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Abstract

We introduce new data structures for compressed suffix trees whose size are
linear in the text size. The size is measured in bits; thus they occupy only
O(n log |A|) bits for a text of length n on an alphabet A. This is a remarkable
improvement on current suffix trees which require O(n log n) bits. Though some
components of suffix trees have been compressed, there is no linear-size data
structure for suffix trees with full functionality such as computing suffix links,
string-depths and lowest common ancestors.

The data structure proposed in this paper is the first one that has linear
size and supports all operations efficiently. Any algorithm running on a suffix
tree can also be executed on our compressed suffix trees with a slight slowdown
of a factor of polylog(n).

1 Introduction

Suffix trees are basic data structures for string algorithms [13]. A pattern can be
found in time proportional to the pattern length from a text by constructing the suffix
tree of the text in advance. The suffix tree can also be used for more complicated
problems, for example finding the longest repeated substring in linear time. Many
efficient string algorithms are based on the use of suffix trees because this does not
increase the asymptotic time complexity. A suffix tree of a string can be constructed
in linear time in the string length [28, 21, 27, 5]. Therefore it is natural to use the
suffix tree.

However, concerning the space complexity, the suffix tree is worse than the string.
Let A be the alphabet and T be a string of length n on A. Then the suffix tree
is represented by O(n) number of pointers together with the string itself. Because
we need lg n bits1 to encode a pointer, the suffix tree occupies O(n lg n) bits. On
the other hand, the string occupies n lg |A| bits. The alphabet size |A| is usually
much smaller than n, for example, for the whole genome sequence of human, |A| = 4
(A = {a, c, g, t}) and n > 231 (2.8 Giga). Even with a space-efficient implementation,
the suffix tree is 40 Gigabytes in size [18], whereas the string is only 700 Megabytes.

1Let lg n denote log2 n.
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Therefore it is better to represent the suffix tree in size proportional in the string size,
that is, in O(n lg |A|) bits.

In this paper, we consider the following computation model. We assume a word-
RAM [1, 14] with word size O(lg U) bits, where n ≤ U , in which standard arithmetic
and bitwise boolean operations on word-sized operands can be performed in con-
stant time. We also have O(U) memory cells, each of which has O(lg U) bits and is
read/written in constant time. Therefore, by using pointers of O(lg n) bits, the suffix
tree is represented in O(n) cells and can be constructed in O(n) time.

We measure the space complexity not by the number of cells but the number
of bits. Then the current suffix trees occupy O(n lg n) bits. This is not practical
because in most computers the memory size is measured not by words but bytes.
For example, a 32-bit computer can handle not 232 =4G words, but 4G bytes. For
a 64-bit computer a word consists of eight bytes. We can assume that each byte
consists of constant number of bits. Then, in general, a lg U -bit computer will have
U bytes, or U/ lg U words. Then we can construct suffix trees only for strings of
length O(U/ lg U). On the other hand, we can store the string of length O(U/ lg |A|)
because each character occupies lg |A| bits. Therefore our aim is to construct suffix
trees whose size are linear in the string, that is, of O(n lg |A|) bits. This is important
both theoretically and practically.

We propose O(n lg |A|)-bit data structures for suffix trees which have the full
functionality of the current suffix trees. Though some data structures for suffix trees
have been proposed [3, 24], the following are missed: (1) the suffix link of an internal
node, (2) the depth of an internal node, and (3) the lowest common ancestor (lca)
between any two nodes. The suffix link is necessary to use the suffix tree as an
automaton recognizing all substrings of the text, which can be used to compute the
longest common substring of two strings, matching statistics, etc. The node depth is
necessary to implicitly enumerate all maximal repeated substrings of the text in linear
time, which can be used for text data mining [26]. The lca is necessary to compute
the longest common extension of two suffixes in constant time, which can be used
in approximate string matching problems. The above elements are also frequently
used to solve other problems. In this paper, we propose linear-size data structures
for them. The data structures have size |CSA|+6n+ o(n) bits where |CSA| denotes
the size of the compressed suffix array [11] of the text, which is also linear. As for
the time complexity, our data structures support efficient operations on suffix trees.
Any operation on a suffix tree is supported with a slowdown of a factor of polylog(n)
in the time complexity.

The rest of the paper is organized as follows. Section 2 reviews the suffix trees,
and Section 3 describes space-efficient data structures which are used in our com-
pressed suffix trees. Section 4 proposes new compact data structures for storing
longest common prefix information and range mininum queries. Section 5 states the
main results: new data structures for compressed suffix trees. Section 6 shows some
concluding remarks.

2 Suffix Trees

In this section we review suffix trees. Let T [1..n] = T [1]T [2] · · ·T [n] be a text of
length n on an alphabet A with |A| ≤ n. We assume that T [n] = $ is a unique
terminator which alphabetically precedes all other symbols. The j-th suffix of T is
defined as T [j..n] = T [j]T [j + 1] . . . T [n] and expressed by Tj. A substring T [1..j] is
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solve problems efficiently, for example finding the longest common substring of two
strings in linear time.

We consider the following operations on suffix trees, where v and w denote nodes
in the suffix tree, and c denotes a character in A:

Definition 2 A suffix tree for a text supports the following operations:

1. root(): returns the root node.

2. isleaf (v): returns Yes if v is a leaf, and No otherwise.

3. child(v, c): returns the node w that is a child of v and the edge (v, w) begins
with character c, or returns 0 if no such child.

4. sibling(v): returns the next sibling of node v.

5. parent(v): returns the parent node of v.

6. edge(v, d): returns the d-th character of the edge-label of an edge pointing to v.

7. depth(v): returns the string-depth of node v.

8. lca(v, w): returns the lowest common ancestor between nodes v and w.

9. sl(v): returns the node w that is pointed to by the suffix link from v.

2.2 Data Structures

A suffix tree is decomposed into five components: text, tree topology, node-depths,
edge-labels, and suffix links. A basic representation is the following. Text is the
string T , which is encoded in n lg |A| bits. Tree topology represents parent-child
relationships of nodes and consists of O(n) pointers, which occupies O(n lg n) bits.
Node-depths store the string-depth for each internal node in n lg n bits. An edge-label
between internal nodes is represented by a pointer to the text in n lg n bits. Note that
the length of the edge is computed from node-depths of both endpoints of the edge.
An edge-label between an internal node and a leaf is represented by the suffix array
of T , which occupies n lg n bits. Suffix links are pointers between internal nodes and
represented in n lg n bits.

3 Succinct Data Structures

In this section we review succinct data structures which are used in our compressed
suffix trees.

3.1 Compressed Suffix Arrays

Compressed suffix arrays, proposed by Grossi and Vitter [11], are data structures
which reduce the size of suffix arrays from n lg n bits to O(n lg |A|) bits at the cost
of increasing access time from constant time to O(lgε n) time where ε is any constant
with 0 < ε ≤ 1.
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Table 1: The size and query time of compressed suffix arrays.

size (bits) tSA tΨ references
O(n lg |A|) O(lgε n) O(1) [11, 12]

O(nH0 + n lg lg |A|) O(lgε n) O(1) [25] (|A| = polylog(n))

nHh + O
(

n lg lg n
lg|A| n

)
O(lg2 n/ lg lg n) O(lg |A|) [10, Theorem 4.2]

Many variations of the compressed suffix array have been proposed [6, 7, 10, 8, 25].
Ferragina and Manzini [6, 7] proposed the FM-index, a kind of compressed suffix array
of size 5nHk+O( n

lg n
(|A|+lg lg n)+nε|A|2|A| lg |A|)) bits where Hk is the order-k entropy

of the text. This holds for any integer k > 0. They also proposed an algorithm to
search for a pattern of length m in O(m + lg1+ε n) time without using the text T .
We call it a self-indexing data structure. Ferragina and Manzini [8] also proposed
another type of compressed suffix array in O(nHk lgε n) + o(n) bits which supports
O(m + occ) time enumerating query where occ is the number of occurrences of the
pattern.

Sadakane [25] modified the original compressed suffix array so that it acts as a self-
indexing data structure. He also reduced the size from O(n lg |A|) bits to O(n lg H0)
bits. Grossi et al. [10] further reduced its size to nHh + o(n) bits for any h ≤ α lg|A| n
with 0 < α < 1. A pattern can be found in O(m lg |A| + polylog(n)) time.

For our compressed suffix trees, compressed suffix arrays should support the fol-
lowing operations:

Definition 3 A compressed suffix array for a text T is a data structure supporting
the following operations:

• lookup(i): returns SA[i] in time tSA,

• inverse(i): returns j = SA−1[i], defined such that SA[j] = i, in time tSA,

• Ψ [i]: returns SA−1[SA[i] + 1] in time tΨ, and

• substring(i, l): returns T [SA[i]..SA[i] + l − 1] in O(l · tΨ) time.

The function Ψ[i] in the compressed suffix array is defined as follows:

Definition 4

Ψ[i] ≡
{

i′ such that SA[i′] = SA[i] + 1 (if SA[i] < n)
0 (if SA[i] = n)

Table 1 summarizes variations of compressed suffix arrays. We do not include the
FM-index because it does not have Ψ.

Any character T [j] in a text can be extracted in constant time by substring(i, 1) if
the lexicographic order i of the suffix Tj = T [j..n] is given. Furthermore, even if we do
not know the lexicographic order we can compute it by using inverse(j). Therefore
we need not to store the text T explicitly.

The Ψ function is basically used in the other three operations in Definition 3.
Therefore it seems that we can remove it from the definition of the compressed suffix
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array. However, it is very impotant for compressed suffix trees because it is used to
compute a suffix link in constant time. Though the Ψ function can be computed by
using lookup and inverse as in the definition, it cannot be done in constant time.

3.2 Balanced parentheses representations of trees

We use a balanced parentheses encoding of a tree [23, 24]. An m-node rooted ordered
tree can be encoded in 2m + o(m) bits with various constant time navigational op-
erations. The tree is encoded into m nested open and close parentheses as follows.
During a preorder traversal of the tree, write an open parenthesis when a node is
visited, then traverse all subtrees of the node, and write a close parenthesis. An
example is shown in Figure 1. Any node in the tree is represented by a pair of open
and close parentheses ‘( . . . ).’ However, because we can compute the position of the
close parenthesis from that of the open parenthesis in constant time (see [23]), we
represent a node by the position of the open parenthesis in the sequence. Since there
are 2n − 1 nodes in a suffix tree for a text of length n, exactly n leaves and at most
n − 1 internal nodes, the suffix tree of the text can be encoded in at most 4n + o(n)
bits.

Navigational operations on the tree are defined by rankp, selectp, findclose, enclose,
etc. The function rankp(i) returns the number of occurrences of pattern p up to the
position i, where p is for example ‘().’ The function selectp(i) returns the position
of i-th occurrence of pattern p. The function findclose(i) returns the position of the
close parenthesis that matches the open parenthesis in position i in the sequence of
parentheses. The function enclose(i) finds the closest enclosing matching parenthesis
pair of a parenthesis pair whose open parenthesis is in position i, which corresponds
to compute the parent of a node. All functions take constant time.

By using the above functions, we can perform various operations on a tree. Among
them, the following are important for compressed suffix trees:

• leftrank(v): returns the number of leaves to the left of node v in preorder,

• leftmost(v): returns the leftmost leaf in the subtree rooted at node v, and

• rightmost(v): returns the rightmost leaf in the subtree rooted at node v.

These are computed in constant time [24]. Actually they have proposed a compressed
suffix tree using the suffix array and the parentheses encoding of Pat tree [9] in
n lg n + 4n + o(n) bits. Our compressed suffix tree is similar to this; however we also
support depth(v), lca(v, w) and sl(v).

3.3 Simulating suffix tree traversal by suffix array and height
array

Kasai et al. [17] showed that a bottom-up traversal of a suffix tree can be simulated
by using only the suffix array and an array storing a set of the lengths of the longest
common prefixes between two suffixes, called Hgt array. The array Hgt[1..n] is defined
as follows.

Definition 5

Hgt[i] ≡
{

lcp(TSA[i], TSA[i+1]) (1 ≤ i ≤ n − 1)
0 (i = n)

6



Though the Hgt array stores the lengths of the longest common prefixes only
between adjacent suffixes in a suffix array, it is enough for bottom-up traversal of the
suffix tree. Many problems are solved by a bottom-up traversal of the tree.

3.4 Related work

Though space efficient suffix trees have been proposed [3, 24], their size are still not
linear in n even for a constant size alphabet, and these are focused on only finding
the number of occurrences and positions of a pattern. They do not store suffix links
and node depths. Therefore they do not have the full functionality of suffix trees.

For node depths, Clark and Munro [3] used a lg lg lg n bits field to store the length
of an edge instead of storing the depth of the corresponding node although the size was
still not linear. Moreover the method cannot be used to answer the depth of a node
quickly. Munro et al. [24] proposed an algorithm for searching for patterns without
storing edge lengths. The algorithm calculates them online whenever needed. Though
their algorithm has the same time complexity to find a pattern as the algorithm that
requires edge lengths, it may not be suitable for traversing the nodes of the suffix tree.
In this case their algorithm takes O(n2) time because the sum of all edge-lengths in
the suffix tree is O(n2).

4 New data structures for lcp information

In this section we propose space-efficient data structures for storing lcp (longest com-
mon prefix) information between suffixes. First we show a data structure to represent
the Hgt array, which is also used to encode string-depths in a suffix tree. Then we
show a data structure for Range Minimum Query, which is used to compute lowest
common ancestors in a suffix tree.

We first propose succinct representations of the Hgt array. Though values of the
Hgt array for a text T are usually small, they may reach n − 1. Therefore it is
necessary to use an array of integers each with lg n-bits width if we use fixed-width
integers. However we can efficiently store the values by using the properties of Hgt
array, which can be efficiently extracted by using the information of the suffix array:

Theorem 1 Given i and SA[i], the value Hgt[i] can be computed in constant time
using a data structure of size 2n + o(n) bits.

Proof: See Section 4.1. ��
From this theorem we can store data structures that can be used to simulate an

in-order or a bottom-up traversal of a suffix tree in |SA| + 2n + o(n) bits where |SA|
is the size of the suffix array or the compressed suffix array. The time complexity for
the traversal is O(n · tSA) where tSA is the time to compute an element of the suffix
array, that is, O(1) time for suffix array, or O(lgε n) time for the compressed suffix
array.

This result can be extended to compute lcp between two arbitrary suffixes:

Theorem 2 Given i and j, the length of the longest common prefix between suffixes
TSA[i] and TSA[j] can be computed in O(tSA) time using a data structure of size |SA|+
6n + o(n) bits.

Proof: See Section 4.1. ��
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4.1 Data structures for Hgt array

Here we show the data structure of Theorem 1. To achieve the space complexity,
we use a space efficient data structure for storing sorted integers [4] and the select
function [22] as it is used in the compressed suffix array [11].

Lemma 1 [12] Given s integers in sorted order, each containing w bits, where s < 2w,
we can store them in at most s(2 + w − �lg s�) + O(s/ lg lg s) bits, so that retrieving
the h-th integer takes constant time.

To encode the Hgt array, the above data structure cannot be directly used because
the numbers are not sorted. However we can convert them into sorted ones by using
the following lemma.

Lemma 2 Hgt[Ψ[i]] ≥ Hgt[i] − 1

Proof: Let p = SA[i], q = SA[i + 1] and l = Hgt[i] = lcp(Tp, Tq). If T [p] 	= T [q],
then Hgt[i] = 0 and the inequality holds because Hgt[Ψ[i]] ≥ 0. If T [p] = T [q],
consider suffixes Tp+1 and Tq+1. From the definition of Ψ, SA[Ψ[i]] = p + 1 and
SA[Ψ[i + 1]] = q + 1. The suffix Tq+1 is lexicographically larger than the suffix Tp+1

from the definition of lexicographic order. That is, Ψ[i] < Ψ[i + 1]. Therefore an
integer i′ such that Ψ[i] + 1 = i′ ≤ Ψ[i + 1] exists. The suffix TSA[i′] has a prefix of
length l−1 that matches with both prefixes of Tp+1 and Tq+1 because of the definition
of lexicographic order. This completes the proof. ��

Note that this lemma is identical to that in Kasai et al. [17]. From this lemma,
we have the following relation for p = SA−1[1]:

Hgt[p] ≤ Hgt[Ψ[p]] + 1

≤ Hgt[Ψk[p]] + k

≤ Hgt[Ψn−1[p]] + n − 1

= n − 1

where the equality comes from the fact that SA[Ψn−1[p]] = n and the Hgt value for
the suffix Tn is 0 because T [n] = $ is a unique terminator.

Now we have a sequence of n sorted numbers Hgt[Ψk[p]]+k for k = 0, 1, . . . , n− 1
in the range [0, n − 1] which can be stored using 2n + o(n) bits and can be accessed
in constant time. To obtain Hgt[i], the remaining task is to compute k such that
i = Ψk[p], which is easily done as follows. From the definition of Ψ,

SA[Ψk[i]] = SA[i] + k

for any i. Therefore

SA[i] = SA[Ψk[p]] = SA[p] + k = k + 1,

that is, k = SA[i] − 1.
Figure 2 shows an example of creating a sorted sequence of numbers. The last

row shows SA[i]+Hgt[i] for i = 1, 2, . . . , n, which is the summation of the second and
the third rows. If we sort the numbers in order of SA[i] values, we obtain a sorted
sequence “4 4 4 4 5 6 7.” Then these are encoded in a 0,1 sequence “00001 1 1 1
01 01 01” whose length is at most 2n bits. The blanks in the sequence are only for
explanation. We can uniquely decode the numbers from the sequence.

The algorithm to calculate Hgt[i] becomes as follows:

8



i 1 2 3 4 5 6 7
Hgt 0 3 1 0 2 0 0
SA 7 1 3 5 2 4 6

SA + Hgt 7 4 4 5 4 4 6

Figure 2: How to create a sorted sequence from Hgt.

1. Extract the k-th entry v (k ≥ 0) of the sorted numbers where k = SA[i] − 1.

2. Subtract k from v.

A problem with our encodings of the Hgt array is that a value Hgt[i] is stored
in the bit-vector H in the order of not i but SA[i]. Therefore access to H becomes
random if we retrieve the suffix array lexicographically. Another problem is that both
i and SA[i] are necessary to compute Hgt[i]. If we use the compressed suffix array,
retrieving SA[i] takes O(tSA) time.

4.2 Computing lcp between arbitrary suffixes

We describe the data structure of Theorem 2. It consists of two components: one to
store the Hgt array of Theorem 1, and one to perform RMQ (range minimum query)
in Hgt array. The former occupies 2n + o(n) bits and the latter 4n + o(n) bits.

Because the suffixes are lexicographically sorted in the suffix array, computing lcp
between two suffixes TSA[l] and TSA[r] (l < r) is equivalent to computing the minimum
of Hgt[l],Hgt[l + 1], . . . ,Hgt[r − 1]. Let Hgt[m] be the minimum value among them.
If there are two or more minimum values, we can choose one arbitrary. To compute
the minimum value, we use the algorithm for computing lca nodes [2] because of the
following property:

Proposition 1 Let v be the node lca(leaf(l), leaf(r)) in the suffix tree and m be the
index defined above. Then v = lca(leaf(m), leaf(m+1)) and v has string-depth Hgt[m].

Proof: Because of the construction of the suffix tree, the node v′ ≡ lca(leaf(m), leaf(m+
1)) has string-depth lcp(TSA[m], TSA[m+1]) = Hgt[m]. The node v also has string-depth
Hgt[m]. Because TSA[m] locates lexicographically between TSA[r] and TSA[r] and these
three suffixes have a common prefix of length Hgt[m], the nodes v and v′ represent
the same string. This means v = v′. ��

Therefore we first compute the node v, secondly compute the index m, then
compute Hgt[m] by using the data structure in Section 4.1.

We define the following Range Minimum Query (RMQ) problem:

Problem 1 (Range Minimum Query) For indices l and r, between 1 and n, of
an array A, the range minimum query RMQA(l, r) returns the index of the smallest
element in the subarray A[l..r]. If there is a tie-breaking we choose the leftmost one.

The algorithm of Bender and Farach-Colton [2] reduces the problem of computing
lca to the Range Minimum Query as follows. We traverse the nodes of the tree (in our
case, the suffix tree) in depth-first manner and store their node-depths in an array L.
The node-depth of a node is the number of nodes on the path from the root to the
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node and is usually different from its string-depth. An example is shown in Figure 1.
We also store the position in L for each node of the tree that corresponds to the first
visit to the node in the depth-first traversal. Then the lca between two nodes can be
represented as the minimum value in the subarray of L, where the boundaries of the
subarray correspond to the nodes.

In the original algorithm, they store L as an integer array of size 2n − 1 for an
n-node tree. Therefore L occupies O(n lg n) bits. They also store the positions of
L representing nodes in another integer array, which occupies O(n lg n) bits. On
the other hand, we store these information in 4n + o(n) bits as follows. Because the
difference between two adjacent elements of L is 1 or −1, we encode the differences by
a sequence P of open and close parentheses (see Figure 1). Actually, the parentheses
sequence P is exactly the same as the encoding for a tree [23]. The tree is encoded
into 2n nested open and close parentheses as follows. During a pre-order traversal of
the tree, write an open parenthesis when a node is visited, then traverse all subtrees
of the node, and write a close parenthesis.

To compute the elements of L in constant time, we explicitly store them for every
lg2 n elements, and for every lg n elements we store the difference from the nearest
explicitly-stored element. The former occupies n

lg2 n
lg n = o(n) bits, and the latter

occupies n
lg n

lg(lg2 n) = o(n) bits. We need to compute the position in L corresponding

to each leaf of the tree.

Lemma 3 The position x of a pair of parentheses ‘()’ in P that represents leaf(i)
can be computed by

x = select()(P, i).

Proof: Because any occurrence of ‘()’ in P corresponds to a leaf of the tree and the
leaves appear in the lexicographic order of the suffixes, the lemma holds. ��

Because the data structure for select function occupies o(n) bits in addition to the
parentheses sequence P , the total size is 4n + o(n) bits. We can run the algorithm
for the Range Minimum Query on P instead of L.

We can compute the index m from the result of the Range Minimum Query for
computing lca(leaf(l), leaf(r)).

Lemma 4 Let x and y be the positions of ‘()’ in P that represent leaves TSA[l] and
TSA[r] respectively. Then the index m of Hgt[m] that attains the minimum value among
Hgt[l],Hgt[l + 1], . . . ,Hgt[r − 1] can be computed by

m = rank()(P, RMQL(x, y)).

Proof: RMQL(x, y) returns the position p of a close parenthesis ‘)’ in the parentheses
sequence P corresponding to the node v = lca(leaf(l), leaf(r)). The node is equal to
lca(leaf(m), leaf(m + 1)). Because P represents a depth-first traversal of the tree,
especially in the lexicographic order of leaves, leaves leaf(i) for i = 1, 2, . . . , m appear
to the left of p in P , and other leaves appear to the right of p. Therefore m is equal
to the number of leaves encoded to the left of p in P , that is, m = rank()(P, p). ��

Now we have the algorithm to compute lcp(TSA[l], TSA[r]).

1. Compute x = select()(P, l) and y = select()(P, r).

2. Compute m = rank()(P, RMQL(x, y)).

3. Compute Hgt[m].

10



4.3 Data structures for Range Minimum Query

The data structure of Bender and Farach-Colton [2] for the Range Minimum Query
occupies O(n) words, in other words, O(n lg n) bits. We propose a modified data
structure which occupies only 2n + o(n) bits.

The original algorithm: To compute the index of the minimum value in a sub-
array in constant time, we use precomputed tables of size o(n) bits. We divide the
whole array L into blocks of size lg n

2
, and define an array L′[0, . . . , 2n/ lg n] such that

L′[i] stores the minimum value in the i-th block. To compute RMQL(x, y), we first
compute the indices x′ and y′ of blocks containing x and y. Then the minimum value
of L[x..y] is equal to the minimum of

1. the minimum of L[x..e] where e is the last element in the same block as x,

2. the minimum of L′[(x′ + 1)..(y′ − 1)], and

3. the minimum of L[s..y] where s is the first element in the same block as y.

The minimum value and its index for the first and the third ones can be computed
in constant time using tables of size o(n) bits. For the second one, we construct
another two-dimensional table M [i, k]. For each i and k (i = 0, 1, . . . , 2n/ lg n, k =
0, 1, . . . , �lg n�), M [i, k] stores the index of the minimum value in L′[i..i + 2k − 1].
Then the index of the minimum value between L′[x′] and L′[y′] can be computed in
constant time by min{M [x′, k], M [y′ − 2k + 1, k]} where k = �lg(y′ − x′)�. We also
use a table of size o(n) bits to compute �lg x� in constant time. This data structure
occupies O(n) words because its size is (2n/ lg n) · lg n.

Our algorithm: We divide the array L into blocks of size lg3 n. Then the array
M [i, k] occupies only O( n

lg3 n
· lg n · lg n) = O( n

lgn
) = o(n) bits. To compute the

minimum element in the j-th block (j = 0, 1, . . . , n/ lg3 n), we further divide the
block into subblocks of size lg n

2
. We create a two-dimensional table Mj[i, k] where

i = 0, 1, . . . , 2 lg2 n−1 and k = 0, 1, . . . , lg(2 lg2 n) for each block. These tables occupy
O( n

lg n
· lg(lg2 n) · lg(lg2 n)) = o(n) bits in total. We also use a table for subblocks of

length lg n
2

. It also occupies o(n) bits.
By using the above data structure, the position of the minimum value among

L[x], L[x + 1], . . . , L[y] can be computed in constant time.

5 New Compressed Suffix Trees

In this section we show algorithms for navigating compressed suffix trees for small
alphabets using the data structures proposed in Section 4.

The notation is as follows. Nodes of suffix trees are represented by integers u, v, w,
etc., instead of using pointers, and the corresponding nodes are denoted by ū, v̄, w̄,
etc. Nodes are also represented by their ranks: preorder or inorder ranks and denoted
by i, j, etc.

The main result of this paper is stated as follows:
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Theorem 3 A compressed suffix tree for a text of length n, supporting the operations
child(v, c) in
O(min{|A|, lgn}tSA) time, depth(v) and edge(v, d) in O(tSA) time, sl(v) in O(tΨ)
time, and other operations in constant time, can be represented in |CSA|+6n + o(n)
bits where |CSA| denotes the size of the compressed suffix array.

Proof: As for the time complexity, please refer to Sections 5.1 to 5.6. Concerning the
space complexity, we use the compressed suffix array, the compressed representation
of Hgt array in 2n + o(n) bits, and the parentheses encoding of the suffix tree in
4n + o(n) bits. ��

Table 2: The size and query time of compressed suffix trees

size (bits) child(v, c) depth(v), edge(v, d) sl(v)
|CSA| + 6n + o(n) O(min{|A|, lg n}tSA) O(tSA) O(tΨ)

nHh + 6n + O

(
n lg lg n
lg|A| n

)
O(min{|A|, lg n} lg2 n/ lg lg n) O(lg2 n/ lg lg n) O(lg |A|)

O(1
ε n lg |A|) O(lgε n) O(lgε n) O(1)

5.1 How to represent a node

It was shown by Munro and Raman [23] that a node of a tree can be represented by
a pair of parentheses ‘(. . .)’ in a nested parentheses sequence. Therefore we represent
a node v̄ of a suffix tree by an integer v ∈ [1, 2n] which is the position of the open
paranthesis representing the node in the parentheses sequence P . To perform some
operations on the suffix tree, we also need to represent a node by its preorder and
inorder. We first show how to convert these values.

The parentheses sequence P is produced during a preorder traversal of the tree.
Therefore the preorder i of a node v̄ and the position v in P can be easily converted
from each other in constant time:

i = rank ((v)

v = select((i).

We also need the inorder of an internal node. First we give its definition.

Definition 6 The inorder rank of an internal node v is defined as the number of
visited internal nodes, including v, in the alphabetic depth-first traversal, when v is
visited from a child of it and another child of it will be visited next.

Note that only internal nodes have inorder ranks and an internal node may have two
or more ranks if it has more than two children. Figure 1 shows an example of inorder
ranks. Each number in a circle represents an irorder rank of an internal node. The
root node has three inorder ranks 1, 4 and 6.

The following lemma gives an algorithm to compute the inorder of an internal
node.
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Lemma 5 Let v̄ be an internal node, and let i be the inorder of the node. Then v
and i can be converted from each other in constant time by

i = rank()(findclose(v + 1))

v = parent(select)((i) + 1)

Proof: Given an internal node v̄, v+1 represents the position of an open parenthesis
representing the leftmost child w of v. Thus the position u = findclose(v + 1) is the
corresponding close parenthesis and the subtree rooted at w is expressed between v
and u in the balanced parentheses sequence. Since each internal node has at most
two children, an inorder rank of v is defined by the number of leaves that have smaller
preorder ranks than v, and it is calculated by rank()(u).

From the definition of inorder, the inorder i of a node v is the number of times that
during the preorder traversal from the root to v we climb up an edge and immediately
go down another edge. This movement is represented by ‘)(’ in the parentheses
sequence. Therefore we first compute the position x = select)((P, i). Then the open
parenthesis in position x + 1 represents a child of the node v. Because we want to
know which parenthesis corresponds to v, we compute parent(P, x+1), which returns
the position of open parenthesis of v. ��

Note that if a node has two or more inorders, the algorithm returns the smallest
one, and the parent operation is described in Section 5.4.

The balanced parentheses representations of the example suffix tree are shown
at the bottom of Figure 1. An internal node is represented by an open parenthesis
followed by another open parenthesis and it is arranged in order of its preorder rank.
Its inorder rank becomes the number of ‘()’ up to the position indicated by the arrow
from the open parenthesis.

5.2 How to associate information to nodes

We can associate additional information with nodes of a suffix tree. This is necessary
to use a suffix tree as a tool to solve another problem. It is enough to assign consec-
utive numbers to the nodes. Let m be the number of internal nodes in a suffix tree
with n leaves. If we want to store some information in each node, we store them in an
array and use the preorder of nodes as indices to the array. The preorders have values
1 to m + n, that is, there is a one-to-one mapping from the preorders and [1, m + n].

If we want to store information in only internal nodes, we can use the inorder of
nodes as indices. If a node has two or more inorders we use the smallest one. The
inorders have m values in [1, n]. Therefore this method is slightly redundant.

We can also use another order of internal nodes. Let v be an internal node. Then
its index is computed by rank((P, v)−rank()(P, v), that is, the preorder assigned only
internal nodes.

If we want to store information in leaves only, we can use the lexicographic orders
of nodes as indices. Obviously, there exists a one-to-one mapping between a leaf
representing a suffix and the lexicographic order of the suffix.

5.3 How to represent edge-labels

The string-depth of an internal node v, and the edge-label between nodes v and
parent(v) is represented as follows. Let i = inorder(v) be the inorder of the node
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v. Then suffixes TSA[i] and TSA[i+1] share the prefix of length Hgt[i]. That is, the
string-depth of v is equal to Hgt[i]. The edge-label between nodes v and parent(v) is
represented by T [SA[i] + d1..SA[i] + d2 − 1] where

i = inorder(v)

d1 = Hgt[inorder(parent(v))]

d2 = Hgt[i].

Therefore edge(v, d) = T [SA[i] + d1 + d − 1 is computed in O(tSA) time. Recall
that the label can be represented without using the text T . It can be extracted in
O(tSA + (d2 − d1)tΨ) time.

5.4 Navigating the suffix tree

Finding the root node The root node can be found easily because its preorder is
1 and it is represented by the first open parenthesis in P . That is, root() ≡ 1.

A node of the suffix tree is a leaf if and only if its parentheses representation is
(). Therefore isleaf (v) is computed in constant time.

Finding a child node and a sibling Finding a sibling of a node is necessary to tra-
verse all the nodes. For efficient query we normally store for each node pointers to its
first child and the next sibling, which can be represented by the parentheses sequence.
We can compute the next sibling in constant time by sibling(w) = findclose(P, w)+1.

Finding a child is necessary to pattern queries. From the construction of the
parentheses sequence, the first child of v is computed by w = v + 1. Then we
iteratively compute the next sibling. In each step we recover the first character of the
edge-label between v and w and compare with c in O(tSA) time. Therefore the time
for the operation child(v, c) is O(|A|tSA).

We can also use a binary search on the (compressed) suffix array to find child(v, c).
We can find the leftmost and the rightmost descendants of v in constant time [24].
The range [l, r] of the suffix array corresponding to v is then calculated in constant
time. Let P be the string represented by the node v. Then we can find a sub-range
of [l, r] corresponding to a pattern Pc, which is a concatenation of P and c, by a
simple binary search in O(lg n · tSA) time. From the sub-range we can find child(v, c)
in constant time by using lca operation described below. To sum up, child(v, c) can
be found in O(min{|A|, lgn}tSA) time.

Finding the parent Given a node v̄ in the suffix tree, finding the parent node w̄
is just to compute w = enclose(v). It takes constant time.

5.5 How to compute lca

We show an algorithm to compute lca between two nodes represented by a parentheses
sequence in constant time.

Lemma 6 The lowest common ancestor between two nodes in the compressed suffix
tree can be computed in constant time using an auxiliary data structure of size o(n)
bits.
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Proof: Let v, w be the positions in a parentheses sequence P representing nodes
v̄ and w̄ respectively. We can easily check whether v̄ is an ancestor of w̄ or vice
versa. Assume that v < w. Then v̄ is an ancestor of w̄ if and only if findclose(v) >
findclose(w). In this case we return lca(v, w) = v.

Assume that v is not an ancestor of w, and vice versa. Then the position u of
open parenthesis representing the node lca(v, w) is computed in constant time by

u = parent(RMQP ′(v, w) + 1)

where P ′ is a sequence of integers such that P ′[i] = rank((i) − rank )(i). Note that
we need not to store P ′ explicitly. Each element of it can be computed in constant
time using o(n) bits indices.

The range minimum query returns the index m of the minimum element in P′[i..j].
Then P [m] = ‘)’ and P [m+1] = ‘(’ always hold because of the minimality. Therefore
P [m+1] is the open parenthesis of a child of lca(v, w). Therefore the position of open
parenthesis of the node lca(v, w) is computed by parent(m + 1). ��

5.6 How to compute suffix links

Lemma 7 Let v be the position in a parentheses sequence P representing a non-
root node v̄. Then the position w of open parenthesis representing the node sl(v) is
computed in O(tΨ) time by

x = rank ()(v − 1) + 1

y = rank ()(findclose(v))

x′ = Ψ[x]

y′ = Ψ[y]

w = lca(select()(x
′), select()(y′)).

Proof: The algorithm first computes the leftmost and the rightmost leaves that are
descendants of v. Because the leftmost leaf that is a descendant of v is the first leaf
appearing in the parentheses sequence after v, the lexicographic index of the leftmost
leaf is computed by x = rank()(v−1)+1. Concerning the index of the rightmost leaf,
because all leaves below v are encoded in the parentheses sequence between the open
and the close parentheses representing v, the lexicographic order of the rightmost
leaf is computed by y = rank()(P, findclose(v)). The leaves represent suffixes TSA[x]

and TSA[y]. From the definition of Ψ, leaf(x′) and leaf(y′) represent suffixes TSA[x′] =
TSA[x]+1 and TSA[y′] = TSA[y]+1, respectively. Let l = lcp(TSA[x], TSA[y]). Then l is
equal to the string-depth of node v because leaf(x) and leaf(y) are the leftmost and
the rightmost descendants of v. Obviously l−1 = lcp(TSA[x′], TSA[y′]) holds. Then the
node lca(select()(P, x′), select()(P, y′)) has string-depth l− 1, which means it is sl(v).

��

5.7 Variations of compressed suffix trees

We can apply any compressed suffix arrays to our compressed suffix trees. We show
two examples. One is the most space-efficient one.
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Corollary 1 A compressed suffix tree, supporting the operations child(v, c) in
O(min{|A|, lgn} lg2 n/ lg lg n) time, edge(v, d) and depth(v) in O(lg2 n/ lg lg n) time,
sl(v) in O(lg |A|) time, and other operations in constant time, can be represented in
nHh + 6n + O(n lg lg n/lg|A| n) bits for any h ≤ α lg|A| n with 0 < α < 1.

Proof: Follows from Theorem 3 and Grossi et al. [10, Theorem 4.2]. ��
The other is the most time-efficient one.

Corollary 2 A compressed suffix tree, supporting the operations child(v, c), edge(v, d)
and depth(v) in O(lgε n) time, and other operations in constant time, can be repre-
sented in O( 1

ε
n lg |A|) bits for any 0 < ε ≤ n.

Proof: We use the compressed suffix tree of Grossi-Vitter [12, Theorem 3]. It uses
the Patricia trie and perfect hash functions to find a child node. The space complexity
is O(1

ε
n lg |A|). Given a pattern of length m, we can compute the lexicographic order

of a suffix whose prefix is the same as the pattern in O(m lg |A|/ lgn + lgε) time.
By using this data structure, the operation child(v, c) takes O(lgε) time. The space
complexity does not change asymptotically. ��

6 Concluding Remarks

This paper has proposed linear-size data structures for compressed suffix trees which
also support efficient string-depth, lowest common ancestor, and suffix link queries.
The size of the data structure is only 6n+o(n) bits larger than that of the compressed
suffix array. Any unit operation on an ordinary suffix tree can be performed in
polylog(n) time. Actually we can implement a compressed suffix tree in nHh + 6n +
o(n) bits, which may be smaller than the text consisting of n lg |A| bits. Therefore
we have solved the problem of the necessary space for suffix trees.

It is also important to mention the complexity of the working space to construct a
compressed suffix tree. There are many algorithms for constructing compressed suffix
arrays and trees using linear working space [19, 15, 16]. Therefore our compressed
suffix trees can also be constructed using linear working space.

An open question is the following: Can we reduce the linear term 6n to o(n)?
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