
Purdue University
Purdue e-Pubs

Computer Science Technical Reports Department of Computer Science

1986

Cache Coherence in Distributed Systems (Thesis)
Christopher Angel Kent

Report Number:
86-630

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Kent, Christopher Angel, "Cache Coherence in Distributed Systems (Thesis)" (1986). Computer Science Technical Reports. Paper 547.
http://docs.lib.purdue.edu/cstech/547

http://docs.lib.purdue.edu
http://docs.lib.purdue.edu/cstech
http://docs.lib.purdue.edu/comp_sci

CACHE COHERENCE IN DISTRIBUTED SYSTEMS

A Thesis

Submitted to the Faculty

of

Purdue Universi ty

by

Christopher Angel Kent

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 1986

To the memory of my father and the persistence of my mother.

ii

III

ACKNOWLEDGEMENTS

I gra.tefully acknowledge the support and help of :my advisor, Doug Comer;

his advice, criticism, and insights have consistently been on the mark. Beyond

that, he has clarified for me the "science" in computer science. I would also like

to thank the other members of my thesis committee: Tim Korb, for exposing

me more fully to the non-UNIX world and coaching me in formal prose; and

Tom Murtagh and Bharat Bhargava, for their suggestions and ability to view

the problems and solutions presented here from a more detached viewpoint.

It is not possible for me to include all of the special people whose lives have

crossed my path during my time at Purdue. I would, however, like to make special

mention and give special thanks to: Forest Baskett for asking the question that

got me started thinking about caching in distributed systems, and for acting

as an ex officio fifth member of my committee; Bob Brown for the late nights

of hacking, Defender, and the Doctor; my father, Theodore Kent, ne Bozhidar

Kantarjiev, for his devotion and encouragement, and for providing a vision for my

life; my mother, Auguste Kent, for her unil.agging support and understanding in

both good times and bad; Marny Livingston for her help during qualifiers; ~ark

Shoemaker for all the support, insanity, and special times, especially the drives

to Chicago.

In addition, the following people made invaluable contributions to my time

at Purdue, without which I probably would not have survived; Paul Albitz,

Wilma Allee, Roger Armstrong, Bruce Barnett, Laura Breeden, Georgia Con

naroe, Kevin Cullen, Jane Douglas, Ralph Drams, \Verner Erhard, Paul de Haas,

Julie Hanover, Steve Holmes, Mark Kamen, Balachander Krishnamurthy, Cathy

iv

La. Luz, ~inda McCord, Wendy Nather, Francie Newbery, Paige Pell, Paula

Perkins, Gary S. Peterson, John Riedl, Katherine Rives, Sandy Robbins, Harry

Rosenberg, Dave Schrader, Art Schuller, Steve Shine, Malcolm Slaney, Herb

Tanzer, Dan Trinkle, the members of the "systems group" I the Ami's crowd, the

staff at the East Coast 6-Day Advanced Course, and many others to whom I

apologize for the lack of space and my momentary lapse of memory. Each con

tributed something tangible, valuable, and irreplaceable to my path through this

life and my completion of this work.

Herb Schwetman of the Microelectronics Computer Technology Corporation

of Austin, Texas graciously provided me with a copy of the CSIM simulation pack

age, which greatly simplified the production of the simulation results reported in

Chapter 5.

And finally, I must acknowledge and thank Christy Bean, my partner in this

and all things, for her patience and understanding, and for continually reminding

and showing me that I had what I needed to see this monumental task through.

Partial support for this research was provided by NSF Grant DCR-8219178,
and grants from Sun Microsystems and Digital Equipment Corporation.

UXIX is a trademark of Bell Laboratories.
VAX is a trademark of Digital Equipment Corporation.

v

TABLE OF CONTENTS

Page

LIST OF TABLES viii

LIST OF FIGURES ix

ABSTRACT .. xi

1. INTRODUCTION 1

1.1 Background ...
1.2 Caching in computer systems

1.2.1 Single cache systems .
1.2.2 Multiple cache systems .

1.3 Distributed Cache Systems ..
1.3.1 Sun Microsystems' Network Disk
1.3.2 CFS .
1.3.3 The ITC Distributed File System.
1.3.4 Sun Microsystems Network File System
1.3.5 Apollo DO!;1.UN .

1.4 Memory systems us. Distributed systems '"
1.5 OUf Solution - The Caching Ring .

1.5.1 Broadcasts, Multicasts, and Promiscuity .
1.5.2 Ring Organization .

1.6 Previous cache performance studies. . ..
1.7 Previous file system performance studies.
1.8 Plan of the thesis .

2. DEFINITIONS AND TERMINOLOGY

2.1 Fundamental components of a distributed system.
2.1.1 O~&~ .
2.1.2 Clients, managers, and servers .

2
4

4
6

13
14
14
15
15
16
16
17
18
19
19
20
21

24

2.2 Caches .
2.3 Files and file systems .

2.3.1 File system components
2.3.2 The UNIX file system .
2.3.3 Our view of file systems

vi

26
27
28
29
30

3. ANALYSIS OF A SINGLE-PROCESSOR SYSTEM 31

3.1 Introduction
3.2 Gathering the data.
3.3 The gathered data. .

3.3.1 Machine environment
3.4 Measured results

3.4.1 System activity ..
3.4.2 Level of sharing ..

3.5 Simulation results
3.5.1 The cache simulator
3.5.2 Cache size, write policy, and close policy.
3.5.3 Block size ~ .
3.5.4 Readahead policy .
3.5.5 Comparisons to measured data
3.5.6 Network latency

3.6 Comparisons to previous work.
3.7 Conclusions .

4. THE CACHING RING ..

4.1 Underlying concepts of the Caching Ring
4.2 Organization and operation of the Caching Ring

4.2.1 The interconnection network
4.2.2 Groups .
4.2.3 The coherence algorithm .
4.2.4 Cache-to-cache network messages.
4.2.5 Semantics of shared writes.
4.2.6 Motivation for this design

4.3 Summary .

31
32
33
34
34
36
37
40
41
43
46
47
49
51
51
54

56

56
57
58
59
59
64
71
"?,-
74

5. A SIMULATION STUDY OF THE CACHING RING. 75

5.1

- ?0._

A file system built on the Caching Ring .
5.1.1 Architecture of the Caching Ring file system
5.1.2 Implementation of the file system
5.1.3 Operating system view of the file system.
Simulation studies .

75
75
76
77
78

5.2.1 Description of the simulator.
5.2.2 Using the trace data ..
5.2.3 Miss ratio vs. cache size .
5.2.4 Network latency .
5.2.5 Two processors in parallel execution
5.2.6 Simulating multiple independent clients .
5.2.7 Size of the server cache .. .
5.2.8 Comparison to conventional reliable broadcast

5.3 Conclusions .

6. SUMMARY AND CONCLUSIONS ..

6.1 Caching in the UNIX file system.
6.2 Caching in distributed systems

6.2.1 Location of managers
6.2.2 Cache coherence

6.3 The Caching Ring
6.4 Future directions
6.5 Summary ..

vii

78
80
80
84
84
85
89
90
92

94

94
95
95
95
96
96

101

BffiLIOGRAPHY . 102

VITA , .. 108

LIST OF TABLES

Table

1.1 Characteristics of various memory technologies

3.1 Description of activity traces

3.2 Measurements of file system activity

3.3 Linear access of files .

3.4 Sharing of files between processes

3.5 Size of processor groups sharing files

3.6 I/O ratio vs. cache size and write policy for trace A

3.7 Effect of close policy on I/O ratio for trace A ...

3.8 I/O ratio vs. block size and cache size for trace A .

3.9 I/O ratio vs. cache size and readahead policy for trace A .

viii

Page

3

35

38

38

39

39

43

45

47

55

4.1

5.1

• 0,..

Possible states of cache entries

~ss ratio and effective read access us. cache size

Disk and network utilizations for various cache sizes

61

81

83

ix

LIST OF FIGURES

Figuxe Page

1.1 Systems without and with a cache 2

1.2 Uniprocessor without cache 5

1.3 Uniprocessor with cache/directory 7

1.4 Two competing caches after Tz modifies a 8

1.5 Tang's multiprocessor 10

1.6 Presence Bit solution. 11

1.7 Snoopy Ca.che organization 22

1.8 Typical distributed system. 23

3.1 I/O ratio VB. cache size and write policy for trace A 44

3.2 Effect of close policy on I/O ratio for trace A . . . 45

3.3 I/O ratio us. block size and cache size for trace A . 46

3.4 I/O ratio vs. cache size and readahead policy for trace A . 48

3.5 Effect of cache size and transfer time on effective access time 50

3.6 Effective access time vs. cache size and transfer time 52

4.1 Block diagram of the Caching Ring Interface 57

4.2 States of cache entries in a client 63

4.3 States of cache entries in a server 65

4.4 Timeline showing contention problem 73

5.1 Miss ratio and effective read access vs. cache size

5.2 Multiple timesharing systems on the Ring . .

5.3 Server disk utilization vs. timesharing clients

x

82

87

88

xi

ABSTRACT

Kent, Christopher Angel. PhD, Purdue University, August, 1986. Cache Coher
ence in Distributed Systems. Major Professor: Douglas E. Comer.

Caching has long been recognized as a powerful performance enhancement

technique in many areas of computer design. ~fost modern computer systems

include a hardware cache between the processor and main memory, and many

operating systems include a software cache between the file system routines and

the disk hardware.

In a distributed file system, where the file systems of several client machines

are separated from the server backing store by a communications network, it

is desirable to have a cache of recently used file blocks at the client, to avoid

some of the communications overhead. In this configuration, special care must

be taken to maintain consistency between the client caches, as some disk blocks

may be in use by more than one client. For this reason, most current distributed

file systems do not provide a cache at the client machine. Those systems that do

place restrictions on the types of file blocks that may be shared, or require extra

communication to confirm that a cached block is still-alid each time the block

is to be used.

The Caching Ring is a combination of an intelligent network interface and an

efficient network protocol that allows caching of all types file blocks at the client

machines. Blocks held in a client cache are guaranteed to be valid copies. We

measure the style of use and performance improvement of caching in an existing

file system, and develop the protocol and interface architecture of the Caching

Ring. Using simulation, we study the performance of the Caching Ring and

compare it to similar schemes using conventional network hardware.

1

1. INTRODUCTION

The principle of locality 0/ reference [Den70,Den80] is the observation tha.t

computer programs exhibit both spatial and tempora.l locality in referencing

objects (such as memory words or disk blocks). Temporal locality means that

objects to be referenced in the near future are likely to have been in use recently.

Spatial locality means there is a. high probability that objects needed in the near

future may be located near the objects currently in use. Less expensive access

to recently used objects increases program performance.

A cache is a. device that exploits both spatial a.nd temporal locality. It auto

matically maintains a copy of recently referenced objects in a higher-performance

storage medium than that in which the objects themselves are stored. The pro

gram operates on copies that reside in the cache instead of operating directly on

the objects, with a resultant increase in performance. The cache is responsible for

propagating changes to the copies back to the stored objects. Figure 1.1 shows

the difference between systems with and without a cache. The function /(a) de

scribes the cost of accessing an object in the storage module. The function /'(a)

describes the cost of accessing an object in the storage system that combines the

storage module and the cache. Exploiting locality of reference allows the values

of I'(a) to be less than I(a), for most a.

A ca.che system is coherent if, whenever an object is read, the returned value is

the one most recently written. A system with only one cache is coherent because

there is only one path to and from the objects-through the single cache. In a

system with N processing elements, N > I, sharing a common pool of objects,

there are N paths to and from the objects. If each path contains a cache holding

copies of some of the objects, copies of the same objects may exist in more than

2

Processor

J(a)

Storage
Module

Processor

------ !~la)_

Cache

I(a)

Storage
Module

____________ ..J

Figure 1.1 Systems without and with a cache

one cache. A mechanism to propagate upda.tes from one cache to another IS

necessary to insure coherence.

Several cache coherence mechanisms exist for systems of processors and caches

that share a common block of main memory. The machines operate in an en

vIronment where systems are tightly coupled, highly synchronous, with reliable

communication paths that are as the memory subsystem.

It is increasingly common to connect processors in more loosely coupled sys

tems. The only communication path between processors and the resources they

share is a. communications network [TanSI] that has transmission speeds several

orders of magnitude slower than main memory. We describe a mechanism for

cache coherence in these systems.

1.1 Background

The idea that a computer should use a memory hierarchy dates back to at

least the early portion of the 20th century; it is suggested in the pioneering paper

of von Neumann et al. [NBG63]. The motivation for a storage hierarchy in a

processor is economic. The performance and cost of various storage technologies

varies widely. Usually, the fastest and most expensive technology is used for

3

the regist~rs in the processor. Ideally, one would like to execute programs as

if all data existed in the processor registers. When more data are required,

larger, lower-eost stora.ge technologies are used for data and instruction storage,

proceeding from fast semiconductor memory, to slower semiconductor memory,

to magnetic disk storage. and finally to magnetic tape or other archival storage

media.

Table 1.1 Characteristics of various memory technologies

RelPltenl Cod>. MB.i.n Secondary Backing A«hi....
Mllmori. Merngria ·Core- Storu ,..~

At:<:.. time 10 10 100 10' 10' lO'
1M)
Tranllt'er 10 10 100 10' 10' 10'
time (nil
Addr....bl. 2°_210 26_21<1. 21·.2~· 2~o_2~" :au .OlI1o 2211 .2"°
unit,
TeduiololY Semleonduc!;Or Semit:onductor Semiconductor Semicondl.ll:tor M~.tic: M"lP'Jdic:

Optica.l

A memory level becomes a performance bottleneck in the system when the

device accessing the memory can generate access requests faster than the memory

can service them. By adding a small memory that fits the speed of the device,

and using the small memory properly, one may achieve a significant increase in

performance. Copies of objects in the slower memory can be temporarily placed

in the faster memory. The accessor then operates only on the faster memory,

eliminating the bottleneck while retaining the advantages of the larger, slower

memory. The objects to be placed in the faster memory are selected to minimize

the time the accessor spends waiting for objects to be copied back and forth.

The overhead of the copying operations is offset by the performance advantage

gained through repeated references to copies in the faster memory.

The process of selecting which objects to move between levels in the mem

ory hierarchy was first automated in the ATLAS demand paging supervisor

[Fot61,KELS62]. The ATLAS machine had two levels in its hierarchy - core

memory and a drum. The demand paging supervisor moved memory between

the core memory and the drum in fixed-sized groups called pages. An automatic

system was built that allowed users to view the combination of the two storage

--

4

systems as a single level (i.e., the operation of the mechanism was trar18parent).

This "one-level storage system" incorpora.ted an automatic learning program that

monitored the behavior of the main program and attempted to select the correct

pages to move to a.nd from the drum.

The ATLAS one-level store was the first example of virtual memory - a mech

anism tha.t expands the space available for programs and data beyond the limits

of physical main memory. In fact, this mechanism is simply an environment

where programs and data are stored in their entirety outside of main memory,

and main memory is a cache for the processor.

The IBM 360/85 [CGP68] incorporated the fir,t application of thi, idea to

high speed devices. The term cache was introduced in [Lip68] to describe the

high speed associative buffer in the memory subsystem of the 360/85. This buffer

was used to hold copies of recently referenced words from lJl3.in memory.

So far, we have discussed caching only in the context of managing the mem.

ory space of a processor. Many other forms of caching exist. Caches of recently

referenced disk blocks held in main memory increase overall disk system perfor

mance !Tho78,Sm.i85]. Digital typesetters cache font information to reduce the

amount of data transmitted over the communications channel from the host com

puter [FK85). Program execution times can be enhanced by precomputing and

caching values of expensive functions (c.g., trigonometric functions) and using

table lookup rather than run-time computation. Applicative language systems

cache the result values of expressions to avoid needless recomputation [KS86].

1.2 Caching in computer systems

1.2.1 Single cache systems

We now examine the most common type of cache in computer systems - that

found in a uniprocessor system between the central processor unit (CPU) and

main memory. For example, with a CPU cycle time of 60ns and memory access

time of 150ns, there is a large disparity between the relative speeds of the CPU's

need to access memory and the ability of the memory system to satisfy requests.

5

ADs, STOREs
Data Blocks

Processor

LO
and

Storage
Module

Figure 1.2 Uniprocessor without cache

In a configuration where the CPU directly accesses main memory, the CPU will

waste two to three cycles per memory reference, waiting for memory to respond.

(See figure 1.2.) Wiecek measured. CPU instruction set usage in a. time-sharing

environment on a VAX-ll processor. This study showed that 50 - 60% of the

executed. instructions read memory, and 30 - 40% wrote memory [Wie82j. For

the VAX-Il, the average number of memory references per instruction is 1.18.

McDaniel found similar results in his study of instruction set usage on a. personal

workstation in [McD82J. Thus, in OUI example, lack of a. cache would cause the

CPU to wait an average of 2.875 cycles for each memory reference, allowing an

a.verage 35% processor utilization.

A cache is introduced as a small amount of high-speed memory between the

CPU and memory. (See Figure 1.3.) The cache memory has an access time

comparable to the cycle time of the cPU. The cache hardware contains control

logic to manage a directory of the locations stored in the cache, as well as the

additional memory fo reached values. When the CPU performs a. LOAD from

memory, the cache first searches its directory for a copy of the desired location.

If found, the cache returns a copy of the contents. If the location is not cached,

the CPU waits while the cache fetches the location from slower main memory,

copies the value into the cache, and returns it to the CPU. In practke, the cache

manipulates blocks of memory consisting of several contiguous words, to reduce

6

directory overhead. When the contents of a. particular memory word must be

copied into the cache, the entire surrounding block is copied into memory.

The amount of storage in a cache is finite. If no free space remains in the

ca.che to hold the contents of the block just fetched, one of the currently held

locations must be selected for removal. Most systems remove the least recently

used object under the assumption that the entries in the cache not used for the

longest period are the least likely to be re-used in the near future.

When the CPU executes a STORE to memory, the cache checks its directory

for a copy of the referenced location. If found, the cache updates the copy, and

does not write to main memory. The cache writes the update to main memory

when the block containing the location is selected for removal from the cache.

This minimizes the average access delays on a STORE. A cache that uses this

method of propagating updates is called a write-back cache.

A write-through cache copies the update to main memory at the same time

that the copy in the cache is modified. Updating main memory immediately

generates more traffic to the memory, since every STORE instruction generates a

main memory reference. While the main memory executes the STORE, the CPU

is blocked from making any other memory references.

In a disk block cache, the file system portion of the operating system main

tains copies of recently accessed disk blocks. All disk operations search the disk

cache for the desired block before accessing the disk, yielding greatly improved

disk subsystem performance.

1.2.2 Multiple cache systems

In a tightly coupled multiprocessor, N CPUs share the same main storage.

If each CPU has a private cache, there are now multiple access paths to main

memory, and care must be taken to preserve coherence.

Let us examine a specific example consisting of two tasks, TJ and T:, running

on processors PI and P1 with caches C J and C;: (see figure 1.4). Let a be the

address of a main memory location that is referenced and modified by both tasks.

7

Processor

LOADs

and STOREs

. Data Block:

: Data Block :. .

: Data Block :

Data Block :

Data Block:.................

: Main Store Address

...
: Main Store Address

: Main Store Addrellll

: Main Store Addresll

: Main Store Addrellll

Dirt:dory Data Cache

Cache

Data

Blocks

Storage
Module

Figure 1.3 Uniprocessor with cache/directory

B

P,

a

a'

Main Memory

c,

a'

Figure 1.4 Two competing caches after T 3 modifies a

A modification of a by T1 is completed in C1 but not returned to main memory.

Thus, a subsequent LOAD by T:z will return an obsolete value of a.

Even a. write-through cache does not insure coherence. After both T 1 and T:z

have referenced a, subsequent references will be satisfied by the cache, so a. new

value written to main memory by one processor will not be seen by the other.

Sharing a single cache between the N processors eliminates coherence prob

lems. But such a. cache is likely to be a performance bottleneck. The demands

on it would be N times that of a. single cache, because it would handle all the

da.ta requests for each of the N processors. Also, with all the processors sharing

a single cache, much of the history of reference for each processor will be lost,

and with it, much of the performance advantage.

A mechanism is necessary to couple the caches themselves and actively man

age their contents. Several such mechanisms have been devised, relying on the

removal of memory blocks from caches whenever there is a risk that their contents

may have been modified elsewhere in the system. Inappropriate (too frequent)

removal will result in greatly decreased performance, because more time will be

spent waiting for blocks to be loaded into the cache.

9

1.2.2.1 Tang's solution

Tang presented the first practical design for a multicache, multiprocessor

system ITan76]. The cache structure for each processor is the same as in a single

cache system, with some additional features to facilitate communication among

caches.

Tang makes a distinction between cache entries that are private and shared.

An entry is private if it has been modified with respect to main memory, or is

about to be modified by the corresponding processor. A private entry may exist

in only one cache so that, at any instant, there is only one version of the data in

the system.

A sha.red entry has not been modified by any processor. It is allowed to exist

simultaneously in several caches in the system, to allow 'read only' data to be

accessed more efficiently.

Communication among the caches is controlled by a storage controller that

maintains a central directory of the contents of all the caches. All communication

between the caches and main memory passes through this storage controller.

When the cache fetches a memory location, the cache controller alters the ca.che

directory to show tha.t a copy of the fetched memory location is present in the

cache. The storage controller also alters the central directory to show that a.

copy of the memory location is in the cache.

The normal LOAD and STORE instructions between the processor and the

caches are augmented with new commands sent from the caches to the storage

controller and from the controller to the caches. Using these commands, the

storage controller assures that the cache system remains coherent. The controller

converts shared blocks to private blocks when a processor is about to write a.

location, then converts private blocks to shared blocks when another processor

attempts to read a location previously marked as private.

10

Processor Processor Processor

t
-

Cache Cache Cache

.--------,, Central , Storage,
I Directory : Controller1...._------ '

Storage

Module

LOADs and
STORes

Command8
and Data

Data
Blod,.

Figure 1.5 Tang's multiprocessor

1.2.2.2 The Presence Bit solution

The Presence Bit solution for multicache coherence [CF78] is similar to Tang's

solution. Instead of duplicating each cache's directory in a. central directory, main

memory has N + 1 extra hi ts per block. N of these bi ts correspond to the caches

in the system, and are set if and only if the corresponding cache has a copy of the

block. The remaining bit is reset if and only if the contents of the main memory

block are identical to all cached copies. Each cache has, associated with each

block, a bit that is set to show tha.t this cache has the only copy of this block.

The comma.nds that are executed between the caches and main memory are

essentially identical to those between Ta.ng's storage controller and caches. The

advantage of the Presence Bit solution is lower overhead per memory block.

Processor Processor Processor

11

:Mll.in Stor<! Addre...:------------:Mll.in Ston! Addre.u._-----------
:?bin Ston! Addreu------------
------------)hin Store Addl"llu

Din:ctory

-~:~::::::
-: :Dll.tIl. Bloci.~- .

: :DIl.t.a Bloci.:

: :D.t.a Bloci.:

Data Ca~ht:

LOADs and
STOREs

Cache Cache

Cache Commands and
Data

Cache Control.,... 1·" : _..... ,, ,
:--r-,--: ;..--;
:--~-:--: ;...--,
:- -:- -:--:
.'pieie'nce

Bit.!

:---~

............... P.a:-~~. ~~l?r3:g~ .

;..------------------------~

;...------------------------~

:-------------------------~

Data Word" or Bloch

Main Memory

Figure 1.6 Presence Bit solution

12

1.~.2.3 The Snoopy or Two- Wal' cache

A snoopv cache is one that watches all transactions between processors and

main memory and may manipulate the contents of the cache based on these

transactions.

Three kinds of snoopy cache mechanisms have been proposed. A write

through strategy fAP77] writes all cache updates through to the main memory.

Caches of the other processors monitor these updates, and remove held copies of

memory blocks that have been updated.

A second strategy is called write-first [Go083]. On the first STORE to a

cached block, the update is written through to main memory. The write forces

other caches to remove any matching copies, thus guara.nteeing that the writing

processor holds the only ca.ched copy. Subsequent STOREs can be performed in

the cache. A processor LOAD will be serviced either by the memory or by a

cache, whichever has the most up-to-date version of the block.

The third strategy is called ownership. This strategy is used in the SYNAPSE

multiprocessor[Fra84]. A processor must "'own" a block of memory before it is

allowed to update it. Every main memory blod: or cache block has associated

with it a single bit, showing whether the device holding that block is the block's

owner. Originally, all blocks are owned by the shared main memory. When a

cache needs to fetch a. block, it issues a public read, to which the owner of the

block responds by returning a current copy. Ownership of the block does not

change.

When a processor P desires to modify a block, ownership of the block is

transferred from the current owner (either main memory or another cache) to

F's cache. This further reduces the number of STOREs to main memory. All

other caches having a copy of this block notice the change in ownership and

remove their copy. The next reference causes the new contents of the block to

be transferred from the new owner. Ownership of a block is returned to main

memory when a cache removes the block in order to make room for a newly

accessed block.

13

A snoopy cache has the smallest bit overhead of the discussed solutions, but

the communication path must be fast and readily accessible by aU potential

owners of memory blocks. Operations between owners are tightly synchronized.

The other solutions allow the caches and memory to be more loosely coupled,

but rely on a central controller for key data. and arbitration of commands.

1.3 Distributed Cache Systems

With the continuing decline in the ccst of computing, we have witnessed

a dramatic increase in the number of independent computer systems. These

machines do not compute in isolation, but rather are often arranged into a dis

tributed system consisting of single-user machines (workstations) connected by a.

fast local-area network (LA."l). The workstations need to share resources, often

for economic reasons. In particular, it is desirable to provide the sharing of disk

files. Current network technology does not provide sufficiently high transfer rates

to allow a processor's main memory to be shared across the network.

Management of shared resources is typically provided by a trusted central

authority. The workstations, being controlled by their users, cannot be guar

anteed to be always available or be fully trusted. The solution is to use server

machines to administer the shared resources. A file server is such a machine that

makes available a large quantity of disk storage to the client workstations. The

clients have little, if any, local disk storage, relying on the server for all long-term

storage.

The disparity in speeds between processor and remote disk make an effective

caching scheme desirable. However, no efficient, fully transparent solutions exist

for coherence in a distributed system. Distributed data base systems [BG81] use

locking protocols to provide coherent sharing of objects between clients on a net

work. These mechanisms are incorporated into the systems at a very high level,

built on a non-transparent network access mechanism, and are not concerned

with performance improvements. We prefer a solution that is integral to the

network file system, and provides the extra performance of an embedded cache.

14

Several distributed file systems that include some form of caching exist. The

next sections present a survey of their characteristic features.

1.3.1 Sun MicrosysteDlB' Network Disk

Sun Microsystems' Network Disk [M.c84] is an example of the simplest form

of sharing a disk across the network. The client workstation contains software

tha.t simulates a locally attached disk by building and transmitting command

packets to the disk server. The server responds by transferring complete disk

blocks. The client has a disk block caching system, keeping the most recently

used blocks in main memory. The server's disk is partitioned into as many logical

disks as there are clients. No provision is made for communication among clients'

caches; clients may only share read-only data.

1.3.2 CFS

The Cedar experimental programming environment [Tei84] developed at the

Xerox Palo Alto Research Center supports a distributed file system called CFS

[SGN85j. Each of the Cedar workstations has a local disk, and this disk may be

used. for local private files or shared. files copied from a remote file server.

A file to be shared is first created as a file on the local disk. To make the file

available for sharing, the client transfers it to the remote file server. A client on

another workstation can then share the file by copying it to his local disk. The

portion of the disk not occupied by local files is used as a cache for remote files.

Files are transferred between client and server as a whole.

Coherence of the cache of files on local disk is guaranteed because shared files

may not be modified. To update the contents of a shared file, a new version

which reflects the updated information is created on the server. This version

has the same name as the original file upon which it is based; only the version

numbers differ. Thus, all cached copies of a particular version of a file contain

the same data. It is possible, however, to have a cached copy of a file that do.es

not reflect the latest version of the file.

15

1.3.3 The ITC Distributed File System

The Information Technology Center of Carnegie-Mellon University is building

a campus-wide distributed system. Vice, the shared component of the distributed

system, implements a. distributed file system that allows sharing of files [SHN*85].

Each client workstation has a. local disk, which is used for private files or shared

files from a a. Vice file server. Shared files are copied as a whole to the local disk

upon open, and the client operating system uses this local copy as a. cache to

satisfy disk requests. In this regard, the ITC caching mechanism is similar to

that of CFS.

Cache validation is currently performed by the client querymg the server

before each use of the cached copy. A future implementation will allow the

server to invalidate the client's cached copy. Changes in the cached copy are

stored back to the server when the file is dosed.

1.3.4 Sun Microsystems Network File System

Sun Microsystems' second generation distributed file system !WLS85] allows

full sharing of remote files. Client workstations forward disk block requests to a

file server. There, the appropriate disk is read, and the data is returned to the

client. The client may cache the returned data and operate from the cache.

Changed blocks are written back to the server on file close. At that time,

all blocks associated with the file are flushed from the cache. Each entry in

the cache has an associated timeout; when the timeout expires, the entry is

automatically removed from the cache. Cached files also have an associated

timestamp. With each read from a remote file, the server returns the timestamp

information for that file. The client compares the current timestamp information

with the information previously held. If the two differ, all blocks associated with

the file are flushed from the cache and fetched again.

Coherence between client caches is achieved by assuring that ea.ch client is

coherent with the server's cache. However, as the changes made by a client are

16

not seen until the client closes the file, there may be periods of time when two

clients caching the same file have different values for the same cached block.

1.3.5 Apollo DOMAIN

The Apollo DOMAIN operating system embodies a distributed file system

that allows location transparent access of objects [LLHS8S]. Each workstation

acts as a client, and may a.ct as a server if it has local disk storage. Main memory

is used as a. cache for local and remote objects in the file system.

The distributed file system does nothing to guarantee cache coherence be

tween nodes. Client programs are required to use the locking primitives pro

vided by the operating system to maintain consistency of access. The designers

decided that providing an automatic coherence mechanism in the cache system

was counter to their efficiency goals.

1.4 Memory systems tis. Distributed systeins

Let us return to the memory subsystem solutions and examine the fundamen·

tal assumptions that render them inappropriate for a distributed system envi

ronment. All the solutions require reliable communications between the various

components of the memory hierarchy. In addition, the snoopy cache requires not

only direct communications, but reliable receipt of broadcast messages. Reliable

communication is achieved by building synchronous systems that allocate some

portion of the cycle time to doing nothing but receiving messages.

Because electrical disturbances may occur on local area. networks, it is not

possible to achieve reliable communications without considerable overhead. Re

liable stream-oriented protocols like TCP [PosSII are required for point-to-point

connections. A broadcast network such as the Ethernet [XerSOj, on which hosts

have the ability to receive all transmissions on the medium (i.e., hosts may be

prom£scuous), would seem ideal for a snoopy cache implementation. However,

the Ethernet provides only "best effort" delivery. To provide reliable broadcast

commurUcations, a specialized protocol must be employed [CMS4,PP831. with

17

m~ch overhead. Even if cheap reliable broadcast were available, the potential

load on systems to process every message on the network is large.

Another problem is granularity of reference and locking. In a. memory system,

requests for a particular block are serialized by hardware. The hardware allows

only a single processor access to a given main memory block at a.ny time. While

one processor is accessing the blod, other processors must stall, waiting their

turn. However, the time involved is small, typically one or two CPU cycle times,

depending on the instruction that generated that access.

In a distributed system, in the time that it takes processor PA to send a

message indicating a desire for a private read or an update, processor P B may be

updating its shared copy of that same block (which should actually now be private

to Pit. a.nd have been removed from PB's cache). Because a distributed system

is asynchronous, access to shared blocks must be serialized by explicit locking

mechanisms. These mechanisms involve sending messages between clients and

servers and encounter large communication delays. Because the communications

delays are large, the size of the blocks that are locked are large, to maximize the

ratio of available data to locking overhead. Unlike a memory system, locks are

held for a long time, and a processor may have to stall for a. long time waiting

for a shared block.

1.5 Our Solution - The Caching Ring

We propose a network environment that provides transparent caching of file

blocks in a distributed system. The user is not required to do any explicit

locking, as in traditional database concurrency control algorithms, nor is there

any restriction on the types of files that may be shared.

The design is inspired by both the snoopy memory cache and the Presence

Bit multicache coher~nce solution. Caches that hold copies of a shared file object

monitor all communications involving that object. The file server maintains a list

of which caches have copies of every object that is being shared in the system,

and issues commands to maintain coherence among the caches.

18

Our environment retains many of the benefits of low-cost local a.rea networks.

It uses a low-cost communications medium and is easily expandable. However. it

allows us to create a more efficient mechanism for reliable broadcast or multicast

than is available using "conventional" methods previously mentioned.. Operation

of the caches relies on an intelligent network interface that is an integral part of

the caching system..

The network topology is a. ring, using a token-passing access control strategy

[FN69,FL72,SP79!. This provides a synchronous, reliable broadcast medium not

normally found in networks such as the Ethernet.

1.5.1 Broadcasts, Multicasts, and Promiscuity

Because it is undesirable to burden hosts with messages that do not concern

them, a multicast addressing mechanism is provided. Most multicast systems

involve the dynamic assignment of arbitrary multicast identifiers to groups of

destination machines (stations) by some form of centralized management. Dy

namic assignment of multicast identifiers also requires costly lookup mechanisms

at each station to track the current set of identifiers involving the sta.tion, and to

look up the multicast identifier in each network packet to determine if the packet

should be copied from the network to the host.

The addressing mechanism in our network allows us to avoid the overhead of

multicast identifier lookup, and avoid the requirement of central management.

Addressing is based on an N-bit field of recipients in the header of the packets.

Each station is statically assigned. a particular bit in the bit field; if that bit

is set, the station accepts the packet and acts on it. Positive acknowledgement

of reception is provided to the sender by each recipient resetting its address

bit before forwarding the packet. Retransmission to those hosts that r:rUssed a

packet requires minimal computation. Thus, it is possible to efficiently manage

2" multicast groups with reliable one ring cycle delay delivery, as opposed to

n point-to-point messages for a multicast group of size n, which is typical for

reliable multicast protocols on the Ethernet.

19

Missed packets are a rare problem, because the token management scheme

controls when packets may arrive, and the interface hardware and software is

designed to be always ready to accept the next possible packet, given the design

parameters of the ring. The primary reasons for missed packets are that stations

crash or a.re powered down, or packets a.re damaged due to ring disturbances.

1.5.2 Ring Organization

Traffic on the ring consists of two types of packets: command and data. Each

station introduces a. fixed delay of several bit times to operate on the contents

of a. packet as it passes by, possibly recording results in the packet as it leaves.

Command packets and their associa.ted operations are formulated to keep delays

at each station to a minimum constant time. If, for example, the appropriate

response is to fetch a block of data from a backing store, the command packet is

released immediately, and the block is then fetched and forwarded in a separate

da.ta. .packet.

The interface contains the names of the objects cached locally, while the

objects themselves are stored in memory shared between the interface and the

host. Thus, status queries and commands are quickly executed.

1.6 Previous cache performance studies

Many of the memory cache designs previously mentioned are paper designs

and were never built. Of the ones that were built, only a few have been evaluated

ap.d reported on.

Bell et al. investigated the various cache organizations using simulation dur

ing the design process of a minicomputer [BCB74]. Their results were the first

comprehensive comparison of speed t/s. cache size, write-through tis. write-back,

and cache line size, and provided the basis for much of the "common knowledge"

about caches that exists today.

20

Smith has performed a. more modern and more comprehensive survey of cache

organizations in [Smi82]. This exhaustive simulation study compares the perfor

mance of various cache organizations on program traces from both the IBM

System/360 and PDP-ll processor families.

A number of current multiprocessors use a variation of the snoopy cache

coherence mechanism in their memory system. The primary differences are how

and when writes are propagated to main memory, whether misses may be satisfied

from another cache or only from memory, and how many caches may write a

shared, cached block. Archibald and Baer have simulated and compared. the

design and performance of six current variations of the snoopy cache for use in

multiprocessors [AB85]. In [LH86j. Li and Hudak have studied a. mechanism

for a virtual memory that is shared between the processors in a. loosely coupled

multiprocessor, where the processors share physical memory that is distributed

across a network and part of a global address space.

1.1 Previous file system performance studies

There has been very little experimental data published on file system usage

or performance. This may be due to the difficulty of obtaining trace data, and

the large amounts of trace data that is likely to result. The published studies

tend to deal with older operating systems, and may not be applicable in planning

future systems.

Smith studied the file access behavior of IBM mainframes to predict the

effects of automatic file migrationISmiSI]. He considered only those files used by

a. particular interactive editor I which were mostly program files. The data were

gathered as a. series of daily scans of the disk, so they do not include files whose

lifetimes were less than a day, nor do they include information about the reference

patterns of the data within the files. Stritter performed a similar study covering

all files on a large IBM system, scanning the files once a day to determine whether

'or not a given file had been accessed [Str77]. Satyanarayanan analyzed file sizes

and lifetimes on a PDP-lO system [SatSI], but the study was made statically by

21

scanning the contents of disk storage at a fixed .point in time. More recently,

Smith used trace data from IBM mainframes to predict the performance of disk

caches [Smi85).

Four recent studies contain UNIX measurements that partially overlap ours:

Lazowska et al. analyzed block size tradeoffs in remote file systems, and reported

on the disk I/O required per user [LZCZ84], McKusick et ai. reported on the ef

fectiveness of current UNIX disk caches [MKL85], and Ousterhout et al. analyzed

cache organizations and reference patterns in UNIX systems [OCH*85]. Floyd

has reported extensively on short-term user file reference patterns in a university

research environment IFlo86]. We compare our results and theirs in Section 3.6.

1.8 Plan of the thesis

After defining the terminology used in the rest of the work, we examine the

use and performance of a. file system cache in a uniprocessor, first with local disks

and then with remote disks. We then proceed to investiga.te applications of the

caching ring to a multiple CPU, multiple cache system under similar loads.

Finally, we explore other areas in distributed systems where these solutions

may be of use, as well as methods of adapting the ideal environment of the

caching ring to conventional networking hardware.

Processor

.. ,

Cache

Processor

Cache

Main Memory

Processor

Cache

22

LOADs and
STOREs

Data
Blodcs

Figure 1.7 Snoopy Cache organization

D

Workstations

D D

23

High Speed Interconnection Network

File Server
Figure 1.8

Printer
Typical distributed system

24

2. DEFINITIONS AND TERMINOLOGY

As mentioned in Chapter I, we are concerned with caching in distributed

systems, a.nd in particular, in file systems. In this chapter, we define the fun

damental components of a. distributed system, the components of a file system,

as well as the components of a. cache system and a. notation for discussing cache

operations.

2.1 Fundamental components of a distributed system

Physically, a. distributed system consists of a set of processors, with a collee.

tieD of local storage mechanisms associated with each processor. A processor is

able to execute prograJIlS that access and manipulate the local storage, where

the term process denotes the locus of control of an executing program [DH66]. In

addition, an interconnection network connects the processors and allows them to

communicate and share data via exchange of messages [TanSll. These messages

are encapsulated inside pa~kets when transmitted on the network.

2.1.1 Objects

We conceptually view the underlying distributed system in terms of an obJect

~odel [Jon7S] in which the system is said to consist of a collection of obJects.

An object is either a physical resource (e.g., a disk or processor), or an abstract

resource (e.g., a file or process). Objects are further characterized as being either

passive or a~tive, where passive objects correspond to stored data, and active

objects correspond to processes that act on passive resources. For the purposes

of this thesis, we use the term object to denote only passive objects.

The objects in a distributed system are partitioned into· types. Associated

with each object type is a manager that implements the object type and presents

25

c.lients throughout the distributed system with an interface to the objects. The

interface is defined by the set of operations that may be applied to the object.

An object is identified with a name, where a name is a string composed of

a. set of symbols chosen from a. finite alphabet. For this thesis, all objects are

identified by simple names, as defined by Comer and Peterson in [CP8S]. Each

object manager provides a. name resolution mechanism tha.t translates the name

specified by the client into a. name that the manager is able to reso/ue and use

to access the appropriate object. Because there is a different object manager for

each object type, two objects of different types may share the same name and

still be properly identifiable by the system. The collection of all names accepted

by the name resolution mechanism of a particular object manager constitutes the

namespace of that object type.

An object manager may treat a name as a simple or compound name. A

compound na.me is composed of one or more simple nameB separated by spe

cial delimiter characters. For example, an object manager implementing words

of shared memory might directly map the name provided by the client into a

hardware memory address. This is known as a fiat namespa.ce. On the other

hand, an object manager implementing a hierarchical namespace, in which ob

jects are grouped together into directories of objects, provides a mechanism for

adding structure to a collection of objects. Each directory is a mapping of simple

names to other objects. During the evaluation of a name, a hierarchical evalua

tion scheme maintains a current evalu.ation directory out of the set of directories

managed by the naming system. Each step of hierarchical name evaluation in

cludes the following three steps:

1. Isolate the next simple name from the name being evaluated.

2. Determine the object associated with the simple name in the current eval
uation directory.

3. (If there are more name components to evaluate) Set the curre~t evaluation

directory to the directory identified in Step 2, and return to Step 1.

26

2.1.2 Clients, managers, and servers

Clients and managers that invoke and implement operations are physically

implemented. in teI'DlS of a set of cooperating processes. Thus, they can be

described by the model of distributed processing and concurrent programming

of remote procedure calls [BN84].

In particular, we divide processors into two classes: client machz"nes that con

tain client programs, and server machines that contain object manager programs.

Each server has one or more attached storage devices, which it uses as a. repos

£tory for the data in the objects implemented by the object managers. In our

system, there are N client machines, denoted C I _.. CN , and one server machine,

denoted S.

2.2 Caches

Caches are storage devices used in computer systems to temporarily hold

those portions of the contents of an object repository that are (believed to be)

currently in use. In general, we adhere to the terminology used in [Smi82], with

extensions from main memory caching to caching of generalized objects. A cache

is optimized to minimize the miss ratio, which is the probability of not finding

the target of an object reference in the cache.

Three components comprise the cache: a collection of fixed-sized blocks of

object storage (also known in the literature as lines); the cache directory, a list of

which blocks currently reside in the cache, showing where each block is located

i!1 the cache; and the cache controller, which implements the various algorithms

that characterize the operation of the cache.

Information is moved between the cache and object repository one block at a

time. The fetch algorithm determines when an object is moved from the object

repository to the cache memory. A demand fetch algorithm loads information

when it is needed. A prefetch algorithm attempts to load information before it is

needed. The simplest prefetch algorithm is readahead: for each block fetched on

27

demand, a fixed number of extra. blocks are fetched and loaded into the cache.

in anticipation of the next reference.

When information is fetched from the object repository, if the cache is full,

some information in the cache must be selected for replacement. The replacement

algorithm determines which block is removed. Various replacement algorithms

are possible, such as first in, first out (FIFO). least recently used (LRU), and

random.

When an object in the cache is updated, that update may be reflected in

one of several ways. The update algorithm determines the mechanism used. For

example, a write-back algorithm has the cache receive the update and update

the object repository only when the modified block is replaced. A write-through

algorithm updates the object repository immedia.tely.

2.3 Files and file systems

A file is an object used for long-term da.ta stora.ge. Its value persists longer

than the processes that create and use it. Files are maintained on secondary

storage devices like disks. Conceptually, a file consists of a sequence of data

objects, such as integers. To provide the greatest utility, we consider each object

in a file to be a. single byte. Any further structure must be enforced by the

programs using the file.

The file system is the software that manages these permanent data objects.

The file system provides operations that will create or delete a file, open a file

given its name, read the next object from an open file, write an object onto an

open file, or close a file. If the file system allows random access to the contents of

the file, it may also provide a way to seek to a specified location in a file. Two or

more processes may share a file by having it open at the same time. Depending

on the file manager, one or more of these processes may be allowed to write the

shared file, while the rest may only read from it.

28

2.3.1 File system components

The file system software is composed. of five different managers, each of which

is used to implement some portion of the file system primitives.

The acceS8 control manager maintains access lists that define which users

may access a. particular file, and in what way - whether to read, write, delete, or

execute.

The dirutorv manager implements the naming directories used to implement

the name space provided by the file system. It provides primitives to create and

delete entries in the directories, as well as to search through the existing entries.

The naming manager implements the name space provided by the file system.

The name evaluation mechanism is part of the naming manager, and uses the

directory manager primitives to translate file names into object references.

The file manage:'" interacts with the disk manager to map logical file bytes

onto physical disk blocks. The disk manager manipulates the storage devices,

and provides primitives to read or write a. single, randomly accessed disk block.

The disk manager may implement a cache of recently referenced disk blocks.

Such a cache is called a disk block cache.

The file manager maintains the mapping of logical file bytes to physical disk

blocks. The file manager treats files as if they were composed of fixed-sized logical

file blocks. These logical blocks may be larger or smaller than the hardware block

size of the disk on which they reside. The file manager may implement a file block

cache of recently referenced logical file blocks.

The file manager maintains several files which are private to its implemen

tation. One contains the correspondence of logical file blocks to physical disk

blocks for every file on the disk. Another is a list of the physical disk blocks

that are currently part of a file, and the disk blocks that are free. These files are

manipulated in response to file manager primitives which create or destroy files

or extend existing ones.

In a distributed file system implementation, where the disk used for storage

is attached to a server processor connected to the client only by a network, we

29

distinguish between disk servers and file 8t.TIJt,rs. In a disk server, the disk man

ager resides on the server processor, and all other file system components reside

on the client. A disk server merely provides raw disk blocks to the client proces

sar, and the managers must retrieve all mapping and access control information

across the network.

In a file server, all five managers are implemented on the server processor.

Client programs send short network messa.ges to the server, and receive only the

requested information in return messages. All access control computations, name

translations, and file layout mappings are performed on the server processor,

without requiring any network traffic.

2.3.2 The UNIX file system

The UNIX file system follows this model, with some implementation differ

ences lRT74]. The access control lists are maintained in the same private file as

the mappings between logical file blocks a.nd physical disk blocks. Together, the

entries in this file are known as inodes.

The UNIX file name resolution mechanism implements a hierarchical naming

system. Directories appear as normal files. and are generally readable. User

programs may read and interpret directly, or use system-provided primitives

to treat the directories as a sequence of name objects. Special privileges are

required to write a directory, to avoid corruption by an incorrectly implemented

user program.

In UNIX, file na.mes are composed of simple names separated by the delim

iter character '/'. Names are evaluated, as outlined in the hierarchical name

evaluation given above, with the current evaluation directory at each step being

a directory in the naming hierarchy. Names are finally translated into unique,

numerical object indices. The object indices are then used as file identifiers by

the file manager. The namespace of the UNIX naming mechanism can also be

thought of as a tree-structured graph.

30

To improved file system performance, the disk manager implements a disk

block cache. Blocks in this cache are replaced according to a least recently used

replacement policy[Tho78j.

2.3.3 Our view of file systems

For the purposes of this thesis, we are interested only in the operation of the

file manager and operations concerning logical file blocks. We do not consider the

implementation of the name evaluation mechanism or the mapping of logical file

blocks to physical blocks. All names in the Caching Ring system are considered

to be simple names, and the mapping from the long name strings used in a

hierarchical naming system to the numerical object identifiers used thereafter to

refer to file objects is not part of the caching mechanism.

Descriptions of file system alternatives can be found in Calingaert[Ca182l,

Haberman[Hab76]. and Peterson and Silberschatz[PS83]. Comer presents the

complete implementation of a file system which is a simplification of the UNIX

file system described above in [Com84].

31

3. ANALYSIS OF A SINGLE-PROCESSOR SYSTEM

There has been very little empirical data published on file system usage or

performance. This may be because of the difficulty of obtaining trace data, and

the large amounts of trace data that is likely to result. The published studies tend

to deal with older operating systems, and for this reason may not be applicable

in planning future systems.

This chapter extends OUI understanding of caching to disk block caches in

single processor systems. We recorded the file system actiyity of a. single processor

timesharing system. We analyzed this activity trace to measure the performance

of the disk block cache, and performed simulation experiments to determine the

effects of altering the various parameters of the processor's disk block cache.

We also measured the amount of shared file access that is actually encountered.

These measurements and simulation experiments allow us to characterize the

demands of a. typical user of the file system, and the performance of the file

system for a given set of design parameters.

3.1 Introduction

Understanding the behavior of file block caching in a single processor system

is fundamental to designing a distributed file block caching system and analyzing

the performance of that caching system. Using an accurate model of the activity

of a single user on a client workstation, we can build simulations of a collection of

such workstations using a. distributed file block caching system. By analyzing the

file activity on a single-processor system, we can develop such a model. To this

end, we designed experiments to collect enough information about an existing

system to allow us to answer questions such as:

• How much network bandwidth is needed to support a workstation?

32

• How much sharing of files between workstations should be expected?

• How should disk block caches be organized and managed?

• How much performance enhancement does a disk block cache provide?

The experiments are an independent effort to corroborate similar data re

ported by McKusick [MKLB51, Lazowska .t ai. [LZCZB41, and Ousterhout .t al.

[OCH*85]. in a different environment, and with a different user community and

workload. We compare our results and theirs in Section 3.6.

The basis of the experiments is a trace of file system activity on a. time

shared uniprocessor running the 4.2B8D UNIX operating system [42B83]. The

information collected consists of all read and write requests, along with the time

of access. The amount of information is voluminous, but allows us to perform a

detailed analysis of the behavior and performance of the file and disk subsystems.

We wrote several programs to process the trace files - an analysis program

that extracts data regarding cache effectiveness and file system activity, a data

compression program., and a block cache simulator. Using these programs, we

were able to characterize the file system activities of a single client, and the

performance benefits of a disk block cache in various configura.tions.

3.2 Gathering the data

Our main concerns in gathering the data were the volume of the data and af

fecting the results by logging them through the cache system under measurement.

We wished to gather data over several days to prevent temporary anomalies from

biasing the data. We also wished to record all file system activity, with enough

information to accurately reconstruct the activity in a later simulation. It quickly

became obvious that it would not be feasible to log this data to disk - an hour

of typical disk activity generates approximately 8.6 Mbytes of data~

The method settled upon used the local area network to send the trace data

to another system, where it was written to magnetic tape. Logging routines

inserted into the file system code placed the trace records in a memory buffer. A

33

Jrds from the trace buffer and sent them to a logging process

In. The logger simply wrote the :records on tape. A day's
oot tape recorded at 6250 bpi.

:he buffers used in the disk subsystem are completely by

that reads and sends trace records consumed approximately

he impact on the performance of the disk subsystem is neg-

data

s to record activity in both the file manager and the disk

::ords are marked with the time at which they occurred, to

" We recorded all file open, close, read, and write events.

:ains the name of the process and user that requested the

:ord the file index that uniquely identifies the file on disk,

:ion, but not the name by which the user called it. Close

he same data. Read and write event records identify the

in the file at which the transfer began, and how many

operations are performed on physical blocks. Only read

t this level. Each event record contains the address of the

~ansfer, how many bytes were transferred, and whether

found in the disk block cache.

iufficient to link file manager activity to the correspond_

y. However, there is much disk manager activity that

by file manager read and write requests. This is from

the directory manager while resolving file names to file

TIS, and by the file manager when transferring inodes

y. Also, paging operations do not use the disk blo~k

~d in this trace. When a new program is invoked (via

34

the exec system call), the first few pages of the program are read through the

disk block cache, and are recorded in our trace data. The remaining pages are

read on demand as a reiutt of page faults, and this activity does not appear in

our trace data. We can estimate the overhead involved in file name lookup by

comparing the disk activity recorded in our traces and the simulated disk activity

in our simulations.

3.3.1 Machine environment

We collected our trace data on a timeshared Digital Equipment Corporation

VAY..-U/780 in the Department of Computer Sciences a.t Purdue University. The

machine is known as "Merlin" and is used by members of the TILDE project

for program development and document editing, as well as day-to-day house

keeping. Merlin has 4 Mbytes of primary memory, 576 Mbytes of disk, and

runs the 4.2BSD version of the UNIX operating system.. The disk block cache is

approximately 400 Kbytes in size.

Traces were collected for four days over the period of a week. We gathered

data during the hours when most of our users work, and specifically excluded the

period of the day when large system accounting procedures are run. Trace results

are summarized in Table 3.1, where each individual trace is given an identifying

letter. During the peak hours of the day, 24 - 34 files were opened per second, on

average. The UNIX load average was typically 2 - 8, with under a dozen active

users.

3.4 Measured results

Our trace analysis was divided into two parts. The first part contains mea

surement of current UNIX file system activity. We were interested in two general

areas: how much file system activity is generated by processes and system over

head, and how often files are shared between processes, and whether processes

that share files only read the data or update the data as well. The second part

"

Table 3.1 Description of activity traces

35

Trace A B c D
Duration lhoursJ 7.6 6.8 5.6 8.0

N umber of trace 1,865,531 1,552,135 1,556,026 1,864,272
records
Size or trace bole 66 55 55 66
(Mbytes)
Total data 402 330 334 405
transferred (Mbytes)
User data 126 110 120 135
transferred (Mbytes)
DlSk cac?-e miss ratiO 10.10 10.03 10.61 9.82
(percent)

l:SlccKs read abea 9424 9143 10376 13933
open events 28,427 23,837 22,403 25,307
c asc events 28,194 23,772 22,2_7 25,162
read events 51,281 40,203 45,619 77,471
write events 23,689 18.972 18,834 26,013
shared file opens 5,015 3,919 4,24.0 3,628

shared read events 16,892 13,057 14,017 31,000
shared Write events 717 695 8'- 995-,
inode lock events 911,151 778,208 762,563 906,140

36

of our analysis, examining the effectiveness of various disk cache organizations,

is presented in Section 3.5.

3.4.1 System activity

The first set of measurements concerns overall file system activity in terms

of users, active files, and bytes transferred (see Table 3.2). The most interesting

result is the throughput per active user. We consider a user to be active if he or

she has any file system activity within a one-minute interval. Averaged over a

one-minute interval, active users tend to transfer only a few kilobytes of data per

second. If only one-second intervals are considered, users active in these intervals

tend to transfer much more data per second, (approximately ten kilobytes per

second per active user) but there are fewer active users.

In [LZCZ84], Lazowska et al. reported about 4 Kbytes of I/O per active user.

This is higher than our figure, because their measurement includes additional

activity not present in our analysis, such as directory searches and paging I/O,

and was measured for a single user at a time of heavy usage. Ousterhout et aI.

reported about 1.4 Kbytes of I/O per user in [OCH*85]. This is lo~er than our

figure, because their measurement does not include program loading I/O activity,

or the overhead of reading and writing inodes from disk. They also define a user

as one who is active over a ten minute interval, and the throughput figure is

averaged over that time period.

Several of the statistics seem to be due to the heavy reliance that the L"~IX

system places on the file system for storage of data. Executable versions of

programs, directories, and system databases are all accessible by programs as

ordinary files, and utility programs access them heavily. Information about users

of the system is spread across several files, and must be gathered up by programs

that would use it. Utilities are typically written to keep their data in several

distinct files, rather than one monolithic one, or to themselves be made up of

several passes, each stored in a separate file. P rograrruners are encouraged to sptit

their programs into many smaller files, each of which may contain directives to

37

the compiler to include up to a dozen or more files that contain common structure

definitions: For example, to compile a trivial C program with the standard VAl{

compiler requires touching 11 files: three make up the C compiler; two more for

assembler and loader; one for the standard library; the source file itself with a

standard definitions file; two temporary filesj and finally the executable version

of the program. Invoking the optimizer adds two more files, the optimizer pass

and an additional temporary. Such a trivial compile may easily take less than

six seconds of real time on an unloaded system such as Merlin.

However, the low average throughput per active user suggests that a single

lO:Mbit/second network has enough bandwidth to support several hundred users

using a network-based file system. Transfer rates tended to be bursty in our mea

surements, with rates as high as 140 Kbytesjsec recorded for some users in some

intervals, but such a network could support several such bursts simultaneously

without difficulty.

We performed simple analysis of access patterns to determine the percentage

of files that are simply read or written straight through, with no intermediate

seeks. Table 3.3 summarizes our results. The percentages are cumulative, i.e.,

80.2% of the file accesses in trace A had two or less seeks. These measurements

confirm that file access is highly sequential. Ousterhout et 01. report that more

than 90% of all files are processed sequentially in their computing environment.

3.4.2 Level of sharing

After measuring the overall file system activity recorded in our traces, we

turned our attention to how files are shared. Table 3.4 reports our measurements

of file sharing between processes. Of the files accessed in the system, approxi

mately 16.5% are opened simultaneously by more than one process. Of those,

approximately 75% are directories. Thus, approximately 4% of all non-directory

file opens are for shared access.

Directories are shared when two or more processes are opening files in the

same section of the file system name space. The directories must be searched for

Table 3.2 Measurements of file system activity

38

Trace A B c D
Average throughput 4600 4500 5900 4700
(bytes!"c)
Uillque users 20 18 19 17
Maximum active users 7 6 7 5
(per minute)

Average active users 2.05 _ 1.10 2.75":'" 1.05 2.70_ 1.25 2.91_ 1.32
(per minute)

Average throughput 2243"":" i82 1636.:- 451 2185':- 691 1615...:... 504
per active user
(bytes/sec) I
Average opens/sec 2.4':- 1.8 2.2 ± 1.7 2.1 .:- 1.6 2.0':- 1.5
per active user

Average reads! sec 5.75':-8.7 3.89± 6.87 3.78 ± 6.22 5.40...:... 8.83
per active user

Average wrltesjsec 1.9 ± 5.46 1.02 ± 3.56 0.93::!::: 2.48 L4Z...:....3.i1
per active user

Table 3.3 Linear access of files

Trace A B C D
Lmear access 17634 .~62.5:~) 15118 .~63.6'7~) 137;6-:162.0,,) 16683 (66.370)
One seek 4889 (79.2%) 4119 (80.9%) 3561 (78.0%) 3952 (82.0%)
Two seeks 272 (80.2%) 265 (82.0%) 253 (79.1%) 271 (83.1%)
Three or more 5632 (100%) 4270 (100%) 4637 (100%) 4256 (100%)

39

each file open. In a network file system which locates the directory manager at

the server, client processes will not share directoriesj rather, access to directories

will be serialized at the server. The number of files shared between workstations

would then be the much lower figure of about 4% of all opened files.

Table 3.4 Sharing of files between processes

Trace A B C D
F lie open events 28427 23837 22403 25307
Shared open events 5015 (17.6%) 3919 (16.4%) 4240 (18.9%) 3628 (14.3%)
Unique files shared 352 168 344 212
Shared directories 293 (83.2%) 114 (67.9%) 280 (81.4%) 150 (70.8%)
Shared read events 16892 13057 14017 31000
Shared write events 717 695 827 995

Of the files that are shared. approximately 4% of the accesses involved modi

fying the contents of the files. Removing directories from these statistics increases

this to 8.8%, which is still a very small percentage of all file activity.

Furthermore, analysis of the traces indicates that sharing access mainly occurs

in system files. Only approximately 10% of the shared files are user files. Files

are shared by small groups of processors, as shown in Table 3.5.

Tabl~ 3.5 Size of processor groups sharing files

Size of group

2
3
4
5
6
7
8
9

Frequency of
occurrence

62.8%
17.4%
9.4%
5.4%
0.9%
1.4%
1.6%
1.1%

Cumulative
frequency

62.8%
80.2%
89.6%
95.0%
95.9%
97.3%
99.0%
100.0%

It is commonly argued that caching is not used in distributed file systems

because updating th~ caches on writes is very expensive, both in terms of the

40

data structures and communications delay required to maintain coherence. From

these da.ta., we conclude that a.ny coherence mechanism for shared writes will be

invoked seldom, and thus should have minimal impact on the overall performance

of the system. \Ve also conclude that a caching mechanism for any file system

should be optimized to give the most performance benefit to the reading of file

blocks.

3.5 Simulation results

In a network file system, one of the most interesting areas -for study is the

disk block cache. Disk and network access speeds are limited to those available

from hardware vendors. A cache implemented in software, on the other hand, is

extremel:r flexible. To optirnize file system performance, the designer rr...ay vary

the percentage of available memory used for caching blocks, and the algorithms

to allocate and replace those blocks. With an appropriate set of algorithms, per

formance may be increased simply by adding to the amount of available memory,

even if the algorithms are fixed in hardware.

The UNIX file system uses approximately 10% of main memory (typically 200

- 800 kbytes) for a cache of recently used blocks. The blocks are maintained in

least recently used fashion and result in a substantial reduction in the number

of disk operations (see Table 3.1).

For a network file system with much higher transfer latency, the role of the

cache is more important than in a system with locally attached disk storage. A

well-organized cache in the client workstation can hide many or all of the effects

of a remote file system. With current memory technology, it is reason,able to

conceive of a cache of 2 - 8 Mbytes in the client, and perhaps 32 - 64 11bytes in

a few years. Even though the general benefits of disk block caches are already

well known, we still wished to answer several questions:

• How do the benefits scale with the size of the cache?

• How should the cache be organized to maximize its effectiveness?

41

• How effective can a cache in the client be in overcoming the perfor

mance effects of a remote disk?

3.5.1 The cache simulator

To answer these questions, we wrote a program to simulate the behavior

of various types of caches, using the trace data to drive the simulation. We

used only the data. collected from the file manager level. This allowed us to

simulate the effect of a cache on the I/O generated by user processes, without

including the effects of I/O generated for maintenance of the file system and the

naming system. For the measurements below, the foUl' traces produced nearly

indistinguishable results; we report only the results from trace A.

The simulated. system mir:cics the data str'J.ctures fOWld in the V~IX file

system. We simulated only the file manager operations, and included a file

block cache instead of a disk block cache. This cache consisted of several fixed

sized blocks used to hold recently referenced portions of file. We used an LRU

algorithm for block replacement in the cache. There is a table of currently open

and recently closed files, where each entry in the table includes the file identifier,

reference count, file size, statistics a.bout how the file was accessed, and a pointer

to a doubly-linked list of blocks from the file that reside in the cache.

In the UNIX system, when a file is closed, any of its blocks that may reside

m the cache are not automatically flushed out. This results in a significant

performance improvement, as many files are opened again shortly after they are

closed, and their blocks may still be found in the cache. 1 We wished to preserve

this aspect of the UNIX disk block cache in our simulated file block cache.

As the trace is processed, an open record causes an entry in the file table to

be allocated. If the file is already in the file table, the associated reference count

is incremented. A close record causes the reference count to be decremented.

When the reference count reaches zero, the file table entry is placed on a free

list. Any blocks in the file that still reside in the cache remain associated with

ISee Section 3.5.2 for more discussion of this a.spect of the c:LChe.

42

the file table entry. So, in fact, when the simulator must allocate a file table

entry to respond to an open record, it searches the free list first. If an entry for

the file is found, it is reclaimed, and any file blocks that still remain in the cache

are also reclaimed.

For each read or write record, the range of affected bytes is converted to a

logical block number or numbers. The simulator checks to see if the affected

blocks are in the cache. If so, the access is satisfied without any disk manager

activity, and the block is brought to the head of the linked list that indica.tes

the LRU order of the cache blocks. If not, a block from the cache free list is

allocated. If the free list is empty, the block at the tail of the LRU list of the

file block cache is freed and allocated to this file. If the cache is simulating a

write-back cache, any changes to the block are written back at this time.

The principal metric for evaluating cache organization was the I/O ratio,

which is similar to the miss ratio. The I/O ratio is a direct indicator of the

percentage onto avoided due to the cache. It expresses ~he ratio of the number of

block I/O operations performed to the number of block I/O operations requested.

An I/O operation was charged each time a block was accessed and not in the

cache, or when a modified block was written from the cache back to disk. The

I/O ratio is different from the miss ratio in that it effectively counts as missed

those I/O operations resulting from the write policy, even though those blocks

appear in the cache.

A secondary metric was the effective access time. We assigned a time cost

to each disk access and computed the total delay that user programs would see

when making accesses through the cache. This allowed us to evaluate the effects

of varying the access time to the disk storage on performance.

Often in the traces, programs made requests in units much smaller tha.n

the block size. We counted. each of these requests as a separate access, usually

satisfied from the cache. This results in lower miss and I/O ratios and effective

access times than collapsing redundant requests from programs, but more closely

simulates the actua.l performance that programs will see.

43

The results are reported only after the simulator reaches steady state. That

is, block accesses and misses that occur before the cache has filled are ignored.

Modified blocks left in the cache at the end of the simulation are not forced out,

as this would unrealistically increase the miss and I/O ratios.

3.5.2 Cache size, write policy, and close policy

By varying parameters of the simulations, we investigated the effect on per

formance of several cache parameters: cache size, wri te policy, close policy, block

size, and read ahead policy. Figure 3.1 and Table 3.6 show the effect of varying

the cache size and write policy with a block size of 4096 bytes (the most com

mon size in 4.2BSD UNIX systems). We simulated both the write-through and

write-back cache policies.

Write-back results in much better performance for large caches. Unfortu

nately, it may leave many modified blocks in the cache for long periods of time.

For example, with a 4Mbyte cache, about 20% of all blocks stay in the cache for

longer than 20 minutes. If the workstation crashes, many updates may have never

made it back to the server, resulting in the loss of large amounts of information.

Table 3.6 I/O ratio VB. cache size and write policy for trace A

Cache Size
256 ytes
512 Kbytes
1 Mbyte
2 Mbytes
4 Mbytes
8 Mbytes

Write-through
37.1 0

32.7%
29.5%
28.0%
27.7%
27.1%

Write-back
26.9 0

14.4%
10.1%
8.1%
6.2%
4.5%

UNIX systems generally run a utility program that flushes modified blocks

from the cache every 30 seconds. This results in higher I/O ratios (though

not as high as those exhibited with a write-through policy), but the amount of

information lost owing to a crash is greatly reduced. Ousterhout et al. reported

that a 30-second flush interval reduces the I/O ratio to approximately 25% below

44

I/0
Ratio

(percent)

60

40

~ write-through

~write-back

-

-

-

Cache Size (Kbytes)

Figure 3.1 I/O ra.tio tiS. cache size and write policy for trace A

write-through, and a 5 minute fluSh interval results in a I/O ratio 50% below

that of write-through.

We also investigated the effect of flushing all blocks associated with a file when

the file is closed. Analysis of our traces indicated that many files are opened and

closed repeatedly. This is most noticeable in a trace that involves many program

compiles. The files containing data structure definitions are opened and closed

repeatedly as they are read into each individual program file. Figure 3.2 and

Table 3.7 show the effect on the overall I/O ratio of maintaining and flushing file

blocks a.fter a. close for a range of cache sizes in a write-back cache.

This shows the fundamental reason that the UNIX disk block cache works so

well. File access patterns are such that many files are reused before they would

ordinarily leave the cache. Floyd has found that most files in a UNIX environment

are re-opened within 60 seconds of being closed [Flo86]. Maintaining blocks of

closed files in the cache has a significant performance advantage over having to

re-fetch thos blocks a short time after the close.

45

60
~ flush on dose

~ no flush on close

-

I/O
Ratio

(percent)

40 f-G<>--ef---<>---_-&- ~

20 -
<1>.

·<1>·······<1>·· A .
V _ - .., ,

oOJc--~~~--,2"04S;-8~~~-4;;09~6~~~--,6;;;1!:4-;4~~~--,8;;-!1·92

Cache Size (Kbytes)

Figure 3.2 Effect of close policy on I/O ratio for trace A

Table 3.7 Effect of close policy on I/O ratio for trace A

Cache Size
256 ytes
512 Kbytes
1 Mbyte
2 Mbytes
4 Mbytes
8 Mbytes

Write-through
40.1 0

40.5%
40.3%
40.1%
39.6%
39.3%

Write-back
26.9 0

14.4%
10.1%
8.1%
6.2%
4.5%

46

. -_..

... ···5···············G·························

.-_..

x 8 Mbytes
e:J 4 Mbytes
6. 2 Mbytes
01 Mbyte
¢ 400 Kbytes

__ --6-.--

30

20
I/O

Ratio
(percent)

o0!;---4;-'---'B~'-'1\;-2-'I!o6---;;2\;0---;;2!:.4---;;2!oB----:!32

Line Size (Kbytes)

Figure 3.3 I/O ratio us. block size and cache size for trace A

3.5.3 Block size

We also evaluated the effects of differing block sizes. The original UNIX

file system used 512 byte blocks. The block size has since been expanded to

1024 bytes in AT&T System V [Fed84] and 4096 bytes in most 4.2BSD systems.

Figure 3.3 and Table 3.8 show the results of varying the block size and cache

size.

In general, large block sizes work well. They work well in small caches, and

even better in large ones. For OUI traces, the optimal block size, independent of

cache size, is 4096 bytes. This is an artifact of the system I/O library that rounds

file system requests up to 1024 and 4096 bytes, although there are still programs

that make smaller requests. For very large block sizes, the curves turn up because

the cache has too few blocks to function effectively. Especially in smaller caches,

large block sizes are less effective because they result in fewer memory blocks

available to cache file blocks. Most of the memory space is wasted because short

files only occupy the first part of their blocks.

47

Table 3.8 I/O ratio vs. block size and cache size for trace A

Block size
512 ytes
1024 bytes
2048 bytes
4096 bytes
8192 bytes
16384 bytes
32768 bytes

400 Kbyte
24.5
21.5%
18.2%
16.4%
18.4%
21.8%
30.2%

Cache Size
1 Mbyte 2 Mbyte
17.00 14,90
14.4% 12.6%
11.7% 10.1%
10.1% 8.1%
11.4% 8.2%
14.0% 9.2%
18.3% 12.7%

4 Mbyte
13.1 0

10.9%
i.8%
6.2%
6.9%
6.6%
8.1%

8 Mbyte
8.2 0

6.9%
5.3%
4.5%
5.0%
5.2%
5.i%

Although large blocks are attractive for a cache, they may result in wasted

space on disk due to internal fragmentation. 4.2BSD uses a mixed block size

technique to minimize wasted space in short files. A cache with a fixed block size

still works well with a mixed block size file system, though there may be wasted

space within the cache blocks, as described above.

3.5.4 Readahead policy

The UNIX file system includes a. heuristic to perform selective readahead of

disk blocks. For each open file, the file manager keeps track of the last block that

was read by a user program. If, when reading block b, the last block that was

read is block b-l, the system fetches both block b and bTl into the cache, if they

are not already in the cache (and block b+ 1 exists in the file). This algorithm

describes a. rea.dahead level of 1. We simulated with readahead levels of 0, 1, 2,

and 3; i.e., reading between 0 and 3 extra blocks in response to sequential access.

Our results are summarized in Figure 3.4 and Table 3.9.

A readahead of one block makes a small difference; additional readahead

makes no apparent difference. Large amounts of readahead, i.e., several blocks

with a large block size, degrade performance in a similar fashion to extremely

large block sizes.

The readahead makes little difference because only a small percentage of the

file references result in blocks being read ahead. A sequence of small file accesses

I/O
Ratio

(percent)

20 f-

10 I-

r

¢ readahead = 3
6. readahead = 2
o readahead = 1 _
e:J readahead = 0

Line Size := 512 bytes

-

,

48

2048 4096

Cach, Size (Kb)

6144 8192

rio
Ratio

(percent)

20

¢ readahead ::;::. 3
6. readahead := 2
(!) readahead := 1 -
r:J readahead := 0

Line Size := 4096 bytes

Cache Size (Kb)

Figure 3.4 I/O ratio vs. cache size and readahead policy for trace A

49

within the sa.me logical file block does not reference any new file blocks, thus no

blocks are read ahead. This is consistent with our trace data (see Table 3.1).

A process reading a file sequentially in amounts smaller than the block size will

repeatedly access each of the blocks b - 1, h, and b + 1. At the transition from

accessing block b-1 to block h, block b+ 1 will also be fetched in accordance with

the rearlahead policy. However, the process will now continue to access b several

times before reaching block b+ 1, so the effect of the extra fetch is minimal. Most

UNIX files are small enough to fit in one block, so that in many cases there is no

extra block to be read ahead.

The payoff of the rearlahead policy is based on the assumption that the time

spent in reading the extra block is not noticeable to the process requesting the

original disk I/O. This is likely to be true in an environment with a locally

attached disk. With a remote disk, access time is approximately four to five

times as great, and this assumption may ncit hold true.

3.5.5 Comparisons to measured data

Merlin runs with a disk block cache of about 100 - 200 blocks of different

sizes, with a total cache size of approximately 400 Kbytes. The cache is flushed

of modified blocks every 30 seconds. According to OUI simulations, this should

yield a I/O ratio of approximately 20%. The actual I/O ratio, calculated from

the trace data, is approximately 10%. Leffler et at. report a measured cache I/O

ratio of 15% [:MKL85]. The discrepancy results from differences in the actual

activity that is measured. The simulation results do not include activity for

paging, searching directories during name lookups, or inode fetches. Directory

lookups and inode fetches are reported to have low I/O ratios, and account for a

significant amount of disk activity. The recorded trace does not include activity

for paging.

~

~

u
0

.D 'IS 8632,
•e
~

•e J:J '1'129

~

••• IS 0227U
U•
•,

2 602'13
~

U•
~

~

W

120

"

50

Figure 3.5 Effect of cache size and transfer time on effective access time

51

3.5.6 Network latency

The stated intention of a cache is to decrease the effective access time to a set

of objects. To judge how well a large cache can improve the effective access time

of cross-network disk accesses, we ran another set of simulations that varied the

delay charged for each disk access from 30ms (average time for a 4Kbyte block

from a fast disk) to 120ms (average time for a 4Kbyte block across a. lOMbit/sec

network). The results are shown in Figure 3.5.

The surface shows that a sufficiently large cache allows a remote disk to

perform as effectively as a local disk with a smaller cache. Figure 3.6 shows the

data in a different format.

From this graph, we see that a range of effective access times can be achieved

at all four transfer rates. For example, an effective access time of approxi

mate 7IDS/block can be achieved with a 700Kbyte cache at a transfer rate of

30ms/block, and with a 7Mbyte cache at a transfer rate of 120ms/block. A

cache of 7Mbytes is feasible with today's memory technology, and may become

commonplace in the next few years. Performance at the level of a 400Kbyte

cache at 30ms is available at 120ms with only a 2Mbyte cache, which is easily

within the reach of today's technology.

3.6 Comparisons to previous work

By recording the traffic demand on the UNIX file system, we have deter

mined that the average user, while active, uses approximately 2 Kaytes/sec of

data from the .file system. This amount is exclusive of any overhead involved in

managing the directory or file system structure, or page replacement for memory

management.

In our measurements of the file system, we discovered that as much as 50%

of the disk activity is related to file system management: scanning directories

to map file names to inodes, and locking, unlocking, reading, and writing those

inodes.

52

40r.,~,V-~~-r-~~~-r-~~~--,-~~-r----,

"",.
"',,"
""

Effective
Access
Time

(rns/block)

3

20

10

,,,,,,,,,,,
,,,,,,,,

(g b. ..
, , , , , ,,

'(9_

......

.. ~

~ 120 IllS/block

.6. 90 IllS/block

(!) 60 rns/block

~ 30 rns/block

.,-

l
I

~'(9-- _

------- ---- -------r

Cache Size (Kb)

Figure 3.6 Effective access time us. cache size and transfer time

53

Measurements of shared file access revealed that our users seldom share files.

Of those files that are shared, most are shared for read-only data. Writes to

shared files occur infrequently.

These results corroborate the measurements of Lazowska et al. [LZCZ84] and

Ousterhout et ai. [OCH*85]. Lazowska et al. recorded about 4 Kbytes/sec of

data demand per user, but their measurements include directory, file system,

and paging overhead, confirming our measurement that more than 50% of disk

activity is due to these operations. Ousterhout et al. report per-user demands

similar to ours.

Our results concerning the level of sharing agree with those reported by Floyd

[Fle86]. He found that while there is extensive sharing of some few files, this

sharing is restricted to standard system files. He saw very little sharing of user

files.

Our simulations of various file block cache organizations indicate that a write

back. cache with a block size of 4096 bytes is optimal for our environment. The

simulations also indicate that a moderately sized block cache reduces disk traffic

by as much as 85%. Increasing the amount of memory in the caches continues

to increase the performance benefits.

These results are similar to the previous studies of the UNIX file system

reported by Lazowska et ai. and Ousterhout et ai. Lazowska et al. measured

a program development environment similar to ours, while Ousterhout et al.

measured both a program development environment and a computer aided design

environment.

The results also corroborate those of Smith's disk cache study, reported in

[SmiBS]. His study used IBM mainframes running variants of IBM's as operating

system, and was based on physical disk blocks rather than logical file accesses.

The three measured systems performed banking transactions, time sharing, and

batch production work for administrative, scientific, development, and engineer

ing support applications workloads.

54

3.1 Conclusions

These results from a single processor system allow us to draw several im

portant conclusions concerning the design of a. distributed file system. On the

average, users demand fairly low data rates from the file system. Thus, the

bandwidth available in a conventional 10 Mbitjsecond local area network should

be sufficient to support several hundred active users, including the bursty high
traffic levels sometimes experienced.

Since much of the file system activity is associated with management of the

on-disk structures of the file system, a distributed file system which provides high

level file system access by clients will greatly reduce the amount of network traffic.

If the server is solely responsible for management and access of these structures,

network traffic may be cut by as much as 50%, compared to a distributed file

system in which each client reads and writes directories, and reads, writes, locks,
and unlocks inodes across the network.

A file block cache may eliminate as much as 85% of the remaining network

traffic. Periodic flushing of modified blocks in the cache will limit the amount of

data lost in the event of a crash, and will not severely degrade the performance
benefits of the cache.

There are two ways to further increase the file system performance of a client

workstation-adding local disk storage or greatly increasing the size of the cache

memory. The current economy of memory costs vs. disk costs indicate that

adding more memory is the less expensive way to increase performance.

Finally, since there is very little sharingpf file data between clients, the mech

anisms involved in maintaining cache coherence should be designed to perform

most efficiently for non-shared data. The handling of shared data, especially writ

ing of shared data, may be expensive without causing a significant p~rformance
penalty.

55

Table 3.9 I/O ratio us. cache size and readahead policy for trace A

Cache Size
512 byte blocks

Blocks Read Ahead
o 1 2 3

256 ytes
512 Kbytes
1 Mbyte
2 Mbytes
4 Mbytes
8 Mbytes

27.0 0 25.0 0 24.5 0

18.9% 17.6% 17.2%
14.6% 13.7% 13.4%
13.1% 12.4% 12.1%
11.8% 11.4% 11.2%

7.4% 7.2% 7.0%

24.4 0

17.1%
13.3%
12.0%
11.1%
6.9%

3
22.0
16.1%
10.0%
7.3%
6.5%
5.0%

4096 byte blocks
Blocks Read Ahead

o 1 2
20.3 0 20.5 0 22.0 0

13.3% 14.4% 16.1%
8.9% 9.2% 10.0%
7.3% 7.0% 7.3%
5.8% 6.1% 6.5%
4.3% 4.3% 4.9%

Cache Size

256 ytes
512 Kbytes
1 Mbyte
2 ~lbytes

4 Mbytes
8 Mbytes

56

4. THE CACHING RING

Based on the experiments presented in Chapter 3, we concluded that for

adequate performance, ca.ching is essential in a network file system. In this

Chapter, we present a combination of hardware and software - the Caching

Ring - that provides a generalized solution to the cache coherence problem for

distributed systems.

4.1 Underlying concepts of the Caching Ring

The Caching Ring is based on several fundamental concepts. The first of

these is an efficient mechanism for reliable mul tica.st.· This mechanism provides

inexpensive and accurate communication between those stations on the network

that share an object, but does not impose any burden on sta.tions that are unin

terested in transactions about an object. Since the group of processors concerned

about an object is small, 1 this eliminates a large amount of unnecessary input

processing at each network station.

The second concept is that caching is solely based on the names of objects.

The cache hardware and protocols need not have any specific knowledge about

the structure of the objects being cached. The hardware and protocols merely

assume that the objects are made up of many equal size blocks.

Third, we rely on hardware support for an efficient implementation of reliable

multicast and caching by name. The Caching Ring Inter/ace (eRI) at each

station on the ring manages the communications hardware, the c~che coherence

algorithm, and all cache functions. Figure 4.1 shows a schematic diagram of the

architecture of the eRI.

lSee Section 3.4.2.

57

~
Block I-- Block
Cache Status

GFile \ Command. I Cache \ Me88rJaeB Ring
System ./ and Data. ontroIleI/ InterCac~

'--
Cache·

I- L...." Group
Directory Map

Packets

Packeu

Figure 4.1 Block diagram of the Caching Ring Interface

The cache directory and the memory used for cached objects are dual~ported

between the eRr and the CPU, i.e., the CPU may locate and access cached

objects without intervention by the CRI. The CPU may not, however, modify

either of these data areas. The cache controll~r maintains, two private data

stores, the status bits associated with each cache entry, and a cache of group

maps. Groups are discussed further in Section 4.2.2. The ring interface provides

reliable multicast communication with the other stations on the Caching Ring.

The eRr provides four primitives for the client CPU: open, close, read, and

write. These are used to access objects that do not currently reside in the cache,

and modify entries that already exist. Direct modification of cached entries is

not allowed, because the coherence algorithm must first be exercised.

4.2 Organization and operation of the Caching Ring

Stations on the Caching Ring fall into one of two categories: clients and a

single server. Clients, denoted C1 ... CN, rely on a single central server, 5, for

storage of all objects managed by the Caching Ring. Each client has a local cache

of recently used object blocks, which is used, when possible, to satisfy requests

before transferring objects across the network. A client need not cache all the

blocks of an object that it accesses. 2 The cache coherence protocol is designed

to allow the clients to share only those blocks that are needed.

~In contra.st to the ITC and CFS file systems.

58

The server is the repository for all objects in the system. The same object

name space is shared by all clients in the system Objects may be shared by any

number of clients. The server holds all access control information locally, a.nd

performs access control operations for the clients.

4.2.1 The interconnection network

The lowest level of the Caching Ring is the interconnection network. The

intercOIUlection network is a ring, using a. token-passing access control strategy

[FN69,FL72,SP79j. The ring provides a synchronous communication environ

ment in which stations on the network clearly know when it is their turn to

transmit (and thus know that all ather stations are ready to receive). It also

provides reliable communications, because a. transmitted message is guaranteed

to pass each station before it returns to the originator. Each station that receives

the message acknowledges receipt by marking the packet.

The ring provides unicast, multicast, and broadcast addressing. Addressing

is based on an N -bit field of recipients in the header of the packets. Each station

is statically assigned a particular bit in the bit fieldj if that bit is set, the station

accepts the packet and acts on it. Positive acknowledgement of reception is

provided to the sender by each recipient resetting its address bit before forwarding

the packet. Without loss of generality, we always assign the server bit o.
The use of a token-passing ring provides the Caching Ring with an efficient

mutual exclusion and serialization mechanism. Internal data structures are mod

ified only while holding the ring token. A station is thus guaranteed to have seen

all messages previously transmitted which may have an affect on the internal

data structures. At any time, it is guaranteed that only one station will be mod

ifying its data structures. This is necessary for correct operation of the coherence

algorithmj Section 4.2.3 gives a further example. External requests have highest

priorities, followed by cache responses, and finally processor requests.

59

Traffic on the ring is divided into three categories: cache control, cache data,

and_ command. Cache control and cache data packets implement the cache op

erations and cache coherence algorithm. Command packets are a.vailable for

higher level protocols (such as a. distributed file system) to implement necessary

functions.

4.2.2 Groups

We define a group to be the set of stations interested in transactions about a

particular object being cached. We denote the members of the group associated

with object a as CG(O). Each group is identified to the stations on the ring

by a. group id~ntifier or groupID which is the bit vector that forms the network

multicast address that includes the stations in t~e groups. Several groups may

be identified by the same groupID. Groups are maintained strictly between the

CRIs in the system.

Each member of a group knows all members of the group. The CRI contains

a cache of object name to groupID mappings. When a message about an object

is to be sent, it is multicast only to the other members of the group, by using

the groupID as the address field of the packet containing the message. These

multicasts relieve uninvolved stations of the overhead of discarding the excess

messages.

We explicitly chose not to centralize the information about group members

at the server, but rather to distributed it among all interested clients. With a

server-eentralized mechanism, the server must act as a relay for every message

from a client to the appropriate group, demanding much more of the bandwidth

available at the server, and increasing the overall network load.

4..2.3 The coherence algorithm

The object caches in the clients are designed to minimize server .demand, as

this is the limiting system resource in a distributed file system [LZCZ84]. To

60

further red.uee server demand, the caches implement a write-hack server update

policy instead of a write-through approach.

The object caches are managed uaing a. block ownership protocol similar to

that of the snoopy cache, discussed in Section 1.2.2.3. The CRIs maintain cache

coherence on the basis of information stored locally at each cache. Each cache

listens to transa.ctions on the network and takes action, if necessa.ry, to maintain

the coherence of those blocks of which it has copies.

Several stations in a group may hold cached copies of the same block, but

only one cache, denoted Co. is the owner of the block. The owner responds to

read requests for a block, and is the only station that may update the block.

Initially, the server is the owner of a.ll blocks. As clients need to update blocks,

ownership is transferred away from the server. The server is not guaranteed to

have and up-to-date copy of blocks that it does not own, as explained below.

A cached object block may be public or priuate. Public blocks are potentially

shared between several client caches. Private blocks are guaranteed to exist in

only a single cache.

Finally, a cached block may be modified with respect to the copy at the

server. Before modifying a block, the client must become the owner of the block

and make its copy private. The owner then modifies the block. The owner

responds to subsequent read requests with the latest data. Responding to such a

request changes the block's status from private to public. Before making further

modifications to the block. the owner must once again convert the block from

public to private.

Based on the concepts of ownership, public us. private, and modified, we may

describe the possible states of a cache entry. Table 4.1 shows the possible states.

In addition to the six possible states above, there is a. seventh: Invalid. This

state describes a cache entry that is not in use.

Modified blocks are not written-back. to the server when they become shared.

A block in either the Dirty or Shared-dirty state must be written-back to the

server if it is selected for replacement. It is also written-back to the server if

61

Table 4.1 Possible states of cache entries

Private Modified Owner State Name State Description
false fa.lse false Shared-valid Clean, unowned, public
false false true Valid Clean, owned, public
false true false
false true true Shared-dirty Modified, owned, public
true false false
true false true Transition Clean, owned, private
true true false
true true true Dirty Modified, owned, private

States without a name are not possible in the system.

The Valid state is possible only at the server.

ownership is transferred to another sta.tion. 3 A block in state Dirty can be in

only one cache. A block can be in state Shared-dirty in only one cache, but

might at the same time be present in state Shared-valid in other caches.

To outline the Caching Ring cache coherence protocol, we consider the essen

tial actions in referencing block b from object 0 in the following four cases: read

hit, read miss. write hit, and write miss. We use C R to denote the referencing

cache, and Co (b) and CR (b) to denote the state of the copy of block h at the

owner and referencing caches, respectively.

The coherence protocol works as follows (see also Figures 4.2 and 4.3):

Read hit: If the object block is in the cache, it is guaranteed to be a valid copy

of the data. The processor can access the data through the shared cache

directory a.nd shared cache memory with no action necessary by the CRI

or the protocol.

Read miss: Co responds to CR with a copy of b. If Co f:. S, Co has most

recently modified h, and Co(h) is either Dirty or Shared-dirty. Co sets

Co(b) to Shared-dirty. [f Co = S, Co(b) remains unchanged. en sets

Cn(b) to Shared-valid.

3See Section 4.2.4.4.

62

Write hit: IT CR(b) is Dirty, the write proceeds with no delay. If CR(b) is

Shared-valid or Shared-dirty, a message is sent to CG(O). This message

instructs all members of Ce(O) to change the state of their copy of b to

Invalid. After this message has circulated around the ring, C R(b) is set to

Transition. The write is immediately completed, and C R(b) is changed to

Dirty.

Write miss: Like a read miss, the object block comes directly from Co. If Co (b)

is Shared-dirty or Dirty, a copy of the block is also written-back. to the

server. All other caches in Ca(O) with copies of b change the state of their

copy to Invalid and CR(b) is set to Dirty.

4.2.3.1 Client state transitions

The cache in a client station implements all the states except Valid. A client

cache entry will never be in the Valid state because a client only becomes the

owner of a block when the block is being updated. Thus, the block will be left in

the Shared~dirtyor Dirty state. If the client does not own the block, the block

is in the Shared-valid state. Figure 4.2 shows the possible transitions for entries

in a client cache. Client cache entries are never in the Valid state because client

caches only request ownership when modifying a block. A modified cache entry

remains in the Shared~dirtyor Dirty states until it is selected for replacement.

At that time, ownership and the modified contents of the block are returned to

the server. When closing an object, the cache returns to the server ownership

of any associated cached blocks. To retain the performance improvements of

retaining blocks after close discussed in Section 3.5.2, these blocks are retained

in the cache in state Shared-valid.

When a cache entry that is in either the Shared-dirty or Dirty states is

replaced in a client cache, the modified data are written-back to the server, and

ownership of the block is transferred to the server. When a cache entry that is

in the Shared~validstate is replaced, no special action need be taken.

network write
-------------------------~, ,, ,, ,

".'" write hit, ,, ,

,," write hit write hit 3 network write ~~
rna e pnvate eSpona,-coPY -to-seivq..v, ,, ,

network rrod attwork write
respond'...... ". .. "respond, copy to server

'~'
, ,

l'!~"!.oc':cd~
respon

63

---~~ processor-induced transitions

- - - - ~ network-induced transitions
trigger

action

State 0:
State 2:
State X:
State 3:
State 4:

Shared-valid
Shared-dirty
Transition
Dirty
Invalid

Figure 4.2 States of cache entries in a client

64

4.2.3.2 Server state transitions

The cache in the server implements a.ll the states, including Valid. Figure 4.3

shows the possible transitions for entries in a server cache.

As the server is the repository for all shared objects in the system, the server

must also respond to requests for object blocks that do not appear in any cache.

In the cache coherence protocol, these object blocks may be viewed as residing

in the server cache, in state Valid. The server responds to requests for these

blocks by moving a copy from the object store into its cache, and then sending a.

copy to the requesting cache.

When the server cache must replace a cache entry that is In either the

Shared-dirty or Dirty states, the modified copy is written-back to the ob

ject store. When replacing a cache entry that is in either the Shared-valid

or Valid, no special action is required. In either case, ownership of the block

remains at the server.

4.2.4 Cache-to-cache network messages

The block ownership protocol is implemented with eight cache control mes

sages that are encapsulated in network packets and transmitted on the ring. The

messages are designed so that responses are fast to computej packet formats pro

vide space for the response to be inserted in the original packet. The network

interface contains enough delay that the packet is held at each station while the

response is computed and inserted. Responses that involve longer computation

are sent in a separate packet, as noted below. The original packet is marked by

the station that will respond stating that a response is forthcoming.

Messages are divided into three categories: group and access control, cache

control, and data responses. Each category is described below.

network wr£te
-----------------------~, ,, ,

~ .. ' write hit ,

~~:ite ~it r.® write h¥ _n_e!,,!~r!<_,,!rj~e_'::~
ke prlva e respona p, ", "

" I network rdul DUwork wn"te
{ep ace d" d.. respon" respon, , ,

~n~~U!.o!~-War~·t~ ~ ..
,>.:.{:... respon ,~....

[r.etwork r~ p.ltwork re~-respond - -reSpond-

65

--~.~ processor-induced transitions

- - - - .. network-induced transitions

trigger

action

State 0:
State 1:
State 2:
State X:
State 3:
State 4:

Shared-valid
Valid
Shared-dirty
Transition
Dirty
Invalid

Figure 4.3 Sta.tes of cache entries in a. server

66

4.2.4.1 Group and access control messages

To access an object, a client must satisfy the server that it has access rights

to the object, and join the pre-existing group concerned with that object. The

open message accomplishes this.

open(objectName, userNamc, accessMode)

The client sends an open message to the server to indicate that it wishes to

access objectName in a manner described by accessMode. The server determines

if the supplied userName has sufficient rights to access objectName. If not, access

is denied. If so, the server returns the grouplD of the group currently sharing

objectName, and a unique objectID which is subsequently used to refer to the

specified object.

The server requires some time delay to check perform object name to objectID

conversion and access rights. The response message is always sent as a deparate

dataRcsponse message. The server multicasts this response packet to all clients

in the group associated with the resulting objectID. Each recipient immediately

adds the requesting client to the group. This avoids any possibility of a client

leaving the group in the interval between receipt of the dataResponse message

by the client and that client acquiring the token to send a message to the other

clients in the group indicating that it is joining the group.

When a client is finished referencing an object, it leaves the group. This is

accomplished with the leaveGroup message:

leaveGroup(obi.dID)

The client multicasts the leave Group message to the group associated with

objectID. Each recipient deletes the originating client from its stored copy of the

group for obj~tID.

Because client caches retain blocks associated with an object after the last

process closes the object, there is no explicit message to close off access to an

object. When the server receives a leaueGroup message, it deletes the sender

67

from the indicated group. If there are no more members in the group, the object

may not be accessed until the server receives another open message.

4.2.4.2 Cache control messages

Four messages implement the cache coherence protocol. Figures 4.2 and 4.3

show the actions of the cli~nt and server caches, respectively, on receipt of any

of these messages.

•fetch(obj"tID, blockNumbcr)

A client multicasts an sfet~h (for shared fetch) message to the groupID as

sociated with the object referenced by objectID to receive a. public copy of the

logical block blockNumbu. The current owner or'that block marks the original

packet indicating that it will respond, and sends a copy of the block in a. separate

dataResponse message. The owner converts the block to public status if the

block is prilJate.

pfetch(objectID, blockNumbcr)

A client multicasts a. p/etch (for pr£vate fetch) message to the groupID asso

ciated with the object referenced by objectID to receive a. pr£vate copy of the

logical block blockNu.mbe.r. The current owner of that block marks the original

packet indicating that it will respond, and sends a copy of the block in a separate

dataResponse message. If the block. is modified, the dataResponse message

is multicast to both the requestor and the server, effecting a write-back of the

new contents to the object store. Ownership of the block is transferred to the

requestor. All caches other than the requestor invalidate the block, if it exists in

their caches.

replace(object!D1 • blockNumberl. object!D'l' blockNu.mber'l)

The owner of logical block blockNumberl of the object referenced by object!D1

multicasts a replace message to the grou.pID associated with the object referenced

68

by objectID2 to replace blockNumberl with logical block blockNumber:: of object

objectID2 in its cache. Ownership of block blockNumberl is transferred to the

server. (RecaIl that the server is part of every group/D). If blockNumbcTl is mod

ified, the new contents are appended to the original packet for the server to read,

effecting a write-back to the object store. The owner of blockNumber:: marks the

packet indica.ting that it will respond and returns the contents of blockNumber::

to the requestor in a separate dataResponse packet. Clients use a special case

of the replace message, with both objectID l and blockNumberl set to zero, to

return ownership of blocks to the server when closing an object.

The group a.ssqciated with object obiectID I need not be involved In this

transaction. Only the client and server are concerned with the transfer of owner

ship of this (or any) block, as the owner of a block is responsible for responding

to such requests. At the completion of this message, the server owns block

blockNu.mbeTl' and will respond to any future requests for it.

Alternatively, clients could replace owned blocks by sending a message to

give ownership back to the server, followed by an appropriate fetch message.

The replace message saves one message every time a block is replaced.

private(objectID, blockNumber)

A client multicasts a private message to the groupID associated with the ob

ject referenced by objectID to convert the copy of block blockNumber that it holds

from a. pu.blic copy to a private copy (which may be subsequently be modified

by the requestor). Ownership is transferred to the requestor. If blockNumber

is modified, the current contents are sent to the server in a separate dataRe

sponse packet. effecting a write-back to the object store. All caches that hold a

copy of the block, other than the requestor, invalidate the block.

4.2.4.3 Data response messages

All responses that can not be included in the original message, because the

response takes a long time to compose, are returned in a separate dataResponse

69

packet. An example is when the server must respond with an object block that

does not reside in the server's cache, but must be fetched from the bac.king store.

When a client sends a pletc.h message, the client cache assumes ownership of

the block as soon as the message has complete transit of the ring. The client is

now responsible for answering further fetch requests, but may not yet ha.ve the

data for the object block. When this is the case, the client marks the request to

indicate that it will respond, and keeps track of which other clients have requests

pending for that block. When the owner finally receives the data. for the block, it

sends a dataResponse message to all pending clients, indicating that they should

resend their request. At this point, the owner has the data. and can satisfy the

requests immedia.tely.

Ownership transfer via a pr£vate message from another client during tl-Js

pending period does not cause a. problem. Upon receipt of the original pfetch

message, all caches that held copies of the requested block, but were not the

owner of the block, invalidated their copies. The time delay in response occurs

only because the server is the owner. While waiting for the data for the block to

be returned, it is guaranteed that there are no other copies of the block in any

cache. Thus, no pr£vate message will be sent during this interval.

4.2.4.4 Emergencies

In an ideal situation, the above messages suffice to implement the cache co

herence protocol of the Caching Ring. However, the stations on the network may

fail, and may fail while holding ownership of some blocks. Thus, we add a ninth

message:

bailout(objcctID, blockNumbcr)

A client sends a bailout message to the server when it receives no response

from the owner of block blockNumber of the object referenced by objectID. The

server also attempts to contact the owner, and, if this fails, issues a private

message to become the owner of the block, and falls back to the most recently

70

written·ba..ck copy of the block. The server returns this copy of the block to the

requestor in a. separate dataResponse packet.

The server then sends pn"vate messages for all blocks that it knows are owned

by any client. After this, the server removes the failed station from the group by

sending a lealJeGroup message on the behalf of the failed client.

Because the protocol includes a write-back of a. modified block every time the

ownership of that block cha.nges, the amount of data. lost if a client crashes is, at

most, the updates made by the current owner.

We expect that stations will fail due to processor failure rather than network

failure. The architecture of ring networks does not allow continued communica

tions when any ring interface has failed. Clients may check messages that they

receive are from a station that is recorded as a member of the group, and dis

regard them and notify the client if not. This prevents the client processor that

survives a network failure from disrupting the coherence protocol.

4.2.4.5 Cost of the messages

The absolute time delay for the delivery of a network message is dependent

upon the number of stations in the network, as each station a.dds a fixed delay

to delivery times. However, we ca.n compare the cost of the various messages by

expressing the delays in terms of ring delays-the time required for a message to

make one complete circuit of the network. Thus, we can estimate the e.xpected

delay for various operations on the ring.

Again, we consider four possible cases: read hit, read miss, write hit, and

write miss. Expected delays for each case are as follows:

Read hit: There is no network delay.

Read miss: The expected delay for a read miss is one or two ring times. The

client first issues a sfetch, with a delay of one ring time. If the owner is

another client, the block resides in the owner's cache, and the contents may

be appended to the original packet. If the server is the owner, and the block

is not in the server's cache, there will be a. delay while the block is fetched

71

from the object store. The server marks the packet stating that it will

respond. and fetches the block. The server then sends a dataResponse,

with a delay of one ring time. The delay of fetching the block from the

object store may be partially overlapped with the delay for the sf~tch.

depending on the relative locations of the client and server on the ring.

Write hit: The expected delay for a write hit is zero or one ring time. If the

block is in the Dirty state, no message need be sent. The copy of the block is

known to be the only one in the system, and may be modified immediately.

If the block is in the Shared-dirty state, other caches may hold a copy of

the block, and a private message must be sent, with a dela.y of one ring

time, to invalidate those other copies.

Write miss: The expected delay for a write miss is one or two ring times. The

client first issues a pletr.h message, with a delay of one ring time. If another

client is the owner, the block must reside in the owner's cache, and the

contents are appended to the original packet. If the server owns the block,

and the block is not in the server's cache, there will be a delay while

the block is fetched from the object store. The server marks the packet

stating that it will respond, and fetches the block. The server then sends

a dataResponse, with a delay of one ring time. The delay of fetching the

block from the object store may be partially overlapped with the delay for

the pfetch, depending on the relative locations of the client and server on

the ring.

4.2.5 Semantics of shared writes

Since there may be a delay of up to one ring time between the time a client

issues a private or pletr.h message and the holder of a copy of the block receives

it, there is an interval during which the holder of a copy may provide stale data.

For example, if two clients, C 1 and C~ are sharing block B, with C 2 the current

owner, a process on C 1 may write the file. In response, the CRI at C x sends a

private message to C2 , requesting ownership of B, and subsequent removal of B

72

from the cache a.t C'Z_ Between the write a.nd the time C'l receives the message,

a. process on C2 may read. the cached block, and receive (now) stale da.ta.

A desirable solution would be for the write at C1 to fail in this case, since the

write is sta.lled pending transfer of ownership. This requires that messages be

timestamped, which further requires that the stations in the distributed system

have synchronized clocks. We prefer not to require these attributes. In essence,

the semantics of writing on the Caching Ring are such that the write is not

complete until the private or pletch message has completed its transit around the

ring. This is different from the immediately complete writes that many simple

programs assume, and can lead to problems as described here.

Since our evidence shows that shared access makes up only about 10% of the

measured activity on our UNIX system, and only 5% of those accesses involve

writes, we require that a higher-level locking protocol be enforced between the

sharing clients. This is consistent with the standard UNIX file system.. Other

systems built on top of the Caching Ring must adapt to these seman~ics, perhaps

by building a higher-level locking protocol using the command packets provided

by the CRI.

4.2.6 Motivation for this design

This algorithm reflects the results discussed in Chapter 3. Most importantly,

it places the naming, access control, directory, file, and disk managers at the

server. This eliminates the network traffic that would be required to transfer the

contents of and serialize access to the data structures used to implement the file

system.

We concluded that performance of reads should be of the highest importance,

so the eRr imposes no communications or synchronization delay on read hits.

This, in tum, leads to the shared write semantics discussed above. If shared

writes were expected to OCCllI more frequently, the coherence algorithm. could

force clients to synchronize through the CRI on a read hit. Since processC;>I

requests have the lowest priority in the CRI, all pending invalidation messages

Time G, G,

To pfetch(B)

To + 1

To + 2

To +3 write(Bl

To+4 send private(B)

To+5

To+6 read(B)

To+7

To+8

To+9 receive private(B)

To + 10 invalidate B

To+ II

To+ 12 private(B) returns

To + 13 complete write(B)

Figure 4.4 Timeline showing contention problem

73

74

would be processed first, and the stale data would not appear in the cache.

However, this leads to a higher a.verage read access time.

Similarly, if writes occurred more often, we would consider transferring own~

ership with every fetch message, be it p/etch or s/etch. This would elimina.te

some of the time spent waiting to attain ownership of a block before writing it.

This would lead to higher write-back traffic to the server, since modified blocks

are written back with every ownership change. Alternate strategies to predict

the need to make a block private would also need to be explored.

4.3 Summary

We have presented the design of an intelligent, network-based caching sys

tem, the Caching Ring, for use in a. distributed system. Utilizing the intelligent

interface, client workstations may access objects from a central repository and

share portions of these objects among themselves. To improve performance, the

intelligent interface contains memory to act as a cache of recently used objects.

This cache is used to satisfy requests to access objects whenever possible.

The intelligent interfaces implement a network protocol to maintain consis

tency among the caches of clients sharing an object, and to minimize the amount

of data lost if a. client fails.

75

5. A SIMULATION STUDY OF THE CACHING RING

To investigate the performance of the Caching Ring, we designed a simple

distributed file system in which disk files are the shared objects. Using the

activity tra.ces discussed in Chapter 3, we simulated the performance of the

Caching Ring for several different system configurations.

This chapter extends our understanding of caching to the performance in

distributed systems. Using simula.tion, we were able to determine the effects of

cache size and placement, and locate the expected performance bottlenecks in a.

distributed caching system.

5.1 A file system built on tbe Caching Ring

We now present the design and analyze the performance of a. distributed file

system built using the facilities provided by the Caching Ring. The file system

has the semantics of the 4.2BSD UNIX file system, although we did not imple

ment all the primitives. We did design mechanisms for opening, closing, reading,

writing, and seeking on files, as well as accessing and maintaining the directory

structure. The implementation of the remaining status and maintenance primi

tives is straightforward using command packets, but these primitives do not play

a part in measuring the performance of the Caching Ring.

5.1.1 Architecture of the Caching Ring file system

The file system is based on a set of diskless clients and a. single central file

server. The server maintains a complete file system that is shared by all clients.

The same file name spa~e is sha.red by all clients in the system. Clients use file

names to identify files when opening them. Thereafter, the server and clients use

objectIDs to identify open files.

76

.The server also maintains the na.ming manager and the directory system,

providing primitives for atomic directory access and maintenance across the net

work, 1.l£ing command packets. In using these primitives, the client operating

systems do not need to know the structure of the directory system, and do not

transfer large amounts of data across the network while searching or modifying

the directory system. Updates to directories are guaranteed to be synchronized,

because they are serialized at the server.

5.1.2 Implementation of the file system

The implementation of the file access primitives is a straightforward mapping

onto the primitives provided by the Caching Ring. To open a. file, a client sends an

open packet with the file name, a.uthentication information, and intended access

mode. The server checks for access rights, and returns an obiectID tha.t describes

the file and a groupID that describes the group of clients currently sharing the

file. This response is multicast to the group, as described in Section 4.2.4.1. If

the open fails for any reason, the server returns a failure message to the client

indicating the reason for the failure.

To read a block from the file, the client operating system first checks the CRI

cache directory to see if the file is already in the cache. If so, the cached copy is

used with no intervention by the CRI. If not, a read request for the block is passed

to the CRI. The CRI multicasts an sfetch message to the groupID associated with

the file, which is recorded in the group mapping cache in the CRI, and waits for

the response from the Caching Ring.

To write a block of the file I the client operating system issues a write com

mand to the CRI. If a copy of the block is already in the cache, and not in the

Transition or Dirty state, the CRI multicasts a pr£vate message to the file's

groupID, and sets the sta.te of the entry to Transition. If there is no copy of the

block in the cache, the CRI sends a pfetch message to the corresponding groupID

and waits for the response. When the response arrives, it contains the current

data ror the block. The CRI places this data in the cache, sets the entry state to

77

Transition, writes the new data, and sets the state to Dirty. Only then is the

client operating system notified tha.t the write has completed.

To close a. file, the client operating system decrements the file reference count.

When the reference count reaches zero, the client opera.ting system issues a. close

command to the CRI. The eRI returns ownership of all cached blocks associated

with the file to the server, as described in Section 4.2.4.1. When all of these

blocks are subsequently invalidated or replaced, the CRI multicasts a. leave-Group

to the associated group, and is no longer party to messages concerning that file.

The obJect names passed in an ope.n message to the server are marked as

names that come from the file system portion of the shared object na.me space

that the server provides to the system. Once the file object has been opened,

all transactions are in terms of objectID, and the server need not differentiate

between file objects and other objects that it provides to clients on the Caching

Ring.

5.1.3 Operating system view of the file system

To the higher level operating system routines that use the ~e system., this

distributed file system has the identical semantics a.s a file system implemented

on a locally attached disk. Files appear as an unformatted stream of bytes.

Files are named by text strings, and once open, referred to by small integers,

known as file descriptors. The file system internally maps these small integers

into the objectIDs used by the CRI.

Requests to read and write from the file contain a file descriptor, the starting

address of a buffer in which to place or from which to copy the data, and the

number of bytes to transfer. The file system maintains the current offset in the

file at which to begin operations. This offset may be altered by the seek primitive.

The file system computes the logical block numbers of the range of bytes affected

by the request, and uses the CRI to access those blocks.

78

5.2 Simulation studies

To evaluate the performance of the Caching Ring, we wrote a program to sim

ulate this distributed file system. We drove it with the activity traces described

in Chapter 3, and, by varying parameters in the simulated system, gained insight

into the performance effects of different portions of the system. These simula

tions also allow us to compare the performance of a Caching Ring distributed

file system to the performance of other file systems.

5.2.1 Description of the simulator

The simulator is written in the CSIM simulation language [8ch85J. CSIM is a

process oriented simulation language based on the C programming language. It

supports quasi-parallel execution of several software processes. The basic unit of

execution is a process, and each process may initiate sub-processes. Each process

has both a private data store and access to global data. Processes can cause

events to happen, wait for events to happen, and cause simulated time to pass.

Much of the data gathering associated with simulation models is automated, and

is easy to extend. The language is implemented primarily as calls to procedures

in a runtime library, so the full power of the host operating system is available

to support features such as I/O and dynamic memory management.

The process model of the simulation language serves as a convenient envi

ronment in which to do concurrent programming [HLGS78,AS83]. The simu

lated processes may be thought of as executing in parallel, sharing a common

address space. CSIM directly provides events that are similar to semaphores,

and may be used for process synchronization [Dij68a,Dij68bj. In addition, we

implemented message queues that allow processes to synchronize via a message

passing paradigm when it is convenient to transmit data as well as to implement

synchronization.

The model of the caching ring contains a process for each client processor,

each CRI, and the server. These processes communicate through message passing

queues, and synchronize by waiting for access to the ring or for synchronization

79

events to be set. Access to the ring is controlled by a token, which is passed

from cache to cache. When the ring is idle, any eRr may take the token and

send on the ring. The message is pla.ced. on the input queue of the next station

on the ring, and the token is passed to that station. Each eRr executes in the

loop of "receive packet, act on packet, forward packet" until it the associated

processor has some work to be done. A eRr removes an inbound packet when

it notices that it is the originator of that packet. The originator of the packet

advances simulated time by the appropriate amount for the length of the packet.

Unless mentioned otherwise below, the simulated transmission rate on the ring

is 10 Mbitsjsec, the delay through each eRr is 32 bit times, and there are 32

stations on the ring.

A processor with a request for the CRr places a message on the CRI's incoming

request queue, and resets and waits for a completion signal from the CRI. If the

ring is currently idle, the CRI forms an appropriate message, acquires the token,

and transmits the message on the ring. When the response appears in the CRr

input queue, the result is placed in the block cache, and the processor is signalled

to continue. If the ring is not idle, the CRI forms the message and waits for the

token to appear. After processing and forwarding all inbound messages, the CRr

adds its message to the next station's input queue, and only then passes the token.

This simple model of the processor does not accurately model a multiprogrammed

operating system. Once a processor begins waiting for the CRr to respond, it is

blocked from completing other operations that might be satisfied from the cache.

We have, however, found this model sufficient to discover many factors affecting

the performance of the Caching Ring.

The server is implemented as two processes with message queues between

them. One process simulates the server CRI, and the other manages the simulated

disk at the processor. The eRI places incoming open and block fetch requests

on the disk queue, and continues network operations. The disk process delays

for an amount of time appropriate to the request, and places a response on the

eRI incoming request queue. At the next opportunity, the eRI acquires the ring

token, composes a response, and sends it to the requesting client.

80

.Each eRr maintains data structures similar to those used for the simulations

in Chapter 3.. There is an open object table and a set of cache blocks that the

eRI manages according to an LRU replacement policy. These are shared by the

processor and CRr. In addition, there is a table mapping obiectIDs to groupIDs,

for composition of network addresses, a.nd a table containing the state of each

entry in the cache block (Invalid, Shared-valid, etc.)

5.2.2 Using the trace data

To compare the simulated performance of the Caching Ring filesystem with

the simulated results in Chapter 3, we generated processor requests from the

same activity traces. Once again, we used only trace records generated by the

file manager, thus simuiating only I/O activity generated by user processes. The

orginal traces recorded. the user and process identifier of the process making each

request, so it is straightforward to split the traces into separate streams, one

stream per simulated client. Unfortunately, there is a fair amount of file system

activity due to various system tasks. This activity must be accounted for in some

manner. It cannot simply be ignored, nor can it necessarily be duplicated and

charged to each simulated client. We have used the traces in the simulations

reported below in ways that attempt to treat this system activity fairly. As in

Chapter 3, the four original traces produced nearly indistinguishable results; we

report only the results from trace A.

5.2.3 Miss ratio us. cache size

In order to characterize the basic performance of the Caching Ring, we sim

ulated a. simple system with one active client. We varied the cache size and

network transmission parameters to determine their effects on t~e miss ratio,

effective access time, and utilization of the disk and network. The block size is

4096 bytes and the cache is write-back, both of which were shown in Chapter 3 to

be optimal for this set of traces. The disk service time, exclusive of any network

delay, is 30 ms/block. To isolate the effects of the client cache and network, there

81

is no cache at the server. The results of the cache size us. miss ratio experiments

are shown in Figure 5.1 and Table 5.1.

Table 5.1 Miss ratio and effective read access us. cache size

Cache Size

256 ytes
512 Kbytes
1 Mbyte
2 Mbytes
4 Mbytes
8 Mbytes

Miss ratio

31.7 0

27.8%
22.0%
19.9%
17.5%
10.9%

Effective read access time
(msjblock)

14.8
10.8
6.66
4.61
3.58
3.07

The miss ratios are higher than those reported in Table 3.1. This is the effect

of the block replacement policy enforced by the eRr on file closes. Every modified

block is written-back to the server when the file is closed. Thus the write miss

ratio is close to 100%, which affects the overall miss ratio we report. Another

cause of the increased miss ratio is the action of the protocol on write misses. to

be written would fully replace an existing block. In our simulation in Chapter 3,

if a block to be written was not in the cache, we did not charge a write miss or

add any delay to the total write delay; the cache merely allocated a block and

filled in the new data. In the Caching Ring coherence protocol, it is necessary to

send a pfetch message and wait for a response before writing the block. These

differences add to both the overall delay experienced and to the write miss ratio.

Because we compute the effective access time as the total delay seen by the

processor when reading divided by the number of bytes read, this policy has

minimal effect on the effective access time. The only effect would come from the

slightly increased network traffic from returning modified file blocks to the server

on close. For comparison, the access time of the disk is 30 ms/block, and the

access time of a typical network disk is typically 120 res/block.

Our results show that the Caching Ring provides a great performance im

provement over a network disk access mechanism. We attribute this to three

60

82

Miss
Ratio

(percent)

40

20f-

-

-

Effective
read

access
(ms/blook)

Cache Size (Kbytes)

Cache Size (Kbytes)
Figure 5.1 Miss ratio and effective read access vs. cache size

83

factors. First, by placing the directory, access control and disk managers com

pletelyat the server, we eliminate the communications overhead associated with

accessing manipulating the data used by these managers across the network. The

managers may use a memory cache of recently used objects to further enhance

performance. Also, the portion of the file manager that maps logical file blocxs to

physical disk blocks and interacts with the disk manager is placed at the server.

This eliminates the remaining overhead associated with maintenance of the file

system. This placement decision eliminates approximately 50% of the traffic to

the serverl.

Furthermore, the network protocols involved have very little transmission

and processing overhead, and the computing equipment servicing the protocol

is required to do nothing else. In a network disk access mechanism such as

Sun Microsystems' ND, the protocol involves a costly checksum computation at

several points in the procedure of accessing a disk block, and the server machine is

timeshared and has a slow response time to processing incoming network packets

[Mic84].

We also measured the utilization of the network and server disk for the various

cache sizes. The results are shown in Table 5.2.

Table 5.2 Disk and network utilizations for various cache sizes

ISee Section 3.6.

Cache Size
256 ytes
512 Kbytes
1 Mbyte
2 Mbytes
4 Mbytes
8 Mbytes

Utlization
Disk Network

21.70 0.50
17.4% 0.5%
14.7% 0.4%
13.2% 0.4%
12.3% 0.4%
11.9% 0.4%

84

5.2.4 Network latency

To determine the effects of the network subsystem, we repeated the previous

experiment, varying the delay through each processor and the number of stations

on the ring.

The performance of the Caching Ring depends on the ability to respond to

requests in the original packet containing the request. The acceptable delay

through the station has a great impact on the technology used to implement

the eRr and the resultant complexity and cost. For this experiment, we found

that a. delay of 8 bits at each station instead of 32 reduced the utilization of

the network by 20%, and a delay of 64 bits increased the utilization by 20%.

In either case, total network traffic still demands less than 1% of the available

network bandwidth. The effect on the effective read access time in each case was

les, than 0.1%.

The number of stations on the ring affects the total delay experienced in a

ring transit time. We varied the number of stations on the ring from 1 to 32, and

noticed effects on the ring utilization and effective access time similar to those

produced by varying the delay at each station.

We conclude that the transmission characteristics of the network are not a

large consideration in the performance of the Caching Ring. Adding more active

stations to the network will of course generate more traffic, which will increase

utilization and delay at each point in the system. We explore this more fully

below.

5.2.5 Two processors in parallel execution

To test the robustness of the cache coherence algorithm and load all com

ponents of the system, we simulated a system in which two client processors

execute exactly the same activity. Operation of the system proceeded as follows:

CA. would send an open to S and wait. CB would send an open to S and wait.

S would complete the first open and send the resul t to C..4.' C..4. would issue the

first fetch operation and wait. S would complete the second open and send the

85

result to Cs. Cs would send its first fetch operation. If the first opera.tion was

a. write, GAo has assumed ownership of the block, and would indicate that it will

respond the Cs . Otherwise, S indicates that it will respond. 5 completes the

fetch and sends the block the CA. If GAo is writing the block, it does so and sends

a resend to Cs _ Cs reissues the pfetch. CA responds, invalidating its copy and

sending a. copy to the server. Cs receives the block and writes it. This continues

until the end of the trace is reached.

Utilization of the disk is considerably higher, as high as 44% for a 256 Kbyte

cache, primarily because almost every write involves a write miss, and the fre

quent change of ownership of blocks causes many more updates to be sent to the

server. Network utilization is also higher, for the same reason. This experiment

shows that the coherence protocol is sound and does not reveal any timing races

under high sharing loads.

5.2.6 Simulating multiple independent clients

We now consider the performance of the Caching Ring system under a more·

typical load from several independent users. Ideally, we would like to separate

the individual activity streams into the activity generated by each user of the

system. However, as discussed earlier, we must account for file activity generated

by system-owned processes. We also wish to place a heavier load on the system

than is recorded in our original traces.

To generate activity streams, we split the original stream into as many streams

as necessary to drive the desired number of simulated processors. We duplicated

existing streams as necessary. To avoid uncharacteristic levels of sharing activity,

some processors started at different places in the activi ty stream and wrapped

around to the beginning.

OUI' analysis of the traces in Chapter 3 showed that the majority of file sharing

is in system files. Those files live on a particular device on Merlin's disks, and

can easily be identified in the trace. To further support the independence of the

generated activity streams, referenced files that do not lie on the system disks

86

were renamed, 50 that the only candidates for sharing between processors are

the system files.

We generated simulations wjth two different classes of processors. The first

replicated the activity traces without separating out individual users. This sim

ulates the effect of several timesharing systems on the network, and accurately

depicts the load offered by the system processors. The second also separated out

the individual activity traces, and assigned each to a separate processor. The

activity from the system tasks was randomly assigned to a processor. The results

from these two sets of simulations were nearly indistinguishable; we report only

the results of simulating timesharing systems, as they seem to be a more accUIate

use of the traces.

We simulated systems with one to six client processors, representing approxi

mately two to twelve active users. Our simulation results are shown in Figure 5.2.

The effective disk block access time rises sharply after adding the fourth

system to the ring. It flattens out almost completely after adding the fifth system

to the ring. We inspected the utilizations of the various components of the

system, and found the utilization of the disk to be high at these points, with

queue lengths at the disk growing to be larger than 1. Figure 5.3 shows the

server disk utilization percentages.

Comparing these two graphs, we see that as the utilization of the server disk

increases. and with it the queue length, the effective disk service time increases

to above the hardware delay. This causes the effective access time to rise. The

effects of the client cache are still visible, since the miss ratio at the cache does

not change. Because the service time at the server has become dependent on the

load, the effective access time necessarily also changes.

At high loads, the size of the cache does not affect the server disk utilization.

This is because the disk is being saturated by open and close requests, and the

cache can not affect the I/O required to perform these.

Depending on the cache size chosen for the client processors, we conclude

that the system can support approximately ten users on the ring before the

~

~

u
0-.0 127 DOli,
•E
~

•E 9S 6933
~

••• 'I" 'J8G7U
U•
•,

J 08000
~

U•~
~

W

Figure 5.2 Multiple timesharing systems on the Ring

6

87

~

~

c•u
•• 'iI'iI 5000
0-
~

C
0

~
70 9667

•N
~ '+2 'lJJJ=>
~

~-
" 13 9000
••,
••'" '+886

,
,

88

Figure 5.3 Server disk utilization us. timesharing clients

89

server disk becomes a significant bottleneck. At maximum load, the utilization

of the network is only 1.8%. Thus, we expect that ring throughput will not be a

performance bottleneck without much heavier loads.

5.2.1 Size of the ae:Lver cache

How can we shift the bottleneck of the server disk? The service time can be

decreased in several ways. The first is by adding second disk to share the load. IT

properly managed, this can reduce the disk service time by as much as 50%, but

this figure can only be a.chieved if files are arranged so that the load is always

evenly balanced. Similarly, a the disk can be replaced with a faster one; however,

there are limits to the transfer rate of current disk technology, and the figure of

30 milliseconds per block used in this simulation-is based on one of the fastest

currently available devices.

Another way to decrease the disk service time is to add a disk block cache

at the server. We repeated the experiments of the previous section with a range

of cache sizes at the server, and discovered that even a modest cache has a

significant effect on the location of the bottleneck.

We found that even a modest cache of 256 Kbytes provides a large improve

ment in performance, pushing the bottleneck out to approximately 14 systems,

or 28 users. A large cache places the bottleneck beyond the largest system we

were able to simulate (a system with twenty timesharing systems on the ring).

The cache at the server provides the same relative performance enhancement

that it provides at the client.

These simulation results correspond well to those reported by Lazowska et al.

in [LZCZ84]. In the most efficient configuration that they measured, they expect

a single server to support approximately 48 clients before exhibiting response

times above those that we consider typical for a network disk. By adding the

effects of large caches in the system, we can expect performance to- improve to

the levels presented here.

90

Neither,of these methods reduces the I/O load generated by the naming man

ager. This can be reduced in several ways: moving the on-disk data structures

used by the naming manager (the directories) to a separate disk, locating the

naming manager on a separate server machine that does not handle file disk

traffic, or using a cache of name lookup information. As we did not simulate the

performance of the naming manager, we did not investigate the effects of changes

of this type.

Again, we do not consider paging traffic to the server. A typical Caching

Ring would probably use the server for both file activity and paging activity,

and utilizations would then be higher. It may also be unwise to consider a

configuration in which so many clients are dependable on a single server for

reliability reasons.

5.2.8 Comparison to conventional reliable broadcast

We now consider implementing the Caching Ring coherence protocol on a

conventional broadcast network such as the Ethernet. Both the Ethernet and

the Caching Ring network have transmission rates of lOMbits/sec, so the perfor

mance comparison is an interesting one to make. Because the coherence protocol

of the Caching Ring depends on reliable broadcast transmission of packets, we

must ensure reliable transmission on the Ethernet. The Ethernet has a "best

effort" delivery policYi it will make a good effort to deliver packets reliably, but

does not guarantee delivery. To guarantee reliable transmission of broadcast, an

additional protocol mechanism must be introduced.

Chang and Maxemchuck describe an algorithm that is typical of such proto

cols used on an Ethernet in [CM84]. The protocol constructs a logical ring of the

hosts that wish to reliably broadcast messages to one another, and uses point-to

point with acknowledgements to messages to move the broadcast packets around

this ring. For a group of N hosts, the protocol requires at least N messages to

be sent on the network for each reliable broadcast.

91

-The Ethernet is known to have poor performance on small packets [SHgOj.

This is largely because the Ethernet cha.nnel acquisition protocol enforces a.

9.6?'Sec delay between the end of one packet and the beginning of the next.

Since the control packets in the Caching Ring are all small, we expect this to

have a serious effect on the performance.

The Ethernet limits packet sizes to 1536 bytes, including protocol overhead.

Since the Ethernet is designed to accomadate a wide variety of network appli

cations, there is a large amount of space for protocol headers in a packet, with

room for approximately 1 Kbyte of d-ata. For our optimal block size of 4 Kbytes,

it will take four Ethernet packets to transmit a single block. We compose the

following bit count for one of these packets: 1024 x 8 bits of data, 64 bits of

objectID, 96 bits of addressing information, 16 bits of packet type, and 32 bits

of block number, for a total of 8400 bits. Each Ethernet packet is preceded by

a 64 bit preamble, and followed by a 96 bit delay, for a total of 8560 bits, or a

total delay of 856 Jlsec. Four packets are needed to transmit a cache block, for a

total delay of 3424 j.J.sec.

To transmit the same amount of data on the Caching Ring, we build a single

packet consisting of: 4096 x 8 bits of data, 64 bits of obje.ctID, 96 bits of addressing

information, 16 bits of packet type, and 32 bits of block number, for a total of

32976 bits, or a total delay of 3297.6 j.J.sec. In addition, the packet will experience

a 32 bit delay through each of the 32 stations on our ring, adding 102.4 J1.sec for

a total delay of 3400 Jlsec. Thus, we see that the transmission delay for large

packets in the two network technologies is quite similar.

However, after this delay, all stations on the ring have seen the packet, and

only one on the Ethernet has. We must multiply the total delay on the Ethernet

by the number of stations in the group of clients sharing the file. The largest

number of processors that had a file open simultaneously in any of our traces is

nine. Sharing levels of two or three are more typical, making up over 80% of all

shared accesses.

We thus conclude that the Caching Ring protocol can be implemented on a"n

Ethernet using a reliable broadcast protocol. We expect that this implementation

92

would perform at one-half to one-third of the simulated performance reported

here.

5.3 Conclusions

We have presented the design of a distributed file system that uses the Caching

Ring to allow workstations to access remote files efficiently and share portions of

files among themselves. This file system implements the semantics of an existing

well-known operating system, 4.2BSD UNIX.

We used a simulation of this file system to examine the performance char

acteristics of the caching ring. The primary result is that the performance of

the disk at the server is the bottleneck. A server with a high-performance disk

can serve approximately 24 active users before those users see a degradation in

throughput to levels below those of a typical remote disk. This can be extended

to 32 users by ac;1.ding small a disk block cache at the server, and 40 or more users

by adding a large disk block cache at the server.

The simulations show that the Caching Ring hardware, with a sufficiently

large cache at each eRI t can provide clients with access to a remote disk at

performance levels similar to those of a locally attached disk with a small cache.

When the server is not the bottleneck, the performace of the file system

appears to the client only slightly worse than the performance of a local disk

accessed through a cache of the same size. When the server bottleneck is reached,

performance quickly degrades to the performance of a typical remote disk, as

described in Chapter 3. A large cache at the client keeps even performance of

this configuration similar to the performance of a locally attached disk with a

cache the size of that used in our VAX timesharing systems.

We attribute the performance of the Caching Ring to the large caches at each

client, and the tow overhead imposed by the protocol and hardware implementing

the cache coherence algorithm. The amount of network traffic generated by the

cache coherence messages is small enough that we believe there to be enough

communication bandwidth to support a hundred or more workstations. This

93

is primarily because there is so little sharing of files; most communications are

simply between a client and the server, and the low overhead communications

add little penalty to the basic operation of reading or writing the disk.

Furthermore, we conclude that the Caching Ring protocol is can be imple

mented on a conventional broadcast network such as the Ethernet, but we ex

pect that performance will be two to five times less than the performance on the

Caching Ring.

94

6. SUMMARY AND CONCLUSIONS

Our research has been directed toward an understanding of caching in dis

tributed systems. After surveying previous work in understanding caching in

multiprocessor systems and distributed systems, we measured and analyzed the

effects of caching in the UNIX file system, to extend our understanding of caching

beyond the area of caching in memory systems. We then designed a caching sys

tem, the Caching Ring, that provides a. general solution to caching of objects

in distributed systems. We have analyzed the performance oi the Caching Ring

under simulated loads based on trace data taken from an existing system, and

discussed how the Caching Ring addresses the problems of caching in distributed

systems. The remainder of this chapter summarizes the contributions of this re

search and proposes future directions for the investigation of distributed caching

systems.

6.1 Caching in the UNIX file system

In this dissertation, we have discovered that, on the average. active users

demand low data rates from the file system. The UNIX system, in that it relies

so heavily on objects stored in the file system, yields a bursty file system traffic

pattern. An active user may have short periods of activity that demand as much

as ten times the average data rate. Also, we have concluded that a disk block

cache of moderate size greatly reduces the total disk traffic required to satisfy

the user requests.

We also discovered that more than 50% of the total disk traffic is the result of

overhead involved in managing the data structures that the file system maintains

on disk to maintain the mapping of logical file blocks to physical disk blocks, the

naming hierarchy, and access control information.

95

Through simulation, we showed that the economics of current memory and

disk technologies provide two alternatives for increasing the file system perfor

mance of a processor. By adding a large memory to be used as a file block cache,

the effective performance of a disk with a slow access time may be increased to

compare to that of a disk with a faster access time.

Finally, we discovered that there is little sharing of data between users of the

file system.

6.2 Caching in distributed systems

Based on the low demand placed on the file system by active users, we would

expect that the network bandwidth available from a conventional network such

as an Ethernet would support many users. However, further simulation has

shown that the bandwidth implied by the transmission speed of the network

is not necessarily available for the transmission of information. Delay through

interfaces or in the medium access protocol may greatly reduce the bandwidth

available to a particular workstation, with a significant effect on the performance

of a distributed file system.

6.2.1 Location of managers

Our model of a file system divides the activity into five separate managers,

each handling a different type of object related to the operation of the file system

as perceived by the clients. The placement of the processes implementing each

of these ma.nagers, either local to the client or remote on a server, may have a

significant impact on the amount of traffic on the network, the CPU overhead on

the client, and the performance of the server.

6.2.2 Cache coherence

The low general level of sharing of file blocks a.mong client workstations lead

us to conclude that a cache coherence mechanism is not as expensive to provide

as was previously thought. In our data, most applications use private files, and

96

reads outnumber writes by 2:1. Sharing, when it occurs, is largely for files that

are read only. Thus, we presented the design of an efficient cache coherence

protocol, based on earlier multiprocessor cache coherence mechanisms, which is

optimized for the reading of private files. This protocol guarantees that blocks

that exist in a cache are valid, and therefore incurs no communications ccst on a

read hit. Miss operations are inexpensive in terms of communications. Caching

and writing of shared objects is fully supported, with no special locking action

required by the client.

6.3 The Caching Ring

We present the Caching Ring as a high performance, general purpose 5011+

tion for the caching of objects in a distributed system. The Caching Ring uses

current technology to implement the coherence protocol discussed above, thus

relieving the client processors of the overhead of maintaining the cache and net

work. The Caching Ring network hardware itself presents a novel addressing

scheme, providing low-cost reliable broadcast to the clients.

In contrast to the other systems discussed in Chapter 1, the Caching Ring

provides a general purpose mechanism for caching objects in distributed systems.

It supports partial caching of objects, no delay on read hits, and the ability to

cache shared objects. Updates the shared objects are immediately available to

the other processors.

6.4 Future directions

Traces from other environments. Our trace data was taken from large

processors running a timesharing system. We recorded the activities of each

individual user, and used the activity of each user as an indication- of the demand

generated by a single workstation in a distributed system. There is some reason to

believe that this is not a totally accurate representation of a client in a distributed

system environment. For example, it ignores all the traffic generated by tasks

97

that are co.nsidered system overhead, such as mail, news, and routine file system

housekeeping tasks.

It would be instructive to obtain a set of activity traces taken from a. set of

workstations, and use the traces to drive this simulation of the Caching Ring,

and compare the results to those presented here.

It would also be valuable to obtain traces from an environment in which

large databases are used by many programs. In such an environment, we would

expect readahead to have a. more dramatic effect on the miss ratio, and perhaps

see higher miss ratios over all.

Distribution of file system tasks. The experimental results presented in

Chapter 3 led us to conclude that a distributed file system that uses file servers

will perform more effectively than one that uses disk servers. This conclusion is

based on the goal of minimizing network traffic, because we believe that network

throughput is one of the most likely bottlenecks in a distributed system. The

results show that more than 50% of the disk traffic in the UNIX file system

is overhead due to user requests, rather than data needed for user programs.

Eliminating this overhead traffic from the network allows more users to be served

before the network reaches saturation.

This places an additional computational burden on the file server machines.

Lazowska et at. concluded that in a distributed system using disk servers, the

CPU of the disk server is the bottleneck [LZCZ84]. With a higher performance

CPU at the disk server, the disk then becomes the bottleneck. In a file server,

we expect disk traffic to be reduced, because the server may keep a local cache

of the information used by the access control, directory, and file managers. A

large cache of recently accessed disk blocks used for files also reduces the total

disk traffic.

A complete trace of the disk traffic generated by the file system managers and

by paging would allow the tradeoff's of locating the different managers locally

or remotely to be studied. A simulation could be built that implements each

manager and allows them to be individually placed at the client or server. Driving

98

this simula.tion with the complete trace would provide a total characterization of

the necessary disk and network traffic in a distributed system.

Caching of other objects. Our study has centered around the sharing of

file objects. We believe that the Caching Ring may be applied to the caching

and sharing of other objects, such as virtual memory pages. A virtual memory

system designed around the Caching Ring would provide the interconnection

mechanism for a large scale, loosely coupled multiprocessor. The semantics of

writing shared objects would have to be carefully defined, as the write semantics

of the Caching Ring are not those typically found in memory systems. Li and

Hudak indicate that the performance of a shared virtual memory system where

the physical memory is distributed across a network should be adequate for

general use [LH86J.

Since the cache only knows the names of objects, it may be applied to objects

of any type. In addition, the quick response of the ring for objects in the cache

may lend itself to other distributed algorithms that need to collect small pieces of

data or status information from several cooperating processors. For example, a

distributed voting algorithm could be easily implemented using the basic packet

mechanism provided by the eRI, with some changes in the message semantics to

collect several responses in one packet.

Network issues. The current design of the Caching Ring network hardware

and software is rather simplistic. It makes no provision for security of the com

munications on the ring. Intrusion to a ring network is more difficult than on

a passive bus, but a malicious user of a workstation on the Ring could easily

spoof the server into accessing any desired data. Mechanisms for insuring the

authentication of clients and the accurate transmittal of data should be studied.

The protocols as they are described allow only one server node in the system.

The server is the likely bottleneck in a large system, and it would be desirable (0

have more than one, to provide both additional performance and some measure

of reliability or fault tolerance. One possibility is for to include multiple servers

in the system, each responsible for a subset of the object store. This is easily

achieved by adding functionality to the naming manager. The naming manager

99

currently translates object names to object identifiers. It could be extended to

keep track of which portion of the object name space is handled by which server.

The naming manager would then forward the open request to the appropriate

server. The server would include itself in the original groupl and the algorithm

then proceeds as before.

The system is currently limited in size to the number of bits in an address

vector. Since interface delay is such a large factor in the upper bound of system

throughput, we would like the size of an address vector to be no larger than nec

essary, yet provide sufficient room for future expansion of an initial system. It is

difficult to conceive of a Caching Ring system as large as the loosely coupled dis

tributed systems built on Ethernets, where the available address space is 2,17, yet

a moderately sized research facility might have a hundred or so researchers that

desire to share data. Mechanisms for scaling the system other than increasing

the number of statioI;lS on the.ring should be investigated.

An investigation into implementing the Caching Ring protocols on' a conven.

tional network such as the Ethernet would be most interesting. We envision a

dedicated interface similar to the CRI described in Chapter 4, with a reliable

broadcast protocol implemented in the interface. vVe feel that the use of multi

cast addressing is important to performance of the system, as a high percentage

of the network traffic concerns only a few processors at any time. Burdening

all the other processors with broadcast of this information would impact them

heavily. Some efficient mechanism for allocating and managing the Ethernet's

multicast address space must be developed.

In Chapter 5, we estimated the expected difference in performance between

the Caching Ring and an implementation of the Caching Ring coherence protocol

on the Ethernet using a reliable broadcast protocol. This estimate is based solely

on the transmission characteristics of the two communication networks. The error

characteristics of the Ethernet and ring networks are also different. 1:0. particular,

high traffic loads on the Ethernet tend to cause a-higher rate of collisions. This

results in more delay in acquisition of the network channel for sending packets,

and more errors once the packets have been placed on the network. A. complete

100

simulation of the Ethernet-based Caching Ring that included collision and other

error conditions would be interesting.

Cache issues. Several multiprocessors are under development with cache

subsystems that allow multiple writers - the data for each write to a shared

memory block is transmitted to each cache that has a copy of the block IAB85J.

As a result, there is no Invalid state in the coherence protocol. The performance

of a Caching Ring using this type of protocol, with various object repository

update policies, would be of great interest. We expect that performance would

be improved, because the all misses resulting from the invalidation of updated

blocks would be eliminated from the system.

Schemes for more frequent updates of modified blocks from caches to the

object repository are also of interest. The simple scheme of periodically flushing

the modified blocks from the buffer may increase the miss ratio by as much as

35%, which may have a significant impact on network and server load during

periods of high .file traffic. A mechanism that sensed network load and only

flushed modified blocks when the network is idle would be useful.

An alternate architecture for the CRr would make the shared cache directory

and block cache private to the CRr. and require the processor to request ·blocks

through the CRr. The CRr could synchronize with the system by acquiring the

ring token before responding to the processor, thus ensuring that the data re

ceived by the processor is not stale. We believe that this will increase the effective

access time, perhaps appreciably in a large system with many stations and much

network traffic. A simulation study of this CRr architecture would be instructive.

A more efficient crash recovery mechanism could be developed. The server is

perfectly located to act as a recorder of all transactions that take place on the

ring. A station that experiences a network failure but not a total crash may, on

being reconnected to the network, query the server for all missed transactions.

Powell describes such a mechanism, known as Publishing, in !PP83]. In this

mechanism, all transactions are recorded on disk, that would add to the disk

bottleneck already present at the server. We propose, instead, a set of messages

that allow the recovering CRI to query the server about the status of all blocks

101

tha.t it holds in the cache. A straightforward design would have the recovering

eRr flush all non-owned blocks, and determine which of the blocks it believes

are owned are still owned. Perhaps a. more efficient solution can be found, which

allows the recovering eRr to flush only those blocks that are no longer valid

copies.

6.5 Summary

In this dissertation, we have explored the issues involved in caching shared

objects in a distributed system. We designed a mechanism for managing a set of

distributed caches that takes advantage of current hardware technology. The ad

vent of powerful, inexpensive microprocessors, memories , and network interfaces

leads us to conclude that we can devote a. large amount of computing power to

the cache coherence algorithm for each workstation in a distributed system.

The Caching Ring combines a powerful hardware interface, software, and net

work protocols to efficiently manage a collection of shared objects in a distributed

system. Our experiments with this design have extended the understanding of

caching in a distributed system, and propose the Caching Ring as an alternative

to the less general solutions previously used in distributed systems.

BlliLIOGRAPHY

102

BIBLIOGRAPHY

[42B83J UNIX Programmer's Manual, _{2 Berkelev Software Disttt"bution, Vir
tual VAX-l1 Version. Computer Science Division, Department of
Electrical Engineering and Computer Science, University of CaliCor.
nia, 1983.

fAB851 James Archibald and Jea.,n-Loup Baer. An Evaluation 01 Cache
Coherence Solutions in Shared-Bus Multiprocessors. Technical Re
port 85-10-05, Department of Computer Science, University of Wa.sh
ington, Seattle, WA 98195, October 1985.

[AP77! O. P. Agrawal and A. V. Pohm. Cache memory systems for mul
tiprocessor architectures. In Proceedings AFIPS Nat~'onal Computer
Conference, Dallas, TX, June 1977.

!AS83] Gregory R. Andrews and Fred B. Schneider. Concepts and notations
for concurrent programming. ACM Computing Surveys, 15(1):3--43,
March 1983.

[BCB74] James Bell, David Casasent, and C. Gordon Bell. An investigation
of alternative cache organizations. rEEE Transactions on Computers,
C-23(4):346-351, April 1974.

[BG81] Philip A. Bernstein and Nathan Goodman. Concurrency control in
distributed database systems. Computing Surveys, 13(2):185-221,
June 1981.

[BN84J Andrew D. Birrell and Bruce Jay Nelson. Implementing remote proce
dure calls. Transactions on Computer Systems, 2(1):39-59, Feb 1984.

[CaI82] P. Calingaert. Operating System Elements: A User Perspective.
Prentice-Hall, Englewood Cliffs, New Jersey, 1982.

[CF78] Lucien M. Censier and Paul Feautrier. A new solution to coherence
problems in multicache systems. IEEE Transactions on Computers,
C-27(12):1l12-1118, December 1978.

[CGP68j C. J. Conti, D. H. Gibson, and S. H. Pitkowsky. Structural aspects
of the System/360 Model 85 (1) General organization. IBM Systems
Journal , 7(1):2-14, January 1968.

103

ICM84] J<>-Mei Chang and N. F. Maxemchuk. Reliable broadcast protocols.
ACM Transactio,,", on Computor S~st,ms, 2(3):251-273, August 1984.

[Com84j Douglas Comer. Operating System Design, the XlNU Approach.
Prentice-Hall, Englewood Cliffs, NJ. 1984.

[CP8Sj Douglas Comer and Larry L. Peterson. A Name Resolution Model
for Distr~·blJ.ted Systems. Technical Report CSD.TR-491, Department
of Computer Sciences, Purdue University, West Lafayette, Indiana,
February 1985.

[Den70] Peter J. Denning. Virtual memory. Computing Surveys, 2(3):1-2,
September 1970.

[DenBOj Peter J. Denning. Working sets past and present. IEEE Transactions
on Software Engineering, January 1980.

[DR66] J. B. Dennis and E. C. Van Horn. Programming semantics for multi
programmed computa.tions. Communications of the ACM, 9(3):143
155, March 1966.

[Dij68aj Edsger W. Dijkstra. Cooperating sequential proces~es. In F. Genuys,
editor, Programming Languages, Academic Press, New York, 1968.

[Dij68b] Ed,ger W. Dijk,tra. The ,tructure of the 'THE' multiprogramming
system. Communications of the ACM, 11(5):341-346, May 1968.

[Fed84] J. Feder. The evolution of UNIX system performance. Bell Laborato
ries TuhnicaL Journal, 63(8):1791-1814, October 1984.

[FK85] David R. Fuchs and Donald E. Knuth. 'Optimal prepaging and font
caching. ACMTransach"on.s on Programming Languages and Systems,
7(1):62-79, January 1985.

[FL72] David J. Fa.rber and K. Larson. The structure of a. distributed com
puter system - the communication system. In Jerome Fox, editor,
Proceedings of the Symposium on Computer Communications Net
works and Teletraffic, pages 21-21, Polytechnic Press, New York,
April 1972.

[Flo86l Rick Floyd. Short-Term File Reference Patterns in a UNIX environ
ment. Technical Report 117, Computer Science Depa.rtment, The
University of Rochester, Rochester, NY 14627, Ma.rch 1986.

[FN69j W. D. Farmer and E. E. Newhall. An experimental distributed switch
ing system to handle bursty computer traffic. In Proceed~"ngs of the
ACM Symposium on Problems in Optimization of Data Communica
tion Systems, pages 31-34, Pine Mountain, GA, October 1969.

[Fot61j

104

John Fotheringham. Automatic use of a backing store. Communica
tions of the ACM, 4:435-436, 1961.

[Fra84] Steven J. Frank. Tightly coupled multiprocessor system speeds
memory-access times. Electronics, 164-169, January 12, 1984.

[Goo83] J. Goodman. Using cache memories to reduce processor-memory traf
fic. In 10th Annual Symposium on Computer Architedtm:, Trond
heim, Norway, June 1983.

[Hab76] A. N. Haberman. Introduction to Operating System Design. Science
Research Associates, Palo Alto, California, 1976.

[HLGS781 R. C. Holt, E. D. Lazowska, G. S. Graham, and M. A. Scott. Strue
tured Concurrent Programming with Operating Systems Applications.
Addison-Wesley, 1978.

[Joni8] Anita K. Jones. The object model: a conceptual tool for structuring
software. In R. Bayer, R. M. Graham, and G. Seegmuller, editors,
Operating Systems, pages 7-16, Springer.Verlag, New York, 1978.

[KELS62] T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner.
One-level storage system. IRE 1ransactions EG-11, 2:223-235, April
1962.

[KS86] Robert M. Keller and M. Ronan Sleep. Applicative caching. Transac
tions on Programming Languages and Systems, 8(1):88-108, January
1986.

[LH86] Kai Li and Paul Hudak. Memory Coherence in Shared Virtual Mem
ory Systems. Technical Report, Yale University, Department of Com
puter Science, Box 2158 Yale Station, New Have, CT 06520, 1986.

[Lip681 J. S. Liptay. Structural aspects of the Systemf360 Model 85 (II) The
cache. IBM Systems Journal, 7(1):15-21, January 1968.

[LLHS85] Paul J. Leach, Paul H. Levine, James A. Hamilton, and Bernard L.
Stumpf. The file system of an integrated local network. In Proceedings
1985 ACM Computer Science Conference, pages 309--324, March 12
14, 1985.

[LZCZ84] Edward D. Lazowska, John Zahorjan, David R. Cheriton, and Willy
Zwaenepoel. File Access Performance of Diskless Workstations.
Technical Report 84-06-01, Department of Computer Science, Uni
versity of Washington, June 1984.

105

[McD82] Gene McDaniel. An analysis of a. mesa instruction set using dynamic
instruction frequencies. In PTocecd~'ngs 0/ the Sympos£um on Archi
tuturai Support for Programming Languages and Operating Systems,
pages 167-176, Association for Computing Machinery, SIGARCH,
March 1982.

[:Mic84] Sun Microsystems t Inc. ND(4P} - network disk driver. In System
Inter/ace Manu.al for the Sun Workstation, January 1984.

[:tvfKL85j M. Kirk McKusick, Mike Karels, and Sam Leffler. Performance im
provements and functional enhancements in 4.3BSD. In Proceedings
0/ the Summer 1985 Uscnix Co/erence, pages 519-531, 1985.

[NBG63] J. Von Neumann, A. W. Burks, and H. Goldstine. Preliminary dis
cussion of the logical design of an electronic computing instrument.
Collected Work.>, Y, 1963.

IOCH*85j John K. Ousterhout, Herve Da Costa, David Harrison, John A.
Kunze, Mike Kupfer, and James G. Thompson. A trace-driven anal
ysis of the UNIX 4.28SD file system. In Proceedings 0/ the 10th A CM
Svmposium on Operating Svstems Principles, pages 15-24, 1985.

[PosS1) Jon Postel, ed. Transmission Control Protocol. Request for Com
ments 793, Network Information Center, SRI International, Septem
ber 1981.

!PP83j Michael L. Powell and David L. Presotto. Publishing: a reliable
broadcast communication mechanism. Operating Svstems Review:
Proceedings of the Ninth AC},[Symposiu.m on Operat£ng Systems
Principles, 17(5):100-109, 1013 Oct 1983.

[PS83j

[RT74]

ISat81)

ISch85j

J. Peterson and A. Silberschatz. Operating System Concepts.
Addison-Wesley, Reading, Massachussetts, 1983.

Dennis M. Ritchie and Ken Thompson. The UNIX time-sharing sys
tem. Communications o/the ACM; 17(7):365-375, July 1974. revised
and reprinted in the Bdl System Technical Journal, (57)6:1905-1929.

Mahadev Satyanarayanan. A study of file sizes and functional life
times. In Proceedings of the 8th Symposium on Operating Systems
Principles, pages 96-108, Asilomar, CA, December 19S1.

H. Schwetman. CSIM: a C-based, process-oriented simulation lan
guage. Technical Report PP-OSD-S5, MGG, September 19S5.

106

[SGN85] .Michael D. Schroeder, David K. Gifford, and Roger M. Needham.
A Caching File System lor A Programmer's Workstation. Technical
Report 6, Digital Systems Research Center, Palo Alto, CA, October
1985.

[SH80] J. F. Shoch and J. A. Hupp. Measured performance of an Ethernet
local network. Communications a/the AClllf, 23(12):711-721, Decem
ber 1980.

[SHN-SS] M. Satyanarayanan, John H. Howard, David A. Nichols, Robert N.
Sidebotham, Alfred Z. Spector, a.nd Michael J. West. The ITC dis
tributed file system: principles and design. Operating Systems Re
view: Proeeed,"ngs 0/ the Tenth ACA1 Symposium on Operating Sys
tems Principles, 19(5):35-50, December 1985.

[Smi81] Alan J. Smith. Analysis of long term. file reference patterns for appli
cation to file migra.tion a.lgorithms. IEEE Transactions on Software
Engineering, SE-7(4):403--417, July 1981.

[Smi82] Alan Jay Smith. Cache memories. Computing Surveys, 14(3):473
530, September 1982.

[Smi85] Alan Jay Smith. Disk cache-miss ratio analysis and design con
siderations. ACM Transactions on Computer Systems, 3(3):161-203,
August 1985.

[SP79j Jerome H. Saltzer a.nd Kenneth T. Pogran. A star-shaped ring net
work with high maintainability. In Proceedings of the Local Area Com
munications Network Symposium, pages 179--190, Boston, May 1979.

[Str77] Edward P. Stritter. File lvb·grat~·on. PhD thesis, Stanford Linear
Accelerator Center, Stanford University, Stanford, CA 94305, January
1977.

[Tan7G] C. K. Tang. Cache system design in the tightly coupled multiprocessor
system. In Proceedings Nat£onal Computer Conference, pages 749
753, October 1976.

[Tan81] Andrew S. Tanenbaum. Network protocols. Computing Surveys,
13(4):453-489, December 1981.

[Tei841 Warren Teitelman. The Cedar Programming Environment: A
lvfidterm Report and Examination. Technical Report CSL-83-11, Xe.
rox Palo Alto Research Center, June 1984.

[TheiSl Ken Thompson. UNIX implementation. The Bell System Techn£cal
Journal, 57(6):1931-1946, July-August 1978.

!Wie82]

!WLS85!

[Xer80!

107

Cheryl A. Wiecek. A case study of VAX·l1 instruction set usage
for compiler execution. In Proceedings of the Symposium on Archi
tuturaJ Support for Programming Languages and Operating Systems,
pages 177-184, Association for Computing Machinery, SIGARCH,
March 1982.

Dan Walsh, Bob Lyon, and Gary Sager. Overview of the Sun network
file system. In Proceedings of the W£nter 1985 Usenix Conference,
pages 117-124, Portland, OR, January 1985.

The Ethernet: A Local Area Network. Data Link Layer and Phys~·.

cal Layer Specifications, Version 1.0. Xerox Corporation, September
1980.

VITA

108

VITA

Christopher Angel Kent was born on April 7, 1958 in Detroit, 1tfichigan. He

is a first-generation American, the only child of a Bulgarian father and German

mother. He attended Xavier University in Cincinnati, Ohio, where he earned the

Bachelor of Science degree in Physics, Scholar's Curriculum, magna cum laude, in

May, 1979. While at Xavier, he also pursued graduate studies in Mathematics. In

July, 1980, he moved to the University of Cincinnati, where he did graduate work

in Electrical and Computer Engineering. In August, 1980, Mr. Kent entered the

PhD program in Computer Science at Purdue University, under the supervision

of Douglas Comer. While at Purdue, he was supported as a research assistant

with the Blue CHiP, CSNET, and TILDE projects. Mr. Kent was awarded the

Doctor of Philosophy in August, 1986.

While not working as a computer scientist, Mr. Kent centers his activities

around music (especially the saxophone), literature, art, architecture, the human

potential movement, and creating a world that works for everyone. He enjoys

travel, photography, water sports, discussion and debate on any topic, chocolate,

automobiles, learning and speaking foreign languages, and living life fully. He

is fascinated by mechanisms of all kinds, and can frequently be heard to say

"That's neat! How does it work?"

;\Ir. Kent was engaged to Ms. Christy Calloway Chamness Bean in February,

1986. They will be married in November, 1986.

	Purdue University
	Purdue e-Pubs
	1986

	Cache Coherence in Distributed Systems (Thesis)
	Christopher Angel Kent
	Report Number:

