure must select some factors based on improving the testability 

instead of reducing the literal count.  Note that the proposed procedure need only be used for logic blocks 

containing r.p.r. faults, so the overhead penalty is only incurred for a small portion of an overall design. 

 A limitation of the method proposed in [Touba 94] is that it requires a two-level representation as a 

starting point thereby limiting its application to control circuits and other circuits that can be flattened (i.e., 

two-level representation is not exponential).  However, control circuits are an important application 

because they can contain large fan-in cubes that cause r.p.r. faults. 

 Some other work in logic synthesis of random pattern testable circuits has been published after [Touba 

94].  The work in [Chiang 94] was done independently.  The synthesis procedure in [Chiang 94] is based on 

single and double cube divisors [Rajski 92] and does not consider test points.  It uses an approximate 

method for computing the effect of each factor on fault detection probabilities whereas the method used in 

[Touba 94] is exact.  New exclusive-or based transformations were introduced in [Chatterjee 95] which can 

be used to improve random pattern testability.  These transformations can be used in conjunction with those 

in [Touba 94] to provide even better results. 
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Chapter 3 
Test Pattern Generator Design 

 

 If pseudo-random BIST provides insufficient fault coverage, instead of modifying the 

circuit-under-test, another option is to modify the test pattern generator.  This involves augmenting the 

pseudo-random pattern generator with additional logic to generate patterns that detect the r.p.r. faults.  In 

some cases this is the only option because it is either not possible or not desirable to modify the 

circuit-under-test (e.g., if it is a macrocell, core, or proprietary design). 

 There are two types of test pattern generators:  serial (“test-per-scan”) and parallel (“test-per-clock”).  

Figure 3.1 shows a diagram for a serial BIST scheme.  A serial sequence of bits is shifted into a scan chain.  

When a full pattern has been shifted into the scan chain, it is applied to the circuit-under-test and the 

response is loaded back into the scan chain and shifted out to a serial signature register for compaction as 

the next pattern is shifted in.  Figure 3.2 shows a diagram for a parallel BIST scheme.  A test pattern is 

applied to the circuit-under-test each clock cycle and the response is loaded into a parallel signature register 

(MISR) for compaction. 

 

Scan Chain

Circuit Under Test
(CUT)

Signature Reg.LFSR
 

Figure 3.1.  Block Diagram for Serial BIST Scheme ("Test-Per-Scan") 

 

LFSR

MISR

Circuit Under Test
(CUT)

 
Figure 3.2.  Block Diagram for Parallel BIST Scheme ("Test-Per-Clock") 
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 This chapter begins with a survey of the previous work that has been done in designing test pattern 

generators and then summarizes the new techniques presented in Appendices II, III, and VI. 

 

3.1 Previous Work in Test Pattern Generator Design 
 Two approaches for improving the fault coverage for a pseudo-random pattern generator are weighted 

pattern testing and mixed-mode testing.  Weighted pattern testing involves adding logic to bias the 

pseudo-random patterns towards those that detect the r.p.r. faults.  Mixed-mode testing involves adding 

logic to generate deterministic patterns that detect the faults that the pseudo-random patterns miss. 

 3.1.1 Weighted Pattern Testing 

 Weighted pattern testing is performed by weighting the signal probability (probability that the signal is 

a '1') for each input to the circuit-under-test.  Two issues in weighted pattern testing are what set of weights 

to use and how to generate the weighted signals.  Many techniques have been proposed for computing 

weight sets [Bardell 87].  It has been shown that for most circuits, multiple weight sets are required to 

achieve sufficient fault coverage [Wunderlich 88].  For BIST, the weight sets must be stored on-chip and 

control logic is needed to switch between them which can result in a lot of overhead. 

 In order to reduce the BIST overhead for weighted pattern testing, researchers have looked for efficient 

methods for on-chip generation of weighted patterns.  Wunderlich proposed a Generator of Unequiprobable 

Random Tests (GURT) in [Wunderlich 87] that requires very little hardware overhead but is limited to only 

one weight set.  Hartmann and Kemnitz proposed a method in [Hartmann 93] that uses a modified GURT 

structure and described test pattern generators for the C2670 and C7552 benchmark circuits [Brglez 85] 

that require very little overhead.  However, both of these methods are not general methods because they use 

only a single weight set and therefore will not provide sufficient fault coverage for many circuits.  Methods 

that use multiple weight sets with 3 different weight values (0, .5, and 1) were described in [Pomeranz 93] 

and [AlShaibi 94].  These methods essentially “fix” the value of certain inputs while random patterns are 

being applied.  The method in [Pomeranz 93] uses 3-gate modules to fix the values while the method in 

[AlShaibi 94] uses specially designed flip-flops.  Techniques for generating weighted random patterns 

using inhomogeneous cellular automata were described in [Neebel 93, 94]. 

 Less weight logic is required for serial test pattern generation (“test-per-scan”) than for parallel test 

pattern generation (“test-per-clock”).  The weight logic can be placed at either the input of the scan chain as 

described in [Brglez 89] or in the individual scan elements themselves as described in [Muradali 90]. 

 3.1.2 Mixed-Mode Testing 

 In the simplest case, mixed-mode testing can be performed by using an LFSR to generate 

pseudo-random patterns to detect the random pattern testable faults and then loading deterministic test 

patterns for the random pattern resistant faults from a ROM.  The problem with this approach is that the 

size of the required ROM is often prohibitive.  Several compression techniques have been proposed for 
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reducing the size of the ROM [Agarwal 81], [Aboulhamid 83], [Dandapani 84], [Edirisooriya 92], 

[Dufaza 93]. 

 Instead of storing the test patterns themselves in a ROM, techniques have been developed for storing 

LFSR seeds that can be used to generate the test patterns [Koenemann 91].  The LFSR that is used for 

generating the pseudo-random patterns is also used for generating the deterministic patterns by reseeding it 

with computed seeds.  Since the seeds are smaller than the test patterns themselves, they require less ROM 

storage.  One problem is that for a normal LFSR with a fixed feedback polynomial, it may not always be 

possible to find a seed that will generate a required deterministic test pattern.  A solution to that problem 

was proposed in [Hellebrand 92] in which a multiple-polynomial LFSR (MP-LFSR) is used.  An MP-LFSR 

is an LFSR with a reconfigurable feedback network.  In [Hellebrand 92], a polynomial identifier is stored 

with each seed to select the feedback polynomial that will be used for that seed as illustrated in Figure 3.3.  

Techniques for “merging” and “concatenating” test patterns to reduce the number of LFSR seeds that need 

to be stored were proposed in [Venkataraman 93] and [Hellebrand 95a].  Even further reduction can be 

achieved by using variable-length seeds [Zacharia 95] and a special ATPG algorithm [Hellebrand 95b]. 

 Another approach for mixed-mode testing is to design a special counter that generates a deterministic 

set of test patterns.  Daehn and Mucha, in [Daehn 81], proposed using a non-linear LFSR.  Akers and Jansz, 

in [Akers 89], proposed using an LFSR followed by a linear network of XOR gates.  Dufaza and Cambon, 

in [Dufaza 91], proposed using an LFSR with a reconfigurable feedback network.  None of these 

techniques scales well for larger circuits. 
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Figure 3.3. Block Diagram for Reseeding using a Multi-Polynomial LFSR (MP-LFSR) 

 

3.2 Synthesis of Mapping Logic 
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 In weighted pattern testing, weight logic is placed at the output of the LFSR.  One way to view this 

weight logic is that it transforms each original pattern generated by the LFSR into a new pattern that is 

applied to the circuit-under-test.  Thus, the original set of patterns generated by the LFSR is mapped into a 

new set of patterns that provides the required fault coverage.  This is illustrated in Fig. 3.4. 

 

Pattern Generator

Mapping Logic

Circuit Under Test
(CUT)

Original Test Patterns

Transformed Test Patterns

 
 

 Original Patterns  Transformed Patterns 
 

 100110 ? ? 001010 
 010011 ? ? 010011 
 011000 ? ? 011000 
 101101 ?  101101 
 010111 ? ? 111010 
 001101 ? ? 010101 
 

 Cov = 89%  Cov = 100% 

Figure 3.4. Transforming Pseudo-Random Patterns 
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 In [Touba 95a], the idea of generalizing the “weight” logic to perform any mapping function, not just 

those that weight signal probabilities, is proposed.  A procedure is described for synthesizing combinational 

mapping logic that can be placed between the LFSR and the circuit-under-test to map the original set of test 

patterns generated by the LFSR into a new set of patterns that provides the required fault coverage.  The 

strategy for designing the mapping logic is to decode sets of patterns that don’t detect any new faults and 

map them into patterns that detect the hard-to-detect faults.  Results are shown for benchmark circuits 

which indicate that an LFSR plus a small amount of mapping logic reduces the test length required for a 

particular fault coverage by orders of magnitude compared with using an LFSR alone.  These results were 

compared with the best weighted pattern testing schemes, and in all cases it was shown that the mapping 

logic required much less overhead to achieve the same fault coverage for the same test length. 

 In [Touba 95b], an improved synthesis procedure for designing the mapping logic is described.  Given 

an LFSR and a circuit-under-test, there are many possible mapping functions that will provide the required 

fault coverage.  The problem of finding a mapping function that can be implemented with the smallest 

number of gates is formulated as one of finding a minimum rectangle in a binate matrix.  A heuristic 

procedure involving EXPAND, IRREDUNDANT, and REDUCE operations (analagous to what is used in 

ESPRESSO [Brayton 84]), is used to minimize the rectangle cover that corresponds to a mapping function.  

By iteratively performing global operations, the procedure is able to find better mapping functions thereby 

synthesizing mapping logic that requires less hardware overhead than other methods.  Results indicate that 

a significant hardware reduction is achieved. 

 As described in Appendices II and III, the mapping logic is enabled during BIST by using a test mode 

line.  During system operation, the test mode line is set to a '0' to disable the mapping logic.  When 

synthesizing the mapping logic, all of the patterns that are not applied during BIST are placed in the don't 

care set.  This ensures that the resulting mapping logic does not contain any redundant faults with respect to 

the patterns applied during BIST, thus the mapping logic is fully tested during BIST.  

3.3 Synthesis of Bit-Fixing Sequence Generator 
 A new mixed-mode BIST scheme is described in [Touba 96b] for circuits with scan.  Deterministic test 

patterns that detect the random-pattern-resistant faults are embedded in a pseudo-random sequence of bits 

generated by an LFSR.  This is accomplished by altering the pseudo-random sequence of bits by adding 

logic at the LFSR’s serial output to “fix” certain bits.  As illustrated in Fig. 3.5, logic is added to generate a 

bit-fixing sequence that alters the pseudo-random sequence by causing certain bits to be fixed to either a ‘1’ 

or a ‘0’.  A procedure is described for designing the bit-fixing sequence generator in a way that minimizes 

area overhead. 
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 Previous mixed-mode schemes for serial pattern generation (“test-per-scan”) are based on storing 

compressed data in a ROM.  In the proposed procedure, no data is stored in a ROM, rather a multilevel 

circuit is used to dynamically fix bits in a way that exploits bit correlation among the test patterns for the 

random-pattern-resistant faults.  Small numbers of correlated bits are fixed in selected pseudo-random 

patterns to make the pseudo-random patterns match the test patterns.  So rather than trying to compress the 

test patterns themselves, the proposed scheme essentially compresses the bit differences between the test 

patterns and a selected set of pseudo-random test patterns.  Since there are so many pseudo-random test 

patterns to choose from, a significant amount of compression can be achieved, resulting in reduced 

overhead. 

 Schemes based on reseeding an LFSR require that the LFSR have at least as many stages as the 

maximum number of specified bits in any test pattern.  This is necessary to ensure that a seed can be found 

to generate each of the test patterns.  A hardware tradeoff that is made possible by the scheme presented in 

[Touba 96b] is that a smaller LFSR can be used for generating the pseudo-random bit sequence.  This may 

cause some faults to not be detected because of linear dependencies in the patterns that are generated, but 

deterministic test patterns for those faults can be embedded at the expense of additional logic in the 

bit-fixing sequence generator.  Data is presented in [Touba 96b] showing how much logic is required for 

different sized LFSR’s. 

 The scheme described in [Touba 96b] uses a one phase test, the BIST logic runs in the same mode for 

the entire test length.  Thus, the BIST control logic is very simple.  Figure 3.6 shows the control logic that 

is required.  If there are m stages in the scan chain, then a mod(m+1) counter is used to keep track of how 

many bits have been shifted into the scan chain (it is incremented each clock cycle).  While the value of the 

counter is less than m, the scan chain operates in shift mode.  When the counter contains the value m, then 

the scan chain operates in system mode to load the response of the circuit into the scan chain.  There is also 

a pattern counter to keep track of how many patterns have been applied to the circuit-under-test.  The 

pattern counter is incremented when the mod(m+1) counter contains the value m.  When the value of the 

pattern counter equals the test length, then the test is complete.  Reset logic is needed to initialize the 

counters, the signature register, and the LFSR at the start of the test. 

LFSR

Fix-to-1

Fix-to-0

+ & Scan Chain

Bit-Fixing Sequence
Generator

Figure 3.5.  Logic for Altering the Pseudo-Random Bit Sequence 
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 The advantages of the scheme in [Touba 96b] are that no function logic modification is required, no 

performance overhead is added beyond what is needed for scan, and the control logic is simple.  All of 

these features combine to make the scheme a very attractive option. 

LFSR

Fix-to-1

Fix-to-0

+ & Scan Chain (m bits)

Bit-Fixing Sequence
Generator

Pattern Counter

Decode Last Pattern

End Test

Mod(m+1) Counter

Decode Last State

Scan/System Mode

Figure 3.6.  Control Logic for Scheme 

 



18 

Chapter 4 
Concluding Remarks 

 

 This dissertation summarizes my contributions to automated design of circuits with pseudo-random 

BIST.  BIST is a technique that reduces test and maintenance costs, but it has seen limited use in industry 

due to area and performance overhead, increased design time, and lack of BIST design tools.  

Pseudo-random testing is a low-cost approach for BIST, but is only effective for random pattern testable 

circuits. 

 If a circuit is not random pattern testable, then the logic synthesis procedure described in [Touba 94] 

can be used to synthesize a random pattern testable implementation.  Testability-driven factoring is used to 

minimize overhead. 

 If it is a hand-designed circuit or if it is not synthesizable, then the test point insertion procedure 

described in [Touba 96a] can be used.  This procedure uses path tracing to place both control and 

observation points and uses pattern decoding logic to drive the control points thereby maximizing the 

effectiveness of each control point.  This results in fewer test points than previous methods.  A higher 

quality test can be obtained by using the procedure in [Touba 96c] to target bridging faults.  This procedure 

significantly improves the bridging fault coverage by inserting just a few additional test points. 

 If it is not possible to modify the circuit-under-test, then the procedures in Appendices II and III can be 

used to synthesize mapping logic that can be placed between the LFSR and the circuit-under-test to satisfy 

the fault coverage requirement.  This results in much less overhead compared with weighted pattern testing. 

 If performance is a major concern, then the procedure in [Touba 96b] can be used to synthesize a bit-

fixing sequence generator that embeds deterministic test patterns for the r.p.r. faults in the pseudo-random 

sequence.  This method does not require any performance overhead beyond what is needed for scan. 

 The end result of the work described in this dissertation is a set of automated synthesis tools that can 

be used to generate pseudo-random BIST implementations with less overhead and reduced design time.  

These synthesis tools have been integrated in the TOPS synthesis system. 

 There are several areas for further investigation.  The logic synthesis procedure described in [Touba 

94] requires a two-level starting point thereby limiting the types of circuits for which it can be used.  

Integrating an efficient technique for computing detection probabilities in an arbitrary multilevel circuit 

would increase the applications for this logic synthesis procedure.  The bit-fixing scheme in [Touba 96b] 

could be combined with a reseeding scheme to further reduce overhead.  By reseeding the LFSR with just a 

few selected seeds to generate some of the least correlated test cubes that require a lot of bit-fixing to 

embed, it may be possible to significantly reduce the complexity of the bit-fixing sequence generator.  In 

Appendices II and III, the mapping logic was placed at the output of the LFSR and thus adds extra levels of 

logic between the flip-flops and the function logic thereby affecting system performance.  If the mapping 
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logic could be placed in the feedback portion of the LFSR, then the system performance would not be 

affected. 
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