
Copyright © 1993 by the Center for Reliable Computing, Stanford University.
All rights reserved, including the right to reproduce this report, or portions thereof, in any form.

Center for
Reliable
Computing

TECHNICAL
REPORT

Synthesis Techniques for Pseudo-Random Built-In Self-Test

Nur A. Touba

 96-4 Center for Reliable Computing
 ERL 460
 Computer Systems Laboratory
 (CSL TN # 96-x) Departments of Electrical Engineering and Computer Science
 Stanford University
 August 1996 Stanford, California 94305-4055

Abstract:

 This technical report contains the text of Nur Touba's thesis "Synthesis Techniques for Pseudo-Random Built-In
Self-Test." The thesis appendices have appeared as CRC Technical Reports, and are not included here.

Funding:

 This work was supported in part by the Ballistic Missile Defense Organization, Innovative Science and Technology
(BMDO/IST) Directorate and administered through the Department of the Navy, Office of Naval Research under Grant
No. N00014-92-J-1782, by the National Science Foundation under Grant No. MIP-9107760, and by the Advanced
Research Projects Agency under prime contract No. DABT63-94-C-0045.

 i

SYNTHESIS TECHNIQUES
FOR

PSEUDO-RANDOM BUILT-IN SELF-TEST

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

Nur A. Touba

June 1996

ii

ABSTRACT

 Built-in self-test (BIST) techniques enable an integrated circuit (IC) to test itself. BIST reduces test

and maintenance costs for an IC by eliminating the need for expensive test equipment and by allowing fast

location of failed ICs in a system. BIST also allows an IC to be tested at its normal operating speed which

is very important for detecting timing faults. Despite all of these advantages, BIST has seen limited use in

industry because of area and performance overhead and increased design time. This dissertation presents

automated techniques for implementing BIST in a way that minimizes area and performance overhead.

 A low-overhead approach for BIST is to use a linear feedback shift register (LFSR) to apply

pseudo-random test patterns to the circuit-under-test. Unfortunately, many circuits contain random-pattern-

resistant faults which limit the fault coverage that can be obtained for pseudo-random BIST. Several

different approaches for solving this problem are presented.

 A logic synthesis procedure that performs testability-driven factoring to generate a random pattern

testable design is presented. By considering random pattern testability during the factoring process, the

overhead can be minimized.

 For hand-designed circuits or circuits that are not synthesizable, an innovative test point insertion

procedure is described for inserting test points to make the circuit random pattern testable. A path tracing

procedure is used for test point placement. A few of the existing primary inputs are ANDed together to

form signals that drive the control points. These innovations result in fewer test points than previous

methods.

 If it is not possible or not desirable to modify the circuit-under-test, then a procedure is described for

synthesizing mapping logic that can placed at the output of the LFSR to transform the pseudo-random

patterns so that they provide the required fault coverage. Much less overhead is required compared with

weighted pattern testing methods.

 Lastly, a technique is described for placing bit-fixing logic at the serial output of an LFSR to embed

deterministic test patterns for the random pattern resistant faults in the pseudo-random bit sequence. This

method does not require any performance overhead beyond what is needed for scan.

 iii

ACKNOWLEDGMENTS

 I express my deep gratefulness to my adviser, Prof. Edward J. McCluskey, for his guidance and

support during my time at Stanford. He modeled the high quality teaching and research that I aspire to

emulate in my career. He taught me much about finding good research problems and clearly presenting

results. Many things that I learned from him will be of great help to me during my career.

 I would like to thank Prof. Giovanni De Micheli, my associate advisor, Prof. Robert Gray, my

committee chairman, and Prof. Oyekunle Olukotun for being the final member of my committee. Special

thanks to Prof. Joseph Goodman for being my third reader.

 I have greatly appreciated my colleagues at the Center for Reliable Computing: Khader "KD" Abdel-

Hafez, Dave Brokaw, Yi-Chin Chu, Dr. Hong Hao, Erin Kan, Sunil Koslage, Wern-Yan Koe, Vincent Lo,

Samy Makar, Shridhar Mukund, Rong Pan, Dr. Alice Tokarnia, and Sanjay Wattal. I want to especially

thank Dr. LaNae Avra for helping me get my start at CRC, Dr. Piero Franco for answering my many

questions, Dr. Siyad Ma for sharing many trials and joys, Dr. Nirmal Saxena for his encouragement and

advice, and Rob Norwood, Jonathan Chang, and Philip Shrivani for being so fun to work with (and to beat

in basketball).

 I want to especially thank Siegrid Munda for her administrative support. I very greatly appreciated her

kindness and helpfulness. Special thanks also to Sherry Turner for her assistance.

 I would like to thank the CRC visitors who have helped me: Francoise Martinolle for reading my early

papers, Prof. Irith Pomeranz for her advice and suggestions, and Prof. Hans-Joachim Wunderlich and Prof.

Sybille Hellebrand for our many technical discussions.

 I am grateful to Prof. Larry Kinney and Prof. William Plice at the University of Minnesota for getting

me interested in IC testing in the first place.

 I want to thank my many friends in the IVCF Grad group for their prayers and support. I would like to

mention just a few by name: Jennifer Amyx, Beth Bryson, Dan Clendenin, Loren Eyres, Scott Hunicke-

Smith, Mike Kaliski, Alfred Kwok, Vince Mooney, Elaine Naugle, Jeff Rembold, Robin Seydel, Jim

Strzelec, Mary K. Wilson, and Conrad Yoder. I want to especially thank Kim Norman for all of her

encouragement and prayers. Her coffee maker helped me make it through many all-nighters needed to

meet conference submission deadlines.

 Finally, I would like to thank my parents for their tremendous love, endless support, and many prayers.

They have always believed in me and always been there for me. I dedicate this dissertation to them.

iv

 This work was supported in part by the Ballistic Missile Defense Organization, Innovative Science and

Technology (BMDO/IST) Directorate and administered through the Department of the Navy, Office of

Naval Research under Grant No. N00014-92-J-1782, by the National Science Foundation under Grant No.

MIP-9107760, and by the Advanced Research Projects Agency under prime contract No. DABT63-94-C-

0045.

 v

TABLE OF CONTENTS

Abstract... ii

Acknowledgments.. iii

Table of Contents .. v

List of Tables ... vi

List of Illustrations ... vii

Chapter 1: Introduction.. 1

1.1 Background... 1

1.2 Pseudo-Random BIST ... 1

1.3 Outline 3

Chapter 2: Random Pattern Testable Design ... 4

2.1 Previous Work in Random Pattern Testable Design... 4

2.2 Test Point Insertion Based on Path Tracing... 6

 2.2.1 Using Path Tracing for Test Point Placement... 6

2.2.2 Control Point Activation.. 7

2.3 Test Point Insertion for Non-Feedback Bridging Faults ... 8

2.4 Logic Synthesis of Random Pattern Testable Circuits .. 9

Chapter 3: Test Pattern Generator Design .. 11

3.1 Previous Work in Test Pattern Generator Design... 12

3.1.1 Weighted Pattern Testing .. 12

3.1.2 Mixed-Mode Testing ... 13

3.2 Synthesis of Mapping Logic .. 14

3.3 Synthesis of Bit-Fixing Sequence Generator.. 15

Chapter 4: Concluding Remarks.. 18

References.. 20

vi

LIST OF TABLES

Table Title

2.1 Comparison Between Heuristic and Exact Set Covering Procedures ...4

 vii

LIST OF ILLUSTRATIONS

Figure Title

1.1 Block Diagram for BIST ... 2

2.1 Example of Observation Point ... 5

2.2 Example of Control-1 Point... 5

2.3 Example of Control-0 Point... 5

2.4 Control Points Driven by Extra Scan Elements.. 7

2.5 Control Points Driven by Pattern Decoding Logic ... 7

3.1 Block Diagram for Serial BIST Scheme ("Test-Per-Scan") .. 11

3.2 Block Diagram for Parallel BIST Scheme ("Test-Per-Clock").. 11

3.3 Block Diagram for Reseeding Using a Multi-Polynomial LFSR (MP-LFSR).............................. 14

3.4 Transforming Pseudo-Random Patterns... 14

3.5 Logic for Altering the Pseudo-Random Bit Sequence .. 16

3.6 Control Logic for Scheme ... 17

1

Chapter 1
Introduction

1.1 Background
 In the production of integrated circuits, testing is done to identify defective chips. This is very

important for shipping high quality products. Testing is also done to diagnose the reason for a chip failure

in order to improve the manufacturing process. In system maintenance, testing is done to identify parts that

need to be replaced in order to repair a system.

 Testing a digital circuit involves applying an appropriate set of input patterns to the circuit and

checking for the correct outputs. The conventional approach is to use an external tester to perform the test.

However, built-in self-test (BIST) techniques have been developed in which some of the tester functions

are incorporated on the chip enabling the chip to test itself. BIST provides a number of well-known

advantages. It eliminates the need for expensive testers. It provides fast location of failed units in a system

because the chips can test themselves concurrently. And, it allows at-speed testing in which the chip is

tested at its normal operating clock rate which is very important for detecting timing faults. Despite all of

these advantages, BIST has seen limited use in industry because of its area and performance overhead,

increased design time, and lack of BIST design tools. These are problems that this dissertation addresses.

 The research described in this dissertation is timely because the interest in BIST is growing rapidly.

The increasing pin count, operating speed, and complexity of IC’s is outstripping the capabilities of

external testers. BIST provides solutions to these problems.

1.2 Pseudo-Random BIST
 Figure 1.1 is a block diagram showing the architecture for BIST. The circuit that is being tested is

called the circuit-under-test (CUT). There is a test pattern generator which applies test patterns to the

CUT and an output response analyzer which checks the outputs. The test pattern generator must generate a

set of test patterns that provides a high fault coverage in order to thoroughly test the CUT.

 Pseudo-random testing is an attractive approach for BIST. A linear feedback shift register (LFSR) can

be used to apply pseudo-random patterns to the CUT. An LFSR has a simple structure requiring small area

overhead. Moreover, an LFSR can also be used as an output response analyzer thereby serving a dual

purpose. BIST techniques such as circular BIST [Stroud 88], [Krasniewski 89], and BILBO registers

[Koenemann 79] make use of this advantage to reduce overhead.

2

Output Response Analyzer

Test Pattern Generator

Circuit Under Test
(CUT)

 Figure 1.1. Block Diagram for BIST

 There are limits on the test length, which is the number of pseudo-random patterns that can be applied

during BIST. One limit is simply the amount of time that is required to apply the patterns. Another limit is

the fault simulation time required to determine the fault coverage. A third limit is heat dissipation for an

unpackaged die. Thus, in order for pseudo-random pattern testing to be effective, a high fault coverage

must be obtained for an “acceptable” test length. What is considered acceptable depends on the particular

test environment.

 The probability of detecting a fault with a single random pattern is defined as the detection probability

for the fault and is given by the number of patterns that detect the fault divided by the total number of

inputs patterns, 2n, where n is the number of inputs in the circuit. Unfortunately, many circuits contain

faults with very low detection probabilities. Such faults are said to be random-pattern-resistant (r.p.r.)

[Eichelberger 83] because they are hard to detect with random patterns and therefore limit the fault

coverage for pseudo-random testing. A circuit is said to be random pattern testable if it does not contain

any r.p.r. faults.

 If the fault coverage for pseudo-random BIST is insufficient, then there are two solutions. One is to

modify the circuit-under-test to make it random pattern testable, and the other is to modify the test pattern

generator so that it generates patterns that detect the r.p.r. faults. Innovative techniques for both of these

approaches are described in this dissertation. These techniques enable automated design of pseudo-random

BIST implementations that satisfy fault coverage requirements while minimizing area and performance

overhead. These techniques have been incorporated in the TOPS (Totally Optimized Synthesis-for-test)

tool being developed at the Center for Reliable Computing.

1.3 Outline
 This dissertation summarizes my work in pseudo-random BIST. Detailed descriptions of results are

found in the appendices which are reprints of published or submitted papers.

 Chapter 2 describes techniques for modifying a circuit to make it random pattern testable. A survey of

previous work is presented followed by a summary of the new techniques.

3

 An innovative test point insertion technique is described which uses a path tracing procedure to place

both control and observation points. Rather than using extra scan elements to drive the control points, a

few of the existing primary inputs are ANDed together to form signals that drive the control points. This

test point insertion procedure can be used to target both stuck-at and bridging faults.

 Given a logic function, a logic synthesis procedure is described for generating a random pattern

testable implementation. By considering testability during the factor section process, the procedure

performs testability-driven factoring to generate a random pattern testable implementation.

 Chapter 3 describes techniques for modifying the test pattern generator so that it generates patterns that

detect the r.p.r. faults. A survey of the previous work for both weighted pattern testing and mixed-mode

testing is presented followed by a summary of the new techniques.

 A procedure is described for synthesizing mapping logic that can be placed at the output of the LFSR

to transform the pseudo-random patterns that are generated so that they provide the required fault coverage.

By considering a broader class of mapping functions, not just those that implement weight sets, the

overhead is significantly minimized compared with weighted pattern testing methods.

 A new approach for mixed-mode scan BIST is described. Logic at the serial output of the LFSR to

“fix” certain bits in the sequence in order to embed deterministic test patterns that detect the r.p.r. faults.

 Chapter 4 concludes the dissertation.

4

Chapter 2
Random Pattern Testable Design

 If pseudo-random BIST does not provide sufficiently high fault coverage for a circuit, then one

solution is to modify the circuit to make it random pattern testable. This chapter begins with a survey of

the previous work that has been done in this area and then summarizes the new techniques presented in

Appendices I, IV, and V.

2.1 Previous Work in Random Pattern Testable Design
 Previous work in random pattern testable design focused on inserting test points into a circuit to make

it random pattern testable. Test point insertion involves adding control and observation points to the circuit

in a way that the system function remains the same, but the testability is improved [Hayes 74]. An

observation point is an additional primary output that is inserted in the circuit to increase the observability

of faults in the circuit. In the example in Fig. 2.1, an observation point is inserted at the output of gate G1

such that faults are observable regardless of the logic value at node y. A control point is inserted in the

circuit such that when it is activated, it fixes the logic value at a particular node to increase the

controllability of some faults in the circuit. A control point can also affect the observability of some faults

in the circuit because it can change the propagation paths in the circuit. In the example in Fig. 2.2, a

control point is inserted to fix the logic value at the output of gate G1 to a ‘1’ when the control point is

activated (this is called a control-1 point). This is accomplished by placing an OR gate at the output of

gate G1. In the example in Fig. 2.3, a control point is inserted to fix the logic value at the output of gate G1

to a ‘0’ when the control point is activated (this is called a control-0 point). This is accomplished by

placing an AND gate at the output of gate G1. During system operation, the control points are not activated

and thus don't affect the system function. However, control points do add an extra level of logic to some

paths in the circuit. If a control point is placed on a critical timing path, it can increase the cycle time of the

circuit.

 Since test points add both area and performance overhead, it is important to try to minimize the

number of test points that are inserted to achieve the desired fault coverage. Optimal test point placement

for circuits with reconvergent fan-out has been shown to be NP-complete [Krishnamurthy 87]. An ad-hoc

approach for placing test points was presented in [Eichelberger 83]. Briers and Totton [Briers 86] were the

first to propose a systematic method for test point placement to increase pseudo-random pattern testability.

They use simulation statistics to identify correlations between signals, and then insert test points to break

the correlation. The number of test points inserted by this method is large. Iyengar and Brand

[Iyengar 89] proposed an improved method that uses fault simulation to identify gates that block fault

propagation, and then inserts test points to enable propagation. Savaria et al., in [Savaria 91] and

5

[Youssef 93], use the COP testability measures

[Brglez 84] to guide the placement of test points.

They identify sectors of hard-to-detect faults and

insert test points at the origins of the sectors. Seiss

et al., in [Seiss 91], form a cost function based on the

COP testability measures and then compute, in linear time,

the gradient of the function with respect to each possible

test point. The gradients are used to approximate the

global testability impact for inserting a particular test

point. Based on these approximations, a test point

is inserted and the COP testability measures are

recomputed. This process iterates until the testability is

satisfactory. Cheng and Lin, in [Cheng 95], enhance the

procedure in [Seiss 91] to consider the performance

impact of inserting a particular test point. They

showed that by avoiding control point insertion on

critical timing paths, high fault coverage can be

achieved with zero performance degradation.

Observation
Point

y

G1
G2

Figure 2.1. Example of Observation Point

Control
Point

Cntl
G1

Figure 2.2. Example of Control-1 Point

Control
Point

Cntl
G1

Figure 2.3. Example of Control-0 Point

6

2.2 Test Point Insertion Based on Path Tracing
 A new test point insertion method is presented in [Touba 96a]. It provides two innovations compared

with previous methods. Instead of using probabilistic techniques for test point placement, fault simulation

and a path tracing procedure are used to place both control and observation points. Instead of adding extra

scan elements to drive the control points, a few of the existing primary inputs to the circuit are ANDed

together to form signals that drive the control points.

2.2.1 Using Path Tracing for Test Point Placement

 Previous methods insert test points one at a time. The test point that is inserted is selected by a greedy

algorithm that estimates which test point would maximize the probability of detecting the undetected faults.

The procedure described in [Touba 96a] is not based on probability. Rather, fault-free simulation is

performed for each pseudo-random pattern that is applied during BIST. For each pattern, a set of test

points that would enable each undetected fault to be detected is computed by tracing sensitized paths in the

circuit. After all the information about which test points enable detection of which undetected faults is

gathered, a set covering procedure is used to select a set of test points that provides the required fault

coverage. Experimental results shown in Appendix IV for benchmark circuits indicate that the path tracing

method inserts fewer test points to provide the same or better fault coverage than previous methods. Fewer

test points means less area and performance overhead for BIST.

 The computation time for this procedure depends on the size of the circuit, the test length, and the

number of r.p.r. faults. For each pattern, fault simulation is performed followed by path tracing from each

r.p.r. fault site. The fast approximate procedure for tracing sensitized paths that is given in

[Abramovici 84] can be used.

 In [Touba 96a], a heuristic set covering procedure was used to select the test points. Some

experiments were performed to validate the heuristics. Results are shown in Table 2.1 comparing the exact

solution to the set covering problem versus the heuristic solution. As can be seen, there was only one case,

s1238, where using the exact procedure made a difference for these circuits.

Table 2.1. Comparison Between Heuristic and Exact Set Covering Procedures

Circuit Heuristic Set Covering Exact Set Covering
Name Con Obs Con Obs

 s420 2 0 2 0
 s641 1 1 1 1
 s713 1 1 1 1
 s838 2 0 2 0
 s1238 6 5 5 5

7

2.2.2 Control Point Activation

 Once the test points have been inserted, the remaining task is to design the logic that drives the control

points. Previous test point insertion methods add extra scan elements to drive the control points. This is

illustrated in Fig. 2.4 where two extra scan elements are added to drive the two control points. The

pseudo-random generator is used to shift values into the extra scan elements. Thus, a control point is

randomly activated for roughly half of the patterns. This approach limits the potential of each control

point. There may be some patterns for which a control point is not activated, but if the control point had

been activated, some faults would have been detected. Conversely, there may be some patterns for which

the control point is activated, but if it hadn’t been activated, some faults would have been detected.

 A new approach for driving the control points is presented in [Touba 96a]. As illustrated in Fig. 2.5,

pattern decoding logic is used to select those patterns for which the control point is activated. A procedure

Control
Point 1

Control
Point 2

Circuit Under Test

Figure 2.4. Control Points Driven by Extra Scan Elements

Control
Point 1

Control
Point 2

Circuit Under Test

Test
Mode

Figure 2.5. Control Points Driven by Pattern Decoding Logic

8

for synthesizing this logic in a way that maximizes the effectiveness of each control point for detecting

undetected faults is described in [Touba 96a]. In the experimental results in [Touba 96a], on average,

fewer than 2 gates were required per control point using this method. This approach eliminates the need for

extra scan elements to drive the control points while maximizing the effectiveness of each control point.

 As indicated in Fig. 2.5, a test mode line is used to disable the control point during system operation.

The test logic is activated during BIST by setting the test mode line to a '1'. When synthesizing the pattern

decode logic, all of the patterns that are not applied during BIST are placed in the don't care set. This

ensures that the resulting logic does not contain any redundant faults with respect to the patterns applied

during BIST, thus the logic is fully tested during BIST.

2.3 Test Point Insertion for Non-Feedback Bridging Faults
 A common physical defect in MOS technologies is a short between two signal lines which results in a

bridging fault [Shen 85], [Ferguson 88]. Although bridging faults are generally more random pattern

testable than stuck-at faults [Millman 89], examples are shown in [Touba 96c] to illustrate that some

bridging faults are much less random pattern testable than stuck-at faults. Data is presented which indicates

that even after inserting test points that result in 100% single stuck-at faults coverage, many bridging faults

are still not detected. A test point insertion procedure that targets both single stuck-at faults and bridging

faults is presented in [Touba 96c].

 Bridging faults can be divided into two classes. Feedback bridging faults are those in which there is a

path in the fault-free circuit from one of the shorted lines to the other thereby creating feedback in the fault

circuit. Non-feedback bridging faults are those for which no feedback is introduced when the two lines are

shorted together. Feedback bridging faults may add state causing the circuit to no longer be combinational,

and thus are more complicated to simulate. Since feedback bridging faults have been found to be easier to

detect than non-feedback bridging faults [Millman 88], only non-feedback bridging faults were considered

in [Touba 96c]. However, the techniques described in [Touba 96c] can be applied to feedback bridging

faults in a straightforward manner. The only difference is the added complexity for simulation.

 In [Touba 96c], a fast fault simulation procedure for identifying random-pattern-resistant non-feedback

bridging faults is described. Using this procedure, the path tracing method described in [Touba 96c] can be

enhanced to target both single stuck-at faults and non-feedback bridging faults. The experimental results

shown in [Touba 96c] indicate that by considering both types of faults when selecting the location of the

test points, higher fault coverage can be obtained with little or no increase in overhead. Thus, the test point

insertion procedure described in [Touba 96c] is a low-cost way to improve the quality of built-in self-test.

2.4 Logic Synthesis of Random Pattern Testable Circuits
 Instead of designing a circuit and then inserting test points to make it random pattern testable, why not

consider random pattern testability during logic synthesis? That is the idea presented in [Touba 94]. Given

a two-level representation of a circuit and a constraint on the minimum fault detection probability

9

(threshold below which faults are considered r.p.r.), a testability-driven factoring procedure that satisfies

the constraints while minimizing the literal count is described in [Touba 94]. The strategy is to identify

r.p.r. faults in the two-level starting point, and then find factors that “eliminate” these faults. Once the r.p.r.

faults have been eliminated, normal logic optimization using random pattern testability preserving logic

transformations can then proceed since such transformations will not introduce new r.p.r. faults. It is

proven in [Touba 94] that algebraic factoring is random pattern testability preserving and that random

pattern testability preserving transformations are a superset of test-set preserving transformations.

 As the minimum probability threshold is increased, a point is reached where some r.p.r. faults cannot

be eliminated by algebraic factoring alone. When this is the case, test points are inserted during the

synthesis process in order to generate a random pattern testable implementation. Factors are chosen which

maximize the effectiveness of each test point thereby minimizing the total number of test points that are

required.

 Experimental results are shown in [Touba 94] comparing the implementations generated by the

proposed procedure with the implementations generated using the algebraic and rugged scripts in SIS 1.1

(an updated version of MIS [Brayton 87]). The proposed procedure significantly reduces the

pseudo-random pattern test length required for 100% fault coverage with only a modest increase in area.

For many circuits, the test length was reduced by an order of magnitude or more with less than 10%

increase in area. The reason for the area overhead is the fact that in order to satisfy the random pattern

testability constraints, the proposed procedure must select some factors based on improving the testability

instead of reducing the literal count. Note that the proposed procedure need only be used for logic blocks

containing r.p.r. faults, so the overhead penalty is only incurred for a small portion of an overall design.

 A limitation of the method proposed in [Touba 94] is that it requires a two-level representation as a

starting point thereby limiting its application to control circuits and other circuits that can be flattened (i.e.,

two-level representation is not exponential). However, control circuits are an important application

because they can contain large fan-in cubes that cause r.p.r. faults.

 Some other work in logic synthesis of random pattern testable circuits has been published after [Touba

94]. The work in [Chiang 94] was done independently. The synthesis procedure in [Chiang 94] is based on

single and double cube divisors [Rajski 92] and does not consider test points. It uses an approximate

method for computing the effect of each factor on fault detection probabilities whereas the method used in

[Touba 94] is exact. New exclusive-or based transformations were introduced in [Chatterjee 95] which can

be used to improve random pattern testability. These transformations can be used in conjunction with those

in [Touba 94] to provide even better results.

10

Chapter 3
Test Pattern Generator Design

 If pseudo-random BIST provides insufficient fault coverage, instead of modifying the

circuit-under-test, another option is to modify the test pattern generator. This involves augmenting the

pseudo-random pattern generator with additional logic to generate patterns that detect the r.p.r. faults. In

some cases this is the only option because it is either not possible or not desirable to modify the

circuit-under-test (e.g., if it is a macrocell, core, or proprietary design).

 There are two types of test pattern generators: serial (“test-per-scan”) and parallel (“test-per-clock”).

Figure 3.1 shows a diagram for a serial BIST scheme. A serial sequence of bits is shifted into a scan chain.

When a full pattern has been shifted into the scan chain, it is applied to the circuit-under-test and the

response is loaded back into the scan chain and shifted out to a serial signature register for compaction as

the next pattern is shifted in. Figure 3.2 shows a diagram for a parallel BIST scheme. A test pattern is

applied to the circuit-under-test each clock cycle and the response is loaded into a parallel signature register

(MISR) for compaction.

Scan Chain

Circuit Under Test
(CUT)

Signature Reg.LFSR

Figure 3.1. Block Diagram for Serial BIST Scheme ("Test-Per-Scan")

LFSR

MISR

Circuit Under Test
(CUT)

Figure 3.2. Block Diagram for Parallel BIST Scheme ("Test-Per-Clock")

11

 This chapter begins with a survey of the previous work that has been done in designing test pattern

generators and then summarizes the new techniques presented in Appendices II, III, and VI.

3.1 Previous Work in Test Pattern Generator Design
 Two approaches for improving the fault coverage for a pseudo-random pattern generator are weighted

pattern testing and mixed-mode testing. Weighted pattern testing involves adding logic to bias the

pseudo-random patterns towards those that detect the r.p.r. faults. Mixed-mode testing involves adding

logic to generate deterministic patterns that detect the faults that the pseudo-random patterns miss.

 3.1.1 Weighted Pattern Testing

 Weighted pattern testing is performed by weighting the signal probability (probability that the signal is

a '1') for each input to the circuit-under-test. Two issues in weighted pattern testing are what set of weights

to use and how to generate the weighted signals. Many techniques have been proposed for computing

weight sets [Bardell 87]. It has been shown that for most circuits, multiple weight sets are required to

achieve sufficient fault coverage [Wunderlich 88]. For BIST, the weight sets must be stored on-chip and

control logic is needed to switch between them which can result in a lot of overhead.

 In order to reduce the BIST overhead for weighted pattern testing, researchers have looked for efficient

methods for on-chip generation of weighted patterns. Wunderlich proposed a Generator of Unequiprobable

Random Tests (GURT) in [Wunderlich 87] that requires very little hardware overhead but is limited to only

one weight set. Hartmann and Kemnitz proposed a method in [Hartmann 93] that uses a modified GURT

structure and described test pattern generators for the C2670 and C7552 benchmark circuits [Brglez 85]

that require very little overhead. However, both of these methods are not general methods because they use

only a single weight set and therefore will not provide sufficient fault coverage for many circuits. Methods

that use multiple weight sets with 3 different weight values (0, .5, and 1) were described in [Pomeranz 93]

and [AlShaibi 94]. These methods essentially “fix” the value of certain inputs while random patterns are

being applied. The method in [Pomeranz 93] uses 3-gate modules to fix the values while the method in

[AlShaibi 94] uses specially designed flip-flops. Techniques for generating weighted random patterns

using inhomogeneous cellular automata were described in [Neebel 93, 94].

 Less weight logic is required for serial test pattern generation (“test-per-scan”) than for parallel test

pattern generation (“test-per-clock”). The weight logic can be placed at either the input of the scan chain as

described in [Brglez 89] or in the individual scan elements themselves as described in [Muradali 90].

 3.1.2 Mixed-Mode Testing

 In the simplest case, mixed-mode testing can be performed by using an LFSR to generate

pseudo-random patterns to detect the random pattern testable faults and then loading deterministic test

patterns for the random pattern resistant faults from a ROM. The problem with this approach is that the

size of the required ROM is often prohibitive. Several compression techniques have been proposed for

12

reducing the size of the ROM [Agarwal 81], [Aboulhamid 83], [Dandapani 84], [Edirisooriya 92],

[Dufaza 93].

 Instead of storing the test patterns themselves in a ROM, techniques have been developed for storing

LFSR seeds that can be used to generate the test patterns [Koenemann 91]. The LFSR that is used for

generating the pseudo-random patterns is also used for generating the deterministic patterns by reseeding it

with computed seeds. Since the seeds are smaller than the test patterns themselves, they require less ROM

storage. One problem is that for a normal LFSR with a fixed feedback polynomial, it may not always be

possible to find a seed that will generate a required deterministic test pattern. A solution to that problem

was proposed in [Hellebrand 92] in which a multiple-polynomial LFSR (MP-LFSR) is used. An MP-LFSR

is an LFSR with a reconfigurable feedback network. In [Hellebrand 92], a polynomial identifier is stored

with each seed to select the feedback polynomial that will be used for that seed as illustrated in Figure 3.3.

Techniques for “merging” and “concatenating” test patterns to reduce the number of LFSR seeds that need

to be stored were proposed in [Venkataraman 93] and [Hellebrand 95a]. Even further reduction can be

achieved by using variable-length seeds [Zacharia 95] and a special ATPG algorithm [Hellebrand 95b].

 Another approach for mixed-mode testing is to design a special counter that generates a deterministic

set of test patterns. Daehn and Mucha, in [Daehn 81], proposed using a non-linear LFSR. Akers and Jansz,

in [Akers 89], proposed using an LFSR followed by a linear network of XOR gates. Dufaza and Cambon,

in [Dufaza 91], proposed using an LFSR with a reconfigurable feedback network. None of these

techniques scales well for larger circuits.

13

Scan Chain

MP-LFSRCircuit Under Test
(CUT)

Signature Reg.LFSR

Poly. Id Seed

&
+

&
+

ROM

Figure 3.3. Block Diagram for Reseeding using a Multi-Polynomial LFSR (MP-LFSR)

3.2 Synthesis of Mapping Logic

14

 In weighted pattern testing, weight logic is placed at the output of the LFSR. One way to view this

weight logic is that it transforms each original pattern generated by the LFSR into a new pattern that is

applied to the circuit-under-test. Thus, the original set of patterns generated by the LFSR is mapped into a

new set of patterns that provides the required fault coverage. This is illustrated in Fig. 3.4.

Pattern Generator

Mapping Logic

Circuit Under Test
(CUT)

Original Test Patterns

Transformed Test Patterns

 Original Patterns Transformed Patterns

 100110 ? ? 001010
 010011 ? ? 010011
 011000 ? ? 011000
 101101 ? 101101
 010111 ? ? 111010
 001101 ? ? 010101

 Cov = 89% Cov = 100%

Figure 3.4. Transforming Pseudo-Random Patterns

15

 In [Touba 95a], the idea of generalizing the “weight” logic to perform any mapping function, not just

those that weight signal probabilities, is proposed. A procedure is described for synthesizing combinational

mapping logic that can be placed between the LFSR and the circuit-under-test to map the original set of test

patterns generated by the LFSR into a new set of patterns that provides the required fault coverage. The

strategy for designing the mapping logic is to decode sets of patterns that don’t detect any new faults and

map them into patterns that detect the hard-to-detect faults. Results are shown for benchmark circuits

which indicate that an LFSR plus a small amount of mapping logic reduces the test length required for a

particular fault coverage by orders of magnitude compared with using an LFSR alone. These results were

compared with the best weighted pattern testing schemes, and in all cases it was shown that the mapping

logic required much less overhead to achieve the same fault coverage for the same test length.

 In [Touba 95b], an improved synthesis procedure for designing the mapping logic is described. Given

an LFSR and a circuit-under-test, there are many possible mapping functions that will provide the required

fault coverage. The problem of finding a mapping function that can be implemented with the smallest

number of gates is formulated as one of finding a minimum rectangle in a binate matrix. A heuristic

procedure involving EXPAND, IRREDUNDANT, and REDUCE operations (analagous to what is used in

ESPRESSO [Brayton 84]), is used to minimize the rectangle cover that corresponds to a mapping function.

By iteratively performing global operations, the procedure is able to find better mapping functions thereby

synthesizing mapping logic that requires less hardware overhead than other methods. Results indicate that

a significant hardware reduction is achieved.

 As described in Appendices II and III, the mapping logic is enabled during BIST by using a test mode

line. During system operation, the test mode line is set to a '0' to disable the mapping logic. When

synthesizing the mapping logic, all of the patterns that are not applied during BIST are placed in the don't

care set. This ensures that the resulting mapping logic does not contain any redundant faults with respect to

the patterns applied during BIST, thus the mapping logic is fully tested during BIST.

3.3 Synthesis of Bit-Fixing Sequence Generator
 A new mixed-mode BIST scheme is described in [Touba 96b] for circuits with scan. Deterministic test

patterns that detect the random-pattern-resistant faults are embedded in a pseudo-random sequence of bits

generated by an LFSR. This is accomplished by altering the pseudo-random sequence of bits by adding

logic at the LFSR’s serial output to “fix” certain bits. As illustrated in Fig. 3.5, logic is added to generate a

bit-fixing sequence that alters the pseudo-random sequence by causing certain bits to be fixed to either a ‘1’

or a ‘0’. A procedure is described for designing the bit-fixing sequence generator in a way that minimizes

area overhead.

16

 Previous mixed-mode schemes for serial pattern generation (“test-per-scan”) are based on storing

compressed data in a ROM. In the proposed procedure, no data is stored in a ROM, rather a multilevel

circuit is used to dynamically fix bits in a way that exploits bit correlation among the test patterns for the

random-pattern-resistant faults. Small numbers of correlated bits are fixed in selected pseudo-random

patterns to make the pseudo-random patterns match the test patterns. So rather than trying to compress the

test patterns themselves, the proposed scheme essentially compresses the bit differences between the test

patterns and a selected set of pseudo-random test patterns. Since there are so many pseudo-random test

patterns to choose from, a significant amount of compression can be achieved, resulting in reduced

overhead.

 Schemes based on reseeding an LFSR require that the LFSR have at least as many stages as the

maximum number of specified bits in any test pattern. This is necessary to ensure that a seed can be found

to generate each of the test patterns. A hardware tradeoff that is made possible by the scheme presented in

[Touba 96b] is that a smaller LFSR can be used for generating the pseudo-random bit sequence. This may

cause some faults to not be detected because of linear dependencies in the patterns that are generated, but

deterministic test patterns for those faults can be embedded at the expense of additional logic in the

bit-fixing sequence generator. Data is presented in [Touba 96b] showing how much logic is required for

different sized LFSR’s.

 The scheme described in [Touba 96b] uses a one phase test, the BIST logic runs in the same mode for

the entire test length. Thus, the BIST control logic is very simple. Figure 3.6 shows the control logic that

is required. If there are m stages in the scan chain, then a mod(m+1) counter is used to keep track of how

many bits have been shifted into the scan chain (it is incremented each clock cycle). While the value of the

counter is less than m, the scan chain operates in shift mode. When the counter contains the value m, then

the scan chain operates in system mode to load the response of the circuit into the scan chain. There is also

a pattern counter to keep track of how many patterns have been applied to the circuit-under-test. The

pattern counter is incremented when the mod(m+1) counter contains the value m. When the value of the

pattern counter equals the test length, then the test is complete. Reset logic is needed to initialize the

counters, the signature register, and the LFSR at the start of the test.

LFSR

Fix-to-1

Fix-to-0

+ & Scan Chain

Bit-Fixing Sequence
Generator

Figure 3.5. Logic for Altering the Pseudo-Random Bit Sequence

17

 The advantages of the scheme in [Touba 96b] are that no function logic modification is required, no

performance overhead is added beyond what is needed for scan, and the control logic is simple. All of

these features combine to make the scheme a very attractive option.

LFSR

Fix-to-1

Fix-to-0

+ & Scan Chain (m bits)

Bit-Fixing Sequence
Generator

Pattern Counter

Decode Last Pattern

End Test

Mod(m+1) Counter

Decode Last State

Scan/System Mode

Figure 3.6. Control Logic for Scheme

18

Chapter 4
Concluding Remarks

 This dissertation summarizes my contributions to automated design of circuits with pseudo-random

BIST. BIST is a technique that reduces test and maintenance costs, but it has seen limited use in industry

due to area and performance overhead, increased design time, and lack of BIST design tools.

Pseudo-random testing is a low-cost approach for BIST, but is only effective for random pattern testable

circuits.

 If a circuit is not random pattern testable, then the logic synthesis procedure described in [Touba 94]

can be used to synthesize a random pattern testable implementation. Testability-driven factoring is used to

minimize overhead.

 If it is a hand-designed circuit or if it is not synthesizable, then the test point insertion procedure

described in [Touba 96a] can be used. This procedure uses path tracing to place both control and

observation points and uses pattern decoding logic to drive the control points thereby maximizing the

effectiveness of each control point. This results in fewer test points than previous methods. A higher

quality test can be obtained by using the procedure in [Touba 96c] to target bridging faults. This procedure

significantly improves the bridging fault coverage by inserting just a few additional test points.

 If it is not possible to modify the circuit-under-test, then the procedures in Appendices II and III can be

used to synthesize mapping logic that can be placed between the LFSR and the circuit-under-test to satisfy

the fault coverage requirement. This results in much less overhead compared with weighted pattern testing.

 If performance is a major concern, then the procedure in [Touba 96b] can be used to synthesize a bit-

fixing sequence generator that embeds deterministic test patterns for the r.p.r. faults in the pseudo-random

sequence. This method does not require any performance overhead beyond what is needed for scan.

 The end result of the work described in this dissertation is a set of automated synthesis tools that can

be used to generate pseudo-random BIST implementations with less overhead and reduced design time.

These synthesis tools have been integrated in the TOPS synthesis system.

 There are several areas for further investigation. The logic synthesis procedure described in [Touba

94] requires a two-level starting point thereby limiting the types of circuits for which it can be used.

Integrating an efficient technique for computing detection probabilities in an arbitrary multilevel circuit

would increase the applications for this logic synthesis procedure. The bit-fixing scheme in [Touba 96b]

could be combined with a reseeding scheme to further reduce overhead. By reseeding the LFSR with just a

few selected seeds to generate some of the least correlated test cubes that require a lot of bit-fixing to

embed, it may be possible to significantly reduce the complexity of the bit-fixing sequence generator. In

Appendices II and III, the mapping logic was placed at the output of the LFSR and thus adds extra levels of

logic between the flip-flops and the function logic thereby affecting system performance. If the mapping

19

logic could be placed in the feedback portion of the LFSR, then the system performance would not be

affected.

20

References

[Aboulhamid 83] Aboulhamid, M.E., and E. Cerny, “A Class of Test Generators for Built-In Testing,”

IEEE Transactions on Computers , Vol. C-32, No. 10, pp. 957-959, Oct. 1983.

[Abramovici 84] Abramovici, M., P.R. Menon, and D.T. Miller, “Critical Path Tracing: An Alternative to

Fault Simulation,” IEEE Design & Test of Computers, Vol. 1, pp. 89-93, Feb. 1984.

[AlShaibi 94] AlShaibi, M.F., and C.R. Kime, “Fixed-Biased Pseudorandom Built-In Self-Test for Random

Pattern Resistant Circuits,” Proc. of International Test Conference, pp. 929-938, 1994.

[Agarwal 81] Agarwal, V.K., and E. Cerny, “Store and Generate Built-In Testing Approach,” Proc. of

FTCS-11, pp. 35-40, 1981.

[Akers 89] Akers, S.B., and W. Jansz, “Test Set Embedding in a Built-In Self-Test Environment,” Proc. of

International Test Conference, pp. 257-263, 1989.

[Bardell 87] Bardell, P.H., W.H. McAnney, and J. Savir, Buit-In Test for VLSI: Pseudorandom

Techniques, New York: Wiley, 1987.

[Brayton 84] Brayton, R.K., G.D. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli, Logic

Minimization Algorithms for VLSI Synthesis, Boston: Kluwer Academic Publishers. 1984.

[Brayton 87] Brayton, R.K., R. Rudell, A. Sangiovanni-Vincentelli, A.R. Wang, “MIS: A Multiple-Level

Logic Optimization System,” IEEE Transactions on Computer-Aided Design, Vol. 6, Nov. 1987, pp.

1062-1081.

[Briers 86] Briers, A.J., and K.A.E. Totton, “Random Pattern Testability by Fast Fault Simulation,” Proc.

of International Test Conference, pp. 274-281, 1986.

[Brglez 84] Brglez, F., “On Testability of Combinational Networks,” Proc. of International Symposium on

Circuits and Systems, pp. 221-225, 1984.

[Brglez 85] Brglez, F., and H. Fujiwara, “A Neutral Netlist of 10 Combinational Benchmark Circuits and a

Target Translator in Fortan,” Proc. of International Symposium on Circuits and Systems, pp. 663-698,

1985.

[Brglez 89] Brglez, F., G. Gloster, and G. Kedem, “Hardware-Based Weighted Random Pattern Generation

for Boundary Scan,” Proc. of International Test Conference, pp. 264-274, 1989.

[Chatterjee 95] Chatterjee, M., D.K. Pradhan, and W. Kunz, “LOT: Logic Optimization with Testability -

New Transformations using Recursive Learning,” Proc. of International Conference on Computer-

Aided Design (ICCAD), 1995.

[Chiang 94] Chiang, C.-H., and S.K. Gupta, “Random Pattern Testable Logic Synthesis,” Proc. of

International Conference on Computer-Aided Design (ICCAD), pp. 125-128, 1994.

[Cheng 95] Cheng, K.-T., and C.J. Lin, “Timing-Driven Test Point Insertion for Full-Scan and Paritial-

Scan BIST,” Proc. of International Test Conference, pp. 506-514, 1995.

21

[Daehn 81] Daehn, W., and J. Muncha, “Hardware Test Pattern Generation for Built-In Testing,” Proc. of

Int. Test Conf., pp. 110-113, 1981.

[Dandapani 84] Dandapani, R., J. Patel, and J. Abraham, “Design of Test Pattern Generators for Built-In

Test,” Proc. of International Test Conference, pp. 315-319, 1984.

[Dufaza 91] Dufaza, C., and G. Cambon, “LFSR based Deterministic and Pseudo-Random Test Pattern

Generator Structures,” Proc. of EuropeanTest Conference, pp. 27-34, 1991.

[Dufaza 93] Dufaza, C., C. Chevalier, and L.F.C. Lew Yan Voon, “LFSROM: A Hardware Test Pattern

Generator for Deterministic ISCAS85 Test Sets,” Proc. of AsianTest Symposium, pp. 160-165, 1993.

[Edirisooriya 92] Edirisooriya, G., and J.P. Robinson, “Design of Low Cost ROM Based Test Generators,”

Proc. of VLSI Test Symposium, pp. 61-66, 1992.

[Eichelberger 83] Eichelberger, E.B., and E. Lindbloom, “Random-Pattern Coverage Enhancement and

Diagnosis for LSSD Logic Self-Test,” IBM Journal of Research and Development, Vol. 27, No. 3, pp.

265-272, May 1983.

[Ferguson 88] Ferguson, F.J., and J.P. Shen, “A CMOS Fault-Extractor for Inductive Fault Analysis,” IEEE

Transactions on Computer-Aided Design, Vol. 7, No. 11, pp. 1181-1194, Nov. 1988.

[Hartmann 93] Hartmann, J., and G. Kemnitz, “How to Do Weighted Random Testing for BIST,” Proc. of

International Conference on Computer-Aided Design (ICCAD), pp. 568-571, 1993.

[Hayes 74] Hayes, J.P., and A.D. Friedman, “Test Point Placement to Simplify Fault Detection,” IEEE

Transactions on Computers , Vol. C-23, No. 7, pp. 727-735, Jul. 1974.

[Hellebrand 92] Hellebrand, S., S. Tarnick, and J. Rajski, “Generation of Vector Patterns Through

Reseeding of Multiple-Polynomial Linear Feedback Shift Registers,” Proc. of International Test

Conference, pp. 120-129, 1992.

[Hellebrand95a] Hellebrand, S., J. Rajski, S. Tarnick, S. Venkataraman and B. Courtois, ”Built-In Test for

Circuits with Scan Based on Reseeding of Multiple-Polynomial Linear Feedback Shift Registers,”

IEEE Transactions on Computers, Vol. 44, No. 2, pp. 223-233, Feb. 1995.

[Hellebrand95b] Hellebrand, S., B. Reeb, S. Tarnick, and H.-J. Wunderlich, ”Pattern Generation for a

Deterministic BIST Scheme,” Proc. of International Conference on Computer-Aided Design (ICCAD),

1995.

[Iyengar 89] Iyengar, V.S., and D. Brand, “Synthesis of Pseudo-Random Pattern Testable Designs,” Proc.

International Test Conference, pp. 501-508, 1989.

[Koenemann 79] Koenemann, B., J. Mucha, and G. Zwiehoff, “Built-in Logic Block Observation

Technique,” Proc. of International Test Conference, pp. 140-150, 1979.

[Koenemann 91] Koenemann, B., “LFSR-Coded Test Patterns for Scan Designs,” Proc. of European Test

Conference, pp. 237-242, 1991.

22

[Krasniewski 89] Krasniewski, A., and S. Pilarski, “Circular Self-Test Path: A Low-Cost BIST Technique

for VLSI Circuits,” IEEE Transactions on Computer-Aided Design, Vol. 8, No. 1, pp. 46-55, Jan.

1989.

[Krishnamurthy 87] Krishnamurthy, B., “A Dynamic Programming Approach to the Test Point Insertion

Problem,” Proc. of the 24th Design Automation Conference, pp. 695-704, 1987.

[Millman 88] Millman, S.D., and E.J. McCluskey, “Detecting Bridging Faults with Stuck-At Test Sets,”

Proc. of International Test Conference, pp. 773-783, 1988.

[Millman 89] Millman, S.D., and E.J. McCluskey, “Pseudorandom Test for Bridging Faults,” CRC

Technical Report 89-7, Stanford University, Dec. 1989.

[Muradali 90] Muradali, F., V.K. Agarwal, and B. Nadeau-Dostie, “A New Procedure for Weighted

Random Built-In Self-Test,” Proc. of International Test Conference, pp. 660-668, 1990.

[Neebel 93] Neebel, D.J., C.R. Kime, “Inhomogeneous Cellular Automata for Weighted Random Pattern

Generation,” Proc. of International Test Conference, pp. 1013-1022, 1993.

[Neebel 94] Neebel, D.J., C.R. Kime, “Multiple Weighted Cellular Automata,” Proc. of VLSI Test

Symposium, pp. 81-86, 1994.

[Pomeranz 93] Pomeranz, I., and S.M. Reddy, “3-Weight Pseudo-Random Test Generation Based on a

Deterministic Test Set for Combinational and Sequential Circuits,” IEEE Transactions on Computer-

Aided Design, Vol. 12, No. 7, pp. 1050-1058, Jul. 1993.

[Rajski 92] Rajski, J., and J. Vasudevamurthy, “The Testability-Preserving Concurrent Decomposition and

Factorization of Boolean Expressions,” IEEE Transactions on Computer-Aided Design, Vol. 11, No. 6,

Jun. 1992, pp. 778-793.

[Savaria 91] Savaria, Y., M. Youssef, B. Kaminska, and M. Koudil, “Automatic Test Point Insertion for

Pseudo-Random Testing,” Proc. of International Symposium on Circuits and Systems, pp. 1960-1963,

1991.

[Seiss 91] Seiss, B.H., P.M. Trouborst, and M.H. Schulz, “Test Point Insertion for Scan-Based BIST,”

Proc. of European Test Conference, pp. 253-262, 1991.

[Shen 85] Shen, J.P., W. Maly, and F.J. Ferguson, “Inductive Fault Analysis of MOS Integrated Circuits,”

IEEE Design & Test of Computers, pp. 13-26, Dec. 1985.

[Stroud 88] Stroud, C.E., “Automated BIST for Sequential Logic Synthesis,” IEEE Design & Test of

Computers, pp. 22-32, Dec. 1988.

[Touba 94] Touba, N.A., and E.J. McCluskey, “Automated Logic Synthesis of Random Pattern Testable

Circuits,” Proc. of International Test Conference, pp. 174-183, 1994.

[Touba 95a] Touba, N.A., and E.J. McCluskey, “Transformed Pseudo-Random Patterns for BIST,” Proc. of

VLSI Test Symposium, pp. 410-416, 1995.

[Touba 95b] Touba, N.A., and E.J. McCluskey, “Synthesis of Mapping Logic for Generating Transformed

Pseudo-Random Patterns for BIST,” Proc. of International Test Conference, pp. 674-682, 1995.

23

[Touba 96a] Touba, N.A., and E.J. McCluskey, “Test Point Insertion Based on Path Tracing,” Proc. of

VLSI Test Symposium, pp. 2-8, 1996.

[Touba 96b] Touba, N.A., and E.J. McCluskey, “Altering a Pseudo-Random Bit Sequence for Scan-Based

BIST,” Proc. of International Test Conference, 1996.

[Touba 96c] Touba, N.A., and E.J. McCluskey, “Test Point Insertion for Non-Feedback Bridging Faults,”

Technical Report No. 96-3, Center for Reliable Computing, Stanford University, Stanford, CA, Aug.

1996.

[Venkataraman 93] Venkataramann, S., J. Rajski, S. Hellebrand, and S. Tarnick, “An Efficient BIST

Scheme Based on Reseeding of Multiple Polynomial Linear Feedback Shift Registers,” Proc. of

International Conference on Computer-Aided Design (ICCAD), pp. 572-577, 1993.

[Wunderlich 87] Wunderlich, H.-J., “Self-Test Using Unequiprobable Random Patterns,” Proc. of FTCS-

17, pp. 258-263, 1987.

[Wunderlich 88] Wunderlich, H.-J., “Multiple Distributions for Biased Random Test Patterns,” Proc. of

International Test Conference, pp. 236-244, 1988.

[Youssef 93] Youssef, M., Y. Savaria, and B. Kaminska, “Methodology for Efficiently Inserting and

Condensing Test Points,” IEE Proceedings-E, Vol. 140, No. 3, pp. 154-160, May 1993.

[Zacharia 95] Zacharia, N., J. Rajski, and J. Tyszer, “Decompression of Test Data Using Variable-Length

Seed LFSRs,” Proc. of VLSI Test Symposium, pp. 426-433, 1995.

