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Abstract

We consider the problem of estimating the surface of an ob-
ject from a calibrated set of views under the assumption that
the reflectance of the object is non-Lambertian. In partic-
ular, we consider the case when the object presents sharp
specular reflections. We pose the problem within a varia-
tional framework and use fast numerical techniques to ap-
proach the local minimum of a regularized cost functional.

1 Introduction

Multiframe stereo consists of estimating the three-
dimensional shape of an object from a collection of views
and is one of the classical problems of Computer Vision.
In particular, we concentrate on the calibrated case, where
both the internal parameters of each camera and their rel-
ative configuration is known1. The problem can then be
decomposed, conceptually, into two steps:correspondence
and triangulation. Correspondence refers to the problem
of establishing which point corresponds to which in dif-
ferent images. This is typically addressed by making as-
sumptions on the radiance distribution of the object as well
as on the illumination from the environment. Once point
correspondence is available, together with a statistical de-
scription of the correspondence error, triangulation can be
posed as an optimization problem to determine the three-
dimensional position of corresponding points in a common
reference frame (see [4] for extensive references).

Of the two components, the first is by far the hardest
since correspondence cannot be established for every point
on the scene (the so-called “aperture” problem); further-
more, prior assumptions on the reflectance of the scene can-
not be validated from the data, which makes it difficult to
detect mismatches, outliers and other ambiguities in the cor-
respondence.

Championed by Faugeras and Keriven [5], several meth-
ods have been proposed in recent years to address this prob-
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1Several established methods are available to calibrate a stereo system
and are described in textbooks, for instance in [4].

lem by posing the multiframe stereo problem within a vari-
ational framework: a cost functional that measures the dis-
crepancy between corresponding regions is minimized with
respect to the shape of the object in space. This avoids
having to specify point correspondences and allows im-
posing a certain degree of global regularity on the esti-
mated shape. Discrepancy criteria used include normalized
cross-correlation, total variation,L1 andL2 norms. These

Figure 1: Original dataset, consisting of 27 images of an
object with specular surfaces (the face of the statue is lac-
quered in gold). This presents a challenge to traditional
stereo algorithms, as shown in Figure 2 since the appear-
ance changes dramatically depending on the position of the
object relative to the light.

methods, however, do not solve all problems in multiframe
stereo. Even though the cost functionals described measure
discrepancy between corresponding regions, they still rely
on the assumption that the appearance of a region does not



change significantly across different views2.
This model is patently violated for objects that exhibit

specular reflections. In Figure 1 we show a few views of a
statue covered by a golden shiny finish; as it can be seen,
the appearance changes significantly from different points
of view since the reflection moves as the object moves rela-
tive to the light (notice for instance the dramatic changes in
the appearance of the forehead, or of the top of the crown).
Figure 2 shows the result of applying a variational stereo
algorithm based on a cross-correlation discrepancy on the
dataset of Figure 1. As it can be seen, details are lost, in-
deed even macroscopic structures such as the crown.

This paper addresses precisely this problem: how to per-
form multiframe stereo reconstruction within a variational
framework in the presence of significant departures from
a Lambertian model. In particular, we concentrate on sur-
faces with a concentrated specular component, so that sharp
highlights are present in significantly different positions in
different images.

In principle, the motion of specular reflections among
images provides information about the shape of the object,
under suitable assumptions on the illumination of the envi-
ronment and on the reflectance distribution. However, like
in the correspondence problem, such information relies on
prior assumptions on the global illumination that cannot be
validated from the data. From images alone it is not pos-
sible to reconstruct shape, reflectance and light distribution
uniquely [10] (one can easily construct counter-examples of
purely reflective objects of different shape that, once placed
in environments radiating light with different distributions,
produce exactly the same set of images). Therefore, we
avoid building a universal imaging model and trying to in-
vert it. Instead, the basic idea underlying this paper is to
exploit the defining property of specular reflections (i.e. the
fact that they move on the surface of the object when seen
from different views) in order to identify the subset of three
or more views of the same point that is unaffected by spec-
ularity.

1.1 Relation to previous work

This work naturally relates to several attempts to han-
dle specular reflections in stereo matching and reconstruc-
tion. Bhat and Nayar [1, 2] consider the likelihood of cor-
rect stereo matching by analyzing the relationship between
stereo vergence and surface roughness, and also propose a
trinocular system where only two images are used at a time
in the computation of depth at a point. Brelstaff and Blake
[3] excise the specularities as a pre-processing step; simi-
lar techniques are used also by Okutomi and Kanade [8],
while Nayar et al. [7] have considered using polarized fil-
ters to remove specularities. Ikeuchi [6] formulates the re-

2Normalized cross-correlation is invariant to absolute value and there-
fore accounts for invariance to contrast.

construction problem for specular surface in a photometric
stereo setting.

There is also a close relation between our work and
that of Faugeras and Keriven [5], who cast the traditional
multiframe stereo in a variational framework and use level
set methods to solve it. They address the correspondence
problem by best approximating the brightness constancy as-
sumption at every point in the image3, thus obtaining in ef-
fect a dense correspondence wherever the brightness gradi-
ent is non-zero.

This work also relates to the general problem of estimat-
ing reflectance properties as well as shape from sequences
of images; for instance, Yu et al. use known shape to esti-
mate global illumination [10].

We formulate a variational problem, derive the opti-
mality conditions and design a partial differential equation
(PDE) that converges to a solution that satisfies the neces-
sary conditions. The PDE is solved numerically using level
set methods, and therefore our work is related to the vast
literature on level sets initiated by Osher and Sethian [9].

1.2 Contributions of this paper

We address the problem of multiframe stereo in the pres-
ence of specular reflections. To the best of our knowledge,
we are the first to do so within a variational framework. We
show that under suitable conditions (that each point being
affected by a specularity is visible in at least three views) it
is possible to estimate a suitable model of the shape of the
scene (the smoothest shape that is photometrically consis-
tent with the data). We test our algorithms on real images
sequences, and we report some preliminary although very
promising experimental results.

2 Variational Frameworks for Stereo

2.1 Notation and the Lambertian assumption

Let S be a smooth surface inR3 corresponding to an object
in a 3D scene being imaged from multiple viewpoints. We
indicate a point on this surface byx, and the inward unit
normal vector byN(x). Most stereo algorithms, overtly or
covertly, assume that the scene isLambertian; that is its ra-
diancef is independent of the viewing direction. Under this
assumption, the radiance can be represented by a function
f : S → R on the surface, which captures both the photo-
metric properties of the surface as well as the illumination
properties of the scene.

The radiance functionf together with the surfaceS is
sufficient to tell us how to construct any 2D image of a
Lambertian surface given the location and orientation of the

3This is done by looking for corresponding patches that maximize a
normalized cross-correlation criterion, the underlying assumption being
that of brightness constancy of corresponding points modulo local contrast
and scale.



camera. One of the consequences of this simple model is
that the reflected light intensity coming from a particular
pointx ∈ S is uniform in all directions, thereby giving rise
to the same image intensitiesIi(mi) andIj(mj) (or irra-
diances) at the corresponding locationsmi andmj in two
different images. These corresponding locationsmi andmj

are given by ideal perspective projectionsπi : R3 → Ωi and
πj : R3 → Ωj (whereΩi andΩj denote the image planes
of Ii andIj respectively):mi = πi(x) andmj = πj(x).

Although the radiance function is necessary to gener-
ate a 2D image of a Lambertian surface, it is not neces-
sary to test the hypothesis that a particular pointx ∈ R3

belongs toS. If we are given at least two images of the
surface from different viewpoints, thenx ∈ S implies that
Ii(πi(x)) = f(x) andIj(πj(x)) = f(x) which in turn im-
plies thatIi(πi(x)) − Ij(πj(x)) = 0. This last expression,
which does not involve the radiance, simply amounts to
measuring the similarity between image intensities at points
in two different images and is the basis of almost every
stereo algorithm. Clearly, though, this intensity matching
criterion rests strongly upon the Lambertian assumption and
is no longer sensible when this assumption is violated.

2.2 Variational Lambertian models

We may use the intensity matching criterion discussed
above for the Lambertian case in order to construct objec-
tive functions which we may use to compare the overall
matching score induced by different choices for the surface
S. This is the basic paradigm behind most variational ap-
proaches to stereo.

We start by recalling the variational level set framework
proposed by Faugeras and Keriven for multi-frame stereo
reconstruction. Their approach was to choose the surface
S that minimized an energy functional in the form of a
weighted area

E(S) =
∫

S

Φ(x) dA, (1)

wheredA denotes the regular Euclidean area measure of
the surface. Energy functionals of this sort are geometric
in nature sincedA is an intrinsic measure dictated only by
the geometry of the surfaceS and is therefore invariant to
different parameterizations of the same surface. The key
to making this model useful for stereo reconstruction is to
chooseΦ(x) to be smaller at points which are close to desir-
able surface locations (in this case, locations which induce
good stereo matching) and larger at points that are further
away. OnceΦ has been chosen, a surfaceS which mini-
mizes (1), at least locally, can be obtained via gradient de-
scent evolution by introducing an artificial time variablet.
This is done by deforming some initial guess forS accord-
ing to the following gradient flow

∂S

∂t
= ΦHN −∇Φ · N, (2)

whereH andN denotes the mean curvature and inward unit
normal ofS respectively.

A naive choice forΦ(x) is simply the mean of the
squared errors between each pair of image valuesIi(πi(x))
andIj(πj(x)) at the locationsπi(x) andπj(x) to which the
surface pointx projects (in each image for whichx is a vis-
ible point onS). If we assume there aren(x) visible image
pairs, then we may express this choice as follows.

Φ(x) =
1

n(x)

∑
i6=j

Φij(x) (3)

Φij(x) =

(
Ii

(
πi(x)

)
− Ij

(
πj(x)

))2

. (4)

This choice penalizes individual point mismatches in the
image data and is therefore extremely sensitive to noise and
local texture. Such a measure is severely affected by spec-
ularities as well. To lessen these sensitivities, Faugeras and
Keriven propose a local matching criterion that does not
compare individual points, but small neighborhoods around
these points instead. To do this, they utilize a normal-
ized cross-correlation measure to compute theΦij that are
summed together as in (3):

Φij(x) = 1 − 〈Ii, Ij〉√
〈Ii, Ii〉 · 〈Ij , Ij〉

(x) (5)

where

〈Ii, Ii〉 =
1

|∆|

∫
∆

(
Ii(mi+m)−Īi(mi)

)2
dm,

〈Ij , Ij〉 =
1

|Kij(∆)|

∫
Kij(∆)

(
Ij(mj+m)−Īj(mj)

)2
dm,

〈Ii, Ij〉 =

1

|∆|

∫
∆

(
Ii(mi+m)−Īi(mi)

)(
Ij(Kij(mi+m))−Īj(mj)

)
dm.

The above integrals utilize the values of the imageIi within
a neighborhood∆ (with area denoted by|∆|) around the
point mi = πi(x) as well as values of the imageIj within
a neighborhoodKij(∆) (with area denoted by|Kij(∆)|)
around the pointmj = πj(x), whereKij is a projective
transformation (induced by the tangent plane ofS at the
pointx) which maps the pointmi to mj . Note that we have
been a bit imprecise in our notation4 sinceKij actually de-
pends both uponx as well as the unit normalN(x) which,
together, define the tangent plane ofS at x. Technically,
this means thatΦ is a function of bothx and N , which
introduces more complicated second-order terms into the
gradient flow (2); however, equation (2) yields very simi-
lar results while avoiding these more expensive computa-
tions. The quantities̄Ii(mi) and Īj(mj) denote the mean
values ofIi andIj within the neighborhoods∆ andKij(∆)
aroundmi andmj respectively.

Īi(mi) =
1

|∆|

∫
∆

Ii(mi+m) dm

Īj(mj) =
1

|Kij(∆)|

∫
Kij(∆)

Ij(mj +m) dm.

4 This notation was chosen for a simple, easy-to-follow presentation.



2.3 Limitations of current approaches

The framework we just described poses multiframe stereo
reconstruction as a variational problem where a matching
score is minimized with respect to a surface. The matching
score describes the similarity in the appearance of corre-
sponding regions on different images of the same scene.

In the presence of specular reflections, however, the lo-
cal appearance of image patches can change dramatically
depending on whether one of them contains a specularity.
Therefore, any of the methods based on a pure similarity
measure will fail under these circumstances. Addressing the
problem in its full generality would require modeling ex-
plicitly and estimating not only shape, but also reflectance
properties and light distribution. Unfortunately, this is not
possible since there are non-trivial combinations of differ-
ent scenes that result in the same set of data. In other
words, stereo and inverse global illumination under gen-
eral reflectance models cannot be solved (in a sense there
are more “unknowns” than “data”). One approach often
adopted in the literature is to estimate either geometry or
photometry with other means, or to make assumptions on
the nature (e.g. shape or reflectance) of the scene.

We plan to take a more opportunistic route and exploit
the very nature of specular reflections to avoid having to
compute a full geometric-photometric model of the scene.
We make the assumption that specular reflections (or “high-
lights”) occupy a small portion of the scene and we use the
fact that – by definition – highlights move with the view-
point. Therefore, a highlight will never be present in the
same point on the scene in more than one image (of course
different highlights may be present in different images). In
the next section we explain how to exploit this property to
arrive at a simple and efficient algorithm.

3 Handling specular reflections

The normalized cross correlation measure yields a signif-
icant improvement over (4) in robustness to noise and to
local minima induced by fine texture. In addition, the nor-
malization helps to make the measure invariant to moderate
variations in illumination from different viewpoints. How-
ever, it is still sensitive to specularities, since specular re-
flections tend to “saturate” the irradiance values in the im-
age and are therefore not modeled very well by illumination
shifts.

A straight-forward, but cumbersome, approach for deal-
ing with specularities is simply to excise them from each
scene image. This requires detailed and accurate detection
of the specular regions within each image, which means that
the performance of the following stereo reconstruction algo-
rithm depends greatly upon the accuracy of the “specularity
detector.”

We now propose, instead, a method to deal with specu-
larities more indirectly through a model that requires neither
the explicit detection nor the removal of specular regions.
Our approach involves replacing the first part (3) of the orig-
inal naive model (3)-(4) in the same spirit that Faugeras and
Keriven replaced the second part (4) with (5) to improve
the robustness to noise. Simply stated, we propose using
the median, rather than the mean, of the pair-wise matching
scoresΦij(x) in order to obtain the overall value ofΦ(x).

Φ(x) = median
(
Φij(x)

)
(6)

The rationale behind using the median in place of the mean
can be explained as follows. Specularities essentially form
impulsive outlier regions within the scene images which
therefore give rise to outlier matching scores when com-
paring the values ofΦij(x) for each visible pair of images.
It is well known that the median is much more robust to
such outliers than the mean (compare, for example, mean-
filtering versus median-filtering of images with impulsive
noise). To be more specific, it is clear that if we are given
multiple views of a pointx in the scene, that a given specu-
larity (by the non-Lambertian nature of specular reflections)
will only show up in a few of the views (typically just one
view). In the case thatx belongs to the true surface in
the scene, it will give rise to good local intensity match-
ing, as measured byΦij(x), within pairs of images that do
not contain the specularity, but extremely poor local match-
ing between image pairs in which one image contains the
specularity and the other does not. The mean value ofΦij

will, on account of the latter pairs, indicate a poor overall
matching score, whereas the median value will ignore these
latter pairs and will therefore indicate a good overall match-
ing score. We are therefore more likely to recognize the
true surface in this variational framework in the presence of
strong specularities by choosing the median. Note that if
a pointx doesnot lie on the true scene surface, thenboth
the mean and the median are likely to exhibit poor overall
matching scores.

4 Experiments

In this section we report some experiments in estimating
the shape of the object shown in Figure 1. As it can be seen,
the original data exhibit significant specular reflection, es-
pecially in the crown and face. Performing standard stereo,
without paying attention to specularities, results in gross er-
rors (Figure 2).

The algorithm presented in this manuscript improves sig-
nificantly on these results. In Figure 3 we show the final
results as estimated by our algorithm. As it can be seen
the crown is captured correctly and so is some of the finer
structure of the face. Details such as the nose are lost due
to the regularity imposed in the estimated shape, and have



nothing to do with the model of specular reflection (they
would be lost even if the object was Lambertian). It is pos-
sible to reduce the level of smoothness imposed, but at the
price of a more irregular reconstruction. We prefer to cap-
ture a slightly smoothed-out shape, and then texture-map
the object, as we show in Figure 5, since the texture map
usually helps conveying finer details. Finally, in Figure 4
we show a few snapshots of the evolution of the estimated
shape starting from a large cube. This shows that, even
though the method is intrinsically local and therefore con-
vergence could lead to a local minimum, the algorithm is
quite robust to the initialization, so no particular care must
be observed in choosing an initial shape.

Figure 2: Final shape estimated by a variational stereo al-
gorithm that does not account for specular reflections. The
presence of specularities on the object (Figure 1) causes out-
liers in the matching score that result in gross errors in the
final shape. Note that the crown is missing from the recon-
struction.

Figure 3:Final shape estimated by our algorithm. As it can
be seen, the shape of the crown is captured despite only a
few views per each point being available.

Figure 4:Evolution of the estimate for the object in Figure 1
starting from a cube.

Figure 5: Final estimate of the shape of the object in Fig-
ure 1. As it can be seen, although fine details are lost due to
the smoothness term (this can be reduced at the expense of
“noisier” results), the overall shape of the object is captured
correctly.
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