
256 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 3, JUNE 2004

Handling Multiple Objectives With
Particle Swarm Optimization

Carlos A. Coello Coello, Member, IEEE, Gregorio Toscano Pulido, and Maximino Salazar Lechuga

Abstract—This paper presents an approach in which Pareto
dominance is incorporated into particle swarm optimization
(PSO) in order to allow this heuristic to handle problems with
several objective functions. Unlike other current proposals to
extend PSO to solve multiobjective optimization problems, our
algorithm uses a secondary (i.e., external) repository of particles
that is later used by other particles to guide their own flight. We
also incorporate a special mutation operator that enriches the
exploratory capabilities of our algorithm. The proposed approach
is validated using several test functions and metrics taken from the
standard literature on evolutionary multiobjective optimization.
Results indicate that the approach is highly competitive and that
can be considered a viable alternative to solve multiobjective
optimization problems.

Index Terms—Evolutionary multiobjective optimization,
multiobjective optimization, multiobjective particle swarm opti-
mization, particle swarm optimization.

I. INTRODUCTION

THE USE OF evolutionary algorithms for multiobjective
optimization (an area called “evolutionary multiobjective

optimization,” or EMO for short) has significantly grown in
the last few years, giving rise to a wide variety of algorithms
[7]. As any other research area, EMO currently presents cer-
tain trends. One of them is to improve the efficiency both of
the algorithms and of the data structures used to store nondom-
inated vectors. EMO researchers have produced some clever
techniques to maintain diversity (e.g., the adaptive grid used
by the Pareto Archive Evolutionary Strategy (PAES) [21]), new
algorithms that use very small populations (e.g., the microGA
[6]), and data structures that allow to handle unconstrained ex-
ternal archives (e.g., the dominated tree [12]).

Particle swarm optimization (PSO) is a relatively recent
heuristic inspired by the choreography of a bird flock. PSO has
been found to be successful in a wide variety of optimization

Manuscript received July 8, 2002; revised September 2, 2003. The work
of C. A. Coello Coello was supported in part by CONACyT under Project
34 201-A. G. T. Pulido acknowledges support from CONACyT through a
scholarship to pursue graduate studies at the Computer Science Section of the
Electrical Engineering Department, CINVESTAV-IPN, México. M. S. Lechuga
acknowledges support from CONACyT through a scholarship to pursue grad-
uate studies at the School of Computer Science, University of Birmingham,
Birmingham, U.K.

C. A. Coello Coello and G. T. Pulido are with CINVESTAV-IPN, Sección
de Computación, Departamento de Ing. Eléctrica, Sección de Computación,
México 07300, Mexico (e-mail: ccoello@cs.cinvestav.mx; gtoscano@
computacion.cs.cinvestav.mx).

M. S. Lechuga is with the University of Birmingham, School of
Computer Science, Edgbaston, Birmingham B15 2TT, U.K. (e-mail:
M.S.Lechuga@cs.bham.ac.uk).

Digital Object Identifier 10.1109/TEVC.2004.826067

tasks [19], but until recently it had not been extended to deal
with multiple objectives.

PSO seems particularly suitable for multiobjective optimiza-
tion mainly because of the high speed of convergence that
the algorithm presents for single-objective optimization [19].
In this paper, we present a proposal, called “multiobjective
particle swarm optimization” (MOPSO), which allows the PSO
algorithm to be able to deal with multiobjective optimization
problems. Our current proposal is an improved version of
the algorithm reported in [5], in which we have added a
constraint-handling mechanism and a mutation operator that
considerably improves the exploratory capabilities of our
original algorithm.

MOPSO is validated using several standard test functions
reported in the specialized literature and compared against
three highly competitive EMO algorithms: the nondominated
sorting genetic algorithm-II [11] (NSGA-II), the PAES [21],
and the microgenetic algorithm for multiobjective optimization
(microGA) [6].

II. BASIC CONCEPTS

Definition 1 (Global Minimum): Given a function :
, , for the value is

called a global minimum if and only if

(1)

Then, is the global minimum solution, is the objective func-
tion, and the set is the feasible region , where rep-
resents the whole search space.

Definition 2 [General Multiobjective Optimization Problem
(MOP)]: Find the vector which will
satisfy the inequality constraints

(2)

the equality constraints

(3)

and will optimize the vector function

(4)

where is the vector of decision variables.
Definition 3 (Pareto Optimality): A point is Pareto

optimal if for every and either

(5)

or, there is at least one such that

(6)

1089-778X/04$20.00 © 2004 IEEE

COELLO COELLO et al.: HANDLING MULTIPLE OBJECTIVES WITH PARTICLE SWARM OPTIMIZATION 257

In words, this definition says that is Pareto optimal if there
exists no feasible vector which would decrease some criterion
without causing a simultaneous increase in at least one other cri-
terion. The phrase “Pareto optimal” is considered to mean with
respect to the entire decision variable space unless otherwise
specified.

Definition 4 (Pareto Dominance): A vector
is said to dominate (de-

noted by) if and only if is partially less than , i.e.,
, : .

Definition 5 (Pareto Optimal Set): For a given MOP ,
the Pareto optimal set is defined as

(7)

Definition 6 (Pareto Front): For a given MOP and
Pareto optimal set , the Pareto front is defined as

(8)

In the general case, it is impossible to find an analytical ex-
pression of the line or surface that contains these points. The
normal procedure to generate the Pareto front is to compute the
feasible points and their corresponding . When there is
a sufficient number of these, it is then possible to determine the
nondominated points and to produce the Pareto front.

Pareto optimal solutions are also termed noninferior, admis-
sible, or efficient solutions [15]; their corresponding vectors are
termed nondominated.

III. RELATED WORK

Kennedy and Eberhart [19] proposed an approach called
PSO, which was inspired by the choreography of a bird flock.
The approach can be seen as a distributed behavioral algorithm
that performs (in its more general version) multidimensional
search. In the simulation, the behavior of each individual is
affected by either the best local (i.e., within a certain neigh-
borhood) or the best global individual. The approach then
uses the concept of population and a measure of performance
similar to the fitness value used with evolutionary algorithms.
Also, the adjustments of individuals are analogous to the use
of a crossover operator. The approach also introduces the
use of flying potential solutions through hyperspace (used
to accelerate convergence), which can be seen as a mutation
operator. An interesting aspect of PSO is that it allows individ-
uals to benefit from their past experiences (note that in other
approaches such as the genetic algorithm, normally the current
population is the only “memory” used by the individuals). PSO
has been successfully used for both continuous nonlinear and
discrete binary single-objective optimization [19]. PSO seems
particularly suitable for multiobjective optimization mainly
because of the high speed of convergence that the algorithm
presents for single-objective optimization [19].

In fact, there have been several recent proposals to extend
PSO to handle multiobjectives. We will review the most impor-
tant of them.

• The algorithm of Moore and Chapman [24]: This al-
gorithm was presented in an unpublished document and it
is based on Pareto dominance. The authors emphasize the
importance of performing both an individual and a group
search (a cognitive component and a social component).
However, the authors did not adopt any scheme to main-
tain diversity.

• The swarm metaphor of Ray and Liew [28]: This algo-
rithm also uses Pareto dominance and combines concepts
of evolutionary techniques with the particle swarm. The
approach uses crowding to maintain diversity and a multi-
level sieve to handle constraints (for this, the authors adopt
the constraint and objective matrices proposed in some of
their previous research [27]).

• The algorithm of Parsopoulos and Vrahatis [26]: Un-
like the previous proposals, this algorithm adopts an ag-
gregating function (three types of approaches were imple-
mented: a conventional linear aggregating function, a dy-
namic aggregating function, and the bang-bang weighted
aggregation approach [18] in which the weights are varied
in such a way that concave portions of the Pareto front can
be generated).

• Dynamic neighborhood PSO proposed by Hu and
Eberhart [16]: In this algorithm, only one objective is
optimized at a time using a scheme similar to lexico-
graphic ordering [7]. Lexicographic ordering tends to be
useful only when few objective functions are used (two
or three), and it may be sensitive to the ordering of the
objectives. The idea of the dynamic neighborhood is, with
no doubt quite interesting and is novel in this context.

At the time in which this paper was originally prepared, none
of the existing proposals to extend PSO to solve multiobjective
optimization problems used a secondary population (the most
common notion of elitism in EMO). This may certainly limit
the performance of the algorithm, unless a very good diversity
maintainance approach is used (unfortunately, this is not the
case in most of the approaches available at that time). Also, none
of these techniques had been properly validated using test func-
tions and metrics normally adopted by EMO researchers.

Note however, that in more recent papers these ideas have
been already incorporated by other authors. The most represen-
tative proposals are the following (published after the submis-
sion of the original version of this paper).

• Fieldsend and Singh [13] proposed an approach in which
they use an unconstrained elite archive (in which a spe-
cial data structure called “dominated tree” is adopted) to
store the nondominated individuals found along the search
process. The archive interacts with the primary population
in order to define local guides. The approach is compared
(using four test functions and two metrics) against an algo-
rithm similar to PAES [21] and with a variation of our orig-
inal MOPSO [5]. Their approach also uses a “turbulence”
operator that is basically a mutation operator that acts on
the velocity value used by PSO. The approach seems to
have the same problems of our original MOPSO with mul-
tifrontal problems such as the fourth example included in
this paper. It is important to note that the new version of

258 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 3, JUNE 2004

our MOPSO provided in this paper does not have the prob-
lems of the original version in multifrontal problems.

• Hu et al. [17] adopted a secondary population (called “ex-
tended memory”) and introduced some further improve-
ments to their dynamic neighborhood PSO approach [16].
Nevertheless, it is worth indicating that this approach com-
pletely fails in generating the true Pareto front of some
problems (see [17] for details). Hu et al. [17] also com-
pared their algorithm with respect to the strength Pareto
evolutionary algorithm (SPEA) [37] using the set coverage
metric [34].

• Mostaghim and Teich [25] proposed a sigma method in
which the best local guides for each particle are adopted
to improve the convergence and diversity of a PSO ap-
proach used for multiobjective optimization. They also use
a “turbulence” operator, but applied on decision variable
space. The idea of the sigma approach is similar to com-
promise programming [7]. The use of the sigma values in-
creases the selection pressure of PSO (which was already
high). This may cause premature convergence in some
cases (e.g., in multifrontal problems). In this approach,
the authors provide comparisons with SPEA2 [36] and the
dominated trees of Fieldsend and Singh [13] using four
test functions and the coverage metric.

• Li [23] proposed an approach in which the main mech-
anisms of the NSGA-II [11] are adopted in a PSO algo-
rithm. The proposed approach showed a very competitive
performance with respect to the NSGA-II (even outper-
forming it in some cases).

The main differences of our approach with respect to the other
proposals existing in the literature are:

• We adopt an external (or secondary) repository similar to
the adaptive grid of PAES [21] (see Section IV-B). None
of the other proposals use such a mechanism in the way
adopted in this paper.

• The mutation operator that we use acts both on the parti-
cles of the swarm, and on the range of each design variable
of the problem to be solved (see Section IV-C). This aims
not only to explore remote regions of the search space, but
also tries to ensure that the full range of each decision vari-
able is explored.

• We provide an extensive analysis of the impact of the pa-
rameters of our MOPSO on its performance. We also com-
pare our MOPSO with respect to three other algorithms
(which are representative of the state-of-the-art in evolu-
tionary multiobjective optimization), using three metrics.

IV. DESCRIPTION OF THE PROPOSED APPROACH

The analogy of PSO with evolutionary algorithms makes evi-
dent the notion that using a Pareto ranking scheme [14] could be
the straightforward way to extend the approach to handle mul-
tiobjective optimization problems. The historical record of best
solutions found by a particle (i.e., an individual) could be used to
store nondominated solutions generated in the past (this would
be similar to the notion of elitism used in evolutionary multiob-
jective optimization). The use of global attraction mechanisms
combined with a historical archive of previously found non-

dominated vectors would motivate convergence toward globally
nondominated solutions.

A. Main Algorithm

The algorithm of MOPSO is the following.

1) Initialize the population :

(a) FOR TO number of parti-
cles*/

(b) Initialize
2) Initialize the speed of each particle:

(a) FOR TO
(b)

3) Evaluate each of the particles in .
4) Store the positions of the particles that represent nondom-

inated vectors in the repository .
5) Generate hypercubes of the search space explored so far,

and locate the particles using these hypercubes as a co-
ordinate system where each particle’s coordinates are de-
fined according to the values of its objective functions.

6) Initialize the memory of each particle (this memory
serves as a guide to travel through the search space. This
memory is also stored in the repository):

(a) FOR TO
(b)

7) WHILE maximum number of cycles has not been reached
DO

a) Compute the speed of each particle1 using the fol-
lowing expression:

where (inertia weight) takes a value of 0.4;
and are random numbers in the range ;

is the best position that the particle
has had;2 is a value that is taken from the
repository; the index is selected in the following
way: those hypercubes containing more than one
particle are assigned a fitness equal to the result of
dividing any number (we used in
our experiments) by the number of particles that
they contain. This aims to decrease the fitness of
those hypercubes that contain more particles and it
can be seen as a form of fitness sharing [10]. Then,
we apply roulette-wheel selection using these fit-
ness values to select the hypercube from which we
will take the corresponding particle. Once the hy-
percube has been selected, we select randomly a
particle within such hypercube. is the cur-
rent value of the particle .

b) Compute the new positions of the particles adding
the speed produced from the previous step

(9)

1Each particle has a dimensionality that can vary depending on the problem
solved. When we say that we compute the speed of a particle, we refer to com-
puting the speed for each of its dimensions.

2We will explain later on how do we define “better” in this context.

COELLO COELLO et al.: HANDLING MULTIPLE OBJECTIVES WITH PARTICLE SWARM OPTIMIZATION 259

Fig. 1. Possible cases for the archive controller.

c) Maintain the particles within the search space in
case they go beyond their boundaries (avoid gen-
erating solutions that do not lie on valid search
space). When a decision variable goes beyonds its
boundaries, then we do two things: 1) the deci-
sion variable takes the value of its corresponding
boundary (either the lower or the upper boundary)
and 2) its velocity is multiplied by (1) so that it
searches in the opposite direction.

d) Evaluate each of the particles in .
e) Update the contents of together with the geo-

graphical representation of the particles within the
hypercubes. This update consists of inserting all the
currently nondominated locations into the reposi-
tory. Any dominated locations from the repository
are eliminated in the process. Since the size of the
repository is limited, whenever it gets full, we apply
a secondary criterion for retention: those particles
located in less populated areas of objective space
are given priority over those lying in highly popu-
lated regions.

f) When the current position of the particle is better
than the position contained in its memory, the par-
ticle’s position is updated using

(10)

The criterion to decide what position from memory
should be retained is simply to apply Pareto dom-
inance (i.e., if the current position is dominated
by the position in memory, then the position in
memory is kept; otherwise, the current position re-
places the one in memory; if neither of them is
dominated by the other, then we select one of them
randomly).

g) Increment the loop counter

8) END WHILE

B. External Repository

The main objective of the external repository (or archive) is
to keep a historical record of the nondominated vectors found
along the search process. The external repository consists of two
main parts: the archive controller and the grid.

We will proceed to discuss each of these two components in
more detail.

1) The Archive Controller: The function of the archive con-
troller is to decide whether a certain solution should be added
to the archive or not. The decision-making process is the fol-
lowing.

The nondominated vectors found at each iteration in the
primary population of our algorithm are compared (on a
one-per-one basis) with respect to the contents of the external
repository which, at the beginning of the search will be empty.
If the external archive is empty, then the current solution is
accepted (see case 1, in Fig. 1). If this new solution is domi-
nated by an individual within the external archive, then such
a solution is automatically discarded (see case 2, in Fig. 1).
Otherwise, if none of the elements contained in the external
population dominates the solution wishing to enter, then such a
solution is stored in the external archive. If there are solutions
in the archive that are dominated by the new element, then
such solutions are removed from the archive (see cases 3 and
4, in Fig. 1). Finally, if the external population has reached its
maximum allowable capacity, then the adaptive grid procedure
is invoked (see case 5, in Fig. 1).

2) The Grid: To produce well-distributed Pareto fronts, our
approach uses a variation of the adaptive grid proposed in [21].
The basic idea is to use an external archive to store all the solu-
tions that are nondominated with respect to the contents of the
archive. Into the archive, objective function space is divided into
regions as shown in Fig. 2. Note that if the individual inserted
into the external population lies outside the current bounds of
the grid, then the grid has to be recalculated and each individual
within it has to be relocated (see Fig. 3).

260 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 3, JUNE 2004

Fig. 2. Graphical representation of the insertion of a new element in the adaptive grid when the individual lies within the current boundaries of the grid.

Fig. 3. Graphical representation of the insertion of a new element in the adaptive grid when this lies outside the previous boundaries of the grid.

The adaptive grid is really a space formed by hypercubes.3

Such hypercubes have as many components as objective
functions. Each hypercube can be interpreted as a geographical
region that contains an no number of individuals. The main
advantage of the adaptive grid is that its computational cost is
lower than niching (see [21] for a detailed complexity analysis).
The only exception would be if the grid had to be updated at
each generation. In such a case, the computational complexity
of the adaptive grid would be the same as niching [i.e.,].

3Strictly speaking, it is formed by hyperparallelepids when the ranges of the
objective functions are not scaled. If scaled, however, we are talking of hyper-
cubes, which is the assumption made in this paper.

The adaptive grid is used to distribute in a uniform way the
largest possible amount of hypercubes. In order to achieve this
goal, it is necessary to provide and obtain certain information
which is problem dependant (i.e., the number of grid subdivi-
sions).

C. Use of a Mutation Operator

This operator deserves a more detailed discussion. PSO
is known to have a very high convergence speed. However,
such convergence speed may be harmful in the context of
multiobjective optimization, because a PSO-based algorithm
may converge to a false Pareto front (i.e., the equivalent of a

COELLO COELLO et al.: HANDLING MULTIPLE OBJECTIVES WITH PARTICLE SWARM OPTIMIZATION 261

Fig. 4. Behavior of our mutation operator. In the x axis, we show the number
of iterations performed by our MOPSO, expressed as a percentage and in the y
axis, we show the percentage of the population that is affected by the mutation
operator.

local optimum in global optimization). This drawback of PSO
is evident in some problems (e.g., in test function 1 described in
Section V) in which our original approach did not perform very
well. This motivated the development of a mutation operator
that tries to explore with all the particles at the beginning of the
search. Then, we decrease rapidly (with respect to the number
of iterations) the number of particles that are affected by the
mutation operator (see Fig. 4). Note that our mutation operator
is applied not only to the particles of the swarm, but also to the
range of each design variable of the problem to be solved (using
the same variation function). What this does is to cover the full
range of each design variable at the beginning of the search and
then we narrow the range covered over time, using a nonlinear
function. From Fig. 4, we can see that at the beginning, all the
particles in the population are affected by the mutation operator
(as well as the full range of the decision variables). This intends
to produce a highly explorative behavior in the algorithm. As
the number of iterations increases, the effect of the mutation
operator decreases. The pseudocode of our mutation operator
is shown in Fig. 5.

The use of mutation operators in PSO is not new. Frans van
den Bergh [31], proposed the randomised particle optimizer
(RPSO) in which the aim was to construct a PSO-based global
search algorithm. The RPSO resets the position of an specific
particle, at a certain (fixed) number of iterations. Note however,
that our approach is not only adding exploratory capabilities to
PSO (as in the RPSO), but it also ensures that the full range of
every decision variable is explored. Such type of mutation oper-
ator is novel (to the authors’ best knowledge), at least in the con-
text of PSO approaches used for multiobjective optimization.

D. Handling Constraints

We also added a relatively simple scheme to handle con-
straints. Whenever two individuals are compared, we check their
constraints. If both are feasible, nondominance is directly ap-
plied to decide who is the winner. If one is feasible and the other
is infeasible, the feasible dominates. If both are infeasible, then
the one with the lowest amount of constraint violation dominates

the other. This is the same approach that we originally proposed
to handle constraints within the microgenetic algorithm for mul-
tiobjective optimization (microGA) [6].

V. COMPARISON OF RESULTS

Several test functions were taken from the specialized litera-
ture to compare our approach. In order to allow a quantitative as-
sessment of the performance of a multiobjective optimization al-
gorithm, three issues are normally taken into consideration [35].

1) Minimize the distance of the Pareto front produced by
our algorithm with respect to the global Pareto front (as-
suming we know its location).

2) Maximize the spread of solutions found, so that we can
have a distribution of vectors as smooth and uniform as
possible.

3) Maximize the number of elements of the Pareto optimal
set found.

Based on this notion, we adopted one metric to evaluate each
of three aspects previously indicated.

1) Generational distance (GD): The concept of genera-
tional distance was introduced by Van Veldhuizen and
Lamont [33] as a way of estimating how far the elements
are in the set of nondominated vectors found so far from
those in the Pareto optimal set and is defined as

(11)

where is the number of vectors in the set of nondom-
inated solutions found so far and is the Euclidean
distance (measured in objective space) between each of
these and the nearest member of the Pareto optimal set.
It should be clear that a value of indicates that
all the elements generated are in the Pareto optimal set.
Therefore, any other value will indicate how “far” we are
from the global Pareto front of our problem. This metric
addresses the first issue from the list previously provided.

2) Spacing (SP): Here, one desires to measure the spread
(distribution) of vectors throughout the nondominated
vectors found so far. Since the “beginning” and “end”
of the current Pareto front found are known, a suitably
defined metric judges how well the solutions in such
front are distributed. Schott [29] proposed such a metric
measuring the range (distance) variance of neighboring
vectors in the nondominated vectors found so far. This
metric is defined as

(12)

where , ,
, is the mean of all , and is the number

of nondominated vectors found so far. A value of zero for
this metric indicates all members of the Pareto front cur-
rently available are equidistantly spaced. This metric ad-
dresses the second issue from the list previously provided.

3) Error ratio (ER): This metric was proposed by Van Veld-
huizen [32] to indicate the percentage of solutions (from

262 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 3, JUNE 2004

Fig. 5. Pseudocode of our mutation operator. The variation of our mutation operator is graphically shown in Fig. 4.

the nondominated vectors found so far) that are not mem-
bers of the true Pareto optimal set

(13)

where is the number of vectors in the current set of
nondominated vectors available, if vector is a
member of the Pareto optimal set, and , otherwise.
It should then be clear that indicates an ideal be-
havior, since it would mean that all the vectors generated
by our algorithm belong to the Pareto optimal set of the
problem. This metric addresses the third issue from the
list previously provided.

Additionally, times were also evaluated (using the same hard-
ware platform and the exact same environment for each of the
algorithms) in order to establish if our MOPSO algorithm was
really faster than the other techniques as we hypothesized.

In order to know how competitive our approach was, we de-
cided to compare it against three multiobjective evolutionary al-
gorithms that are representative of the state-of-the-art.

1) Nondominated Sorting Genetic Algorithm II: Pro-
posed by Deb et al. [9], [11], this algorithm is a revised
version of the nondominated sorting genetic algorithm
proposed by Srinivas and Deb [30]. The original NSGA
is based on several layers of classifications of the individ-
uals as suggested by Goldberg [14]. Before selection is
performed, the population is ranked on the basis of non-
domination: all nondominated individuals are classified
into one category (with a dummy fitness value, which is
proportional to the population size, to provide an equal
reproductive potential for these individuals). Then, this
group of classified individuals is ignored and another
layer of nondominated individuals is considered. The
process continues until all individuals in the population

are classified. Since individuals in the first front have
the maximum fitness value, they always get more copies
than the rest of the population. This allows a search for
nondominated regions, and results in convergence of the
population toward such regions.

The NSGA-II is more efficient (computationally
speaking) than the original NSGA, uses elitism and
a crowded comparison operator that keeps diversity
without specifying any additional parameters (the orig-
inal NSGA used fitness sharing). This algorithm uses

-selection as its elitist mechanism.
2) Pareto Archived Evolution Strategy: This algorithm

was introduced by Knowles and Corne [21]. PAES con-
sists of a evolution strategy (i.e., a single parent
that generates a single offspring) in combination with a
historical archive that records some of the nondominated
solutions previously found. This archive is used as a
reference set against which each mutated individual is
being compared. Such a historical archive is the elitist
mechanism adopted in PAES. However, an interesting
aspect of this algorithm is the procedure used to maintain
diversity which consists of a crowding procedure that
divides objective space in a recursive manner. Each
solution is placed in a certain grid location based on
the values of its objectives (which are used as its “co-
ordinates” or “geographical location”). A map of such
grid is maintained, indicating the number of solutions
that reside in each grid location. Since the procedure is
adaptive, no extra parameters are required (except for the
number of divisions of the objective space).

3) Microgenetic Algorithm for Multiobjective Optimiza-
tion: This approach was introduced by Coello Coello and
Toscano Pulido [3], [6]. A microgenetic algorithm is a GA
with a small population and a reinitialization process. The

COELLO COELLO et al.: HANDLING MULTIPLE OBJECTIVES WITH PARTICLE SWARM OPTIMIZATION 263

Fig. 6. Diagram that illustrates the way in which the microGA for
multiobjective optimization works.

way in which the microGA works is illustrated in Fig. 6.
First, a random population is generated. This random pop-
ulation feeds the population memory, which is divided in
two parts: a replaceable and a nonreplaceable portion. The
nonreplaceable portion of the population memory never
changes during the entire run and is meant to provide the
required diversity for the algorithm. In contrast, the re-
placeable portion experiences changes after each cycle of
the microGA.

The population of the microGA at the beginning of
each of its cycles is taken (with a certain probability) from
both portions of the population memory so that there is a
mixture of randomly generated individuals (nonreplace-
able portion) and evolved individuals (replaceable por-
tion). During each cycle, the microGA undergoes conven-
tional genetic operators. After the microGA finishes one
cycle, two nondominated vectors are chosen4 from the
final population and they are compared with the contents
of the external memory (this memory is initially empty).
If either of them (or both) remains as nondominated after
comparing it against the vectors in this external memory,
then they are included there (i.e., in the external memory).
This is the historical archive of nondominated vectors. All
dominated vectors contained in the external memory are
eliminated.

The microGA uses then three forms of elitism: 1) it
retains nondominated solutions found within the internal
cycle of the microGA; 2) it uses a replaceable memory
whose contents is partially “refreshed” at certain inter-

4This is assuming that there are two or more nondominated vectors. If there
is only one, then this vector is the only one selected.

vals; and 3) it replaces the population of the microGA by
the nominal solutions produced (i.e., the best solutions
found after a full internal cycle of the microGA).

In the following examples, the NSGA-II was run using a pop-
ulation size of 100, a crossover rate of 0.8 (uniform crossover
was adopted), tournament selection, and a mutation rate of

, where = chromosome length (binary representation
was adopted). The microGA used a crossover rate of 0.9, an
external memory of 100 individuals, a number of iterations to
achieve nominal convergence of two, a population memory of
50 individuals, a percentage of nonreplaceable memory of 0.05,
a population size (for the microGA itself) of four individuals,
and 25 subdivisions of the adaptive grid. The mutation rate
was set to (= length of the chromosomic string). PAES
was run using an adaptive grid with a depth of five, a size
of the archive of 100, and a mutation rate of , where
refers to the length of the chromosomic string that encodes the
decision variables. MOPSO used a population of 100 particles,
a repository size of 100 particles, a mutation rate of 0.5,5 and
30 divisions for the adaptive grid. Our implementation uses a
real-numbers representation, but a binary representation could
also be adopted if needed. These parameters were kept in all
the examples, and we only changed the total number of fitness
function evaluations6 but the same value was adopted for all the
algorithms in each of the examples presented next. The source
code of the NSGA-II, PAES and the microGA is available from
the EMOO repository [4].7

In all the following examples, we report the results obtained
from performing 30 independent runs of each algorithm com-
pared. In all cases, the best average results obtained with respect
to each metric are shown in boldface.

A. Test Function 1

For our first example, we used the following problem pro-
posed by Kita [20]:

Maximize where

subject to

and , . The range adopted in our case is , .
In this example, the total number of fitness function evalua-

tions was set to 5000.
Figs. 7 and 8 show the graphical results produced by our

MOPSO, the microGA, the NSGA-II, and PAES in the first test
function chosen. The true Pareto front of the problem is shown
as a continuous line. The solutions displayed correspond to the

5This value was determined after performing an extensive set of experiments.
Note, however, that the performance of MOPSO can improve in some of the
test functions presented if a higher mutation rate is adopted. This, however, also
increases the computational cost of the approach.

6The total number of fitness function evaluations was empirically determined
based on the complexity of the test function adopted. However, at the end of the
paper some guidelines are provided regarding how to determine the parameters
of the MOPSO for an arbitrary problem.

7The source code of MOPSO may be obtained by e-mailing to
ccoello@cs.cinvestav.mx.

264 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 3, JUNE 2004

Fig. 7. Pareto fronts produced by our MOPSO (left) and the microGA (right) for the first test function. The true Pareto front is shown as a continuous line.

Fig. 8. Pareto fronts produced by the NSGA-II (left) and PAES (right) for the first test function.

TABLE I
RESULTS OF THE ERROR RATIO METRIC FOR THE FIRST TEST FUNCTION

TABLE II
RESULTS OF THE GENERATIONAL DISTANCE METRIC

FOR THE FIRST TEST FUNCTION

median result with respect to the generational distance metric.
Tables I, II, III, and IV show the comparison of results among the
four algorithms considering the metrics previously described.
It can be seen that the average performance of MOPSO is the

TABLE III
RESULTS OF THE SPACING METRIC FOR THE FIRST TEST FUNCTION

TABLE IV
COMPUTATIONAL TIME (IN SECONDS) REQUIRED BY

EACH ALGORITHM FOR THE FIRST TEST FUNCTION

best with respect to the error ratio (by far), and to the genera-
tional distance. With respect to spacing it places slightly below
the NSGA-II, but with a lower standard deviation. By looking
at the Pareto fronts of this test function, it is easy to notice that

COELLO COELLO et al.: HANDLING MULTIPLE OBJECTIVES WITH PARTICLE SWARM OPTIMIZATION 265

Fig. 9. Pareto fronts produced by our MOPSO (left) and the microGA (right) for the second test function. The true Pareto front is shown as a continuous line.

Fig. 10. Pareto fronts produced by the NSGA-II (left) and PAES (right) for the second test function.

except for MOPSO, none of the algorithms were able to cover
the full Pareto front.8 This is then an example in which a metric
may be misleading, since the fact that the spacing metric pro-
vides a good value is irrelevant if the nondominated vectors pro-
duced by the algorithm are not part of the true Pareto front of the
problem [32]. Also, it is important to notice the very high speed
of MOPSO, which requires almost half of the time than the mi-
croGA. This is remarkable if we consider that the NSGA-II and
the microGA are algorithms that are normally considered “very
fast” approaches.

VI. TEST FUNCTION 2

Our second test function was proposed by Kursawe [22]

Minimize

(14)

Minimize

(15)

8When using our original implementation of MOPSO [5], we ran into the
same problem. Such a behavior motivated the development of the mutation op-
erator reported in this paper.

TABLE V
RESULTS OF THE ERROR RATIO METRIC FOR THE SECOND TEST FUNCTION

where

(16)

In this example, the total number of fitness function evalua-
tions was set to 12 000.

Figs. 9 and 10 show the graphical results produced by our
MOPSO, the microGA, the NSGA-II, and PAES in the second
test function chosen. The true Pareto front of the problem is
shown as a continuous line. Tables V, VI, VII, and VIII show
the comparison of results among the four algorithms consid-
ering the metrics previously described. It can be seen that the
average performance of MOPSO is the best with respect to the
error ratio, and it is slightly below the microGA with respect to

266 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 3, JUNE 2004

Fig. 11. Pareto fronts produced by our MOPSO (left) and the microGA (right) for the third test function. The true Pareto front is shown as a continuous line.

TABLE VI
RESULTS OF THE GENERATIONAL DISTANCE METRIC

FOR THE SECOND TEST FUNCTION

TABLE VII
RESULTS OF THE SPACING METRIC FOR THE SECOND TEST FUNCTION

the generational distance. With respect to spacing it does con-
siderably worse than the NSGA-II, but the graphical solutions
show that the NSGA-II is not able to cover the entire Pareto
front of the problem, whereas the MOPSO does it. This makes
the value of this metric irrelevant, since some of the solutions
produced by the NSGA-II are not part of the true Pareto front of
the problem. Also, note that MOPSO is 15 times faster than the
NSGA-II in this test function.

VII. TEST FUNCTION 3

Our third test function was proposed by Deb [8]

Minimize (17)

Minimize (18)

TABLE VIII
COMPUTATIONAL TIME (IN SECONDS) REQUIRED BY

EACH ALGORITHM FOR THE SECOND TEST FUNCTION

TABLE IX
RESULTS OF THE ERROR RATIO METRIC FOR THE THIRD TEST FUNCTION

where

(19)

if

otherwise
(20)

and , .
In this example, the total number of fitness function evalua-

tions was set to 4000.
Figs. 11 and 12 show the graphical results produced by our

MOPSO, the microGA, the NSGA-II, and PAES in the third
test function chosen. The true Pareto front of the problem is
shown as a continuous line. Tables IX, X, XI, and XII show
the comparison of results among the four algorithms consid-
ering the metrics previously described. It can be seen that the
average performance of MOPSO plays second with respect to

COELLO COELLO et al.: HANDLING MULTIPLE OBJECTIVES WITH PARTICLE SWARM OPTIMIZATION 267

Fig. 12. Pareto fronts produced by the NSGA-II (left) and PAES (right) for the third test function.

Fig. 13. Pareto fronts produced by our MOPSO (left) and the microGA (right) for the fourth test function. The true Pareto front is shown as a continuous line.

TABLE X
RESULTS OF THE GENERATIONAL DISTANCE METRIC

FOR THE THIRD TEST FUNCTION

TABLE XI
RESULTS OF THE SPACING METRIC FOR THE THIRD TEST FUNCTION

TABLE XII
COMPUTATIONAL TIME (IN SECONDS) REQUIRED BY

EACH ALGORITHM FOR THE THIRD TEST FUNCTION

the error ratio, but it is the best with respect to the generational
distance. With respect to spacing it does considerably worse
than the NSGA-II. However, graphical results again indicate
that the NSGA-II does not cover the full Pareto front (it only
covers about half of it). Since the nondomianted vectors found
by the NSGA-II are clustered together, the spacing metric pro-
vides very good results. MOPSO, on the other hand, covers the
entire Pareto front and is 10 times faster than the NSGA-II in
this test function.

268 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 3, JUNE 2004

Fig. 14. Pareto fronts produced by the NSGA-II (left) and PAES (right) for the fourth test function.

TABLE XIII
RESULTS OF THE ERROR RATIO METRIC FOR THE FOURTH TEST FUNCTION

TABLE XIV
RESULTS OF THE GENERATIONAL DISTANCE METRIC

FOR THE FOURTH TEST FUNCTION

VIII. TEST FUNCTION 4

Our fourth test function was also proposed by Deb [8]

Minimize (21)

Minimize (22)

(23)

and , .
In this example, the total number of fitness function evalua-

tions was set to 10 000.
Figs. 13 and 14 show the graphical results produced by the

PAES, the NSGA-II, the microGA, and our MOPSO in the
fourth test function chosen. The true Pareto front of the problem

TABLE XV
RESULTS OF THE SPACING METRIC FOR THE FOURTH TEST FUNCTION

TABLE XVI
COMPUTATIONAL TIME (IN SECONDS) REQUIRED BY

EACH ALGORITHM FOR THE FOURTH TEST FUNCTION

Fig. 15. Plane truss used for the fifth test function. The structural volume and
the joint displacement (�) are to be optimized.

is shown as a continuous line. Tables XIII, XIV, XV, and XVI
show the comparison of results among the four algorithms
considering the metrics previously described. It can be seen that
the average performance of MOPSO is the best with respect to
the generational distance, and it is slightly below the microGA
with respect to the error ratio. With respect to spacing it does
considerably worse than the NSGA-II, but the NSGA-II is

COELLO COELLO et al.: HANDLING MULTIPLE OBJECTIVES WITH PARTICLE SWARM OPTIMIZATION 269

Fig. 16. Pareto fronts produced by our MOPSO (left) and the microGA (right) for the fifth test function. The true Pareto front is shown as a continuous line.

Fig. 17. Pareto fronts produced by the NSGA-II (left) and PAES (right) for the fifth test function.

again unable to cover the full Pareto front of the problem (i.e.,
the spacing metric becomes misleading in this case). Note that
this is the only example (from those presented in this paper) in
which the microGA is faster than MOPSO (it requires about
half the CPU time of MOPSO).

IX. TEST FUNCTION 5

Our fifth test function is to optimize the four-bar plane truss
shown in Fig. 15. The problem is the following [2]:

Minimize

(24)

(25)

such that

TABLE XVII
RESULTS OF THE ERROR RATIO METRIC FOR THE FIFTH TEST FUNCTION

TABLE XVIII
RESULTS OF THE GENERATIONAL DISTANCE METRIC

FOR THE FIFTH TEST FUNCTION

where , ,
. Using these values, the ranges adopted for the

decision variables are the following: ,

270 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 3, JUNE 2004

TABLE XIX
RESULTS OF THE SPACING METRIC FOR THE FIFTH TEST FUNCTION

TABLE XX
COMPUTATIONAL TIME (IN SECONDS) REQUIRED BY

EACH ALGORITHM FOR THE FIFTH TEST FUNCTION

TABLE XXI
RESULTS OF EXPERIMENT 1 FOR THE FIRST TEST FUNCTION

MOPSO (no) refers to the version of our approach without mutation and
MOPSO (yes) refers to the version with mutation. ER = error ratio, GD =
generational distance, and SP = spacing.

, ,
.

In this example, the total number of fitness function evalua-
tions was set to 8000.

Figs. 16 and 17 show the graphical results produced by the
PAES, the NSGA-II, the microGA, and our MOPSO in the fifth
test function chosen. The true Pareto front of the problem is
shown as a continuous line. Tables XVII, XVIII, XIX, and XX
show the comparison of results among the four algorithms con-
sidering the metrics previously described. In this case, MOPSO
is the second best with respect to the three metrics, but only
marginally. Note however, that only MOPSO covers the entire
Pareto front of the problem. Furthermore, in terms of CPU time,
MOPSO is about 14 times faster than the NSGA-II and its re-
markable speed is only comparable to the microGA which, how-
ever, has a much poorer performance with respect to the three
metrics adopted.

X. SENSITIVITY ANALYSIS

We performed an extensive analysis of the impact of the pa-
rameters of our MOPSO on its performance. In this paper, we

TABLE XXII
RESULTS OF EXPERIMENT 1 FOR THE SECOND TEST FUNCTION

MOPSO (no) refers to the version of our approach without mutation and
MOPSO (yes) refers to the version with mutation. ER = error ratio, GD =
generational distance, and SP = spacing.

TABLE XXIII
RESULTS OF EXPERIMENT 1 FOR THE THIRD TEST FUNCTION

MOPSO (no) refers to the version of our approach without mutation and
MOPSO (yes) refers to the version with mutation. ER = error ratio, GD =
generational distance, and SP = spacing.

TABLE XXIV
RESULTS OF EXPERIMENT 1 FOR THE FOURTH TEST FUNCTION

MOPSO (no) refers to the version of our approach without mutation and
MOPSO (yes) refers to the version with mutation. ER = error ratio, GD =
generational distance, and SP = spacing.

TABLE XXV
RESULTS OF EXPERIMENT 1 FOR THE FIFTH TEST FUNCTION

MOPSO (no) refers to the version of our approach without mutation and
MOPSO (yes) refers to the version with mutation. ER = error ratio, GD =
generational distance, and SP = spacing.

used the five test functions previously described, as well as the
three metrics adopted before. We performed four experiments.

COELLO COELLO et al.: HANDLING MULTIPLE OBJECTIVES WITH PARTICLE SWARM OPTIMIZATION 271

TABLE XXVI
RESULTS OF EXPERIMENT 2 FOR THE FIRST TEST FUNCTION

We analyze the effect of the number of divisions on the three metrics adopted in our study (i.e.,
error ratio, generational distance, and spacing).

1) Experiment 1: We compared MOPSO with mutation
versus MOPSO without mutation using the original set
of parameters (those adopted in Section V).

2) Experiment 2: We varied the number of divisions of the
adaptive grid used in the secondary population. We per-
formed runs using 5, 10, 20, 30, 40, and 50 divisions.

3) Experiment 3: We modified the number of particles of
the swarm, and the number of iterations in order to per-
form the same number of evaluations of the objective
functions as in the original experiments. We performed
runs using 5, 25, 75, and 100 particles. All the other pa-
rameters were left as defined in Section V.

4) Experiment 4: We modified the size of the particle repos-
itory (the secondary population of our algorithm). We per-
formed runs using 100, 150, 200, and 250 particles. All
the other parameters were left as defined in Section V.

The results obtained from each experiment are discussed in
the following sections.

A. Experiment 1

This experiment was designed to determine if the mutation
operator adopted really played an important role in our MOPSO.
We compared MOPSO without mutation versus MOPSO with
mutation using the same test functions and metrics described in
Section V. The following is a summary of the results obtained.

1) Test Function 1: In this case, the use of the mutation
operator clearly improved the results of all the metrics
adopted (see Table XXI).

2) Test Function 2: Again, the use of mutation produced a
significant improvement for our MOPSO with respect to
all the metrics adopted (see Table XXII).

3) Test Function 3: This is an interesting example, because
the version without mutation produced a slightly better
average result for the error ratio metric (0.31 versus
0.3335). However, as can be seen in Table XXIII, the
use of mutation produces improvements (although such
improvements tend to be marginal as well) for the two
other metrics. We attribute this behavior to the fact that
this test function has a search space considerably easier
to explore (i.e., less accidented) than the others adopted
in this paper. That is why we believe that mutation does
not produce an important difference in this case.

4) Test Function 4: Again, the use of mutation produced a
significant improvement for our MOPSO with respect to
the three metrics adopted (see Table XXIV).

5) Test Function 5: Once more, the use of mutation pro-
duced a significant improvement for our MOPSO with
respect to the three metrics adopted (see Table XXV).
In fact, this is the example where the improvements pro-
duced by the mutation operator are more evident.

272 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 3, JUNE 2004

TABLE XXVII
RESULTS OF EXPERIMENT 2 FOR THE SECOND TEST FUNCTION

We analyze the effect of the number of divisions on the three metrics adopted in our study (i.e.,
error ratio, generational distance, and spacing).

1) Conclusions From Experiment 1: Based on the analysis
performed in this experiment, we conclude that the use of mu-
tation turns out to be beneficial in most cases, and only mar-
ginally harmful when the problem is very simple to solve. Note
however, that since the difference is almost negligible, we rec-
ommend to use mutation with our MOPSO in all cases.

B. Experiment 2

As indicated before, in this experiment, we varied the number
of divisions of the adaptive grid used in the secondary popula-
tion. We performed runs using 5, 10, 20, 30, 40, and 50 divi-
sions to see the effect of this parameter in the performance of our
MOPSO. The following is a summary of the results obtained.

1) Test Function 1: In this case, we found that the results
improved as we increase the number of divisions, but after
reaching 40 divisions, the results started degrading again.
In Table XXVI, we can see that in this test function the
best average results were obtained with 40 divisions for
both the error ratio and the generational distance metrics
and with 30 divisions for the spacing metric. However,
in all cases, the difference between the average results
obtained with 30 and 40 divisions is marginal.

2) Test Function 2: In this case, the difference in the results
is only marginal in most cases regardless of the number
of divisions adopted. In Table XXVII, we can see that 50

divisions produced the best average result with respect to
error ratio, 10 divisions produced the best average result
with respect to generational distance, and 30 divisions
produced the best average result with respect to spacing.

3) Test Function 3: In this case, a number of divisions
greater or equal than 30 provided the best results with
respect to all the metrics adopted. In Table XXVIII, we
can see that 40 divisions provided the best average result
with respect to error ratio, 30 divisions produced the
best average result with respect to generational distance,
and 40 divisions produced the best average result with
respect to spacing.

4) Test Function 4: This was an atypical function in which
a number of divisions of 10 provided the best average
results with respect to all the metrics adopted (see
Table XXIX). However, a number of divisions of 30 was
the second best in all cases.

5) Test Function 5: In this case, 30 divisions provided the
best average results with respect to both generational dis-
tance and spacing (see Table XXX). With respect to error
ratio, 20 divisions provided a better average result, but the
difference with respect to 30 divisions is very small.

1) Conclusions From Experiment 2: From the results ob-
tained from this experiment, we can see that in most cases a
value greater or equal than 30 divisions provided good results.

COELLO COELLO et al.: HANDLING MULTIPLE OBJECTIVES WITH PARTICLE SWARM OPTIMIZATION 273

TABLE XXVIII
RESULTS OF EXPERIMENT 2 FOR THE THIRD TEST FUNCTION

We analyze the effect of the number of divisions on the three metrics adopted in our study (i.e., error ratio,
generational distance, and spacing).

We noted that even in those cases in which a lower number of
divisions was better (e.g., 10 divisions), 30 divisions remained
as a competitive value, we concluded that the value of 30 was
the most suitable for this parameter of our MOPSO.

C. Experiment 3

As indicated before, in this experiment, we varied the
number of particles of the swarm (or primary population) of
our MOPSO. We also had to vary the number of iterations as to
maintain the same (total) number of fitness function evaluations
of the original experiments. We performed runs using 5, 25, 75,
and 100 particles. The following is a summary of the results
obtained.

1) Test Function 1: In this case, we obtained mixed results.
With respect to error ratio, the use of 100 particles pro-
vided the best average result. However, with respect to
both generational distance and spacing, the use of only
five particles provided the best average results. However,
it is worth noting in Table XXXI that the differences ob-
tained when increasing the number of particles are not too
big. The explanation for these results has to do with the
characteristics of this problem. In this case, a swarm of
smaller size is better because it uses a larger number of
cycles and, therefore, has a better chance of converging

to the true Pareto front of this problem (which is difficult
to reach by most algorithms). With fewer particles, may
be also easier to obtain a better (i.e., more uniform) dis-
tribution of solutions.

2) Test Function 2: Table XXXII shows that, in this case,
the use of 100 particles provides the best average results
with respect to both error ratio and generational distance.
With respect to spacing, the use of 25 particles provided
a better average result, but the difference with respect to
the use of 100 particles is negligible.

3) Test Function 3: This is another case with mixed results.
We can see in Table XXXIII that the use of 25 particles
provided the best average result with respect to error ratio,
the use of 50 particles provided the best average result
with respect to generational distance and the use of five
particles provided the best average result with respect to
spacing. Note however, that in the case of both genera-
tional distance and spacing, the use of 100 particles pro-
vided very competitive results.

4) Test Function 4: We can see in Table XXXIV that in this
case, 100 particles provided the best average results with
respect to both error ratio and generational distance. With
respect to spacing, the use of 75 particles provided the
best average result, although the results obtained with 100
particles are not too different.

274 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 3, JUNE 2004

TABLE XXIX
RESULTS OF EXPERIMENT 2 FOR THE FOURTH TEST FUNCTION

We analyze the effect of the number of divisions on the three metrics adopted in our study (i.e.,
error ratio, generational distance, and spacing).

5) Test Function 5: In this problem, we have again mixed
results. We can see in Table XXXV that the use of 50
particles provided the best average result with respect to
error ratio, the use of 100 particles provided the best av-
erage result with respect to generational distance, and the
use of 5 particles provided the best average result with re-
spect to spacing. However, once again, the average results
obtained with 100 particles remain competitive in terms
of both error ratio and spacing.

1) Conclusions From Experiment 3: Although the results
obtained from this experiment seem inconclusive, we argue that
the use of 100 particles is a reasonable choice if nothing is
known about the problem to be solved (we obtained competi-
tive results in most cases when adopting this value).

D. Experiment 4

As indicated before, in this final experiment, we modified
the size of the particle repository (the secondary population of
our algorithm). This parameter refers to the expected number of
points (i.e., nondominated vectors) that our algorithm will find.
We performed runs using 100, 150, 200, and 250 particles. The
following is a summary of the results obtained.

1) Test Function 1: As we can see in Table XXXVI, in this
case, a value of 100 for the size of the repository provided

the best average results with respect to both error ratio and
spacing. A value of 150 provided a better average result
with respect to generational distance.

2) Test Function 2: As we can see in Table XXXVII, a value
of 250 for the size of the repository provided in this case
the best average results with respect to both error ratio and
spacing. A value of 200 provided the best average result
with respect to generational distance.

3) Test Function 3: As we can see in Table XXXVIII, a
value of 250 for the size of the repository provided in this
case the best average results with respect to all the metrics
considered.

4) Test Function 4: In Table XXXIX, we can see that again,
a value of 250 for the size of the repository provided in
this case the best average results with respect to all the
metrics considered.

5) Test Function 5: In Table XL, we can see that again, a
value of 250 for the size of the repository provided in this
case the best average results with respect to all the metrics
considered.

1) Conclusions From Experiment 4: We can see that in this
case, a value of 250 for the size of the repository provided the
best average results in most problems. Note however, that as we
increase the size of the external repository, the search effort re-
quired to converge to a good (and well-distributed) approxima-

COELLO COELLO et al.: HANDLING MULTIPLE OBJECTIVES WITH PARTICLE SWARM OPTIMIZATION 275

TABLE XXX
RESULTS OF EXPERIMENT 2 FOR THE FIFTH TEST FUNCTION

We analyze the effect of the number of divisions on the three metrics adopted in our study (i.e.,
error ratio, generational distance, and spacing).

tion of the true Pareto front tends to increase as well. This fact
is, however, evident mainly in problems in which reaching the
true Pareto front is particularly difficult (e.g., the first test func-
tion from Section V). That is one of the main reasons why we
decided to adopt a value of 100 for this parameter. Additionally,
in the specialized literature, a size of 100 for the external popu-
lation has been a common practice [7]. Nevertheless, as we saw
in this analysis, our MOPSO can improve its results when using
a larger repository (although, in some cases, the improvement is
only marginal).

E. Parameters Recommended

Based on the experimental study conducted, we found that
the following values for the parameters of our MOPSO provide
the most competitive results:

• Number of particles: This is equivalent to the population
size of a genetic algorithm. Obviously, a larger number of
particles involves a higher computational cost. We recom-
mend to use 100 particles.

• Number of cycles: This parameter is related to the number
of particles. The relationship tends to be inversely propor-
tional (i.e., to larger number of particles, smaller number
of cycles, and vice versa). We recommend to use between

80 and 120. The number of cycles is related to the com-
plexity of the problem (i.e., more difficult problems may
require more cycles). However, it is important to keep in
mind that for a constant number of particles, as we in-
crease the number of cycles, the computational cost of
the method also increases. If nothing is known about the
problem, we suggest to use 100 cycles (adopting 100 par-
ticles for the swarm).

• Number of divisions: It allows us to determine the
number of hypercubes that will be generated in objective
function space. We recommend to use 30 divisions,
since this value provided good results in most cases (see
Section X).

• Size of the repository: This parameter is used to delimit
the maximum number of nondominated vectors that can
be stored in the repository. The value of this parameter
will determine the quality of the Pareto front produced.
We recommend to use 250 particles (see Section X). How-
ever, since it is normally common practice that multiobjec-
tive evolutionary algorithms that use an external memory
similar to our own use only a size of 100, this value may
be an alternative to facilitate (indirect) comparisons that
other authors wish to perform. That is the reason why we
adopted such value in the study presented in this paper.

276 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 3, JUNE 2004

TABLE XXXI
RESULTS OF EXPERIMENT 3 FOR THE FIRST TEST FUNCTION

We analyze the effect of the number of particles of the swarm on
the three metrics adopted in our study (i.e., error ratio, generational
distance, and spacing).

TABLE XXXII
RESULTS OF EXPERIMENT 3 FOR THE SECOND TEST FUNCTION

We analyze the effect of the number of particles of the swarm on
the three metrics adopted in our study (i.e., error ratio, generational
distance, and spacing).

TABLE XXXIII
RESULTS OF EXPERIMENT 3 FOR THE THIRD TEST FUNCTION

We analyze the effect of the number of particles of the swarm on
the three metrics adopted in our study (i.e., error ratio, generational
distance, and spacing).

TABLE XXXIV
RESULTS OF EXPERIMENT 3 FOR THE FOURTH TEST FUNCTION

We analyze the effect of the number of particles of the swarm on
the three metrics adopted in our study (i.e., error ratio, generational
distance, and spacing).

COELLO COELLO et al.: HANDLING MULTIPLE OBJECTIVES WITH PARTICLE SWARM OPTIMIZATION 277

TABLE XXXV
RESULTS OF EXPERIMENT 3 FOR THE FIFTH TEST FUNCTION

We analyze the effect of the number of particles of the swarm on
the three metrics adopted in our study (i.e., error ratio, generational
distance, and spacing).

TABLE XXXVI
RESULTS OF EXPERIMENT 4 FOR THE FIRST TEST FUNCTION

We analyze the effect of the size of the external repository (i.e.,
the secondary population of our MOPSO) on the three metrics
adopted in our study (i.e., error ratio, generational distance, and
spacing).

TABLE XXXVII
RESULTS OF EXPERIMENT 4 FOR THE SECOND TEST FUNCTION

We analyze the effect of the size of the external repository (i.e., the
secondary population of our MOPSO) on the three metrics adopted
in our study (i.e., error ratio, generational distance, and spacing).

TABLE XXXVIII
RESULTS OF EXPERIMENT 4 FOR THE THIRD TEST FUNCTION

We analyze the effect of the size of the external repository (i.e., the
secondary population of our MOPSO) on the three metrics adopted
in our study (i.e., error ratio, generational distance, and spacing).

278 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 3, JUNE 2004

TABLE XXXIX
RESULTS OF EXPERIMENT 4 FOR THE FOURTH TEST FUNCTION

We analyze the effect of the size of the external repository (i.e., the
secondary population of our MOPSO) on the three metrics adopted
in our study (i.e., error ratio, generational distance, and spacing).

TABLE XL
RESULTS OF EXPERIMENT 4 FOR THE FIFTH TEST FUNCTION

We analyze the effect of the size of the external repository (i.e., the
secondary population of our MOPSO) on the three metrics adopted
in our study (i.e., error ratio, generational distance, and spacing).

XI. CONCLUSION AND FUTURE WORK

We have presented a proposal to extend PSO to handle multi-
objective problems. The proposed algorithm is relatively easy
to implement and it improves the exploratory capabilities of
PSO by introducing a mutation operator whose range of action
varies over time. This also makes unnecesary to perform a fine
tuning on the inertia weights used by the expression adopted
to compute the velocity of each particle (in our experiments,
we found that our approach was highly sensitive to the values
of such inertia weights). The proposed approach was validated
using the standard methodology currently adopted in the evolu-
tionary multiobjective optimization community. The results in-
dicate that our approach is a viable alternative since it has an av-
erage performance highly competitive with respect to some of
the best multiobjective evolutionary algorithms known to date.
In fact, MOPSO was the only algorithm from those adopted in
our study that was able to cover the full Pareto front of all the
functions used. Additionally, the exceptionally low computa-
tional times required by our approach make it a very promising
approach to problems in which the computational cost is a vital
issue (e.g., engineering optimization).

One aspect that we would like to explore in the future is the
use of a crowding operator to improve the distribution of non-
dominated solutions along the Pareto front [11]. This would im-
prove the capabilities of the algorithm to distribute uniformly
the nondominated vectors found. We are also considering the
possibility of extending this algorithm so that it can deal with
dynamic functions [1]. Finally, it is desirable to study in more
detail the parameters fine tuning required by the algorithm, as
to provide a more solid basis to define them.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their valuable comments that greatly helped us to improve the
contents of this paper.

REFERENCES

[1] J. Branke, Evolutionary Optimization in Dynamic Environ-
ments. Norwell, MA: Kluwer, 2002.

[2] F. Y. Cheng and X. S. Li, “Generalized center method for multiobjective
engineering optimization,” Eng. Opt., vol. 31, pp. 641–661, 1999.

[3] C. A. Coello Coello and G. Toscano, “A micro-genetic algorithm for
multiobjective optimization,” in Lecture Notes in Computer Science no.
1993, E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, and D. Corne,
Eds. Berlin, Germany: Springer-Verlag, 2001, Proc. 1st Int. Conf. Evo-
lutionary Multi-Criterion Optimization, pp. 126–140.

[4] C. A. Coello Coello. EMOO Repository. [Online]. Available:
http://delta.cs.cinvestav.mx/~ccoello/EMOO/

[5] C. A. Coello Coello and M. S. Lechuga, “MOPSO: A proposal for
multiple objective particle swarm optimization,” in Proc. Congr.
Evolutionary Computation (CEC’2002), vol. 1, Honolulu, HI, May
2002, pp. 1051–1056.

[6] C. A. Coello Coello and G. T. Pulido, “Multiobjective optimization using
a micro-genetic algorithm,” in Proc. Genetic and Evolutionary Compu-
tation Conf. (GECCO’2001), L. Spector, E. D. Goodman, A. Wu, W. B.
Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H.
Garzon, and E. Burke, Eds., San Francisco, CA, 2001, pp. 274–282.

[7] C. A. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont, Evo-
lutionary Algorithms for Solving Multi-Objective Problems. Norwell,
MA: Kluwer, 2002, ISBN 0-3064-6762-3.

[8] K. Deb, “Multi-objective genetic algorithms: problem difficulties and
construction of test problems,” Evol. Comput., vol. 7, pp. 205–230, Fall
1999.

COELLO COELLO et al.: HANDLING MULTIPLE OBJECTIVES WITH PARTICLE SWARM OPTIMIZATION 279

[9] K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan, “A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization:
NSGA-II,” in Proc. Parallel Problem Solving From Nature VI Conf.,
2000, pp. 849–858.

[10] K. Deb and D. E. Goldberg, “An investigation of niche and species for-
mation in genetic function optimization,” in Proc. 3rd Int. Conf. Genetic
Algorithms, J. D. Schaffer, Ed., San Mateo, CA, June 1989, pp. 42–50.

[11] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist mul-
tiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, pp. 182–197, Apr. 2002.

[12] R. M. Everson, J. E. Fieldsend, and S. Singh, “Full elite sets for multi-ob-
jective optimization,” in Proc. 5th Int. Conf. Adaptive Computing Design
Manufacture (ACDM 2002), vol. 5, I. C. Parmee, Ed., Devon, U.K., Apr.
2002, pp. 343–354.

[13] J. E. Fieldsend and S. Singh, “A multi-objective algorithm based upon
particle swarm optimization, an efficient data structure and turbulence,”
in Proc. 2002 U.K. Workshop on Computational Intelligence, Birm-
ingham, U.K., Sept. 2002, pp. 37–44.

[14] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Reading, MA: Addison-Wesley, 1989.

[15] J. Horn, “Multicriterion decision making,” in Handbook of Evolutionary
Computation, T. Bäck, D. Fogel, and Z. Michalewicz, Eds. London,
U.K.: Oxford Univ. Press, 1997, vol. 1, pp. F1.9:1–F1.9:15.

[16] X. Hu and R. Eberhart, “Multiobjective optimization using dynamic
neighborhood particle swarm optimization,” in Proc. Congr. Evolu-
tionary Computation (CEC’2002), vol. 2, Honolulu, HI, May 2002, pp.
1677–1681.

[17] X. Hui, R. C. Eberhart, and Y. Shi, “Particle swarm with extended
memory for multiobjective optimization,” in Proc. 2003 IEEE Swarm
Intelligence Symp., Indianapolis, IN, Apr. 2003, pp. 193–197.

[18] Y. Jin, T. Okabe, and B. Sendhoff, “Dynamic weighted aggregation for
evolutionary multi-objective optimization: why does it work and how?,”
in Proc. Genetic and Evolutionary Computation Conf. (GECCO’2001),
L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M.
Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke, Eds.,
San Francisco, CA, 2001, pp. 1042–1049.

[19] J. Kennedy and R. C. Eberhart, Swarm Intelligence. San Mateo, CA:
Morgan Kaufmann, 2001.

[20] H. Kita, Y. Yabumoto, N. Mori, and Y. Nishikawa, “Multi-objective op-
timization by means of the thermodynamical genetic algorithm,” in Par-
allel Problem Solving From Nature—PPSN IV, H.-M. Voigt, W. Ebeling,
I. Rechenberg, and H.-P. Schwefel, Eds. Berlin, Germany: Springer-
Verlag, Sept. 1996, Lecture Notes in Computer Science, pp. 504–512.

[21] J. D. Knowles and D. W. Corne, “Approximating the nondominated front
using the Pareto archived evolution strategy,” Evol. Comput., vol. 8, pp.
149–172, 2000.

[22] F. Kursawe, “A variant of evolution strategies for vector optimization,”
in Lecture Notes in Computer Science, H. P. Schwefel and R. Männer,
Eds. Berlin, Germany: Springer-Verlag, Oct 1991, vol. 496, Proc.
Parallel Problem Solving From Nature, 1st Workshop, PPSN I, pp.
193–197.

[23] X. Li et al., “A nondominated sorting particle swarm optimizer for
multiobjective optimization,” in Lecture Notes in Computer Science,
vol. 2723, Proc. Genetic and Evolutionary Computation—GECCO
2003—Part I, E. Cantú-Paz et al., Eds.. Berlin, Germany, July 2003,
pp. 37–48.

[24] J. Moore and R. Chapman, Application of Particle Swarm to Multiob-
jective Optimization: Dept. Comput. Sci. Software Eng., Auburn Univ.,
1999.

[25] S. Mostaghim and J. Teich, “Strategies for finding good local guides in
Multi-Objective Particle Swarm Optimization (MOPSO),” in Proc. 2003
IEEE Swarm Intelligence Symp., Indianapolis, IN, Apr. 2003, pp. 26–33.

[26] K. E. Parsopoulos and M. N. Vrahatis, “Particle swarm optimization
method in multiobjective problems,” in Proc. 2002 ACM Symp. Applied
Computing (SAC’2002), Madrid, Spain, 2002, pp. 603–607.

[27] T. Ray, T. Kang, and S. K. Chye, “An evolutionary algorithm for con-
strained optimization,” in Proc. Genetic and Evolutionary Computa-
tion Conf. (GECCO’2000), D. Whitley, D. Goldberg, E. Cantú-Paz, L.
Spector, I. Parmee, and H.-G. Beyer, Eds., San Francisco, CA, 2000, pp.
771–777.

[28] T. Ray and K. M. Liew, “A swarm metaphor for multiobjective design
optimization,” Eng. Opt., vol. 34, no. 2, pp. 141–153, Mar. 2002.

[29] J. R. Schott, “Fault tolerant design using single and multicriteria genetic
algorithm optimization,” M.S. thesis, Dept. Aeronautics and Astronau-
tics, Massachusetts Inst. Technol., Cambridge, MA, May 1995.

[30] N. Srinivas and K. Deb, “Multiobjective optimization using nondomi-
nated sorting in genetic algorithms,” Evol. Comput., vol. 2, no. 3, pp.
221–248, Fall 1994.

[31] F. van den Bergh, “An analysis of particle swarm optimization,” Ph.D.
dissertation, Faculty of Natural and Agricultural Sci., Univ. Petoria, Pre-
toria, South Africa, Nov. 2002.

[32] D. A. Van Veldhuizen, “Multiobjective evolutionary algorithms: Clas-
sifications, analyzes, and new innovations,” Ph.D. dissertation, Dept.
Elec. Comput. Eng., Graduate School of Eng., Air Force Inst. Technol.,
Wright-Patterson AFB, OH, May 1999.

[33] D. A. Van Veldhuizen and G. B. Lamont, “Multiobjective evolutionary
algorithm research: A history and analysis,” Dept. Elec. Comput. Eng.,
Graduate School of Eng., Air Force Inst. Technol., Wright-Patterson
AFB, OH, Tech. Rep. TR-98-03, 1998.

[34] E. Zitzler, “Evolutionary algorithms for multiobjective optimization:
Methods and applications,” Ph.D. dissertation, Swiss Fed. Inst. Technol.
(ETH), Zurich, Switzerland, Nov. 1999.

[35] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective evolu-
tionary algorithms: Empirical results,” Evol. Comput., vol. 8, no. 2, pp.
173–195, Summer 2000.

[36] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength
Pareto evolutionary algorithm,” in Proc. EUROGEN 2001. Evolutionary
Methods for Design, Optimization and Control With Applications to In-
dustrial Problems, K. Giannakoglou, D. Tsahalis, J. Periaux, P. Papailou,
and T. Fogarty, Eds., Athens, Greece, Sept. 2001.

[37] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: A
comparative case study and the strength Pareto approach,” IEEE Trans.
Evol. Comput., vol. 3, pp. 257–271, Nov. 1999.

Carlos A. Coello Coello (M’99) received the B.Sc.
degree in civil engineering from the Universidad
Autónoma de Chiapas, México, and the M.Sc. and
Ph.D. degrees in computer science from Tulane
University, New Orleans, LA, in 1991, 1993, and
1996, respectively.

He is currently an Associate Professor (CIN-
VESTAV-3B Researcher) with the Electrical
Engineering Department, CINVESTAV-IPN,
Mexico City, México. He has authored and coau-
thored over 100 technical papers and several book

chapters. He has also coauthored the book Evolutionary Algorithms for Solving
Multi-Objective Problems (Norwell, MA: Kluwer, 2002). His major research
interests are: evolutionary multiobjective optimization, constraint-handling
techniques for evolutionary algorithms, and evolvable hardware.

Dr. Coello Coello has served in the program committees of over 30 inter-
national conferences and has been technical reviewer for over 30 international
journals including the IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

in which he also serves as an Associate Editor. He also Chairs the Task Force on
Multiobjective Evolutionary Algorithms of the IEEE Neural Networks Society.
He is a Member of the Association for Computing Machinery (ACM) and the
Mexican Academy of Sciences.

Gregorio Toscano Pulido received the B.Sc. degree
in computer science from the Instituto Tecnológico
de Mérida, in Mérida, Yucatán, México, and the
M.Sc. degree in artificial intelligence from the Uni-
versidad Veracruzana, Xalapa, Veracruz, México,
in 1999 and 2002, respectively. He is currently
working toward the Ph.D. degree in the Department
of Electrical Engineering, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico
Nacional (CINVESTAV-IPN), México.

His current research interests include evolutionary
computation and multiobjective optimization.

Maximino Salazar Lechuga received the B.Sc.
degree in computer science and the M.Sc. degree
in artificial intelligence from the Universidad
Veracruzana, Xalapa, Veracruz, México, in 2000 and
2002, respectively. He is currently the recipient of
a scholarship from the Mexican Consejo Nacional
de Ciencia y Tecnología (CONACyT) to pursue the
Ph.D. degree in computer science at the University
of Birmingham, Birmingham, U.K.

His main research interests are evolutionary
computation, artificial life, emergent behaviors, and

neural networks.

