
Array Signal Processing Algorithms
for Beamforming and Direction Finding

This thesis is submitted in partial fulfilment of the requirements for
Doctor of Philosophy (Ph.D.)

Lei Wang
Communications Research Group

Department of Electronics
University of York

December 2009



ABSTRACT

Array processing is an area of study devoted to processing the signals received from
an antenna array and extracting information of interest. It has played an important role
in widespread applications like radar, sonar, and wireless communications. Numerous
adaptive array processing algorithms have been reported in the literature in the last several
decades. These algorithms, in a general view, exhibit a trade-off between performance and
required computational complexity.

In this thesis, we focus on the development of array processing algorithms in the ap-
plication of beamforming and direction of arrival (DOA) estimation. In the beamformer
design, we employ the constrained minimum variance (CMV) and the constrained con-
stant modulus (CCM) criteria to propose full-rank and reduced-rank adaptive algorithms.
Specifically, for the full-rank algorithms, we present two low-complexity adaptive step
size mechanisms with the CCM criterion for the step size adaptation of the stochastic gra-
dient (SG) algorithms. The convergence and steady-state properties are analysed. Then,
the full-rank constrained conjugate gradient (CG) adaptive filtering algorithms are pro-
posed according to the CMV and CCM criteria. We introduce a CG based weight vector
to incorporate the constraint in the design criteria for solving the system of equations that
arises from each design problem. The proposed algorithms avoid the covariance matrix
inversion and provide a trade-off between the complexity and performance.

In reduced-rank array processing, we present CMV and CCM reduced-rank schemes
based on joint iterative optimization (JIO) of adaptive filters. This scheme consists a
bank of full-rank adaptive filters that forms the transformation matrix, and an adaptive
reduced-rank filter that operates at the output of the bank of filters. The transformation
matrix and the reduced-rank weight vector are jointly optimized according to the CMV or
CCM criteria. For the application of beamforming, we describe the JIO scheme for both
the direct-form processor (DFP) and the generalized sidelobe canceller (GSC) structures.
For each structure, we derive SG and recursive least squares (RLS) type algorithms to
iteratively compute the transformation matrix and the reduced-rank weight vector for the
reduced-rank scheme. An auxiliary vector filtering (AVF) algorithm based on the CCM
design for robust beamforming is presented. The proposed beamformer decomposes the



adaptive filter into a constrained (reference vector filter) and an unconstrained (auxiliary
vector filter) component. The weight vector is iterated by subtracting the scaling auxiliary
vector from the reference vector.

For the DOA estimation, the reduced-rank scheme with the minimum variance (MV)
power spectral evaluation is introduced. A spatial smoothing (SS) technique is employed
in the proposed method to improve the resolution. The proposed DOA estimation algo-
rithms are suitable for large arrays and to deal with direction finding for a small number
of snapshots, a large number of users, and without the exact information of the number of
sources.



CONTENTS

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 DOA Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9



2. Adaptive Step Size CCM SG Algorithms
for Adaptive Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Array Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Adaptive Array Structure . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Antenna Array and Direction of Arrival . . . . . . . . . . . . . . 14

2.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Adaptive SG Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Proposed Adaptive Step Size Mechanisms . . . . . . . . . . . . . . . . . 17

2.5.1 Modified Adaptive Step Size (MASS) . . . . . . . . . . . . . . . 18

2.5.2 Time Averaging Adaptive Step Size (TAASS) . . . . . . . . . . . 18

2.5.3 Computational Complexity . . . . . . . . . . . . . . . . . . . . . 19

2.6 Analysis of the Proposed Algorithms . . . . . . . . . . . . . . . . . . . . 20

2.6.1 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . 21

Sufficient Condition for the Convergence of the Mean Weight Vector 21

Steady-State Step Size Value for MASS . . . . . . . . . . . . . . 22

Steady-State Step Size Value for TAASS . . . . . . . . . . . . . 23

2.6.2 Steady-state Analysis . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6.3 Tracking Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



3. Constrained Adaptive Filtering Algorithms Based on the Conjugate Gradient
Method for Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Proposed Adaptive CG algorithms . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Conjugate Gradient Algorithms . . . . . . . . . . . . . . . . . . 41

3.3.2 Proposed Conventional Conjugate Gradient (CCG) Algorithms . . 42

The CMV-CCG Algorithm . . . . . . . . . . . . . . . . . . . . . 42

The CCM-CCG Algorithm . . . . . . . . . . . . . . . . . . . . . 44

3.3.3 Proposed Modified Conjugate Gradient (MCG) Algorithms . . . . 45

The Proposed CMV-MCG Algorithm . . . . . . . . . . . . . . . 45

The Proposed CCM-MCG Algorithm . . . . . . . . . . . . . . . 48

3.4 Analysis of the Proposed Methods . . . . . . . . . . . . . . . . . . . . . 49

3.4.1 Global Convergence and Properties . . . . . . . . . . . . . . . . 49

3.4.2 Computational Complexity . . . . . . . . . . . . . . . . . . . . . 49

3.4.3 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4. Adaptive Reduced-rank CMV Beamforming
and DOA Algorithms Based on Joint Iterative Optimization of Filters . . . . . . 60

4.1 Introduction for Beamforming . . . . . . . . . . . . . . . . . . . . . . . 60



4.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Proposed Reduced-rank Method . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Adaptive Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 Stochastic Gradient Algorithm . . . . . . . . . . . . . . . . . . . 65

4.4.2 Recursive Least Squares Algorithms . . . . . . . . . . . . . . . . 65

4.4.3 Complexity of Proposed Algorithms . . . . . . . . . . . . . . . . 67

4.4.4 Automatic Rank Selection . . . . . . . . . . . . . . . . . . . . . 67

4.5 Analysis of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5.1 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5.2 MSE Convergence Analysis . . . . . . . . . . . . . . . . . . . . 70

4.6 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6.1 MSE Analysis Performance . . . . . . . . . . . . . . . . . . . . 74

4.6.2 SINR Performance . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.7 Introduction for DOA Estimation . . . . . . . . . . . . . . . . . . . . . . 79

4.8 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.9 The JIO Scheme for DOA Estimation . . . . . . . . . . . . . . . . . . . 81

4.10 Proposed Reduced-Rank Algorithms . . . . . . . . . . . . . . . . . . . . 82

4.11 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.12 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5. Adaptive Reduced-rank CCM Algorithms Based on Joint Iterative Optimization



of Filters and Auxiliary Vector Filtering for Beamforming . . . . . . . . . . . . 88

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Preliminary Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.1 Full-rank Beamformer Design for the DFP . . . . . . . . . . . . 90

5.2.2 Full-rank Beamformer Design for the GSC . . . . . . . . . . . . 91

5.3 Reduced-rank Beamformer Design . . . . . . . . . . . . . . . . . . . . . 92

5.3.1 Beamformer Design for the DFP . . . . . . . . . . . . . . . . . . 93

5.3.2 Beamformer Design for the GSC . . . . . . . . . . . . . . . . . . 93

5.4 Proposed CCM Reduced-rank Scheme . . . . . . . . . . . . . . . . . . . 94

5.4.1 Proposed CCM Reduced-rank Scheme for the DFP . . . . . . . . 94

5.4.2 Proposed CCM Reduced-rank Scheme for the GSC . . . . . . . . 97

5.5 Adaptive Algorithms of the CCM Reduced-rank Scheme . . . . . . . . . 98

5.5.1 Stochastic Gradient Algorithms . . . . . . . . . . . . . . . . . . 99

The SG Algorithm for the DFP . . . . . . . . . . . . . . . . . . . 99

The SG Algorithm for the GSC . . . . . . . . . . . . . . . . . . 100

5.5.2 Recursive Least Squares Algorithms . . . . . . . . . . . . . . . . 100

The RLS Algorithm for the DFP . . . . . . . . . . . . . . . . . . 101

The RLS Algorithm for the GSC . . . . . . . . . . . . . . . . . . 102

5.5.3 Gram-Schmidt Technique for Problem 2 . . . . . . . . . . . . . . 105

5.5.4 Automatic Rank Selection . . . . . . . . . . . . . . . . . . . . . 105



5.6 Analysis of the Proposed Algorithms . . . . . . . . . . . . . . . . . . . . 106

5.6.1 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . 107

5.6.2 Analysis of the Optimization Problem . . . . . . . . . . . . . . . 110

5.7 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.8 Proposed CCM-AVF Algorithm . . . . . . . . . . . . . . . . . . . . . . 119

5.8.1 Proposed CCM-AVF Scheme . . . . . . . . . . . . . . . . . . . 119

5.8.2 Proposed CCM-AVF Algorithm . . . . . . . . . . . . . . . . . . 119

5.8.3 Interpretations about Proposed CCM-AVF Algorithm . . . . . . . 122

5.9 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6. Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.1 Summary of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Appendix 130

A. Derivation of (2.28) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

B. Convexity Condition for the CCM Criterion . . . . . . . . . . . . . . . . . . . 132

C. Preservation of MV and Existence of Multiple Solutions . . . . . . . . . . . . 134

D. Analysis of the Optimization of the JIO CMV Scheme . . . . . . . . . . . . . 135



E. Derivation of Transformation Matrix . . . . . . . . . . . . . . . . . . . . . . 138

F. Derivation of (5.31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141



Acknowledgements

I would like to express my most sincere gratitude to my supervisor, Dr. Rodrigo C.
de Lamare, for his help, valuable supervision and useful advice for my research, without
which much of this work would not have been possible.

Further thanks go to all members of the Communications Research Group, for their
help and support throughout my first year of research.

Finally, my deep gratitude goes to my parents and my wife for their unconditional
support, end-less love and encouragement.

L. Wang, Ph.D. Thesis, Department of Electronics, University of York
viii

2009



Declaration

Some of the research presented in this thesis has resulted in some publications. These
publications are listed at the end of Chapter 1.

All work presented in this thesis as original is so, to the best knowledge of the author.
References and acknowledgements to other researchers have been given as appropriate.

L. Wang, Ph.D. Thesis, Department of Electronics, University of York
ix

2009



Glossary

AP Alternating Projection
ASS Adaptive Step Size
AVF Auxiliary Vector Filtering
BER Bit Error Rate
BPSK Binary Phase Shift Keying
CCG Conventional Conjugate Gradient
CCM Constrained Constant Modulus
CG Conjugate Gradient
CM Constant Modulus
CMV Constrained Minimum Variance
CRB Cramér-Rao bound
CS Cross-Spectral
DFP Director Form Processor
DOA Direction of Arrival
EMSE Excess Mean Square Error
ESPRIT Estimation of Signal Parameters via Rotational Invariance Technique
FIR Finite Impulse Response
FR Full-Rank
FSS Fixed Step Size
GS Gram-Schmidt
GSC Generalized Sildelobe Canceller
JIO Joint Iterative Optimization
LS Least Squares
MAI Multiple Access Interference
MASS Modified Adaptive Step Size
MCG Modified Conjugate Gradient
ML Maximum Likelihood
MMSE Minimum Mean Square Error
MSWF Multistage Wiener Filter
MUSIC MUltiple SIgnal Classification
MV Minimum Variance
PC Principle Component
RGS Recursive Gram-Schmidt
RLS Recursive Least Squares
RMSE Root Mean Square Error
RR Reduced-Rank
SDMA Space Division Multiple Access

L. Wang, Ph.D. Thesis, Department of Electronics, University of York
x

2009



SG Stochastic Gradient
SINR Signal-plus-Interference-to-Noise Ratio
SNR Signal-to-Noise Ratio
SOI Signal of Interest
SS Spatial Smoothing
SVD Singular Value Decomposition
TAASS Time Averaging Adaptive Step Size
ULA Uniform Linear Array



List of Symbols

∇ Gradient
O(·) Complexity
E[·] Expectation
∞ Infinity
R(·) Real part
C(·) Imaginary part
Π Product∑

Sum
‖ · ‖ Euclidean norm
| · | Absolute
trace(·) Trace of a matrix
I Identity matrix
span(·) Span a space
Tk Chebyshev polynomial of degree k

proj(·) Projection operator
Cm×q space of complex valued matrices of size m by q

Rm×q space of real valued matrices of size m by q

L. Wang, Ph.D. Thesis, Department of Electronics, University of York
xii

2009



LIST OF FIGURES

2.1 An adaptive array structure. . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 A linear equally spaced array oriented along the axis receives a plane
wave from direction (θ, φ). . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Adaptive ULA structure. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Simulation result for Case A, Expt. 1: Curves for BER versus input SNR
for various adaptive algorithms. . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Simulation result for Case A, Expt. 2: Curves for BER versus the number
of snapshots for (a) ideal steering vector condition and (b) steering vector
with mismatch= 1o. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Simulation results for Case B, Expt.3: Curves for EMSE versus the num-
ber of snapshots for (a) MASS and (b) TAASS. . . . . . . . . . . . . . . 34

2.7 Simulation results for Case B, Expt.4: Curves for EMSE versus the num-
ber of snapshots for (a) MASS and (b) TAASS. . . . . . . . . . . . . . . 34

2.8 Simulation result for Case B, Expt. 5: Curves for EMSE versus input
SNR for proposed adaptive algorithms. . . . . . . . . . . . . . . . . . . . 35

2.9 Simulation result for Case B, Expt. 6: Curves for EMSE versus input
SNR for proposed adaptive algorithms. . . . . . . . . . . . . . . . . . . . 36

2.10 Simulation results for Case C, Expt. 7: Curves for output SINR versus
the number of snapshots for various adaptive algorithms. . . . . . . . . . 37

2.11 Simulation result for Case C, Expt. 7: Curves for step size values versus
the number of snapshots for proposed adaptive algorithms. . . . . . . . . 38



3.1 Output SINR versus the number of snapshots with q = 4 users and m =

10 sensor elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Output SINR versus input SNR for the proposed algorithms with q = 6

users and m = 16 sensor elements. . . . . . . . . . . . . . . . . . . . . . 55

3.3 Output SINR versus the number of users (q) for the proposed algorithms
with m = 16 sensor elements. . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Array beampattern versus degree for the proposed algorithms with m =

16 sensor elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Output SINR versus the number of snapshots for (a) ideal steering vector
condition. (b) steering vector with mismatch. . . . . . . . . . . . . . . . 57

3.6 Output SINR versus the number of snapshots in a scenario where addi-
tional interferers suddenly enter and/or leave the system. . . . . . . . . . 58

3.7 Step size values α and β of the proposed CCM-MCG algorithm in a sce-
nario where additional interferers suddenly enter and/or leave the system. 59

4.1 The JIO reduced-rank structure. . . . . . . . . . . . . . . . . . . . . . . 63

4.2 MSE analytical versus simulated performance for the proposed reduced-
rank SG algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 SINR performance of CMV algorithms against rank (r) with m = 32,
SNR=15dB, N = 250 snapshots. . . . . . . . . . . . . . . . . . . . . . . 76

4.4 SINR performance of CMV algorithms against snapshots) with m = 32,
SNR=15dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 SINR performance of CMV (a) SG and (b) RLS algorithms against snap-
shots with m = 24, SNR= 12dB with automatic rank selection. . . . . . . 78

4.6 SINR performance of CMV algorithms against snapshots with m = 24,
SNR= 12dB in a non-stationary scenario. . . . . . . . . . . . . . . . . . 78

4.7 Probability of resolution versus input SNR. . . . . . . . . . . . . . . . . 86



4.8 Probability of resolution versus input SNR. . . . . . . . . . . . . . . . . 86

4.9 RMSE versus input SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1 (a) The full-rank DFP and (b) the full-rank GSC structures. . . . . . . . . 90

5.2 (a) The reduced-rank DFP and (b) the reduced-rank GSC structures. . . . 92

5.3 Proposed reduced-rank scheme for (a) the DFP and (b) the GSC structures. 95

5.4 Complexity in terms of arithmetic operations versus the length of the filter
m for the DFP structure. . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5 Complexity in terms of arithmetic operations versus the length of the filter
m for the GSC structure. . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.6 Output SINR versus input SNR with m = 32, q = 5, SNR= 10 dB, (a)
µTr = 0.002, µw̄ = 0.001, r = 5 for SG, µTr = 0.003, µw̄ = 0.0007,
r = 5 for GS; (b) α = 0.998, δ = δ̄ = 0.03, r = 5 for RLS, α = 0.998,
δ = δ̄ = 0.028, r = 5 for RGS of the proposed CCM reduced-rank scheme.114

5.7 Output SINR versus the number of snapshots with m = 32, q = 7, SNR=

10 dB, µTr = 0.003, µw̄ = 0.003, r = 5 for SG, µTr = 0.0023, µw̄ =

0.003, r = 5 for GS, α = 0.998, δ = δ̄ = 0.025, r = 5 for RLS,
α = 0.998, δ = δ̄ = 0.02, r = 5 for RGS of the DFP structure. . . . . . . 115

5.8 Output SINR versus input SNR with m = 32, q = 7, SNR= 10 dB,
µTr = 0.0025, µw̄gsc = 0.002, r = 5 for SG, µTr = 0.003, µw̄gsc = 0.003,
r = 5 for GS, α = 0.998, δ = δ̄ = 0.01, r = 5 for RLS, α = 0.998,
δ = δ̄ = 0.0093, r = 5 for RGS of the GSC structure. . . . . . . . . . . . 116

5.9 Output SINR versus rank r with m = 32, q = 7, SNR= 10 dB. . . . . . . 117

5.10 Output SINR versus the number of snapshots with m = 32, q = 10,
SNR= 10 dB, (a) µTr = 0.003, µw̄ = 0.004 for SG, µTr = 0.003, µw̄ =

0.001 for GS; (b) α = 0.998, δ = δ̄ = 0.03 for RLS, α = 0.998, δ = δ̄ =

0.026, r = 5 for RGS with the automatic rank selection technique. . . . . 117



5.11 Output SINR versus input SNR with m = 32, q1 = 8, q2 = 11, SNR= 10

dB, µTr = 0.003, µw̄ = 0.0038, r = 5 for SG, µTr = 0.003, µw̄ = 0.001,
r = 5 for GS, α = 0.998, δ = δ̄ = 0.033, r = 5 for RLS, α = 0.998,
δ = δ̄ = 0.028, r = 5 for RGS of the proposed CCM reduced-rank scheme.118

5.12 Output SINR versus the number of snapshots for (a) ideal steering vector;
(b) steering vector mismatch 1o. . . . . . . . . . . . . . . . . . . . . . . 124

5.13 Output SINR versus the number of iterations. . . . . . . . . . . . . . . . 125



LIST OF TABLES

2.1 Simulation parameters for Case A and Case C . . . . . . . . . . . . . . . 31

2.2 Simulation parameters for Case B . . . . . . . . . . . . . . . . . . . . . 31

3.1 The CMV-CCG algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 The CCM-CCG algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 The CMV-MCG algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 The CCM-MCG algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Comparison of the computational complexity . . . . . . . . . . . . . . . 49

4.1 Proposed JIO-RLS algorithm . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1 The JIO-CCM-SG algorithm for DFP . . . . . . . . . . . . . . . . . . . 100

5.2 The JIO-CCM-SG algorithm for GSC . . . . . . . . . . . . . . . . . . . 101

5.3 The JIO-CCM-RLS algorithm for DFP . . . . . . . . . . . . . . . . . . . 103

5.4 The JIO-CCM-RLS algorithm for GSC . . . . . . . . . . . . . . . . . . 104

5.5 Computational complexity of algorithms for DFP . . . . . . . . . . . . . 108

5.6 Computational complexity of algorithms for GSC . . . . . . . . . . . . . 108

5.7 Proposed CCM-AVF algorithm. . . . . . . . . . . . . . . . . . . . . . . 122



1. INTRODUCTION

Contents
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Overview

Array processing is an area of signal processing that has powerful tools for extracting
information from signals collected using an array of sensors. The information of interest
in the signal corresponds to either the content of the signal itself as often found in commu-
nications or the location of the source or reflection that produces the signal in radar and
sonar systems [1]. These signals propagate spatially through a medium and the wavefront
is captured by the sensor array. The sensor array data is processed to extract useful infor-
mation. Some statistical and adaptive signal processing techniques, including parameter
estimation and adaptive filtering (most related topics in the thesis), are extended to sensor
array applications.

Array processing finds numerous applications in wireless communications [2,3], radar
[4], and sonar [5], and is a promising topic for emerging technologies such as wireless
sensor networks [6]. Other applications include seismology, biomedicine, and imaging
[7].
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1.2 Prior Work

Amongst the most interesting topics of array processing techniques are beamforming
and the estimation of the direction of arrival (DOA) of signals, which are widely used
in areas that include radar, sonar, acoustics, astronomy, seismology, and communica-
tions [8, 9]. Here, we focus on their developments in communications, more specifically,
wireless communications, for attenuating interference, improving estimation accuracy,
and locating the positions of the sources. To simplify the discussion, we concentrate on
uniform linear array (ULA), which composes of a number of identical elements arranged
in a single line with uniform spacing. The extension of this material to other array con-
figurations is fairly straightforward in most cases [1] and will be considered as a topic for
future investigation.

1.2.1 Beamforming

Generally, an array captures spatially propagating signals arriving from a certain di-
rection and processes them to obtain useful information. To this end, we intend to linearly
combine the signals from all the sensors with coefficients in a manner, so as to estimate
transmitted data radiating from a specific direction. This operation is known as beam-
forming [10, 11] since the weighting process emphasizes signals from a particular direc-
tion while attenuating those from other directions, which can be regarded as casting or
forming a beam. In beamforming, an array processor steers a beam to a certain direction
by computing a properly weighted sum of the individual sensor signals just as an finite
impulse response (FIR) filter generates an output (at a frequency of interest) that is the
weighted sum of time samples. It is convenient to view a beamformer as a frequency-
selective filter. Thus, for the beamformer design, filtering techniques can be extended to
sensor array applications [12].

According to weighting values are fixed or not, beamformers can be divided into con-
ventional beamformers and adaptive beamformers [12]. Conventional beamformers em-
ploy a fixed set of weightings and time-delays to combine the signals from the sensors
in the array, primarily using only information about the location of the signal of interest
(SOI) relative to the sensor array. However, an array must contend with undesired signals
arriving from other directions, which may prevent it from successfully extracting the SOI
for which is was designed. Under this condition, the array needs to adjust its response of
the received signals for rejecting unwanted signals from other directions. The resulting
array is an adaptive array and the corresponding adaptive beamformer updates the weight-
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ings by optimizing a certain criterion of performance (subject to various constraints). The
adaptive beamformers have better resolution and interference rejection capability than the
conventional one [13]. Much effort has been devoted over the past decades to devise
adaptive beamformers [14]- [17].

The weighting values in adaptive beamforming are calculated according to optimiza-
tion of certain criteria [8]. The most promising criteria employed are the constrained
minimum variance (CMV) [14] and the constrained constant modulus (CCM) [8] due to
their simplicity and effectiveness. The CMV criterion determines the weights by mini-
mizing the beamformer output power, subject to the constraint that the response should be
unity in the direction of the SOI. The CCM criterion is a positive measure of the deviation
of the beamformer output from a constant modulus value subject to a constraint on the
array response of the SOI. The CCM beamformer minimizes the square modulus of the
deviation while retaining the gain along the look direction to be constant.

Numerous adaptive filtering algorithms have been employed in beamforming to real-
ize the beamformer design [14]- [18]. Among existing algorithms, the stochastic gradient
(SG) is a low-complexity algorithm that employs instantaneous gradient values for itera-
tively computing weighting values. Its performance is acceptable in many applications.
However, its convergence and steady-state behavior depend on the step size and eigen-
value spread of the input covariance matrix. When the eigenvalues are widely spread
or/and inappropriate step size values are selected, convergence may be slow and other
adaptive algorithms with better convergence characteristics should be considered, e.g.,
the recursive least squares (RLS) [18]. The RLS algorithm has fast convergence and is
independent of the eigenvalue spread of the covariance matrix for stationary inputs. The
key problems of this algorithm are high complexity and numerical instability. An alter-
native method is the CG [19]. It generates iteration (weight) vectors to approximate the
optimum, residual vectors corresponding to the iterates, and direction vectors used for
updating the iterates and residuals. The algorithm obtains the solution in several itera-
tions. The CG algorithm represents a tradeoff between SG and RLS since it has a faster
convergence rate than SG and usually requires lower computational cost when compared
with RLS [20].

The adaptive algorithms reviewed above belong to a class that can be called full-rank
array processing algorithms. Another class of algorithms that are attracting significant in-
terest is that of reduced-rank algorithms [21]- [25]. For the application of beamforming,
reduced-rank schemes project the data received from the sensor array onto a lower dimen-
sional subspace, and calculate the reduced-rank weight vector by minimizing a certain cri-
terion (subject to various constraints) within this subspace for estimating the transmitted
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signals. The conventional reduced-rank algorithms include the principle component (PC)
and cross-spectral (CS) methods [21]- [24] that rely on an estimate of the signal subspace
achieved by the eigen-decomposition of the input data covariance matrix. One of the well-
known reduced-rank schemes is the multistage Wiener filter (MSWF) [24, 25]. The pro-
cess observed by the Wiener filter is first decomposed by a sequence of orthogonal block-
ing matrices forming an analysis filterbank, whose output is shown to be a process which
is characterized by a tridiagonal covariance matrix. The corresponding error-synthesis
filterbank is realized by means of a nested chain of scalar Wiener filters. These Wiener
filters can be interpreted as well to be a Gram-Schmidt (GS) orthogonalization which re-
sults in an error sequence for the successive stages of the decomposed Wiener filter. The
MSWF was derived based on the minimum mean squared error (MMSE) criterion [26],
and its extensions that utilize the CMV and CCM criteria were reported in [27, 28]. An-
other technique that resembles the MSWF is the auxiliary-vector filtering (AVF) [29,30],
which utilizes an iterative procedure to compute the weighting values. Its extension to
adaptive filtering has been studied in [31].

1.2.2 DOA Estimation

Another important use of array processing techniques is for DOA estimation, that is,
given a spatially propagating signal, the determination of its angle of arrival at the array.
For the beamformer design, the assumption taken was that the angle of the desired signal
relative to the antenna array was known exactly by the beamformer. Commonly, this in-
formation is employed in the constraint to make the beamformer steer in this direction. In
practice, the actual angle from which the signal arrives is not precisely known. The pur-
pose of the DOA estimation is to determine this angle. There are many DOA estimation
algorithms found in the literature, and some of them are described in [1,9,32]. Three main
kinds of algorithms are reviewed here, namely, conventional [9,33], subspace-based [34]-
[37], and maximum likelihood (ML) [38] methods.

The conventional DOA estimation algorithms steer beams in all possible directions
and look for peaks in the output power. The implementation is reasonably simple but al-
ways requires a large number of sensor elements to achieve high resolution. The Capon’s
method [33] is one of the conventional algorithms. It minimizes the output power of the
undesired interference while maintaining a constant gain along the look direction accord-
ing to the minimum variance (MV) criterion subject to a constraint on the array response.
By computing and plotting the Capon’s spectrum over the possible directions, the DOAs
can be estimated by finding the peaks. The estimation accuracy of the Capon’s method
depends on the number of snapshots and the array size.

L. Wang, Ph.D. Thesis, Department of Electronics, University of York 2009
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Compared with the Capon’s algorithm, the subspace-based methods [34, 35] achieve
better resolution by exploiting the signal subspace of the input covariance matrix. The
well-known methods include the multiple signal classification (MUSIC) [34], the estima-
tion of signal parameters via rotational invariance technique (ESPRIT) [35] reported in
the 1980s, the auxiliary vector (AV) [36], and the conjugate gradient (CG) [37] algorithms
proposed more recently. MUSIC and ESPRIT algorithms consider the eigen-structure of
the input covariance matrix to decompose the observation space into a signal subspace and
a corresponding orthogonal noise subspace. MUSIC scans the possible angle directions,
plots the power spectrum by making use of this orthogonality, and locates the peaks that
correspond to the angles of sources. ESPRIT could reduce the computational requirement
without an exhaustive search through all possible directions and achieve a better resolu-
tion. It derives its advantages by requiring that the sensor array has a structure that can
be decomposed into two equal-sized identical subarrays with the corresponding elements
of the two subarrays displaced from each other by a fixed distance. Both MUSIC and
ESPRIT suffer from correlated sources. The AV method is developed based on the or-
thogonality of an extended non-eigenvector signal subspace with the true signal subspace
and the scanning vector itself. As the scanning vector drops in the signal subspace, the
DOAs are determined by finding the collapse in the extended signal subspace. The CG
method can be considered as an extended version of the AV method since it applies the
residual vectors of the CG algorithm in place of the AV basis. The AV and CG algorithms
exhibit high resolution of uncorrelated and correlated sources with a small number of
snapshots and at low signal-to-noise ratio (SNR).

The performance of the ML method [9] is superior to the Capon’s and subspace-based
methods, especially in low SNR conditions or with a small number of snapshots. It per-
forms well in correlated signal conditions. An attractive approach to simplify the compu-
tational complexity is based on an iterative technique referred to as “alternating projec-
tion” (AP) [38], that transforms the multivariate nonlinear maximization problem into a
sequence of much simpler one-dimensional maximization problems.

1.3 Contributions

In this thesis, I focus on the development of the array processing algorithms for the
applications of beamforming and DOA estimation. Note that the applications here assume
a scenario with an antenna array at the receiver that is usually found in uplink channels in
wireless communications.

L. Wang, Ph.D. Thesis, Department of Electronics, University of York 2009
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In this thesis, we introduce a low-complexity beamformer design based on the SG al-
gorithm that is equipped with variable step size mechanisms. We employ two adaptive
step size mechanisms to adapt the beamformer weight vector for the estimation of the
transmitted data. The beamformer design is based on the CCM criterion. The character-
istics of the proposed adaptive step size SG algorithms are investigated. Another kind of
novel algorithms is derived based on the CG technique. The proposed CG-based algo-
rithms enforce the constraint of the CMV and CCM criteria in the system of equations
without the matrix inversion and exhibit fast convergence with low-complexity.

We often have to deal with requirements that imply large arrays. However, most full-
rank array processing algorithms require a large amount of samples to reach the steady-
state when the number of elements in the filter is large. In dynamic scenarios, filters with
many elements usually fail or provide poor performance in tracking signals embedded in
interference and noise. Reduced-rank techniques were originally motivated to provide a
way out of this dilemma. We introduce reduced-rank schemes based on joint iterative
optimization (JIO) of filters with the CMV and CCM criteria and compare them with
existing reduced-rank methods to show their improved performance in the studied scenar-
ios. Besides, we present a CCM-based AVF algorithm for robust adaptive beamforming.
Note that the adaptive beamforming algorithms described here are DOA-based and con-
strained, which means that the DOA of the SOI is known beforehand by the receiver and
the constraint in the design criterion is related to the corresponding array response.

For the DOA estimation, we present a new reduced-rank algorithm based on the MV
power spectral evaluation. It is suitable for DOA estimation with large arrays and can be
applied to arbitrary array geometries. This algorithm is efficient for problems of direction
finding with a large number of sources, and/or without exact information of the number
of sources, and does not require the singular value decomposition (SVD).

Specifically, the contributions of this thesis are as follows:

• Two low-complexity SG algorithms with adaptive step size mechanisms are
proposed. The algorithms employ the CCM criterion for the beamformer design.
A complexity comparison is provided to show their advantages over existing
methods. The condition on the step size for the convergence of the mean weight
vector is established. The mean and mean-squared values of the step size, in the
steady-state condition, are calculated for computation of the excess mean squared
error (EMSE) and tracking analysis. The EMSE here considers the effects of
additive noise and multiple access interference (MAI) when multiple users are
introduced in the system. The energy conservation relation developed in [40]
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is exploited in the analysis to simplify the derivation of the recursion for the
weight error energy. Simulation experiments are carried out for the stationary
and non-stationary scenarios, highlighting the improved performance achieved by
the proposed mechanisms in comparison with the fixed step size (FSS) [18] and
adaptive step size (ASS) [42, 47] ones.

• Constrained CG adaptive filtering algorithms are proposed for beamforming and
provide an attractive tradeoff between the complexity and the performance. The
proposed algorithms are derived according to the CMV and CCM criteria. A CG-
based weight vector strategy is created for enforcing the constraint and computing
the weight expressions. The devised algorithms avoid the matrix inversion and
exhibit fast convergence with low complexity. The complexity and the convexity
properties of the CCM algorithms are studied, and the convergence analysis of the
CG-based weight vector is derived.

• A robust reduced-rank scheme based on joint iterative optimization (JIO) of
adaptive filters is presented for the beamformer design. This scheme is designed
according to the MV criterion subject to the constraint on the array response of the
SOI. It consists of a bank of full-rank adaptive filters that forms the transformation
matrix, and an adaptive reduced-rank filter that operates at the output of the bank of
filters to estimate the desired signal. The proposed reduced-rank scheme provides
an iterative exchange of information between the transformation matrix and the
reduced-rank weight vector. We derive SG and RLS type algorithms to compute
the transformation matrix and the reduced-rank weight vector. An automatic rank
selection technique according to the MV criterion is developed to determine the
most adequate rank of the proposed methods. An analysis of the stability and the
convergence properties is presented and semi-analytical expressions are given for
predicting their performance.

• The JIO reduced-rank scheme is applied to the DOA estimation based on the MV
power spectral evaluation. It is specific for the large arrays’ condition and can be
extended to arbitrary array geometries. We present a constrained RLS algorithm to
compute the transformation matrix and the reduced-rank weight vector for calculat-
ing the output power of each scanning angle. A spatial smoothing (SS) technique
is employed in the LS based method to improve the probability of resolution with
highly correlated sources.The proposed algorithms exhibit high resolution for deal-
ing with direction finding with a large number of users and/or without the exact
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information of the number of sources. Simulation are conducted to show their per-
formance in different scenarios.

• Considering the fact that the CCM-based beamformer achieves better output
performance than the CMV-based one for constant modulus constellations, we
present a CCM-based JIO reduced-rank scheme. The transformation matrix
and the reduced-rank weight vector are jointly optimized according to the CM
criterion subject to different constraints. We describe the proposed scheme for
both the direct-form processor (DFP) and the generalized sidelobe canceller
(GSC) structures. For each structure, we derive the SG and RLS algorithms. The
Gram-Schmidt (GS) technique is applied to reformulate the transformation matrix
and improve performance. An automatic rank selection technique is developed
according to the CM criterion. The complexity and convexity analyses of the
proposed methods are carried out.

• An auxiliary vector filtering algorithm with the CCM criterion is introduced for
beamforming. This algorithm utilizes an iterative way to compute the weight
vector for estimating the transmitted signal. It provides an efficient way to deal
with filters with a large number of elements and shows superior performance under
severe scenarios, e.g., steering vector mismatch.

1.4 Thesis Outline

The structure of the thesis is as follows:

• In Chapter 2, a system model and design criteria are introduced for beamforming
and DOA estimation. Several assumptions are given to facilitate the system model
for the development of the proposed algorithms. Based on this system model,
low-complexity adaptive step size mechanisms are introduced for the update of
the step size in the SG algorithm. The beamformer design according to the CCM
criterion is detailed in this chapter. Characteristics of the proposed algorithms are
given and analytical expressions are developed to predict their performance.

• In Chapter 3, the conventional CG algorithm is reviewed. We develop modified
versions of the CG algorithm for beamforming according to the CMV and CCM
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criteria. The convergence properties are analyzed.

• In Chapter 4, a reduced-rank scheme based on joint iterative optimization of filters
with the CMV criterion is proposed for beamforming. The SG and RLS type
algorithms are described. The properties of the proposed methods are analyzed.
Besides, a DOA estimation algorithm based on the proposed reduced-rank scheme
is developed. An SS technique is employed to increase the probability of resolution.

• In Chapter 5, a CCM-based reduced-rank scheme is introduced. Two structures are
investigated for the realization of the reduced-rank scheme. The GS and automatic
rank selection techniques are combined in the proposed method for further
enhancing the performance. A CCM-based auxiliary vector filtering algorithm is
described. It provides an iterative way to compute the weight vector and exhibits a
good performance in the studied scenarios.

• In Chapter 6, conclusions and a discussion on possibilities for the future work are
presented.

1.5 Notation

In this thesis, small and capital boldface letters are used to denotes vectors and ma-
trices, e.g., x and R, respectively. Elements of the vector and matrix are denoted as xj

and Rk,l. With no specific explanation, all vectors are column vectors. The symbol I

denotes the identity matrix of appropriate dimensions, and the boldface 0 denotes either
a zero vector or a zero matrix. The notation ‖x‖ denotes the Euclidean norm of a vector.
The variable i is used as a time index, e.g., x(i) is the vector x at time instant i. R(·)
and J(·) denote the real and imaginary components of a complex number, respectively.
The symbol ∗ denotes complex conjugate (for scalars), (·)T denotes transpose, and (·)H

Hermitian transpose. The symbol E[·] denotes the statistical expectation operator.

1.6 List of Publications

Some of the research presented in this thesis has been published, submitted, or will be
submitted for publication at the time of submission of this thesis.
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2.1 Introduction

We categorize this chapter into two parts. The first part presents a system model of
the antenna array at the receiver. We will see that the system structures applied to beam-
former design and DOA estimation are similar. The main difference is that, for adaptive
beamforming, weighting values are adapted with the received data.

Based on the system model, we introduce the adaptive algorithms for beamforming in
the second part. Adaptive beamforming is employed widely in communication systems,
such as spatial-division multiple access (SDMA) systems [11, 44]. Numerous array pro-
cessing algorithms haven been developed for the beamformer design [8, 45, 46]. The SG
is a low-complexity method for iteratively computing the weight vector to generate the
beamformer output. Its performance is sensitive to the step size, which has to be adjusted
to make a compromise between fast convergence and small misadjustment. Adaptive step
size (ASS) mechanisms [42], [47] were employed to circumvent these problems. How-
ever, they cannot yield both fast tracking as well as small misadjustment with simple
implementation.
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We propose two low-complexity adaptive step size mechanisms for use with SG al-
gorithms designed according to the CCM criterion. The origin of these mechanisms can
be traced back to the works [48] and [49], where the algorithms were proposed with the
MMSE criterion. The algorithms according to the CMV criterion were reported in [50].
We extend these mechanisms to the CCM criterion in consideration of its superior perfor-
mance over the CMV for constant modulus constellations.

The rest of this chapter is organized as follows: the array structure is introduced in
Section 2.2, and the system model is described in Section 2.3. The adaptive SG algorithm
based on the CCM beamformer design is introduced in Section 2.4. Section 2.5 presents
the developed mechanisms for the SG method. Section 2.6 is dedicated to the conver-
gence, steady-state and tracking analyses of the proposed algorithms. Simulation results
are provided and discussed in Section 2.7, and conclusions are drawn in Section 2.8.

2.2 Array Structure

2.2.1 Adaptive Array Structure

Adaptive array is an efficient antenna structure to realize beamforming, as shown in
Fig. 2.1. This is an uniform linear array (ULA) that consists of m sensor elements.
The sample received at each element is xj , where j = 1, . . . , m, and the corresponding
weighting value is wj . The array processor processes the received samples to generate
the output that is an estimate of the transmitted desired signal. The output signal passes
through a feedback structure to get a reference signal, which is sent back to the adaptive
processor for the weights’ update. The weight adaptation is performed by optimizing a
cost function, which is also followed by the generation of the reference signal. Com-
monly, this reference is a deviation between the estimated desired signal and an assistant
information, e.g., a constant modulus condition in CM criterion. It is important to let
the adaptive array processing algorithm control the weights following the change of the
received data and maximize the quality of the estimated desired signal. In working with
antenna array, it is very convenient to make use of vector notation, i.e., x = [x1, . . . , xm]T

and w = [w1, . . . , wm]T denote the received data vector and weight vector, respectively.
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Fig. 2.1: An adaptive array structure.

2.2.2 Antenna Array and Direction of Arrival

The direction of arrival (DOA) of the source signal of the antenna array can be deter-
mined by two angles, horizontal and azimuthal, which is illustrated in Fig.2.2. It is clear
that the direction of the incident wave can be located by the horizonal angle θ and the
azimuthal angle φ together. Thus, the DOA is a function related to them, i.e., f(θ, φ). For
simplicity, unless otherwise noted, it is assumed that the incident wave arrives at the array
in the horizontal plane, φ = π/2, so that the azimuthal direction θ completely specifies
the DOA.

2.3 System Model

In Fig. 2.3, we describe a generic system model applied to beamforming and the DOA
estimation. It is essential to make two assumptions [9]:

• The propagating signals are assumed to be produced by point sources; that is, the
size of the source is small with respect to the distance between the source and the
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Fig. 2.2: A linear equally spaced array oriented along the axis receives a plane wave from direc-
tion (θ, φ).

array at the receiver end.

• The sources are assumed to be in the far field, so that the spherically propagating
wave can be reasonably approximated with a plane wave.

Now, let us suppose that q narrowband signals impinge on a ULA of m(m ≥ q) sensor
elements. The DOAs of the sources are θ0, . . . , θq−1. The received vector x(i) ∈ Cm×1 at
the ith snapshot (time instant) can be modeled as

x(i) = A(θ)s(i) + n(i), i = 1, . . . , N, (2.1)

where θ = [θ0, . . . , θq−1]
T ∈ Rq×1 contains the DOAs of the sources, A(θ) =

[a(θ0), . . . , a(θq−1)] ∈ Cm×q comprises the steering vectors a(θk) = [1, e−2πj ι
λc

cosθk , . . .,
e−2πj(m−1) ι

λc
cosθk ]T ∈ Cm×1, (k = 0, . . . , q − 1), where λc is the wavelength and ι

(ι = λc/2 in general) is the inter-element distance of the ULA. In order to avoid math-
ematical ambiguities, the steering vectors a(θk) are assumed to be linearly independent,
s(i) ∈ Cq×1 contains the source data, n(i) ∈ Cm×1 is temporally and spatially white
sensor noise, which is assumed to be a zero-mean and Gaussian process, and N is the
observation size given in snapshots.

The output is given by
y(i) = wH(i)x(i), (2.2)
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Fig. 2.3: Adaptive ULA structure.

where w(i) = [w1(i), . . . , wm(i)]T ∈ Cm×1 is the complex weight vector.

The feedback structure is controlled by the adaptive array processing algorithm derived
according to the design criterion. It updates the weight vector to generate the output y(i).
For adaptive beamforming, this part is responsible for rapidly decreasing the deviation of
the beamformer output from the desired signal and improving the accuracy of estimation.

Considering the importance of the design criteria in the development of the array pro-
cessing algorithms, we interpret the CMV and CCM criteria for convenience of the pre-
sentation of the current and following chapters. The CMV criterion updates w(i) by
solving the following optimization problem [32]:

min Jmv(w(i)) = w(i)HRw(i), subject to wH(i)a(θ0) = γ, (2.3)

where R = E[x(i)xH(i)] ∈ Cm×m is the input covariance matrix, γ is a constant value,
and a(θ0) is the steering vector (array response) of the SOI, which can be obtained by
employing DOA estimation algorithms.

The CCM criterion determines w(i) by solving the following optimization problem:

min Jcm(w(i)) = E
[
(|y(i)|p − ν)2

]
, subject to wH(i)a(θ0) = γ, (2.4)
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where ν is suitably chosen to guarantee that the weight solution is close to the global
minimum and γ is set to ensure the convexity of (2.4) [28]. In general, p = 2 [8] is
selected to consider the cost function as the expected deviation of the squared modulus
of the beamformer output to a constant, say ν = 1. This deviation provides information
for the parameter estimation in the beamformer design. The beamformer minimizes the
contribution of interference and noise while maintaining the gain along the look direction
to be constant.

2.4 Adaptive SG Algorithm

Considering the system model and the CCM design criterion introduced in Section 2.3,
the constraint in (2.4) can be incorporated by the method of Lagrange multipliers [18] in
the form

JCCM
(
w(i)

)
= E[(|y(i)|2 − 1)2] + 2 R

{
λ[wH(i)a(θ0)− 1]

}
, (2.5)

where λ is a scalar Lagrange multiplier and γ = 1. The solution can be obtained by taking
the instantaneous gradient of (2.5) of w∗(i), setting it equal to a null vector, and using the
constraint. Thus, the weight update of the adaptive SG algorithm is given by

w(i + 1) = w(i)− µ(i)∇w(i), (2.6)

where ∇w(i) = e(i)y∗(i)[I − a(θ0)a
H(θ0)]x(i), and e(i) = |y(i)|2 − 1. The coefficient

µ(i) is the step size, which is constant for the fixed step size (FSS) [52] and a variable
value for the ASS. Note that e(i) depends on y(i), which is a function of current weight
vector w(i). The solution is obtained by initializing w(i) and estimating a priori y(i)

to start the iteration. For the FSS algorithm, µ is predetermined to make a compromise
between fast convergence rate and small misadjustment. Its performance deteriorates in
time-varying channels. The ASS methods cannot achieve both fast tracking and small
misadjustment, and their complexity is proportional to the number of sensor elements m,
which makes a high additional computational load for large arrays.

2.5 Proposed Adaptive Step Size Mechanisms

In this section, two adaptive step size mechanisms according to the CCM criterion
are introduced for adjusting the step size. The developed SG algorithms can effectively

L. Wang, Ph.D. Thesis, Department of Electronics, University of York 2009



18

adjust step size values with low-complexity while maintaining fast tracking as well as
small misadjustment.

2.5.1 Modified Adaptive Step Size (MASS)

Motivated by the algorithm proposed in [48], the first developed algorithm adjusts the
step size that is controlled by the square of the prediction error, i.e.,

µ(i + 1) = αµ(i) + τe2(i), (2.7)

where e(i) = |y(i)|2 − 1, 0 < α < 1, and τ > 0 is an independent variable for con-
trolling the prediction error. The rationale for this modified adaptive step size (MASS) is
that a large prediction error will increase the step size to provide faster convergence rate
while a small prediction error will result in a decrease in the step size to yield smaller
misadjustment. Note that the step size µ(i + 1) should be restricted in a range as follows

µ(i + 1) =





µmax if µ(i + 1) > µmax

µmin if µ(i + 1) < µmin

µ(i + 1) otherwise
, (2.8)

where 0 < µmin < µmax. The constant µmin is chosen as a compromise between the
desired level of steady-state misadjustment and the required minimum level of tracking
ability while µmax is normally selected close to the point of instability of the algorithm
for providing the maximum convergence speed. Typical values of µmin and µmax that were
found to work well in simulations are around 10−6 and 10−3, respectively. They are nearly
invariant under different scenarios.

2.5.2 Time Averaging Adaptive Step Size (TAASS)

Motivated by the robust variable step size algorithm proposed in [49], the second de-
veloped algorithm employs a time average estimate of the correlation of e(i) and e(i−1),
which is given by

v(i) = βv(i− 1) + (1− β)e(i)e(i− 1), (2.9)

and the update rule is
µ(i + 1) = αµ(i) + τv2(i), (2.10)

where the limits on µ(i + 1), α and τ are similar to those of the MASS mechanism. The
exponential weighting parameter β(0 < β < 1) governs the averaging time constant.

L. Wang, Ph.D. Thesis, Department of Electronics, University of York 2009



19

In stationary environments, β should be close to 1 for saving information contained in
previous samples that is relevant to determining a measure of adaptation state. For non-
stationary environments, the time averaging window should be small for forgetting past
data and leaving space for the current statistics adaptation, so, β < 1. Hereafter this is
called as time averaging adaptive step size (TAASS). At the early stage, the error corre-
lation estimate v2(i) is large and so µ(i) is large to increase the convergence rate. As it
approaches the optimum, v2(i) is very small, resulting in a small step size for keeping low
misadjustment near optimum.

The origin of (2.10) can be traced back to the work in [49] for the MMSE criterion and
developed in [50] for the CMV criterion. Here, we extend it to the SG algorithms with
the CCM criterion since they achieve better performance than the CMV-based methods
for constant modulus constellations. The update rule in (2.10) is in accordance with the
CCM criterion since it estimates the time average of the autocorrelation between e(i) and
e(i − 1), which is the error between the square of the array output and the unit modulus.
The MASS mechanism uses the instantaneous square error to control the step size and
make a tradeoff between the slow convergence and misadjustment. However, the step
size adaptation and the misadjustment are affected by the noise [49]. The advantage of
the TAASS mechanism is that it employs the error autocorrelation to estimate the time
average of adjacent error terms, which include more information about adaptation. In
this way, the algorithm can effectively maintain a reasonable immunity to uncorrelated
additive noise. The objective is to operate in a large µ(i) when the algorithm works far
from the optimum with µ(i) reducing as it approaches the optimum.

2.5.3 Computational Complexity

The complexity considered here is the additional complexity, which includes additions
and multiplications required for the step size adaptation. The CCM-SG algorithm [51]
works without additional complexity since there is no step size adaptation. The complex-
ity of the ASS algorithm in [42] is a linear monotonic increasing function of the number
of sensor elements m, i.e., 5m − 1 for additions and 4m + 3 for multiplications. It in-
creases the computational load if the array size is large. The proposed MASS and TAASS
mechanisms only require a small fixed number of operations for adjusting the step size.
Specifically, the complexity of the MASS is 1 addition and 3 multiplications, and of the
TAASS is 2 additions and 6 multiplications.
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2.6 Analysis of the Proposed Algorithms

In this section, we investigate characteristics of the proposed algorithms. Note that
the analysis here is derived according to the MMSE criterion, i.e., E[|e(i)|2] = E[|d(i)−
y(i)|2], where d(i) is the desired response of the beamformer [18]. The analysis is suitable
to the proposed algorithms with the CCM criterion since the global minimum of the CCM
algorithm roughly correspond to the MMSE. This fact was conjectured in [53] and proved
in [54]. A sufficient condition for the convergence of the mean weight vector is studied.
Then, the steady-state mean and the mean-square expressions of the step size are derived.
On the basis of these step size expressions, the steady-state and tracking analyses are
provided by employing the energy conservation relation originally proposed in [40]. The
effects of multiple access interference (MAI) and additive noise are considered in the
analysis. To facilitate the analysis, the following approximations and assumptions are
taken into account.

Approximation:

i) limi→∞ E
[|e(i)|2] = ξmin + ξex(∞). Here, ξmin = |d(i)|2 − pHR−1p [18] is the

MMSE and ξex(∞) is the excess mean square error (EMSE) associated with the
optimization problem. The term p = E

[
x(i)d∗(i)

]
is the cross correlation between

the received vector x(i) and the desired response d(i), and R = E
[
x(i)xH(i)

]
is the

covariance matrix of the received vector.

Assumptions:

i) The variance of µ(i) is very small. This assumption is approximately true if τ is
small and α close to one.

ii) (ξmin+ξex(∞)) ≈ ξmin and (ξmin+ξex(∞))2 ≈ ξ2
min if ξmin À ξex(∞). This assumption

is clear since the term ξex(∞) can be ignored in the steady-state environment.

iii) The additive noise n(i) is independent and identically distributed (i.i.d.) and stati-
cally independent of the received vector x(i). This is a realistic assumption that was
made in [55].
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2.6.1 Convergence Analysis

Sufficient Condition for the Convergence of the Mean Weight Vector

In view of (2.6), the convergence of the weight vector is determined by two factors,
namely, the step size parameter µ(i) and the received vector x(i). Taking expectation of
µ(i)∇w(i) in (2.6) and applying assumption i), we have

E
{
µ(i)e(i)y∗(i)

[
I−a(θ0)a

H(θ0)
]
x(i)

}
= E

[
µ(i)

]
E

{
e(i)y∗(i)

[
I−a(θ0)a

H(θ0)
]
x(i)

}
,

(2.11)
and

E
[
µ(i)e(i)x(i)xH(i)

]
w(i) = E

[
µ(i)

]
RCCMw(i), (2.12)

where RCCM = E
[
e(i)x(i)xH(i)

] ∈ Cm×m.

Equation (2.6) can be written in an alternative way as

w(i + 1) =
[
I − µ(i)e(i)u(i)xH(i)

]
w(i), (2.13)

where u(i) =
[
I − a(θ0)a

H(θ0)
]
x(i) ∈ Cm×1.

Now, we define the weight error vector w̃(i) and substitute (2.13) into the expression,
which becomes

w̃(i + 1) = wopt −w(i + 1)

=
[
I − µ(i)e(i)u(i)xH(i)

]
w̃(i) + µ(i)e(i)u(i)xH(i)wopt,

(2.14)

where wopt denotes the optimal weight solution. By employing assumption i) and taking
expectations on both sides of (2.14), we have

E
[
w̃(i + 1)

]
=

{
I − E[

µ(i)
]
Rux

}
E

[
w̃(i)

]
, (2.15)

where Rux = E
[
e(i)u(i)xH(i)

]
=

[
I − a(θ0)a

H(θ0)
]
RCCM and Ruxwopt =

E[e(i)(I − a(θ0)a
H(θ0))d

∗(i)x(i)] = 0 [50]. Therefore, E
[
w(i)

] → wopt or equiv-
alently, limi→∞ E[w̃(i)] = 0 represents the stable condition if and only if

∏∞
i=0

{
I −

E
[
µ(i)

]
Rux

} → 0. The sufficient condition for the convergence of the mean weight
vector to hold implies that

0 ≤ E[
µ(∞)

] ≤ 2

λux
max

, (2.16)

where λux
max is the maximum eigenvalue of Rux. This condition ensures the convergence

of the mean weight vector for both the MASS and TAASS algorithms.
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Steady-State Step Size Value for MASS

Employing assumption i) and taking expectations on both sides of (2.7), the first-
moment steady-state step size for the MASS algorithm becomes

E
[
µ(i + 1)

]
= αE

[
µ(i)

]
+ τE

[
e2(i)

]
. (2.17)

Also, by squaring (2.7) and taking expectations, the second-moment steady-state step
size can be written as

E
[
µ2(i + 1)

]
= α2E

[
µ2(i)

]
+ 2ατE

[
µ(i)

]
E

[
e2(i)

]
+ τ 2E

[
e4(i)

]

≈ α2E
[
µ2(i)

]
+ 2ατE

[
µ(i)

]
E

[
e2(i)

]
,

(2.18)

where the term τ 2E
[
e4(i)

]
in (2.18) is negligible as compared to the other terms since τ 2

and E
[
e4(i)

]
are relatively small in the steady-state environment.

In the steady-state, the relations limi→∞ E[µ(i)] = limi→∞ E[µ(i+1)] = E[µ(∞)] and
limi→∞ E[µ2(i)] = limi→∞ E[µ2(i + 1)] = E[µ2(∞)] hold. Applying approximation i) to
(2.17) and (2.18), we obtain

E
[
µ(∞)

]
=

τ
[
ξmin + ξex(∞)

]

1− α
, (2.19)

E
[
µ2(∞)

]
=

2ατ 2
[
ξmin + ξex(∞)

]2

(1− α)2(1 + α)
. (2.20)

The expressions (2.19) and (2.20) can be further simplified if we consider assumption
ii), yielding

E
[
µ(∞)

] ≈ τξmin

1− α
, (2.21)

E
[
µ2(∞)

] ≈ 2ατ 2ξ2
min

(1− α)2(1 + α)
. (2.22)

Note that (2.21) and (2.22) are employed in the analysis of the EMSE for the proposed
MASS algorithm.
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Steady-State Step Size Value for TAASS

Applying assumption i) to (2.10) and taking expectations on both sides, the first-order
steady-state step size for the TAASS algorithm is expressed

E
[
µ(i + 1)

]
= αE

[
µ(i)

]
+ τE

[
v2(i)

]
. (2.23)

Also, by squaring (2.10) and taking expectations, the second-order steady-state step
size is

E
[
µ2(i + 1)

]
= α2E

[
µ2(i)

]
+ 2ατE

[
µ(i)

]
E

[
v2(i)

]
+ τ 2E

[
v4(i)

]

≈ α2E
[
µ2(i)

]
+ 2ατE

[
µ(i)

]
E

[
v2(i)

]
,

(2.24)

where the term τ 2E
[
e4(i)

]
in (2.24) is negligible.

According to (2.9), the time average estimate v(i) can be written in a recursive form
as

v(i) = (1− β)
i−1∑
n=0

βne(i− n)e(i− n− 1), (2.25)

and

v2(i) = (1− β)2

i−1∑
n=0

i−1∑
j=0

βnβje(i− n)e(i− n− 1)e∗(i− j)e∗(i− j − 1). (2.26)

In the steady-state condition, we assume that the proposed algorithm has converged.
In this case, we have E

[
e(i− n)e∗(i− j)

]
= 0 ∀n 6= j. Hence, expectation of (2.26) can

be simplified

E
[
v2(i)

]
= (1− β)2

i−1∑
n=0

β2nE
[|e(i− n)|2]E[|e(i− n− 1)|2]. (2.27)

Applying approximation i) and assumption ii) to (2.27) and employing
limi→∞ E[v2(i)] = E[v2(∞)], it brings

E
[
v2(i)

]
=

(1− β)
[
ξmin + ξex(∞)

]2

1 + β
≈ (1− β)ξ2

min

1 + β
, (2.28)
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where the derivation is given in Appendix A.

Substituting (2.28) into (2.23) and (2.24), respectively, and recalling the rela-
tions limi→∞ E[µ(i)] = limi→∞ E[µ(i + 1)] = E[µ(∞)] and limi→∞ E[µ2(i)] =

limi→∞ E[µ2(i + 1)] = E[µ2(∞)], yield

E[µ(∞)] ≈ τ(1− β)
[
ξmin + ξex(∞)

]2

(1− α)(1 + β)
, (2.29)

E[µ2(∞)] ≈ 2ατ 2(1− β)2
[
ξmin + ξex(∞)

]4

(1 + α)(1− α)2(1 + β)2
. (2.30)

We can use assumption ii) to develop
[
ξmin + ξex(∞)

]4 ≈ ξ4
min. Thus, from (2.29) and

(2.30)

E[µ(∞)] ≈ τ(1− β)ξ2
min

(1− α)(1 + β)
, (2.31)

E[µ2(∞)] ≈ 2ατ 2(1− β)2ξ4
min

(1 + α)(1− α)2(1 + β)2
. (2.32)

It is observed that the first-moment and second-moment steady-state step size val-
ues associated with the TAASS approach are more complicated than those of the MASS
method due to the presence of v2(i). Note that (2.31) and (2.32) can be employed in the
analysis of the EMSE of the proposed TAASS algorithm. The details will be shown in the
next part.

2.6.2 Steady-state Analysis

The classic approaches reported in [18], [55] for the steady-state and tracking analyses
cannot be employed in our proposed algorithms since they have to decide the recursion
for the weight error energy, which is difficult for the CCM criterion due to its inherent
nonlinear updates [56], [57]. Instead, we adopt an energy flow framework [40], [58], [59]
for the steady-state and tracking performance evaluation. The framework creates an en-
ergy conservation connection, relying on a fundamental error variance relation, between
adjacent time instants, to avoid the difficult derivation of the recursion for the weight error
energy. This approach holds not only for the CCM algorithms but for a general class of
adaptive filters [60].

In the following derivation, we will give the MSE expression, which includes two
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parts, i.e., the minimum mean square error (MMSE) and the excess mean square error
(EMSE). By using the CCM weight expression in (2.6) to express the EMSE and employ-
ing the energy conservation approach, we could obtain the steady-state expressions for
MASS and TAASS, respectively.

Following the classic MSE measure [18],

Jmse = lim
i→∞

E
[|ec(i)|2

]
= lim

i→∞
E

[|w̃H(i)x(i) + n(i)|2], (2.33)

where ec(i) = d(i) − wH(i)x(i), is the estimation error, d(i) is the desired response
with additive noise n(i), the subscript “c” means that it is from the classic measure, and
w̃(i) = wopt −w(i) is the weight error vector.

Employing assumption iii), (2.33) becomes,

Jmse = σ2
n + lim

i→∞
E

[|w̃H(i)x(i)|2], (2.34)

where σ2
n represents the variance of additive noise.

If we define a priori and a posteriori estimation errors, which represent

ea(i) = w̃H(i)x(i), ep(i) = w̃H(i + 1)x(i), (2.35)

and then, Jmse in (2.34) can be expressed by

Jmse = σ2
n + ζs, (2.36)

where ζs = limi→∞ E
[|ea(i)|2

]
denotes the EMSE corresponding to the steady-state MSE

measure. It is straightforward that calculating ζs is equivalent to finding the MSE.

Now, we consider the CCM weight expression and the energy conservation approach
to express the EMSE for the steady-state analysis. In order to obtain ζs, we write (2.6) in
a compact form

w(i + 1) = w(i) + µ(i)u(i)Fe(i), (2.37)

where, as mentioned before, u(i) =
[
I − a(θ0)a

H(θ0)
]
x(i), e(i) = |y(i)|2 − 1, and

Fe(i) = −y∗(i)e(i).
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Following the definition of ep(i) in (2.35), after some simple operations, we have

ep(i) = ea(i)− µ(i)F ∗
e (i)uH(i)x(i) = ea(i)− µ(i)F ∗

e (i)‖u(i)‖2, (2.38)

where the second expression is obtained if we notice that uH(i)x(i) = xH(i)
[
I −

a(θ0)a
H(θ0)

]
x(i) = uH(i)u(i).

Substituting (2.38) into the weight error vector update equation defined in (2.14),
yields

w̃(i + 1) = w̃(i)− u(i)

‖u(i)‖2

[
e∗a(i)− e∗p(i)

]
. (2.39)

Rearranging (2.39) and squaring it, we obtain

‖w̃(i + 1)‖2 + µ̄(i)|ea(i)|2 = ‖w̃(i)‖2 + µ̄(i)|ep(i)|2, (2.40)

where µ̄(i) = 1/‖u(i)‖2. This is an exact energy conservation relation that illus-
trates the energies of the weight error vectors between two successive time instants and
which corresponds to the energies of the a priori and a posteriori estimation errors.
Note that (2.40) is obtained without any assumptions. We use this expression to de-
rive the EMSE for the steady-state analysis. In the steady-state environment, considering
E

[‖w̃(i + 1)‖2
]

= E
[‖w̃(i)‖2

]
, substituting (2.38) into (2.40), and taking expectations,

then
E[µ̄(i)|ea(i)|2] = E[µ̄(i)|ea(i)− µ(i)

µ̄(i)
F ∗

e (i)|2]. (2.41)

Employing e(i) = |y(i)|2 − 1 and Fe(i) = −y∗(i)e(i) in (2.41),

E
{
µ(i)e∗a(i)y(i)

[
1− |y(i)|2]} + E

{
µ(i)ea(i)y

∗(i)
[
1− |y(i)|2]}

= E
{µ2(i)

µ̄(i)
|y(i)|2[1− |y(i)|2]2}

.
(2.42)

For ease of notation, we define Jlp and Jrp to represent terms in (2.42), i.e.,

Jlp = E
{
µ(i)e∗a(i)y(i)

[
1− |y(i)|2]} + E

{
µ(i)ea(i)y

∗(i)
[
1− |y(i)|2]},

Jrp = E
{µ2(i)

µ̄(i)
|y(i)|2[1− |y(i)|2]2}

.
(2.43)

Considering the fact that the EMSE arises due to the presence of the MAI and additive
noise, we will consider their impacts on the beamformer output in the following analysis.
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Thus, the beamformer output can be expressed by

y(i) =
[
wopt − w̃(i)

]H
x(i) = wH

optx(i)− ea(i) = s0(i) + M(i) + n(i)− ea(i), (2.44)

where s0(i) is the transmitted symbol of the desired user at time instant i, M(i) =∑q−1
k=1 wH

optsk(i)a(θk) is the output residual MAI caused as multiple users appear in the
system, where sk(i) denotes the transmitted symbol of users with the exception of the
desired one, and n(i) = wH

optn(i) is the processed additive noise.

In order to develop further analysis, we make use of some properties, assumptions, and
approximations.

Properties:{s,M, n, ea} are zero-mean random variables, and {s,M, n, ea} are mutu-
ally independent. The sources are independent and the processed additive noise n is a
Gaussian random variable [61].

Approximation ii): The residual MAI is Gaussian [62].

The following analysis is on the basis of (2.42) and (2.43). We will study Jlp and Jrp

in sequence, and then calculate the EMSE ζs for the proposed algorithms. We will drop
time index i and use s to represent s0(i) for notation simplicity.

Substituting (2.44) into Jlp in (2.43) and using assumption i) and approximation ii),
yields

Jlp = 2E
[
µ|ea|2(|s|2 + |M |2 + |n|2 + |ea|2 − 1)

]
. (2.45)

Define σ2
0 = E

[|s|2], σ2
n = E

[|n|2], and σ2
M = E

[|M |2] as the desired signal power,
the processed noise variance, and the residual MAI variance, respectively. In the steady-
state environment, we have E

[|n|4] = 3σ4
n and E

[|n|6] = 15σ6
n.

Note that the higher order of E
[|ea|2

]
in (2.45) is negligible compared with the other

terms as i →∞, it becomes

Jlp ≈ 2K1E
[
µ
]
E

[|ea|2
]
, (2.46)

where K1 = σ2
0 + σ2

M + σ2
n − 1.

At the same time, substituting (2.44) into Jrp in (2.43) and using assumption i) and
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approximation ii), we have

Jrp = E
[µ2

µ̄
(J1 + J2 + J3 + J4|ea|2)

]
, (2.47)

where
J1 = |s|6 + 3|s|4|M |2 + 3|s|4|n|2 − 2|s|4 + |s|2 + 3|s|2|M |4 + 3|s|2|n|4 − 4|s|2|M |2 −
4|s|2|n|2 + 6|s|2|M |2|n|2;
J2 = |M |6 + |n|6 − 2|M |4 − 2|n|4 + |M |2 + |n|2 + 3|M |4|n|2 + 3|M |2|n|4 − 4|M |2|n|2;
J3 = |ea|6 − 2|ea|4 + 3|M |2|ea|4 + 3|s|2|ea|4 + 3|n|2|ea|4;
J4 = 6|s|2|n|2+6|M |2|n|2+6|s|2|M |2−4|M |2−4|n|2+3|s|4−4|s|2+3|n|4+3|M |4+1.

The higher order of E
[|ea|2

]
in (2.47) can be ignored, yields,

Jrp ≈ E[µ2]

E[µ̄]

{
K2 + K3 + K4E

[|ea|2
]}

, (2.48)

where
K2 = σ6

0 +3σ4
0σ

2
M +3σ4

0σ
2
n−2σ4

0 +σ2
0 +9σ2

0σ
4
M +9σ2

0σ
4
n−4σ2

0σ
2
M −4σ2

0σ
2
n +6σ2

0σ
2
Mσ2

n;
K3 = 15σ6

M + 15σ6
n − 6σ4

M − 6σ4
n + σ2

M + σ2
n + 9σ4

Mσ2
n + 9σ2

Mσ4
n − 4σ2

Mσ2
n;

K4 = 6σ2
0σ

2
n + 6σ2

Mσ2
n + 6σ2

0σ
2
M − 4σ2

M − 4σ2
n − 4σ2

0 + 3σ4
0 + 9σ4

n + 9σ4
M + 1.

From (2.42) and (2.43), equating Jlp and Jrp and rearranging it, we obtain

ζs ≈
E[µ2]
E[µ̄]

(K2 + K3)

2E[µ]K1 − E[µ2]
E[µ̄]

K4

=
E[µ2]E

[‖u‖2
]
(K2 + K3)

2E[µ]K1 − E[µ2]E
[‖u‖2

]
K4

, (2.49)

whereE
[‖u‖2

]
=

∑q−1
k=1 σ2

k

{
aH(θk)a(θk)−

[
aH(θk)a(θ0)a

H(θ0)a(θk)/
(
aH(θ0)a(θ0)

)]}
+

σ2(m − 1) [61], where σ2
k is the power of the kth user with the exception of the de-

sired one, and additive noise at the output is a Gaussian random variable of type
n ∼ N (0, σ2

n) with σn = ‖wopt‖σ, wopt = R−1p, and p = E
[
xd∗(i)

]
. The term

σM =
√

q − 1wH
optσka(θk) (k 6= 0) with q is the number of users. Note that all the terms

in (2.49) are relevant to the steady-state i →∞.

Equation (2.49) can be further simplified if we impose σ2
0 = 1 and consider σ2

M ¿ σ2
n

[61], (2.49) becomes

ζs ≈
E

[
µ2

]
E

[‖u‖2
]
K5

2σ2
nE

[
µ
]− E[

µ2
]
E

[‖u‖2
]
K6

, (2.50)

where K5 = 3σ4
n + 15σ6

n and K6 = 2σ2
n + 9σ4

n.

Substituting (2.21) and (2.22) into (2.50), we obtain the EMSE for the MASS, which
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is given by

ζs,MASS ≈
ατξminE

[‖u‖2
]
K5

σ2
n(1− α2)− ατξminE

[‖u‖2
]
K6

. (2.51)

Substituting (2.31) and (2.32) into (2.50), we get the EMSE for the TAASS, which is
given by

ζs,TAASS ≈
ατ(1− β)ξ2

minE
[‖u‖2

]
K5

σ2
n(1− α2)(1 + β)− ατ(1− β)ξ2

minE
[‖u‖2

]
K6

. (2.52)

The accuracy of the analysis is verified via simulations later.

2.6.3 Tracking Analysis

The energy conservation relation has been verified to provide the tracking analysis in
a non-stationary environment [60]. The derivation in this section is based on the steady-
state analysis and is specific for the proposed algorithms.

In the non-stationary environment, wo(i) is not constant but assumed to vary following
the model wo(i+1) = wo(i)+q(i), where q(i) denotes a random perturbation [18], [55].
This perturbation is introduced by the time variations of the system. The update model is
invoked to track the variation. Thus, the update of the weight error vector can be expressed
by

w̃(i + 1) = w̃(i) + q(i)− µ(i)u(i)Fe(i). (2.53)

Squaring (2.53) yields

‖w̃(i + 1)‖2 + µ̄(i)|ea(i)|2 = ‖w̃(i) + q(i)‖2 + µ̄(i)|ep(i)|2. (2.54)

The further analysis relies on the following assumption:

Assumption iv): The sequence {q(i)} is a stationary sequence of independent zero-mean
vectors with positive definite covariance matrix Q = E

[
q(i)qH(i)

]
. It is independent of

the sequence
{
u(i)

}
and

{
n(i)

}
.

Under assumption iv), using E
[
w̃H(i)q(i)

]
= 0 [63] and E

[‖w̃(i + 1)‖2
]

=
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E
[‖w̃(i)‖2

]
and taking expectations, the energy equation (2.54) can be written as

E
[
µ̄(i)|ea(i)|2

]
= trace(Q) + E

[
µ̄(i)|ea(i)− µ(i)

µ̄(i)
F ∗

e (i)|2]. (2.55)

In view of (2.55), it can be regarded as an extension of (2.43) with an addition of the
system nonstationary contribution trace(Q). This is an advantage of the energy conserva-
tion approach over classic approaches [18], [55] since it allows us to develop a tracking
analysis by analyzing the results in the stationary case.

Substituting e(i) = |y(i)|2 − 1 and Fe(i) = −y∗(i)e(i) into (2.55), we have

Jt,lp ≈ 2K1E
[
µ
]
E

[|ea|2
]

Jt,rp ≈ trace(Q) +
E

[
µ2

]

E
[
µ̄
] {

K2 + K3 + K4E
[|ea|2

]}
,

(2.56)

and

ζt ≈
trace(Q) + E

[
µ2

]
E

[‖u‖2
]
(K2 + K3)

2E
[
µ
]
K1 − E

[
µ2

]
E

[‖u‖2
]
K4

, (2.57)

where ζt denotes the EMSE corresponding to the tracking condition, the terms K1, K2,
K3 and K4 are the same as those in (2.46) and (2.48), and it is assumed that q(i) is
independent of {s,M, n, ea}, and higher orders of

{|ea|2
}

are ignored.

If σ2
0 = 1 and σ2

M ¿ σ2
n are imposed on (2.56), we have a simpler expression

ζt ≈
trace(Q) + E

[
µ2

]
E

[‖u‖2
]
K5

2σ2
nE

[
µ
]− E[

µ2
]
E

[‖u‖2
]
K6

, (2.58)

where K5 and K6 are the same as those in (2.50).

Substituting (2.21), (2.22), and (2.31), (2.32) into (2.58), respectively, the EMSE for
the tracking analysis with respect to the MASS and TAASS can be expressed by

ζt,MASS ≈
(1− α)2(1 + α)trace(Q) + 2ατ 2ξ2

minE
[‖u‖2

]
K5

2σ2
n(1− α2)τξmin − 2ατ 2ξminE

[‖u‖2
]
K6

, (2.59)
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Tab. 2.1: Simulation parameters for Case A and Case C
Adaptive Case A Case C

algorithms Expt. 1 Expt. 2 Expt. 7
MASS TAASS MASS TAASS MASS TAASS

α 0.98 0.98 0.99 0.99 0.98 0.98
β - 0.99 - 0.975 - 0.99
τ 10−3 10−3 10−4 10−3 10−3 10−3

µ0 10−5 10−4 10−5 10−4 10−5 10−5

µmax 0.003 0.006 0.003 0.006 0.003 0.006
µmin 10−6 10−6 10−6 10−6 10−6 10−6

Tab. 2.2: Simulation parameters for Case B
Adaptive Case B

algorithms Expt. 3 Expt. 4 Expt. 5 Expt. 6
MASS TAASS MASS TAASS MASS TAASS MASS TAASS

α 0.987 0.988 0.988 0.988 0.986 0.988 0.99 0.989
β - 0.975 - 0.975 - 0.975 - 0.98
τ 10−4 10−3 10−4 10−3 10−4 10−3 10−4 10−3

µ0 10−5 10−4 10−5 10−4 10−5 10−4 10−5 10−4

µmax 0.003 0.006 0.003 0.006 0.004 0.006 0.004 0.007
µmin 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6

and

ζt,TAASS ≈
(1− α)2(1 + α)(1 + β)2trace(Q) + 2ατ 2(1− β)2ξ4

minE
[‖u‖2

]
K5

2σ2
n(1− α2)(1− β2)τξ2

min − 2ατ 2(1− β)2ξ4
minE

[‖u‖2
]
K6

. (2.60)

2.7 Simulation Results

In this section, we illustrate the effectiveness and the advantages of the proposed
MASS and TAASS algorithms over existing methods through simulations and verify the
accuracy of the analyses. The CCM criterion is considered with the SG and RLS algo-
rithms. Simulations are carried out in stationary and non-stationary scenarios. All simula-
tions are performed by a ULA containing m = 16 sensor elements with half-wavelength
spacing. The noise is zero mean additive white Gaussian noise. A total of K = 1000 runs
are used to get each curve. In all experiments, the desired signal power is σ2

0 = 1. The
BPSK modulation scheme is employed to modulate the signals. The simulation parame-
ters used in each experiment are listed in Table 2.1 and Table 2.2.

Fig. 2.4 (Expt. 1) compares the proposed MASS and TAASS algorithms with the
FSS, ASS, and RLS methods by showing the bit error ratio (BER) versus the input signal-
to-noise ratio (SNR). The input SNR is varied between 0 and 30 dB. The number of
interferers is qinf = 5 with one 4 dB above the power level of the desired user, one with
the same power level of the desired user, and three −0.5 dB below the power level of
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the desired user. The number of snapshots is fixed N = 1000. Note that the exact DOA
of the desired user is known by the receiver beforehand. We set the first element of the
initial weight vector w(0) equal to the corresponding element of a(θ0). Other parameters
for the proposed and existing methods are tuned to optimize the performance, allowing
for a fair comparison. It is clear that the BER values of all methods decrease following
the increase of the input SNR. The proposed MASS and TAASS algorithms outperform
the FSS and ASS ones. The curve of the TAASS algorithm is close to that of the RLS
method, which shows its robustness in the studied scenario.

Fig. 2.5 (Expt. 2) depicts the performance of the studied algorithms under the mis-
match (steering vector error) condition, which includes two experiments. Fig. 2.5(a)
keeps the scenario in Fig. 2.4 except with a fixed input SNR= 20 dB. The results indi-
cate that the proposed algorithms outperform the existing FSS and ASS methods. The
performance of the TAASS algorithm is close to the RLS method but with much lower
complexity. The mismatch scenario is shown in Fig. 2.5(b). The DOA of the desired user
estimated by the receiver is 1o away from the exact direction. It is evident that the mis-
match problem degrades the performance of all the methods. The proposed algorithms
retain their predominance over the FSS and ASS methods. The curves of the TAASS and
RLS algorithms are shown to interact when the snapshots increase, which exhibits the
advantage of the proposed algorithm.
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Fig. 2.4: Simulation result for Case A, Expt. 1: Curves for BER versus input SNR for various
adaptive algorithms.
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Fig. 2.5: Simulation result for Case A, Expt. 2: Curves for BER versus the number of snapshots
for (a) ideal steering vector condition and (b) steering vector with mismatch= 1o.

We compare the theoretical analysis with the simulation results in Fig. 2.6 (Expt. 3)
and Fig. 2.7 (Expt. 4) for both the MASS and TAASS algorithms. In Fig. 2.6, the input
SNR is fixed at 20 dB and the number of interferers is qinf = 3 with all −0.5dB below the
desired power. Fig. 2.6 (a) and Fig. 2.6 (b) correspond to the MASS and TAASS methods,
respectively. The proposed algorithms converge to the steady-state that is in good match
with the curves obtained from (2.51) and (2.52), where ξmin = 1 − aH(θ0)R

−1a(θ0).
The oscillation is due to the system noise and the users’ status (e.g., power level and the
number).

In Fig. 2.7, we increase qinf = 4 with one 2 dB above the desired power, one with
the same power as the desired user, and two −0.5 dB below the desired power. From
this simulation, the proposed algorithms need more snapshots to come to the steady-state,
which is higher than that in Fig. 2.6, but still close to their theoretical values. The TAASS
method shows the superior performance over the MASS for both the theoretical value
and simulation result under this severe condition. Comparing Fig. 2.6 with Fig. 2.7,
we find that the number or/and the power level of the interferers increase, deteriorate the
performance of both simulation and theory. Note that the ignored terms in (2.51) and
(2.52) do not affect the accuracy significantly.

Fig. 2.8 (Expt. 5) compares the theoretical analysis and simulation results of the
proposed algorithms by showing the EMSE versus the input SNR. It works with the same
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Fig. 2.6: Simulation results for Case B, Expt.3: Curves for EMSE versus the number of snapshots
for (a) MASS and (b) TAASS.
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Fig. 2.7: Simulation results for Case B, Expt.4: Curves for EMSE versus the number of snapshots
for (a) MASS and (b) TAASS.
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scenario as in Fig. 2.6. In Fig. 2.8, we find that the EMSE decreases following the
increase of the input SNR. Simulation results converge to the theoretical ones, especially
with high input SNR. Fig. 2.9 (Expt. 6) shows the result in a more severe condition,
where qinf = 4 with one 3 dB above the desired power, one with the same power of the
desired user, and two −0.5 dB below the power of the desired user. Compared with Fig.
2.8, the EMSE performance is deteriorated. Under this condition, the advantage of the
TAASS algorithm is obvious, especially with high SNR values.
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Fig. 2.8: Simulation result for Case B, Expt. 5: Curves for EMSE versus input SNR for proposed
adaptive algorithms.

In Fig. 2.10 (Expt. 7), we evaluate the performance of the proposed MASS and TAASS
algorithms in a non-stationary scenario, namely, when the number of users changes. The
scenario starts with qinf = 4 interferers, two with same power of the desired user and two
with −0.5 dB below the power of the desired user. The input SNR is set to 20 dB. From
the first stage (first 1500 snapshots) of Fig. 2.10, the convergence rate of the proposed
MASS and TAASS is faster than those of the FSS and ASS methods. The convergence
and output performance of the TAASS algorithms is close to the RLS method. Two more
users with one 2 dB above the power of the desired user and one −0.5 dB below the
desired power, enter the system at 1500 snapshots. This change makes the output SINR
reduce suddenly and degrades the performance of all methods. The proposed algorithms
keep faster convergence and better performance in comparison with the FSS and ASS
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Fig. 2.9: Simulation result for Case B, Expt. 6: Curves for EMSE versus input SNR for proposed
adaptive algorithms.

methods. The RLS method has a superior performance than the proposed algorithms but
has to pay much higher computational cost. Note that the output SINR values of all the
methods at 1500 snapshots are set to around −2 dB since it is convenient to show the
convergence behaviors.

Fig. 2.11 (Expt. 7) depicts the step size adaptation of the proposed algorithms fol-
lowing the change of the scenario in Fig. 2.10. The large step size values appeared at
the beginning when the algorithms are far from the optimal solutions to increase the con-
vergence rate, and the small values are used when the algorithms are near the optimum
to achieve a low level of misadjustment. The change of the scenario makes the step size
increase again and then reduce to track this non-stationary scenario.

2.8 Conclusions

In this chapter, two adaptive SG algorithms with the CCM criterion are developed.
They employ different adaptive mechanisms, which are based on the energy of prediction
error and the time average of the correlation of the estimation error, respectively, to adjust
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Fig. 2.10: Simulation results for Case C, Expt. 7: Curves for output SINR versus the number of
snapshots for various adaptive algorithms.

the step size. The theoretical expressions of the EMSE, in both steady-state and tracking
cases, were derived by using the energy conservation approach. The effects of additive
noise and the MAI in the array output were considered in the analysis. Simulation results
were carried out to compare the proposed algorithms with existing methods and verify
the analysis. The proposed algorithms possess good performance and fast convergence
rate in the stationary scenarios. They can be applied to the beamformer design and other
communication techniques. Note that we didn’t perform the simulation results for the
tracking analysis in the non-stationary scenarios. The tracking analysis was given here
for keeping the integrity of the analysis.
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Fig. 2.11: Simulation result for Case C, Expt. 7: Curves for step size values versus the number of
snapshots for proposed adaptive algorithms.
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3. CONSTRAINED ADAPTIVE FILTERING ALGORITHMS BASED
ON THE CONJUGATE GRADIENT METHOD FOR BEAMFORMING

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Proposed Adaptive CG algorithms . . . . . . . . . . . . . . . . . . . 41

3.4 Analysis of the Proposed Methods . . . . . . . . . . . . . . . . . . . 49

3.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1 Introduction

In this chapter, we employ another array processing algorithm, i.e., the conjugate gra-
dient (CG), for the application of beamforming. The CG algorithm was reported to solve
large systems of linear equations. For array processing, as explained in Chapter 1, the
CG has an attractive tradeoff between performance and complexity as compared with
the SG and RLS methods since it enjoys a convergence comparable to the RLS with a
computational requirement which is intermediate between the SG and RLS methods [64].
Another class of algorithms related to the CG are those based on the MSWF [27] and
the AVF [29, 30]. Since they belong to the reduced-rank class of techniques, we will
give more details about these algorithms in Chapter 5 and Chapter 6. It is worth noting
that the basis vectors of the CG, MSWF, and AVF span the same Krylov subspace [65].
Their main differences lie on the computational cost, structure of adaptation, and ease
of implementation. Many adaptive algorithms based on the CG technique have been re-
ported [66]- [68]. However, the incorporation of constraints in existing CG algorithms
leads to a significant increase in the computational cost. The linear constraint here corre-
sponds to the knowledge of the DOA of the SOI.

We develop two CG adaptive algorithms for the beamformer design according to the
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CMV and CCM criteria. The existing methods yield a system of equations which re-
quires the costly matrix inversion for ensuring the constraint and solving the system of
equations. The proposed algorithms are motivated to circumvent this problem. A CG-
based weight vector strategy is devised to incorporate the constraint of the array response
in the proposed algorithms for the beamformer design. We create a simple relation be-
tween the CG-based weight vector and the matrix inversion and the array response of the
SOI. The weight solution can be obtained by iteratively computing the CG-based weight
vector. The proposed algorithms enforce the constraint in the system of equations with-
out the matrix inversion and exhibit fast convergence and comparable performance with
low-complexity. Furthermore, the numerical instability [18] found in the RLS algorithm
is addressed by the proposed methods. The convexity property of the CCM criterion and
its convergence analysis are explained. Simulations are performed to demonstrate the
performance of the proposed algorithms against the best known techniques.

The remaining of this chapter is organized as follows: the problem statement about
the incorporation of the constraints in the system of equations is introduced in section
3.2. Section 3.3 introduces the proposed CG algorithms with the CMV and CCM crite-
ria. Section 3.4 is dedicated to the analyses of the new methods. Simulation results are
discussed in Section 3.5, and conclusions are drawn in Section 3.6.

3.2 Problem Statement

The derivation of the array processing algorithms for the beamformer design is ac-
cording to the CMV and CCM criteria, which have been given at the end of Chapter 2.
In order to solve the optimization problem in (2.3) and (2.4), we resort to the method of
Lagrange multipliers. The weight expressions obtained are [32], [94]

wcmv = [aH(θ0)R
−1a(θ0)]

−1γR−1a(θ0), (3.1)

wccm = [aH(θ0)R
−1
y a(θ0)]

−1γR−1
y a(θ0), (3.2)

where ey =
∣∣|y(i)|2 − 1

∣∣, R = E[x(i)xH(i)], and Ry = E[ey(i)x(i)xH(i)] ∈ Cm×m is
a matrix with cross correlations between the output y(i) and the received vector x(i). It
is worth noting that Ry depends on y(i), which is a function of the weight vector w(i).
A solution of (3.2) can be obtained by setting an initial value of w(i) and running an
iterative procedure, which will be shown in the following part.

Considering the expressions in (3.1) and (3.2), we can manipulate and organize them
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into the following systems of equations

(
aH(θ0)R

−1a(θ0)
)
Rwcmv = γa(θ0), (3.3)

(
aH(θ0)R

−1
y a(θ0)

)
Rywccm = γa(θ0), (3.4)

where the terms aH(θ0)R
−1a(θ0) and aH(θ0)R

−1
y a(θ0) are responsible for ensuring the

constraints. The inversions of R and Ry increase the computational load and suffer from
numerical instability. Numerous iterative algorithms can be used to solve general systems
of equations [18, 19], [69]- [71]. Among them, CG is an efficient method with very
attractive tradeoff between performance and complexity. Here, we plan to use the CG-
based algorithm to enforce the constraint and allow the development of the beamformer
design due to its attractive tradeoff between performance and complexity, and suitability
for implementation.

3.3 Proposed Adaptive CG algorithms

We introduce two CG algorithms for the beamformer design according to the CMV
and CCM criteria, respectively. The proposed methods avoid the matrix inversion and
possess fast convergence and good performance with low-complexity. In this section, we
first briefly review the existing CG algorithm [19]. Then we formulate a simple relation
between a CG-based weight vector, the matrix inversion and the steering vector. On
the basis of this relation, we derive the conventional conjugate gradient (CCG) and the
modified conjugate gradient (MCG) algorithms in what follows.

3.3.1 Conjugate Gradient Algorithms

The CG algorithm can be employed for solving optimization problems of the form
[72, 73]

min
v

J(v) =
1

2
vHRv −R{bHv}, (3.5)

where R ∈ Cm×m is the covariance matrix of the received vector x(i), b ∈ Cm×1 is the
cross-correlation vector between the received vector x(i) and the desired response d(i),
and v ∈ Cm×1 is the CG weight vector. The CG algorithm solves (3.5) by iteratively
updating the CG weight vector as

vk = vk−1 + αkpk, (3.6)
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where pk is the direction vector with conjugacy, i.e., pH
k Rpl = 0 for k 6= l, αk is

calculated by substituting (3.6) into (3.5) and then minimizing with respect to αk, and
k = 1, . . . , K is the iteration number. Note that K ≤ m since the covariance matrix is
composed of at most m independent vectors [74].

The direction vector pk in (3.6) is obtained by a linear combination of the previous
direction vector and the negative gradient vector gk = b − Rvk [72]. Thus, it can be
expressed as

pk+1 = gk + βkpk, (3.7)

where βk is chosen to provide conjugacy for the direction vectors. The CG algorithm and
some related properties can be found in [19, 74, 75].

3.3.2 Proposed Conventional Conjugate Gradient (CCG) Algorithms

We describe the proposed algorithm for the CMV criterion in detail and extend it to
the CCM criterion. Note that the CG algorithm with the minimum variance criterion has
been reported [20]. We give the details of this algorithm since it uses the CG-based weight
vector to create a relation between the matrix inversion and the steering vector of the SOI.
This relation is important to the development of the proposed algorithms.

The CMV-CCG Algorithm

Let us describe an optimization problem for the CCG algorithm, which is

J(vcmv) =
1

2
vH

cmvRvcmv −R{aH(θ0)vcmv}, (3.8)

where vcmv ∈ Cm×1 is a CG-based weight vector for the algorithm, the subscript “cmv”
means that it is for the CMV criterion, R is the input covariance matrix, and a(θ0) is the
steering vector of the SOI. By taking the gradient of (3.8) with respect to vcmv, equating
it to a null vector and rearranging the expression, we obtain

vcmv = R−1a(θ0). (3.9)

It is clear that, by introducing the CG-based weight vector vcmv, we formulate a simple
relation with the matrix inversion and the steering vector of the SOI. In the algorithm, vcmv

is iterated and then substituted into (3.1) for the weight solution. Note that (3.5) and (3.8)
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are in the similar form but with different meanings since vcmv is not directly employed
for the weight solution but regarded as an intermediate weight vector for enforcing the
constraint, solving the systems of equations, and avoiding the numerical problems caused
by the matrix inversion.

In the algorithm, the iteration procedure is executed per snapshot. For the ith snapshot,
R is replaced by R(i), which is fixed throughout the K iterations of the CCG operation.
In practice, R(i) is estimated by its recursive version R̂(i) = λR̂(i − 1) + x(i)xH(i),
where λ is the forgetting factor that is a positive constant close to, but less than 1. Tak-
ing the gradient of (3.8) with respect to vcmv,k(i) for the kth iteration and choosing the
negative direction, we get the negative gradient

gcmv,k(i) = a(θ0)− R̂(i)vcmv,k(i). (3.10)

The CG-based weight vector vcmv,k(i) is defined as

vcmv,k(i) = vcmv,k−1(i) + αcmv,k(i)pcmv,k(i), (3.11)

where pcmv,k(i) is the direction vector with conjugacy, i.e., pH
cmv,k(i)R̂(i)pcmv,l(i) = 0 for

k 6= l and αcmv,k(i) is calculated by substituting (3.11) into (3.8), taking the gradient with
respect to αcmv,k(i), and using (3.11), which yields

αcmv,k(i) =
(
pH

cmv,k(i)R̂(i)pcmv,k(i)
)−1

gH
cmv,k−1(i)pcmv,k(i). (3.12)

The direction vector in (3.11) is defined as

pcmv,k+1(i) = gcmv,k(i) + βcmv,k(i)pcmv,k(i), (3.13)

where βcmv,k(i) is calculated by the Gram Schmidt process [72, 75] for the conjugacy

βcmv,k(i) =
[
gH

cmv,k−1(i)gcmv,k−1(i)
]−1[

gH
cmv,k(i)gcmv,k(i)

]
. (3.14)

After K iterations, the weight solution of the CCG algorithm with respect to the CMV
criterion at time instant i is obtained by substituting vcmv,K(i) into (3.1), which is given
by

wcmv(i) =
[
aH(θ0)vcmv,K(i)

]−1
γvcmv,K(i). (3.15)

The CMV-CCG algorithm is summarized in Table 3.1, where δ is the regularization
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Tab. 3.1: The CMV-CCG algorithm
Initialization:

v0(1) = 0; R̂(0) = δI
Update for each time instant i = 1, . . . , N

STEP 1: Start:
R̂(i) = λR̂(i− 1) + x(i)xH(i)
g0(i) = a(θ0)− R̂(i)v0(i)
p1(i) = g0(i)

STEP 2: For k = 1, . . . , K:
αk(i) =

(
pH

k (i)R̂(i)pk(i)
)−1

gH
k−1(i)pk(i)

vk(i) = vk−1(i) + αk(i)pk(i)
gk(i) = gk−1(i)− αk(i)R̂(i)pk(i)
βk(i) =

(
gH

k−1(i)gk−1(i)
)−1(

gH
k (i)gk(i)

)
pk+1(i) = gk(i) + βk(i)pk(i)
k = k + 1

STEP 3: After K iterations:
v0(i + 1) = vK(i)
wcmv(i) =

(
aH(θ0)vK(i)

)−1
γvK(i)

i = i + 1

parameter to initialize the covariance matrix and the subscript “cmv” is removed for sim-
plicity. The recursive formulation of gk(i) is obtained by substituting (3.11) into (3.10)
and recognizing that gk−1(i) = a(θ0)−R̂(i)vk−1(i). Note that the direction vector needs
to be reset periodically, i.e., p1(i) = g0(i), for ensuring the convergence [74, 75].

The CCM-CCG Algorithm

In order to derive the proposed algorithms with the CCM criterion, we consider the
following optimization problem

J(vccm) =
1

2
vH

ccmRyvccm −R{aH(θ0)vccm}, (3.16)

where the subscript “ccm” means that it is for the CCM criterion and Ry is the matrix
with cross correlations between y(i) and x(i). For the ith snapshot, Ry(i) is estimated by
R̂y(i) = λyR̂y(i− 1) + ey(i)x(i)xH(i).

Performing a similar development as that for the CMV criterion, we get the proposed
CCM-CCG algorithm, which is summarized in Table 3.2, where δy is to initialize the
matrix Ry. It is necessary to initialize the weight vector wccm(0) and run the iterative
procedure since ey(i) depends on wccm(i).
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Tab. 3.2: The CCM-CCG algorithm
Initialization:

v0(1) = 0; wccm(0) = a(θ0)/‖a(θ0)‖2; R̂y(0) = δyI
Update for each time instant i = 1, . . . , N

STEP 1: Start:
y(i) = wH

ccm(i− 1)x(i); ey(i) = |y(i)|2 − 1
R̂y(i) = λyR̂y(i− 1) + ey(i)x(i)xH(i)
g0(i) = a(θ0)− R̂y(i)v0(i); p1(i) = g0(i)

STEP 2: For k = 1, . . . , K:
αk(i) =

(
pH

k (i)R̂y(i)pk(i)
)−1

gH
k−1(i)pk(i)

vk(i) = vk−1(i) + αk(i)pk(i)
gk(i) = gk−1(i)− αk(i)R̂y(i)pk(i)
βk(i) =

[
gH

k−1(i)gk−1(i)
]−1[

gH
k (i)gk(i)

]
pk+1(i) = gk(i) + βk(i)pk(i)
k = k + 1

STEP 3: After K iterations:
v0(i + 1) = vK(i)
wccm(i) =

[
aH(θ0)vK(i)

]−1
γvK(i)

i = i + 1

3.3.3 Proposed Modified Conjugate Gradient (MCG) Algorithms

The CCG algorithm proposed in the previous section operates K iterations per snap-
shot and runs the reset periodically for convergence. These operations increase the com-
putational load in the sample-by-sample update. Here, we describe a modified CG (MCG)
algorithm with only one iteration per snapshot. Compared with the existing methods, the
proposed algorithm enforces the constraint with low complexity, avoids the matrix inver-
sion and instability, and keeps fast convergence without the reset procedure.

The Proposed CMV-MCG Algorithm

The MCG algorithm was motivated from [76] for adaptive filtering. Here, we use
this idea for the beamformer design. Note that the iteration number k is replaced by the
snapshot number i since, in the proposed algorithm, only one iteration will be performed
per snapshot. For simplicity, we will remove k in the subscript of terms.

The CG-based weight vector for the MCG algorithm is expressed by

ṽcmv(i) = ṽcmv(i− 1) + α̃cmv(i)p̃cmv(i), (3.17)

where p̃cmv(i) is the direction vector at the ith snapshot, α̃cmv(i) is the corresponding

L. Wang, Ph.D. Thesis, Department of Electronics, University of York 2009



46

coefficient, and, in what follows, all the quantities related to the proposed MCG algorithm
are denoted by an over tilde.

From [76], one way to make the CG algorithm work with one iteration per snapshot
is the application of the degenerated scheme, which means that g̃cmv(i) is not orthogonal
to the subspace spanned by p̃cmv(l), where l = 1, . . . , i, namely, the expanding subspace
theorem [19, 74, 75] does not hold. Under this condition, we need to ensure that the
coefficient α̃cmv(i) satisfies the convergence bound [76, 77], which is given by

0 ≤ p̃H
cmv(i)g̃cmv(i) ≤ 0.5p̃H

cmv(i)g̃cmv(i− 1). (3.18)

For deriving α̃cmv(i), we consider a recursive expression for the negative gradient vec-
tor

g̃cmv(i) = a(θ0)− R̂(i)ṽcmv(i)

= (1− λ)a(θ0) + λg̃cmv(i− 1)

− α̃cmv(i)R̂(i)p̃cmv(i)− x(i)xH(i)ṽcmv(i− 1).

(3.19)

Premultiplying (3.19) by p̃H
cmv(i) yields

p̃H
cmv(i)g̃cmv(i) =λp̃H

cmv(i)g̃cmv(i− 1)− α̃cmv(i)p̃
H
cmv(i)R̂(i)p̃cmv(i)

+ (1− λ)p̃H
cmv(i)a(θ0)− p̃H

cmv(i)x(i)xH(i)ṽcmv(i− 1).
(3.20)

Taking the expectation of both sides and considering p̃cmv(i) uncorrelated with x(i),
a(θ0) and ṽcmv(i− 1) [76] yields

E[p̃H
cmv(i)g̃cmv(i)] ≈λE[p̃H

cmv(i)g̃cmv(i− 1)]− E[α̃cmv(i)]E[p̃H
cmv(i)R̂(i)p̃cmv(i)]

− λE[p̃H
cmv(i)a(θ0)],

(3.21)

where the optimal solution Rṽcmv,opt = a(θ0) and E[ṽcmv(i−1)− ṽcmv,opt] ≈ 0 have been
used with the assumption that the algorithm converges. Making a rearrangement of (3.21)
and following the convergence bound (3.18), we obtain

E[α̃cmv(i)] =
λE[p̃H

cmv(i)g̃cmv(i− 1)− p̃H
cmv(i)a(θ0)]− E[p̃H

cmv(i)g̃cmv(i)]

E[p̃H
cmv(i)R̂(i)p̃cmv(i)]

, (3.22)
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and

(λ− 0.5)E[p̃H
cmv(i)g̃cmv(i− 1)]− λE[p̃H

cmv(i)a(θ0)]

E[p̃H
cmv(i)R̂(i)p̃cmv(i)]

≤

E[α̃cmv(i)] ≤ λE[p̃H
cmv(i)g̃cmv(i− 1)− p̃H

cmv(i)a(θ0)]

E[p̃H
cmv(i)R̂(i)p̃cmv(i)]

.

(3.23)

The inequalities in (3.23) are satisfied if we define

α̃cmv(i) =
[
p̃H

cmv(i)R̂(i)p̃cmv(i)
]−1

{
λ
[
p̃H

cmv(i)g̃cmv(i− 1)− p̃H
cmv(i)a(θ0)

]− η̃p̃H
cmv(i)g̃cmv(i− 1)

}
,

(3.24)

where 0 ≤ η̃ ≤ 0.5.

The direction vector p̃cmv(i) is defined by

p̃cmv(i + 1) = g̃cmv(i) + β̃cmv(i)p̃cmv(i) (3.25)

where β̃cmv(i) is computed for avoiding the reset procedure by employing the Polak-
Ribiere approach (Eq. (25) in [76]), which is stated as

β̃cmv(i) =
[
g̃H

cmv(i− 1)g̃cmv(i− 1)
]−1[

g̃cmv(i)− g̃cmv(i− 1)
]H

g̃cmv(i). (3.26)

Until now, we derived the proposed MCG algorithm for the CMV criterion, whose
weight solution is given by substituting the CG-based weight vector into (3.1), i.e.,

w̃cmv(i) =
[
aH(θ0)ṽcmv(i)

]−1
γṽcmv(i). (3.27)

The proposed CMV-MCG algorithm is summarized in Table 3.3. Again, we remove
the subscript “cmv” for compact expressions. Clearly, compared with (3.1), the weight
solution in (3.27) ensures the constraint and solves the systems of equations without the
matrix inversion and thus avoids numerical instability.
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Tab. 3.3: The CMV-MCG algorithm
Initialization:

ṽ(0) = 0; g̃(0) = p̃(1) = a(θ0); R̂(0) = δ̃I
Update for each time instant i = 1, . . . , N

R̂(i) = λR̂(i− 1) + x(i)xH(i)
α̃(i) =

[
p̃H(i)R̂(i)p̃(i)

]−1{
λ
[
p̃H(i)g̃(i− 1)− p̃H(i)a(θ0)

]− η̃p̃H(i)g̃(i− 1)
}

(0 ≤ η̃ ≤ 0.5)
ṽ(i) = ṽ(i− 1) + α̃(i)p̃(i)
g̃(i) = (1− λ)a(θ0) + λg̃(i− 1)− α̃(i)R̂(i)p̃(i)− x(i)xH(i)ṽ(i− 1)
β̃(i) = [g̃H(i− 1)g̃(i− 1)]−1[g̃(i)− g̃(i− 1)]H g̃(i)
p̃(i + 1) = g̃(i) + β̃(i)p̃(i)
w̃cmv(i) = [aH(θ0)ṽ(i)]−1γṽ(i)
i = i + 1

Tab. 3.4: The CCM-MCG algorithm
Initialization:

ṽ(0) = 0; g̃(0) = p̃(1) = a(θ0); R̂y(0) = δ̃yI; w̃ccm(0) = a(θ0)/‖a(θ0)‖2

Update for each time instant i = 1, . . . , N

y(i) = w̃H
ccm(i− 1)x(i); ey(i) = |y(i)|2 − 1

R̂y(i) = λyR̂y(i− 1) + ey(i)x(i)xH(i)
α̃(i) =

[
p̃H(i)R̂y(i)p̃(i)

]−1{
λy

[
p̃H(i)g̃(i− 1)− p̃H(i)a(θ0)

]− η̃p̃H(i)g̃(i− 1)
}

(0 ≤ η̃ ≤ 0.5)
ṽ(i) = ṽ(i− 1) + α(i)p̃(i)
g̃(i) = (1− λy)a(θ0) + λyg̃(i− 1)− α̃(i)R̂y(i)p̃(i)− ey(i)x(i)xH(i)ṽ(i− 1)
β̃(i) = [g̃H(i− 1)g̃(i− 1)]−1[g̃(i)− g̃(i− 1)]H g̃(i)
p̃(i + 1) = g̃(i) + β̃(i)p̃(i)
w̃ccm(i) = [aH(θ0)ṽ(i)]−1γṽ(i)
i = i + 1

The Proposed CCM-MCG Algorithm

Regarding the CCM criterion, w̃ccm(0) needs to be initialized for the iteration proce-
dure. Correspondingly, the negative gradient vector is given by

g̃ccm(i) =(1− λy)a(θ0) + λyg̃ccm(i− 1)

− α̃ccm(i)R̂y(i)p̃ccm(i)− ey(i)x(i)xH(i)ṽccm(i− 1).
(3.28)

Following the same derivation as for the CMV criterion, we will get the CCM-MCG
algorithm, which is summarized in Table 3.4. Comparing with the CCG algorithm, the
MCG is a non-reset and low complexity algorithm with one iteration per snapshot.
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3.4 Analysis of the Proposed Methods

In this section, we investigate some of the characteristics of the proposed CCG and
MCG algorithms. Specifically, we first determine the convexity condition for the global
convergence of the CCM criterion. Then, the complexity requirements for the proposed
algorithms are considered and compared with the SG [18], RLS [18], MSWF [27], and
AVF [31] methods. At last, we analyze the convergence properties of the CG-based
weight vector.

3.4.1 Global Convergence and Properties

Here, we focus on the analysis of the CCM criterion in (2.4), which is a fourth-order
function with an elaborate structure that contains undesired local minima. We show in
Appendix B that the convexity of the CCM cost function can be enforced by properly
selecting the constant γ. Therefore, the global convergence for the constrained adaptive
algorithms can be guaranteed.

3.4.2 Computational Complexity

We detail the computational complexity of the proposed and analyzed algorithms. We
remark that the complexity is estimated by taking into account the number of additions
and multiplications required by the algorithms for each snapshot. The comparison of the
complexity for different algorithms is listed in Table 3.5, where m is the number of sensor
elements and r is the rank for the reduced-rank algorithms.

Tab. 3.5: Comparison of the computational complexity
Algorithm Additions Multiplications
CMV-SG 4m− 2 4m + 3
CCM-SG 4m 4m + 7
CMV-CCG K(m2 + 4m− 2) + 2m2 − 1 K(m2 + 4m + 1) + 3m2 + 3m
CCM-CCG K(m2 + 4m− 2) + 2m2 + m− 2 K(m2 + 4m + 1) + 3m2 + 5m
CMV-MCG 2m2 + 7m− 3 3m2 + 9m + 4
CCM-MCG 2m2 + 8m− 3 3m2 + 11m + 5
CMV-RLS 4m2 −m− 1 5m2 + 5m− 1
CCM-RLS 4m2 −m 5m2 + 5m + 2
CMV-MSWF (r − 1)m2 + rm + m + 4r2 − 2r − 2 (r − 1)m2 + 2rm + 5r2 + 5r
CCM-MSWF (r − 1)m2 + rm + m− 4r2 − 2r − 1 (r − 1)m2 + 2rm + 5r2 + 5r + 3
AVF r(4m2 + m− 2) + 5m2 −m− 1 r(5m2 + 3m) + 8m2 + 2m
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It is obvious that the complexity of the proposed CCG algorithms depends on the
number of iterations K. For the case of the MCG, the complexity is lower than the other
studied algorithms except the SG, which sacrifices the performance as a trade-off. Com-
pared with the RLS method, the complexity of the MCG algorithm reduces significantly
if m (e.g., m = 60) is large for some applications such as those found in sonar or radar.
The reduction is not visible if m is small, e.g., for wireless communications. However,
the proposed algorithm provides an efficient way for the beamformer design and avoids
numerical instability that occurs in the RLS method.

3.4.3 Convergence Analysis

We analyze the convergence behavior of the CG-based weight vector. The conver-
gence analysis was detailed in [74], in which the analysis was derived by considering an
important property of the Krylov subspace [19]. Here, we use a more direct way to prove
this property and simplify the derivation.

According to the CG algorithm, the direction vector pk+1(i) at the kth iteration for
the ith snapshot is constructed by the residual gk(i) and subtracting out any components
that are not the conjugacy with the previous pk(i). In other words, the direction vectors
are built from the residuals. Thus, the subspace spanned by the residuals is equal to the
subspace spanned by the direction vectors.

On the other hand, we know that gk(i) of the CCG algorithm with respect to the CMV
criterion is a linear combination of the previous residuals and R̂(i)pk(i). If defining Sk(i)

as the subspace spanned by the direction vectors and recalling pk+1(i) ∈ Sk(i) implies
that each new Sk+1(i) is formed from the previous Sk(i) and R̂(i)Sk(i), we have

Sk(i) = span{p1(i), R̂(i)p1(i), . . . , R̂
k−1

(i)p1(i)}
= span{g0(i), R̂(i)g0(i), . . . , R̂

k−1
(i)g0(i)}.

(3.29)

As we know, the residual vector can be written as

gk(i) = a(θ0)− R̂(i)vk(i) = R̂(i)%k(i), (3.30)

where %k(i) = vopt(i)−vk(i) is the CG-based weight error at the kth iteration and vopt(i)

is the optimal solution at the ith snapshot. According to (3.30), the second expression in
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(3.29) is given by

Sk(i) = span{R̂(i)%0(i), R̂
2
(i)%0(i), . . . , R̂

k
(i)%0(i)}, (3.31)

which is the well-known Krylov subspace [19]. For a fixed k, this subspace holds an
important property, which is

%k+1(i) =
(
I +

k∑
j=1

ψj(i)R̂
j
(i)

)
%0(i), (3.32)

where I is an identity matrix and the coefficient ψj(i) is a function of αl(i), where l =

j, . . . , k + 1, and βl′(i) with l′ = j, . . . , k. This property has been verified in [75]. Here,
we use an alternative way to get it. Substituting (3.12) and (3.13) into vk+1(i) iteratively,
we get

vk+1(i) = v0(i) +
k+1∑
j=1

αj(i)pj(i)

= v0(i) +
k+1∑
j=1

αj(i)
[
gj−1(i) + βj−1(i)gj−2(i) + . . .

+ βj−1(i) . . . β2(i)g1(i) + βj−1(i) . . . β1(i)p1(i)
]

= v0(i) +
{
Lgk

(i)gk(i) + Lgk−1
gk−1(i) + . . .

+ Lg1(i)g1(i) + Lp1(i)p1(i)
}
,

(3.33)

where
Lgk

(i) = αk+1(i);
Lgk−1

(i) = αk(i) + αk+1(i)βk(i);
Lg1(i) = α2(i) + α3(i)β2(i) + α4(i)β3(i)β2(i) + . . . + αk+1(i)βk(i)βk−1(i) . . . β2(i);
Lp1(i) = α1(i) + α2(i)β1(i) + α3(i)β2(i)β1(i) + . . . + αk+1(i)βk(i)βk−1(i) . . . β1(i).

In (3.33), the coefficients Lgl
(i) for l = 1, . . . , k are constants and p1(i) = g0(i).

Thus, this implies that
{
g0(i), . . . , gk(i)

} ∈ Sk(i). Subtracting (3.33) from vopt(i) and
combining the expressions in (3.30), (3.31), and (3.33), we obtain

%k+1(i) = %0(i) +
k∑

j=1

ψj(i)R̂
j
(i)%0(i), (3.34)

where ψj(i) has been defined in (3.32). Making a rearrangement leads to (3.32).

The importance of the expression (3.32) is to measure the error energy norm

L. Wang, Ph.D. Thesis, Department of Electronics, University of York 2009



52

‖%k+1(i)‖R̂(i) =
(
%H

k+1(i)R̂(i)%k+1(i)
)1/2 for the convergence analysis. The expression

in parentheses of (3.32) can be written as a polynomial Pk(R̂(i)) of degree k [75]. Then,
we have

%k+1(i) = Pk(R̂(i))%0(i), (3.35)

where %0(i) can be defined as a linear combination of distinct eigenvectors of R̂(i), which
yields %0(i) =

∑
j ξj(i)zj(i), where ξj(i) are scalars not all zero and j is the index that

corresponds to the number of the eigenvectors zj(i). If we notice that Pk(R̂(i))zj(i) =

Pk(ϑj(i))zj(i) [75], (3.35) can be expressed as

%k+1(i) =
∑

j

ξj(i)Pk(ϑj(i))zj(i), (3.36)

and so
‖%k+1(i)‖2

R̂(i)
=

∑
j

ξ2
j (i)P

2
k (ϑj(i))ϑj(i), (3.37)

where ϑj(i) is the eigenvalue corresponding to zj(i).

The proposed CCG algorithm tries to find the polynomial Pk(ϑj(i)) that minimizes
(3.37) for the convergence, which should be fast even with the worst eigenvector that
maximizes the terms on the right hand side of (3.37). Therefore, it implies

‖%k+1(i)‖2
R̂(i)

≤ min
Pk

max
ϑ(i)∈Λ(R̂(i))

P 2
k (ϑ(i))

∑
j

ξ2
j (i)ϑj(i)

= min
Pk

max
ϑ(i)∈Λ(R̂(i))

P 2
k (ϑ(i))‖%0(i)‖2

R̂(i)
,

(3.38)

where Λ(R̂(i)) is the set of the eigenvalues of R̂(i). In order to analyze the connection
between the error energy norm and the eigenvalues in (3.38), we employ the Chebyshev
polynomials, which yields [75]

Pk(ϑ(i)) =
Tk

(ϑmax(i)+ϑmin(i)−2ϑ(i)
ϑmax(i)−ϑmin(i)

)

Tk

(ϑmax(i)+ϑmin(i)
ϑmax(i)−ϑmin(i)

) , (3.39)

where Tk(ω) = 1
2
[(ω+

√
ω2 − 1)k+(ω−√ω2 − 1)k] denotes the Chebyshev polynomials

of degree k. This polynomial obeys the oscillating property of Chebyshev polynomials
on the domain ϑmin(i) ≤ ϑ(i) ≤ ϑmax(i) [74].
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Since the maximum value of the numerator of (3.39) is one, we have

‖%k+1(i)‖R̂(i) =
(
%H

k+1(i)R̂(i)%k+1(i)
)1/2

≤ Tk

(
ϑmax(i) + ϑmin(i)

ϑmax(i)− ϑmin(i)

)−1

‖%0(i)‖R̂(i)

= Tk

(
κ(i) + 1

κ(i)− 1

)−1

‖%0(i)‖R̂(i)

= 2

[(√
κ(i) + 1√
κ(i)− 1

)k

+

(√
κ(i)− 1√
κ(i) + 1

)k]−1

‖%0(i)‖R̂(i),

(3.40)

where κ(i) = ϑmax(i)/ϑmin(i) is the condition number. The second term inside the
brackets tends to zero as k increases, so the CCG algorithm convergence is governed
by [74]

‖%k+1(i)‖R̂(i) ≤ 2

(√
κ(i)− 1√
κ(i) + 1

)k

‖%0(i)‖R̂(i). (3.41)

In conclusion, the convergence behavior of the CG-based weight vector is related to
the CG-based weight error %0(i) and the condition number κ(i), which should oscillate
around κ(i) = 1 for the optimal solution, i.e., the convergence is finished in one iteration.

3.5 Simulations

In this section, we assess the effectiveness of the proposed algorithms over existing
methods with the CMV and the CCM criteria via computer simulations. The simulations
are carried out under both stationary and non-stationary scenarios by a ULA containing
m sensor elements with half-wavelength spacing. For each experiment, 1000 runs are
executed to get the curves. In all simulations, the desired signal power is σ2

0 = 1 and
the noise is spatially and temporally white Gaussian. The BPSK modulation scheme is
employed and γ = 1 is set to satisfy the condition for the convexity of the CCM criterion.

We compare the proposed algorithms with the SG [14], RLS [18], MSWF [28], and
AVF [29] methods according to the CMV criterion by showing the output signal-to-
interference-plus-noise ratio (SINR) versus the input signal-to-noise ratio (SNR). The
ULA is equipped with m = 10 sensor elements. We consider that the system has
qinf = 3 interferers, which have the same power of the desired user. The forgetting fac-
tor is λ = λf = 0.998 and the coefficients η = ηy = 0.49 since they lead to the best
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performance. The regularization parameters are δ = 0.002 for the CCG algorithm and
δ̃ = 0.001 for the MCG algorithm. The iteration number is K = m/2 for the CCG al-
gorithm. In Fig. 3.1, the output SINRs of the studied algorithms are very close except
for the SG method. The MSWF and RLS algorithms show superior performance over the
other methods. The AVF converges faster than the other methods. A general shortcom-
ing of these algorithms is the high computational cost. Conversely, the proposed MCG
algorithm converges quickly and reaches a comparable high performance with low com-
plexity. It is worth noting that the MSWF and AVF algorithms do not show advantages
in the current scenario since they are more suitable to the large array (e.g., m ≥ 30)
scenarios [27, 28, 65].
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Fig. 3.1: Output SINR versus the number of snapshots with q = 4 users and m = 10 sensor
elements.

Fig. 3.2 compares the proposed algorithms with the SG and RLS methods according
to the design criteria. There are qinf = 5 interferers in the system with one 5 dB above the
power of the desired user, one with the same power of the desired user, and three−0.5 dB
below the desired power. The CCM weight vectors wccm(0) and w̃ccm(0) are initialized for
keeping the constraint and running the iteration. The number of snapshots is fixed N =

1000. It is observed that the SINRs of the RLS and proposed algorithms increase with
the increase of the input SNR, whereas the SG results show only a small improvement.
This is explained by the fact that SG methods are subject to the eigenvalue spread of the
covariance matrix of the received vector. The proposed MCG curves approach the RLS
ones but with lower-complexity. Also, it is evident that the performance of the MCG
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algorithms is better than that of the CCG methods.

It is shown in Fig. 3.2 that the adaptive algorithms for the CCM criterion achieve su-
perior performance to those with the CMV criterion. For efficient presentation and con-
venience, we only illustrate the simulation results for the CCM criterion in the following
simulations.
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Fig. 3.2: Output SINR versus input SNR for the proposed algorithms with q = 6 users and m = 16
sensor elements.

In Fig. 3.3, we illustrate the performance of the proposed algorithms with an increasing
number of users. We consider the input SNR= 20 dB, interference-to-noise ratio (INR)=
20 dB, and N = 1000. The fact that the number of the interferers increases, deteriorates
the output SINR of all the algorithms. However, the results of the proposed algorithms are
still in good match with that of the RLS method. As the number of the interferers reach a
reasonably large value, the performance of the new algorithms is close to the RLS, which
shows that the proposed algorithms are robust in a severe environment.

Fig. 3.4 shows the beampatterns of the array of the existing and proposed algorithms.
The DOA of the desired user is θ0 = 50o. There are five interferers with one 5 dB
(θ1 = 40o), one 0 dB (θ2 = 70o), and three −5 dB (θ3 = 20o, θ4 = 30o, and θ5 = 60o)
above the desired power. The input SNR= 20 dB and the number of snapshots N = 1000.
From Fig. 3.4, the mainlobe beams of the studied algorithms direct at the direction of the
desired user. The proposed algorithms have nulls (arrows in Fig. 3.4) at the directions of
arrival of the interferers, especially for the MCG method, which forms the nulls as deep
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Fig. 3.3: Output SINR versus the number of users (q) for the proposed algorithms with m = 16
sensor elements.

as those of the RLS method.

The mismatch (steering vector error) condition is analyzed in Fig. 3.5, which includes
two experiments. Fig. 3.5(a) shows the output SINR of each method versus the number
of snapshots with the known DOA of the desired user. The system works under the same
condition as that in Fig. 3.2 with SNR= 20 dB. The results demonstrate that the proposed
algorithms converge faster and have better output SINR than the SG algorithm. The
performance under the mismatch scenario is given in Fig. 3.5(b). The estimated DOA of
the desired user is a constant value 10 away from the actual direction. It indicates that the
mismatch problem induces a worse performance to all the algorithms. The convergence
rate of all the methods reduces whereas the devised algorithms are more robust to this
mismatch compared with the SG method and work with lower computational complexity
compared with RLS method, especially for the MCG algorithm, whose curve reaches the
steady-state rapidly and is very close to that of the RLS method.

In the last experiment, we evaluate the performance of the proposed and analyzed
algorithms in a non-stationary scenario, namely, when the number of users change.

In Fig. 3.6, the system starts with qinf = 5 interferers, one with the same power of the
desired user and the rest −0.5 dB below the desired power. Two more users with one 5
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Fig. 3.4: Array beampattern versus degree for the proposed algorithms with m = 16 sensor ele-
ments.
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Fig. 3.5: Output SINR versus the number of snapshots for (a) ideal steering vector condition. (b)
steering vector with mismatch.
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dB above the desired power and one −0.5 dB below the desired power enter the system
at the 1000th snapshot. The coefficients are set to the same values as those in the first
experiment. From Fig. 3.6, we see that the SINR performance of the algorithms degrades
at N = 1000. Note that we set the SINR values of all the methods at N = 1000 around
−10 dB to show the convergence behavior. The proposed algorithms rapidly track the
change and recover to a steady-state. The MCG algorithm recovers quickly and achieves
a better solution. The CCM-RLS method achieves the best output but with a relatively
slow response at the second stage.
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Fig. 3.6: Output SINR versus the number of snapshots in a scenario where additional interferers
suddenly enter and/or leave the system.

Fig. 3.7 depicts the coefficients α̃ccm(i) and β̃ccm(i) of the proposed MCG algorithm
in the non-stationary scenario, respectively. Both α̃ccm(i) and β̃ccm(i) are close to zero
in the steady-state condition since, for α̃ccm(i), according to ṽccm(i) = ṽccm(i − 1) +

α̃ccm(i)p̃ccm(i), α̃ccm(i) = 0 means that ṽccm(i) = ṽccm(i − 1), which proves the con-
vergence, and for β̃ccm(i), according to β̃ccm(i) =

[
g̃H

ccm(i − 1)g̃ccm(i − 1)
]−1[

g̃ccm(i) −
g̃ccm(i− 1)

]H
g̃ccm(i), the residual vector g̃ccm(i) will be close to zero after the algorithm

converges and so β̃ccm(i) → 0. The only interruptions for both figures occur when the
extra interferers come into the system, which verifies the adaptability of the coefficients.
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Fig. 3.7: Step size values α and β of the proposed CCM-MCG algorithm in a scenario where
additional interferers suddenly enter and/or leave the system.

3.6 Conclusions

In this chapter, we introduced CG-based adaptive algorithms with the CMV and CCM
criteria for beamforming. We use a CG-based weight vector to create a relation between
the constrained system of equation and the weight expression. A complexity compari-
son was given for illustrating the advantage of the proposed algorithms over the existing
ones. The CCM convexity property was established and a convergence analysis for the
CG-based weight vector was derived. Simulation results showed that the proposed algo-
rithms achieve fast convergence and tracking abilities with low complexity in the studied
scenarios.
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In this chapter, we introduce CMV reduced-rank algorithms based on joint iterative
optimization (JIO) of filters for beamforming and DOA estimation. This chapter can be
divided into two parts. In the first part (section 4.1-4.7), we introduce the JIO scheme and
use it to develop CMV adaptive algorithms for beamforming. In the second part (section
4.8-4.12), we employ the JIO scheme to derive a DOA estimation algorithm.

4.1 Introduction for Beamforming

The adaptive array processing algorithms we introduced in the previous chapters are
full-rank methods. The common drawback of the full-rank methods is that they require
a large amount of samples to reach the steady-state when the number of elements in the
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filter is large. Furthermore, in dynamic scenarios, filters with many elements usually fail
or provide poor performance in tracking signals embedded in interference and noise.

Reduced-rank signal processing was originally motivated to provide a way out of this
dilemma [21]- [25]. For the application of beamforming, reduced-rank schemes project
the received vector onto a lower dimensional subspace and perform the filter optimization
within this subspace. One of the popular reduced-rank schemes is MSWF, which em-
ploys MMSE [26], and its extended versions that utilize the CMV and CCM criteria were
reported in [27, 50]. Another technique that resembles the MSWF is the AVF [29, 30] ,
which generates the same Krylov subspace as proved in [65, 80]. Despite the improved
convergence and tracking performance achieved by these methods, they require high com-
putational cost and suffer from numerical problems.

We propose CMV reduced-rank algorithms based on constrained joint iterative opti-
mization (JIO) of filters for beamforming. The proposed scheme, whose initial results
were reported in [81], jointly optimizes a transformation matrix and a reduced-rank fil-
ter that operates at the output of the transformation matrix. The essence of the proposed
approach is to change the role of adaptive CMV filters. The bank of adaptive filters is
responsible for performing dimensionality reduction, whereas the reduced-rank filter ef-
fectively forms the beam in the direction of the SOI. We describe the CMV expressions
for the design of the transformation matrix and the reduced-rank filter and present SG
and RLS algorithms for efficiently implementing the method. We also introduce an auto-
matic rank estimation algorithm for determining the most adequate rank for the proposed
algorithms. An analysis of the stability and the convergence properties of the proposed
algorithms is presented and semi-analytical expressions are derived for predicting their
performance.

4.2 Problem Statement

The CMV optimization problem has been given in (2.3) and the weight solution in
(3.1), which can be estimated via the SG or RLS algorithms. However, the laws that
govern their convergence and tracking behaviors imply that they depend on the number
of elements m and on the eigenvalue spread of the input covariance matrix R.

A reduced-rank algorithm must extract the most important features of the processed
data by performing dimensionality reduction. This mapping is carried out by a transfor-
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mation matrix T r ∈ Cm×r with r ≤ m on the received data as given by

x̄(i) = T H
r (i)x(i), (4.1)

where, in what follows, all r dimensional quantities are denoted with a over “bar”. The
resulting projected received vector x̄(i) is the input to a filter represented by w̄(i) =

[w̄1(i), w̄2(i), . . . , w̄r(i)]
T ∈ Cr×1. The filter output is

y(i) = w̄H(i)x̄(i). (4.2)

The reduced-rank filter w̄(i) is designed according to minimizing the following cost
function

Jmv
(
w̄(i)

)
= E

[|w̄H(i)x̄(i)|2], subject to w̄H(i)ā(θ0) = γ, (4.3)

where ā(θ0) = T H
r (i)a(θ0) is the reduced-rank steering vector and γ = 1 is set.

The weight solution of the above problem is

w̄opt =
R̄
−1

ā(θ0)

āH(θ0)R̄
−1

ā(θ0)
, (4.4)

where R̄ = E[x̄(i)x̄H(i)] = T H
r RT r is the reduced-rank covariance matrix. The associ-

ated MV for a CMV filter with rank r is

MV =
1

aH(θ)T r

(
T H

r RT r

)−1
T H

r a(θ0)
. (4.5)

The above development shows that the main problem is how to cost-effectively design
T r to perform dimensionality reduction on x(i), resulting in an improved convergence
and tracking performance over the full-rank filter. In Appendix D, we provide a necessary
and sufficient condition for T r to preserve the MV of optimal full-rank filter and discuss
the existence of multiple solutions. In the following, we detail our proposed reduced-rank
method.

4.3 Proposed Reduced-rank Method

The proposed JIO scheme, depicted in Fig. 4.1, employs a matrix T r(i) to perform
dimensionality reduction on a data vector x(i). The reduced-rank filter w̄(i) processes
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the reduced-rank data vector x̄(i) in order to yields scalar estimate y(i). The transforma-
tion matrix T r(i) and the reduced-rank filter w̄(i) are jointly optimized in the proposed
scheme according to the MV criterion subject to a constraint that ensures that the reduced-
rank array response is equal to unity in the direction of the SOI.

Projection Matrix Reduced-rank Filter

Proposed Algorithm

( )ix

( )
r

iT ( )iw

( )ix ( ) ( ) ( )
H

y i i i= w x

Fig. 4.1: The JIO reduced-rank structure.

The transformation matrix is structured as a bank of r full-rank filters tj(i) =

[t1,j(i), t2,j(i), . . . , tm,j(i)]
T ∈ Cm×1, (j = 1, . . . , r) as given by T r(i) =

[t1(i), t2(i), . . . , tr(i)]. The output y(i) of the proposed reduced-rank scheme can be ex-
pressed as a function of the received vector x(i), the transformation matrix T r(i), and the
reduced-rank filter w̄(i):

y(i) = w̄H(i)T H
r (i)x(i) = w̄H(i)x̄(i). (4.6)

It is interesting to note that for r = 1, the proposed scheme becomes a conventional
full-rank CMV filtering scheme with an additional weight parameter wr that provides an
amplitude gain. For r > 1, the signal processing tasks are changed and the full-rank CMV
filters compute a subspace projection and the reduced-rank filter provides a unity gain in
the direction of the SOI. This rationale is fundamental to the exploitation of the low-rank
nature of signals in typical beamforming scenarios.

The CMV expressions for the filters T r(i) and w̄(i) can be computed via minimizing

JJIO-MV
(
T r(i), w̄(i)

)
= E

[|w̄H(i)T H
r (i)x(i)|2] = w̄H(i)T H

r (i)RT r(i)w̄(i),

subject to w̄H(i)T H
r (i)a(θ0) = 1.

(4.7)

In order to solve the above problem, we resort to the method of Lagrange multipliers
and transform the constrained optimization into an unconstrained one expressed by

Lun
(
T r(i), w̄(i)

)
= E

[|w̄H(i)T H
r (i)x(i)|2] + 2 R

[
λ
(
w̄H(i)T H

r (i)a(θ0)− 1
)]

, (4.8)
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where λ is a scalar Lagrange multiplier. By fixing w̄(i), minimizing (4.8) with respect to
T r(i) and solving for λ, we have

T r(i) =
R−1a(θ0)w̄

H(i)R̄
−1
w̄

w̄H(i)R̄
−1
w̄ w̄(i)aH(θ0)R

−1a(θ0)
, (4.9)

where R = E[x(i)xH(i)] and R̄w̄ = E[w̄(i)w̄H(i)]. By fixing T r(i), minimizing (4.8)
with respect to w̄(i) and solving for λ, we arrive at the expression

w̄(i) =
R̄
−1

ā(θ0)

āH(θ0)R̄
−1

ā(θ0)
, (4.10)

where R̄ = E[T H
r (i)x(i)xH(i)T r(i)] = E[x̄(i)x̄H(i)]. The associated MV is

MV =
1

āH(θ0)R̄
−1

ā(θ0)
. (4.11)

Note that the filter expressions in (4.9) and (4.10) are not closed-form solution for
w̄(i) and T r(i) since (4.9) is a function of w̄(i) and (4.10) depends on T r(i). Thus, it is
necessary to iterate (4.9) and (4.10) with initial values to obtain a solution. An analysis
of the optimization problem in (4.7) is given in Appendix E. Unlike existing approaches
based on MSWF [27] and AVF [30], the proposed scheme provides an iterative exchange
of information between the reduced-rank filter and the transformation matrix and leads
to a much simpler adaptive implementation. The transformation matrix reduces the di-
mension of the input data, whereas the reduced-rank filter yields a unity response in the
direction of the SOI. The key strategy lies in the joint optimization of the filters. The rank
r must be set by the designer to ensure appropriate performance or can be estimated via
another algorithm. In the next section, we seek iterative solutions via adaptive algorithms
for the design of T r(i) and w̄(i), and automatic rank adaptation algorithms.

4.4 Adaptive Algorithms

In this section, we present adaptive SG and RLS versions of the proposed scheme. We
also consider the important issue of automatically determining the rank of the scheme via
the proposal of an adaptation technique. We then provide the computational complexity
in arithmetic operations of the proposed reduced-rank algorithms.
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4.4.1 Stochastic Gradient Algorithm

We present a low-complexity SG adaptive reduced-rank algorithm, which was reported
in [81] and is reproduced here for convenience. By computing the instantaneous gradient
terms of (4.8) with respect to T r(i) and w̄(i), we get

∇Lun,T r(i) = y∗(i)x(i)w̄H(i) + 2λTra(θ0)w̄
H(i),

∇Lun,w̄(i) = y∗(i)T H
r (i)x(i) + 2λw̄T H

r (i)a(θ0).
(4.12)

By introducing the positive step sizes µTr and µw̄, using the gradient rules T r(i+1) =

T r(i)− µTr∇Lun,T r(i) and w̄(i + 1) = w̄(i)− µw̄∇Lun,w̄(i), enforcing the constraint and
solving the resulting equations, we obtain

T r(i + 1) = T r(i)− µTry
∗(i)[x(i)w̄H(i)− (

aH(θ0)a(θ0)
)−1

a(θ0)w̄
H(i)aH(θ0)x(i)],

(4.13)
w̄(i + 1) = w̄(i)− µw̄y∗(i)[I − (

āH(θ0)ā(θ0)
)−1

ā(θ0)ā
H(θ0)]x̄(i), (4.14)

where y(i) = w̄H(i)T H
r (i)x(i). The proposed scheme trades-off a full-rank filter against

one transformation matrix T r(i) and one reduced-rank adaptive filter w̄(i) operating si-
multaneously and exchanging information. We call the SG-based algorithm JIO-SG.

4.4.2 Recursive Least Squares Algorithms

Here we derive an RLS adaptive reduced-rank algorithm for the proposed method. To
this end, let us first consider the Lagrangian

Lun
(
T r(i), w̄(i)

)
=

i∑

l=1

αi−l|w̄H(i)T H
r (i)x(l)|2 + 2 R[λ

(
w̄H(i)T H

r (i)a(θ0)− 1
)
],

(4.15)
where α is the forgetting factor chosen as a positive constant close to, but less than 1.

Fixing w̄(i), computing the gradient of (4.15) with respect to T r(i), equating the gra-
dient to a null vector and solving for λ, we obtain

T r(i) =
R̂
−1

(i)a(θ0)w̄
H(i)R̄

−1
w̄ (i)

w̄H(i)R̄
−1
w̄ (i)w̄(i)aH(θ0)R̂

−1
(i)a(θ0)

, (4.16)

where R̂(i) =
∑i

l=1 αi−lx(l)xH(l) is the estimate of the input covariance matrix, and
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R̄w̄(i) = w̄(i)w̄H(i) is the reduced-rank weight matrix at time instant i. The computation
of (4.16) includes the inversion of R̂(i) and R̄w̄(i), which may increase significantly
the complexity and create numerical problems. However, the expression in (4.16) can
be further simplified using the constraint w̄H(i)T H

r (i)a(θ0) = 1. The details of the
derivation of the proposed RLS algorithm and the simplification are given in Appendix F.
The simplified expression for T r(i) is given by

T r(i) =
Φ̂(i)a(θ0)ā

H(θ0)

aH(θ0)Φ̂(i)a(θ0)
, (4.17)

where Φ̂(i) = R̂
−1

(i). Employing the matrix inversion lemma [18], we obtain

k(i) =
α−1Φ̂(i− 1)x(i)

1 + α−1xH(i)Φ̂(i− 1)x(i)
, (4.18)

Φ̂(i) = α−1Φ̂(i− 1)− α−1k(i)xH(i)Φ̂(i− 1), (4.19)

where k(i) ∈ Cm×1 is Kalman gain vector. We set Φ̂(0) = δI to start the recursion of
(4.19), where δ is a positive constant.

Assuming T r(i) is known and taking the gradient of (4.15) with respect to w̄(i), equat-
ing the terms to a zero vector and solving for λ, we obtain the reduced-rank filter

w̄(i) =
ˆ̄Φ(i) ¯a(θ0)

āH(θ) ˆ̄Φ(i)ā(θ0)
, (4.20)

where ˆ̄Φ(i) = ˆ̄R−1(i) and ˆ̄R(i) =
∑i

l=1 αi−lx̄(i)x̄H(i) is the estimate of the reduced-
rank covariance matrix. Using the matrix inversion lemma, we have

k̄(i) =
α−1 ˆ̄Φ(i− 1)x̄(i)

1 + α−1x̄H(i) ˆ̄Φ(i− 1)x̄(i)
, (4.21)

ˆ̄Φ(i) = α−1 ˆ̄Φ(i− 1)− α−1k̄(i)x̄H(i) ˆ̄Φ(i− 1), (4.22)

where k̄(i) ∈ Cr×1 is the reduced-rank gain vector and ˆ̄Φ(i) = ˆ̄R−1(i). The recursion of
(4.22) is initialized by choosing ˆ̄Φ(0) = δ̄I , where δ̄ is a positive constant.

The proposed RLS algorithm trades-off a full-rank filter with m coefficients against
one transformation matrix T r(i), given in (4.17)-(4.19) and one reduced-rank adaptive
filter w̄(i), given in (4.20)-(4.22), operating simultaneously and exchanging information.
We call this proposed algorithm JIO-RLS.
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4.4.3 Complexity of Proposed Algorithms

Here, we evaluate the computational complexity of the proposed and analyzed CMV
algorithms. The complexity of the proposed JIO-SG algorithm is 4rm + m + 2r − 3 for
additions and 4rm + m − 7r + 3 for multiplications, which grow linearly with rm and
are about r times higher than the full-rank SG algorithm and significantly lower than the
MSWF-SG [27]. If r ¿ m then the additional complexity can be acceptable provided
the gains in performance justify them. In the case of the proposed JIO-RLS algorithm the
complexity is quadratic with m2 and r2. This corresponds to a complexity slightly higher
than the one observed for the full-rank RLS algorithm, provided r is significantly smaller
than m, and comparable to the cost of the MSWF-RLS [27] and the AVF [30].

4.4.4 Automatic Rank Selection

The performance of the algorithms described in the previous subsections depends on
the rank r. This motivates the development of methods to automatically adjust r on the ba-
sis of the cost function. Unlike prior methods for rank selection which utilize the MSWF-
based algorithms [27] or the AVF-based recursions [82], we focus on an approach that
jointly determines r based on the LS criterion computed by the filters T (r)

r (i) and w̄(r)(i),
where the subscript (r) denotes the rank used for the adaptation. In particular, we present
a method for automatically selecting the ranks of the algorithms based on the exponen-
tially weighted a posteriori least-squares type cost function described by

Jpmv
(
T (r)

r (i− 1), w̄(r)(i− 1)
)

=
i∑

l=1

%i−l|w̄(r) H

(i− 1)T (r) H
r (i− 1)x(l)|2, (4.23)

where % is the exponential weight factor that is required as the optimal rank r can change
as a function of the time instant i. The key quantities to be updated are the transformation
matrix T (r)

r (i), the reduced-rank filter w̄(r)(i), the associated reduced-rank steering vector
ā(θ0) and the inverse of the estimate of the reduced-rank covariance matrix ˆ̄Φ(i) (for JIO-
RLS). To this end, we define the following extended transformation matrix T (r)

r (i) and
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the extended reduced-rank filter weight vector w̄(r)(i) as follows:

T (r)
r (i) =




t1,1 t1,2 . . . t1,rmin . . . t1,rmax

t2,1 t2,2 . . . t2,rmin . . . t2,rmax

...
...

...
...

...
...

tm,1 tm,2 . . . tm,rmin . . . tm,rmax




,

w̄(r)(i) =
[
w̄1 w̄2 . . . w̄rmin . . . w̄rmax

]T

.

(4.24)

The extended transformation matrix T (r)
r (i) and the extended reduced-rank filter

weight vector w̄(r)(i) are updated along with the associated quantities ā(θ0) and ˆ̄Φ(i)

for the maximum allowed rank rmax and then the proposed rank adaptation algorithm de-
termines the rank that is best for each time instant i using the cost function in (4.23). The
proposed rank adaptation algorithm is then given by

ropt = arg min
rmin≤j≤rmax

Jpmv
(
T (j)

r (i− 1), w̄(j)(i− 1)
)
, (4.25)

where j is an integer between rmin and rmax. Note that a smaller rank may provide faster
adaptation during the initial stages of the estimation procedure and a greater rank usually
yields a better steady-state performance. Our studies reveal that the range for which the
rank r of the proposed algorithms have a positive impact on the performance of the algo-
rithms is limited, being from rmin = 3 to rmax = 8 for the reduced-rank filter recursions.
These values are rather insensitive to the system load (number of users), to the number
of array elements and work very well for all scenarios and algorithms examined. The
additional complexity of the proposed rank adaptation algorithm is that it requires the up-
date of all involved quantities with the maximum allowed rank rmax and the computation
of the cost function in (4.23). This procedure can significantly improve the convergence
performance and can be relaxed (the rank can be made fixed) once the algorithm reaches
steady state. Choosing an inadequate rank for adaptation may lead to performance degra-
dation, which gradually increases as the adaptation rank deviates from the optimal rank.
A mechanism for automatically adjusting rmin and rmax based on a figure of merit and
the processed data would be an important technique to be investigated. For example, this
mechanism could in principle adjust rmin and rmax in order to address the needs of the
model and the performance requirements. This remains a topic for future investigation.

One can also argue that the proposed rank adaptation may not be universally applied
to signal processing problems, even though it has been proven highly effective to the
problems we dealt with. Another possibility for rank adaptation is the use of the cross-
validation (CV) method reported in [82]. This approach selects the lengths of the filters
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that minimize a cost function that is estimated on the basis of data that have not been
used in the process of building the filters themselves. This approach based on the con-
cept of ”leave one out” can be used to determine the rank without requiring any prior
knowledge or the setting of a range of values [82]. A drawback of this method is that it
may significantly increase the length of the filters, resulting in higher complexity. Other
possible approaches for rank selection may rely on some prior knowledge about the envi-
ronment and the system for inferring the required rank for operation. The development of
cost-effective methods for rank selection remains an interesting area for investigation.

4.5 Analysis of Algorithms

In this section, we present the stability of the MSE convergence analyses of the pro-
posed SG algorithms. Specifically, we consider the joint optimization approach and derive
conditions of stability for the proposed SG algorithm. We then assume that the algo-
rithms will convergence and carry out the MSE convergence analysis in order to semi-
analytically determine the MSE upon convergence. The RLS algorithms are expected to
convergence to the optimal CMV filter and this has been verified in our studies. A dis-
cussion on the preservation of the MV performance, the existence of multiple solutions
and an analysis of the optimization of the proposed scheme valid for both SG and RLS
algorithms is included in Appendix D.

4.5.1 Stability Analysis

In order to establish conditions for the stability of the JIO-SG algorithm, we define the
error matrices at time instant i as

eTr(i) = T r(i)− T r,opt, (4.26)

ew̄(i) = w̄(i)− w̄opt, (4.27)

where T r,opt and w̄opt are the optimal parameter estimators. Since we are dealing with a
joint optimization procedure, both filters have to be considered jointly. By substituting
the expressions of eTr(i) and ew̄(i) in (4.13) and (4.14), respectively, and rearranging the
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terms, we obtain

eTr(i + 1) =
{

I − µTr
[I − (aH(θ0)a(θ0))−1a(θ0)aH(θ0)]x(i)xH(i)

}
eTr

(i)

− µTr [I − (aH(θ0)a(θ0))−1a(θ0)aH(θ0)]x(i)w̄H(i)xH(i)T r(i)ew̄(i)

+ µTr
[I − (aH(θ0)a(θ0))−1a(θ0)aH(θ0)]x(i)xH(i)[T r(i)(I− w̄optw̄

H(i))− T r,opt],

(4.28)

ew̄(i + 1) =
{

I − µw̄[I − (āH(θ0)ā(θ0))−1ā(θ0)āH(θ0)]x̄(i)x̄H(i)
}
ew̄(i)

− µw̄[I − (āH(θ0)ā(θ0))−1ā(θ0)āH(θ0)]x̄(i)xH(i)eTr
(i)

+ µw̄[I − (āH(θ0)ā(θ0))−1ā(θ0)āH(θ0))T H
r (i)]x̄(i)x̄H(i)(T r(i)(I − w̄opt)− T r,opt).

(4.29)

Taking expectations and simplifying the terms, we have

[
E[eTr(i + 1)]

E[ew̄(i + 1)]

]
= P

[
E[eTr(i)]

E[ew̄(i)]

]
+ T , (4.30)

where

P =

[
I − µTr [I − (aH(θ0)a(θ0))−1a(θ0)aH(θ0)]x(i)xH(i) −µTr [I − a(θ0)aH(θ0)]x(i)w̄H(i)xH(i)T r(i)

−µw̄[I − (āH(θ0)ā(θ0))−1ā(θ0)āH(θ0)]x̄(i)xH(i) I − µw̄[I − (āH(θ0)ā(θ0))−1ā(θ0)āH(θ0)]x̄(i)x̄H(i)

]

T =

[
µTr [I − (aH(θ0)a(θ0))−1a(θ0)aH(θ0)]x(i)xH(i)[T r(i)(I− w̄optw̄H(i))− T r,opt]

µw̄[I − (āH(θ0)ā(θ0))−1ā(θ0)āH(θ0))T H
r (i)]x̄(i)x̄H(i)(T r(i)(I − w̄opt)− T r,opt)

]
.

The previous equations imply that the stability of the algorithms depends on the spec-
tral radius of P . For convergence, the step sizes should be chosen such that the eigen-
values of P HP are less than one. Unlike the stability analysis of most adaptive algo-
rithms [18], in the proposed approach the terms are more involved and depend on each
other as evidenced by the equations in P and T .

4.5.2 MSE Convergence Analysis

Let us consider in this part an analysis of the MSE in steady state. This follows the
general steps of the MSE convergence analysis of [18] even though novel elements will
be introduced in the proposed framework. These novel elements in the analysis are the
joint optimization of the two adaptive filters T r(i) and w̄r(i) of the proposed scheme and
a strategy to incorporate the effect of the step size of the recursions in (4.13) and (4.14).
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Let us define the MSE at time i + 1 using the relations

ew(i + 1) = w(i + 1)−wopt, (4.31)

and
ξ(i) = E[wH(i)x(i)x(i)w(i)], (4.32)

where wopt is the full-rank optimal weight solution and w(i) = T r(i)w̄(i) with m coef-
ficients is the r rank approximation of a full-rank filter obtained with an inverse mapping
performed by T r(i).

The MSE of the proposed scheme can be expressed by

MSE(i) = E[|d(i)−wH(i)x(i)|2]
= εmin + ξ(i)− ξmin − E[eH

w (i)]a(θ0)− aH(θ0)E[ew(i)]

= εmin + ξex(i)− E[eH
w (i)]a(θ0)− aH(θ0)E[ew(i)],

(4.33)

where d(i) corresponds to the desired signal and εmin = E[|d(i)−wH
optx(i)|2] is the MSE

with
wopt = ξminR

−1a(θ0), (4.34)

where ξmin = 1/(aH(θ0)R
−1a(θ0)) is the minimum variance, and ξex(i) = ξ(i) −

ξmin is the excess MSE due to the adaptation process at the time instant i. Since
limi→∞ E[ew(i)] = 0, we have

lim
i→∞

MSE(i) = εmin + lim
i→∞

ξex(i), (4.35)

where ξex(∞) term in (4.35) is the steady-state excess MSE resulting from the adaptation
process. The main difference here from prior work lies in the fact that this refers to the
excess MSE produced by a r rank approximation filter w(i). In order to analyze the
trajectory of ξ(i), let us rewrite it as

ξ(i) = E[wH(i)x(i)xH(i)w(i)]

= E[w̄H(i)T H
r (i)x(i)xH(i)T r(i)w̄(i)]

= trace E[Rw(i)R],

(4.36)

where Rw(i) = E[w(i)wH(i)] = woptw
H
opt +E[ew(i)]wH

opt +woptE[eH
w (i)]+Rew(i) [27].

To proceed with the analysis, we must define the quantities R = ΨΛΨH , where the
columns of Ψ are the eigenvectors of the symmetric and positive semi-definite matrix R

and Λ is the diagonal matrix of the corresponding eigenvalues, Rew(i) = E[ew(i)eH
w (i)],

L. Wang, Ph.D. Thesis, Department of Electronics, University of York 2009



72

the rotated tap error vector ẽw(i) = ΨHew(i), the rotated signal vectors x̄(i) = ΨHx(i),
ã(θ0) = ΨHa(θ0) and Rẽw(i) = E[ẽw(i)ẽH

w (i)] = ΨHRew(i)Ψ. Rewriting (4.36) in
terms of the above transformed quantities we have

ξ(i) = trace E[ΛΨHRwΨ]

= ξmin + trace
{
E

[
ẽw(i)ãH(θ0) + ã(θ0)E[ẽH

w (i)] + ΛRẽw(i)
]}

.
(4.37)

Since limi→∞ E[ẽw(i)] = 0, then limi→∞ ξ(i) = ξmin+trace[ΛRẽw ]. Thus, it is evident
that to assess the evolution of ξ(i) it is sufficient to study Rẽw(i).

Using eTr(i) and ew̄(i) and combining them to compute ew(i), we get

ew(i) = w(i)−wopt = T r(i)w̄(i)− T r, optw̄opt

= eTr(i)ew̄(i) + T r,optew̄(i) + eTr(i)w̄opt.
(4.38)

Substituting the expressions for eTr(i + 1) and ew̄(i + 1) in (4.28) and (4.29), respec-
tively, to compute ew(i + 1), we have

ew(i + 1) =ew(i)− µw̄y∗(i)T r(i)r̄p(i)− µTry
∗(i)T rp(i)w̄(i)

+ µTrµw̄

(
y∗(i)

)2
T rp(i)r̄p(i) + T r,optew̄(i) + eTr(i)w̄opt,

(4.39)

where

T rp(i) =
(
I − (aH(θ0)a(θ0))

−1a(θ0)a
H(θ0)

)
x(i)w̄H(i)

r̄p(i) = (I − (T r(i)a
H(θ0)T

H
r (i)a(θ0))

−1T r(i)a(θ0)a
H(θ0)T

H
r (i)T r(i)x(i).

We can further rewrite the expression above in order to obtain a more compact and
convenient representation as

ew(i + 1) = (I −Q)ew(i) + BC + µTrµw̄

(
y∗(i)

)2
T rp(i)r̄p(i) + eTrw̄opt, (4.40)

where

Q = µw̄T r(i)r̄p(i)x
H(i) + µTrT rp(i)w̄(i)xH(i)− T r,opt

B = −µw̄T r(i)r̄p(i)x
H(i)− µTrT rp(i)w̄(i)xH(i)

C = eT r(i)w̄opt + T r,optew̄(i) + eTr(i)w̄opt.

L. Wang, Ph.D. Thesis, Department of Electronics, University of York 2009



73

Now, we need to compute Rew(i + 1) = E[ew(i + 1)eH
w (i + 1)] by using the result in

(4.40), which yields,

Rew(i + 1) =(I −Q)Rew(i)(I −Q)H + (I −Q)ew(i)CHBH

+ µTrµw̄(y∗)2(I −Q)ew(i)(r̄H
p (i)T H

rp
(i))

+ (I −Q)ew(i)w̄H
optT

H
r,opt + BCeH

w (i)(I −A)H

+ BCCHBH + µTrµw̄(y∗(i))2BCr̄H
p (i)T H

rp
(i)

+ BCwH
opte

H
Tr

(i) + µTrµw̄(y∗(i))2T rp(i)r̄p(i)e
H
w (i)(I −Q)H

+ µTrµw̄(y∗(i))2T rp(i)r̄p(i)C
HQH

+ (µTrµw̄)2|y∗|4T rp(i)r̄p(i)r̄
H
p (i)T rp(i)

+ µTrµw̄(y∗(i))2eTr(i)w̄optr̄p(i)T rp(i)

− eTr(i)w̄opte
H
w (i)(I −Q)H + eTr(i)w̄optC

HBH

+ eTr(i)w̄optw̄
H
opte

H
Tr

(i).

(4.41)

Since E[ew(i)] = 0 and E[eTr(i)] = 0, we can simplify the previous expression and
obtain

Rew(i + 1) =(I −Q)Rew(i)(I −Q)H

+ BCCHBH + µTrµw̄(y∗(i))2BCr̄H
p (i)T H

rp
(i)

+ µTrµw̄(y∗(i))2T rp(i)r̄p(i)C
HQH

+ (µTrµw̄)2|y∗(i)|4T rp(i)r̄p(i)r̄
H
p (i)T rp(i)

+ eTr(i)w̄optw̄
H
opte

H
Tr

(i).

(4.42)

Solving for Rew , the MSE can be computed by

MSE(i + 1) = εmin + trace[ΛRẽw(i)] = εmin + trace[ΛΨRew(i)ΨH ]. (4.43)

It should be remarked that the expression for Rew(i) is quite involved and requires a
semi-analytical approach with the aid of computer simulations for its computation. This
is because the terms resulting from the joint adaptation create numerous extra terms in the
expression of Rew(i), which are very difficult to isolate. We found that using computer
simulations to pre-compute the terms of Rew(i) as a function of the step sizes was more
practical and resulted in good match between the semi-analytical and simulated curves.
In the following section, we will demonstrate that it is able to predict the performance of
the proposed SG algorithm.
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4.6 Simulations

In this section we evaluate the performance of the proposed and the analyzed beam-
forming algorithms via computer simulations. We also verify the validity of the MSE
convergence analysis of the previous section. A smart antenna system with a ULA con-
taining m sensor elements is considered for assessing the beamforming algorithms. In
particular, the performance of the proposed JIO-SG and JIO-RLS algorithms is com-
pared with existing techniques, namely, the full-rank CMV-SG [14] and CMV-RLS [17],
and the reduced-rank algorithms with T r(i) designed according to the MSWF [27], the
AVF [82] and the optimal linear beamformer that assumes the knowledge of the covari-
ance matrix [8]. In particular, the algorithms are compared in terms of the MSE and the
SINR. For each scenario, 200 runs are used to obtain the curves. In all simulations, the
desired signal power is σ2

d = 1. The filters are initialized as w̄(0) = [1, 0, . . . , 0] and
T r(0) = [IT

r 0T
r×(m−r)], where 0r×(m−r) is a r × (m− r) matrix.

4.6.1 MSE Analysis Performance

In this part, we verify that the results in (4.40) and (4.42) on MSE convergence analysis
of the proposed reduced-rank SG algorithms can provide a means of estimating the MSE
upon convergence. The steady state MSE between the desired and the estimated symbol
obtained through simulation is compared with the steady state MSE computed via the
expressions derived in Section 4.5. In order to illustrate the usefulness of our analysis
we have carried out some experiments. To semi-analytically compute the MSE for the
SG recursion, we have used (4.34) and assumed the knowledge of the data covariance
matrix R. We consider 5 interferers (q = 6 users in total - the SOI and the interferers) at
−60o, −30o, 0o, 45o, 60o with powers following a log-normal distribution with associated
standard deviation 3 dB around the SOI’s power level, which impinges on the array at 15o.

We compare the results obtained via simulations with those obtained by the semi-
analytical approach presented in Section 4.5. In particular, we consider two sets of pa-
rameters in order to check the validity of our approach. One of the sets has larger step
sizes (µTr = 0.0025 and µw̄ = 0.01), whereas the other set employs smaller step sizes (
µTr = 0.001 and µw̄ = 0.001) for the recursions. The results shown in Fig. 4.2 indicate
that the curves obtained with the semi-analytical approach agrees with those obtained via
simulations for both sets of parameters, verifying the validity of our analysis. The initial
values of the curves are not exact 0 dB since the initialization of the reduced-rank weight
vector w̄(0) influences the beamformer output. Note that the algorithms with smaller step
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sizes converge slower than the algorithms equipped with larger step sizes. However, the
proposed algorithms with smaller step sizes converge to the same level of MSE as the
optimal CMV, whereas the proposed algorithms with larger step sizes exhibit a higher
level of misadjustment. The MSE of the optimal CMV is not as low as −15 dB due to the
impact of the interference. In what follows, we will consider the convergence rate of the
proposed reduced-rank algorithms in comparison with existing algorithms.
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Fig. 4.2: MSE analytical versus simulated performance for the proposed reduced-rank SG algo-
rithm.

4.6.2 SINR Performance

In the first two experiments, we consider 7 interferers at −60o, −45o, −30o, −150,
0o, 45o, 60o with powers following a log-normal distribution with associated standard
deviation 3 dB around the SOI’s power level. The SOI impinges on the array at 30o. The
parameters of the algorithms are optimized.

We first evaluate the SINR performance of the analyzed algorithms against the rank r

using optimized parameters (µTr , µw̄ and forgetting factor λ) for all schemes and N = 250

snapshots. The results in Fig. 4.3 indicate that the best rank for the proposed scheme is
r = 4 (which will be used in the second scenario) and the corresponding output SINR
value is very close to that of the optimal full-rank CMV filter. Our studies with systems
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with different sizes show that r is relatively invariant to the system size, which brings
considerable computational savings. In practice, the rank r can be adapted in order to
obtain fast convergence and ensure good steady-state performance and tracking after con-
vergence.
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Fig. 4.3: SINR performance of CMV algorithms against rank (r) with m = 32, SNR=15dB, N =
250 snapshots.

We show another scenario in Fig. 4.4 where the adaptive LCMV filters are set to con-
verge to the same level of SINR. The parameters used to obtain these curves are also
shown. The SG version of the MSWF is known to have problems in these situations since
it does not tridiagonalize its covariance matrix [27], being unable to approach the opti-
mal LCMV. The curves show an excellent performance for the proposed scheme which
converges much faster than the full-rank-SG algorithm, and is also better than the more
complex MSWF-RLS and AVF schemes.

In the next experiment, we consider the design of the proposed adaptive reduced-rank
CMV algorithms equipped with the automatic rank selection method. We consider 5 in-
terferers at −60o, −30o, 0o, 45o, 60o with equal powers to the SOI, which impinges on
the array at 15o. Specifically, we evaluate the proposed rank selection algorithms against
the use of fixed ranks, namely, r = 3 and r = 8 for both SG and RLS algorithms. The
results show that the proposed automatic rank selection method is capable of ensuring
an excellent trade-off between convergence speed and steady-state performance, as illus-
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Fig. 4.4: SINR performance of CMV algorithms against snapshots) with m = 32, SNR=15dB.

trated in Fig 4.5. In particular, the proposed algorithm can achieve a significantly faster
convergence performance than the scheme with fixed rank r = 8.

In the last experiment, we consider a non-stationary scenario where the system has 6

users with equal power and the environment experiences a sudden change at time i = 800.
The 5 interferers impinge on the ULA at −60o, −30o, 0o, 45o, 60o with equal powers to
the SOI, which impinges on the array at 15o. At time instant i = 800 we have 3 interfer-
ers with 5 dB above the SOI’s power level entering the system with DOAs −45o, −15o

and 30o, whereas one interferer with DOA 45o and a power level equal to the SOI exits
the system. The proposed and existing adaptive beamforming algorithms are equipped
with automatic rank adaptation techniques and have to adjust their parameters in order to
suppress the interferers. We optimize the step sizes and the forgetting factors of all the
algorithms in order to ensure that they converge as fast as they can. The results of this
experiment are depicted in Fig. 4.6. The curves show that the proposed reduced-rank
algorithms have a superior performance to the existing algorithms.
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4.7 Introduction for DOA Estimation

In the following sections, we will introduce a minimum variance DOA estimation
algorithm based on the JIO scheme. In many array processing related fields such as
radar, sonar, and wireless communications, the information of interest extracted from
the received signals is the direction of arrival (DOA) of waves transmitted from radiating
sources to the antenna array. The DOA estimation problem has received considerable
attention in the last several decades [96]. Many DOA estimation algorithms have been
reported in the literature, e.g., [9,32], and the references therein. The most representative
algorithms can be categorized into Capon’s method [33], maximum-likelihood (ML) [38],
and subspace-based methods [34]- [37].

As reviewed in chapter 1, the Capon’s method calculates and plots the output power
spectrum over the scanning angles and determines the DOA by locating the peaks in the
spectrum. Its resolution strongly relies on the number of available snapshots and the
array size. The ML type algorithms are robust for the DOA estimation since they exhibit
superior resolution in severe scenarios with low input SNR or the number of snapshots is
small. However, the implementation of the ML type methods are always quite difficult
and require intensive computational cost, which limit their practical applications.

The subspace-based algorithms, which exploit the structure of the received data to de-
compose the observation space into a signal subspace and a corresponding orthogonal
noise subspace, play an important role for the DOA estimation. According to the ap-
proach to compute the signal subspace, the subspace-based methods can be classified into
eigen-decomposition, subspace tracking, and basis vectors based algorithms. Among the
well-known eigen-decomposition algorithms are MUSIC [34], and ESPRIT [35]. The
MUSIC algorithm plots the output power spectrum by scanning the possible angles and
selects the peaks to estimate the directions of the sources. ESPRIT achieves improved
resolution by employing a displacement invariance in some specific array structures [32].
The subspace tracking techniques [97]- [100] avoid a direct eigen-decomposition and
utilize iteration procedures to estimate the signal subspace. They provide an trade-off
between the resolution and the complexity. The basis vectors based subspace algorithms
include auxiliary vector (AV) [37] and conjugate gradient (CG) [36] that were proposed
recently. The AV basis vectors or the CG residual vectors constitute the signal subspace
for the DOA estimation without eigen-decomposition.

Our contribution is to employ the JIO reduced-rank scheme introduced in this chapter
to develop adaptive algorithms for the DOA estimation. The transformation matrix and
the reduced-rank weight vector of the JIO scheme are jointly optimized according to the
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minimum variance (MV) criterion for plotting the output power spectrum over the possi-
ble scanning angles. We derive a constrained RLS-based algorithm to iteratively estimate
the transformation matrix and the reduced-rank weight vector. A spatial smoothing (SS)
approach [102, 103] is employed to handle the problem of highly correlated sources. It
is efficient to resolve the DOA estimation problem with large arrays and a small number
of snapshots, and exhibits a dominance when many sources are present. The Capon’s
method and subspace-based methods are inferior to the proposed method for direction
finding with a large number of users. Although the ML algorithm is robust to these severe
conditions, with large arrays it needs extremely high computational cost that is not ac-
ceptable in practice. Furthermore, the proposed algorithm works well without knowledge
of the number of the sources, which significantly degrades the resolution of the subspace-
based and the ML methods.

4.8 Problem Statement

According to the system model introduced in chapter 2, the input covariance matrix
can be expressed by

R = E[x(i)xH(i)] = A(θ)RsA
H(θ) + σ2

nI, (4.44)

where Rs = E[s(i)sH(i)] denotes the signal covariance matrix, which is diagonal if
the sources are uncorrelated and is nondiagonal and nonsingular for partially correlated
sources, and E[n(i)nH(i)] = σ2

nIm×m. The matrix R must be estimated in practice. In
this work, we use a time-average estimate given by

R̂ =
1

N

N∑
i=1

x(i)xH(i). (4.45)

It is clear that a small number of snapshots results in a poor estimation of the input
covariance matrix, which degrades the DOA estimation of the Capon’s method and most
subspace-based methods and thus reduces their probability of resolution. With large ar-
rays, the resolution can be compensated to a certain extent whereas the computational
cost increases. Besides, eigen-decomposition and subspace tracking based methods suf-
fer from the problem of highly correlated sources. The recent AV and CG algorithms
could deal with these severe scenarios while lose their superiority when many sources
need to be located.
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4.9 The JIO Scheme for DOA Estimation

In this section, we introduce the JIO strategy according to the MV criterion to calculate
the output power of each scanning angle and find peaks for the DOA estimation.

The JIO reduced-rank scheme for the DOA estimation includes a transformation ma-
trix T r, which is structured as a bank of r full-rank vectors tl = [t1,l, t2,l, . . . , tm,l]

T ∈
Cr×1 l = 1, . . . , r as given by T r = [t1, t2, . . . , tr], and a reduced-rank filter with
w̄θ = [w̄θ,1, w̄θ,2, . . . , w̄θ,r]

T ∈ Cr×1. The transformation matrix generates the reduced-
rank received vector x̄(i), which is processed by the reduced-rank filter for computing the
output power of the current scanning angle. Both T r and w̄θ are formulated by minimiz-
ing the MV cost function

θ̂ = arg min
θ

w̄H
θ T H

r RT rw̄θ; subject to w̄H
θ T H

r a(θ) = 1. (4.46)

By using the Lagrange multiplier and considering the constraint condition, we can get
the expressions for T r and w̄θ, which are

T r =
R−1a(θ)

aH(θ)R−1a(θ)

w̄H
θ

‖w̄θ‖2
, (4.47)

w̄θ =
R̄
−1

ā(θ)

āH(θ)R̄
−1

ā(θ)
, (4.48)

where R̄ = E[x̄(i)x̄H(i)] ∈ Cr×r is the reduced-rank covariance matrix and ā(θ) =

T H
r a(θ) ∈ Cr×1 is the reduced-rank steering vector of the current scanning angle. Note

that for a small number of snapshots (N < m), R−1 and R̄
−1 are in practice calculated

by either employing diagonal loading or the pseudo-inverse. We notice that the proposed
reduced-rank weight vector w̄θ is more general for dealing with the DOA estimation.
Specifically, for r = m and T r = I , it is equivalent to the MV weight solution, and, for
1 < r < m, it operates under a lower dimension and thus reduces the complexity.

The output power for each scanning angle can be calculated by substituting the expres-
sions of T r in (4.47) and ḡθ in (4.48) into (4.46), which yields

P (θ) =
(
āH(θ)R̄

−1
ā(θ)

)−1
. (4.49)

By searching all possible angles, we could find peaks in the output power spectrum
that corresponds to the DOAs of the sources.
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4.10 Proposed Reduced-Rank Algorithms

In this section, we derive a constrained RLS algorithm based on the JIO reduced-rank
scheme for the DOA estimation. The proposed algorithm jointly estimates the transfor-
mation matrix and the reduced-rank weight vector. A SS technique is employed in the
algorithm to deal with the problem of highly correlated sources for the resolution im-
provement.

The transformation matrix T r and the reduced-rank weight vector w̄θ are computed
according to the MV design in (4.46). Using the method of LS, the constraint in (4.46)
can be incorporated by the method of Lagrange multiplier in the form

Lun
(
T r(i), w̄θ(i)

)
=

i∑

l=1

αi−l|w̄H
θ (i)T H

r (i)x(l)|2 + 2 R{λ[w̄H
θ (i)T H

r (i)a(θ)− 1]},
(4.50)

where α is a forgetting factor, which is a positive constant close to, but less than 1, and λ

is the Lagrange multiplier.

Fixing w̄θ(i) and T r(i), respectively, and take the gradient of T r(i) and w̄θ(i), solving
the Lagrange multiplier, we have

T r(i) =
R̂
−1

(i)a(θ)

aH(θ)R̂
−1

(i)a(θ)

w̄H
θ (i)

‖w̄θ(i)‖2
, (4.51)

w̄θ(i) =
ˆ̄R−1(i)ā(θ)

āH(θ) ˆ̄R−1(i)ā(θ)
, (4.52)

where R̂(i) =
∑i

l=1 αi−lx(l)xH(l) ∈ Cm×m and ˆ̄R(i) =
∑i

l=1 αi−lx̄(l)x̄H(l) ∈ Cr×r

are the estimates of the full-rank and reduced-rank covariance matrix at time instant i,
respectively. Their recursive forms are R̂(i) = αR̂(i − 1) + x(i)xH(i) and ˆ̄R(i) =

α ˆ̄R(i) = α ˆ̄R(i) + x̄(i)x̄H(i).

Note that the expression of the transformation matrix in (4.51) is a function of w̄θ(i)

while the reduced-rank weight vector obtained from (4.52) depends on T r(i). The pro-
posed algorithm provides an iterative exchange of information between the transformation
matrix and the reduced-rank weight vector and thus leads to an improved performance.

Now, we utilize the matrix inversion lemma [18] to realize the DOA estimation without
the matrix inversion in (4.51) and (4.52). Specifically, defining Φ̂(i) = R̂(i), which can
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be computed in a recursive form given by

k(i) =
α−1Φ̂(i− 1)x(i)

1 + α−1xH(i)Φ̂(i− 1)x(i)
, (4.53)

Φ̂(i) = α−1Φ̂(i− 1)− α−1k(i)xH(i)Φ̂(i− 1), (4.54)

where k(i) ∈ Cm×1 is the Kalman gain vector. Φ̂(0) = δIm×m where δ is a positive
value needs to be set for numerical stability.

Given ˆ̄Φ(i) = ˆ̄R(i), we have

k̄(i) =
α−1 ˆ̄Φ(i− 1)x̄(i)

1 + α−1x̄H(i) ˆ̄Φ(i− 1)x̄(i)
, (4.55)

ˆ̄Φ(i) = α−1 ˆ̄Φ(i− 1)− α−1k̄(i)x̄H(i) ˆ̄Φ(i− 1), (4.56)

where k̄(i) ∈ Cr×1 is the reduced-rank gain vector, which is initialized by ˆ̄Φ(0) = δ̄Ir×r

with δ > 0.

Substituting the recursive procedures (4.53)-(4.56) into the LS version method instead
of the matrix inversion results in the JIO-RLS DOA estimation method, which is con-
cluded in Table 4.1, where δ and δ̄ are selected according to the input signal-to-noise ratio
(SNR) [18], Φ̂ is the inversion of the estimate of the input covariance matrix after N snap-
shots, the scanning angle θn = n4o, 4o is the search step, and n = 1, 2, . . . , 180o/4o.
For a simple and convenient search, we make 180o/4o an integer. It is necessary to ini-
tialize T r(0) to start the iteration due to the dependence between T r(i) and ḡθ(i). The
JIO-RLS algorithm retains the advantageous property of the iterative exchange of infor-
mation between the rank reduction matrix and the auxiliary reduced-rank vector, which
avoids the degradation of the resolution, and utilizes a recursive procedure to compute
R̂
−1

and ˆ̄R−1 for the reduction of the complexity.

The output power P (θn) is much higher if the scanning angle θn = θk, k = 0, . . . , q−1,
which corresponds on the positions of the sources, compared with other scanning angles
with respect to the noise level. Thus, we can estimate the DOAs of the sources by finding
the peaks in the output power spectrum.

For correlated sources, we use the forward/backword SS technique [103] in our LS
version algorithm. It is based on the averaging the covariance matrix of identical over-
lapping arrays and so requires an array of identical elements equipped with some form
of periodic structure, such as the ULA. For its application, we split a ULA antenna array
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Tab. 4.1: Proposed JIO-RLS algorithm
Initialization:

T r(0) = [IT
r 0T

r×(m−r)]; δ, δ̄ =positive constants;

Φ̂(0) = δIm×m; ˆ̄Φ(0) = δ̄Ir×r.
Update for each time instant i = 1, . . . , N

x̄(i) = T H
r (i− 1)x(i)

ā(θn) = T H
r (i− 1)a(θn)

k̄(i) = α−1 ˆ̄Φ(i−1)x̄(i)

1+α−1x̄H(i) ˆ̄Φ(i−1)x̄(i)
ˆ̄Φ(i) = α−1 ˆ̄Φ(i− 1)− α−1k̄(i)x̄H(i) ˆ̄Φ(i− 1)

w̄θn(i) =
ˆ̄Φ(i)ā(θn)

āH(θn) ˆ̄Φ(i)ā(θn)

k(i) = α−1Φ̂(i−1)x(i)

1+α−1xH(i)Φ̂(i−1)x(i)

Φ̂(i) = α−1Φ̂(i− 1)− α−1k(i)xH(i)Φ̂(i− 1)

T r(i) = Φ̂(i)a(θn)

a(θn)HΦ̂(i)a(θn)

w̄H
θn

(i)

‖w̄θn (i)‖2
Output power

P (θn) = 1/
(
āH(θn) ˆ̄Φā(θn)

)

into a set of forward and conjugate backward subarrays. From the forwarding, we di-
vide the ULA into overlapping subarrays of size n, with the elements {1, . . . , n} forming
the first subarrays, the elements {2, . . . , n + 1} forming the second subarray, etc., and
J = m − n + 1 as the number of subarrays. From the backwarding, the first backward
subarray is formed using elements {m,m − 1, . . . , m − n + 1}, the second subarray is
formed using elements {m − 1,m − 2, . . . , m − n}, and so on. Note that the selection
of n needs to follow n ≥ q [103]. The SS preprocessing operates on x(i) to estimate
the forward and backward subarray covariance matrices that are averaged to get the for-
ward/conjugate backward smoothed covariance matrix. The JIO LS version algorithm is
followed to realized the DOA estimation, which is called JIO-SS.

In terms of the computational cost, the Capon, MUSIC, and ESPRIT algorithms work
with O(m3), and the recent AV and CG methods have a higher complexity [37]. The
subspace tracking method denoted as approximated power iteration (API) [100] for use
with the MUSIC and ESPRIT algorithms requires O(qm + q3). The API is significantly
simpler than the direct eigen-decomposition [100], however, its complexity can become
very high as the number of sources q becomes large. For the proposed algorithm, the
complexity is O(m2) due to the use of the matrix inversion lemma [18]. Besides, the cost
of computing Φ̂(i) is invariable for the grid search, namely, the result computed for the
first scanning angle can be used for the rest. The complexity of the reduced-rank process
is O(mr), which is much less than O(m2) if r is much less than m for large arrays.
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4.11 Simulations

Simulations are performed for a ULA with half a wavelength interelement spacing. We
compare the proposed JIO-RLS algorithm with Capon’s method, subspace-based methods
with the API implementation [100], the ML method [38], and carry out K = 1000 runs
to get each curve. BPSK sources separated by 3o with powers σ2

s = 1 are considered and
the noise is spatially and temporally white Gaussian. The search step is 4o = 0.5o. We
suppose that the DOAs are resolved if |θ̂ − θk| < |θk − θk−1|/2 [36]. We measure the
performance of the proposed DOA estimation algorithm by showing the probability of
resolution, which is the probability of the number of the correct DOA estimations under
K = 1000 runs. In the first experiment, there are q = 2 highly correlated sources in the
system with correlation value c = 0.9, which are generated as follows [36]:

s1 ∼ N (0, σ2
s) and s2 = cs1 +

√
1− c2s3, (4.57)

where s3 ∼ N (0, σ2
s). The array size is m = 30 and the number of snapshots N = 10 is

fixed. We set α = 0.998, r = 4, and δ = δ̄ = 10−3. The SS technique is employed in the
existing and proposed algorithms (except ML) to improve the resolution. The subarray
size is n = 28 for the proposed method. The probability of resolution [32, 36, 37] is
plotted against the input SNR values. The resolution of the ML algorithm is superior to
that of other methods at the low SNR values. However, the heavy computational load
prevents its use in practice for large arrays. The proposed JIO-SS algorithm outperforms
other existing methods except ML for all input SNR values.

In Fig.4.8, we set the sources to be uncorrelated but increase the number of sources by
setting q = 10. The number of snapshots is N = 20 and the array size is m = 40. From
Fig.4.8, the curves between the proposed and the ESPRIT algorithms are shown to inter-
sect when the input SNR values increase. The proposed JIO-RLS DOA estimation algo-
rithm shows a better resolution with low SNRs. The complexity of the ESPRIT algorithm
is high due to the eigen decomposition. The API approach estimates the signal subspace
with a low-complexity to implement ESPRIT. This estimation is insufficient with a small
number of snapshots and thus results in a poorer resolution, so does MUSIC(API).

In Fig.4.9, we keep the scenario as that in Fig. 4.8 and assess the root-mean-squared
error (RMSE) performance of the proposed and existing algorithms, and compare them
with the Cramér-Rao bound (CRB), which is calculated according to [39]. The RMSE
here is the root-mean-squared error between the estimated DOAs and the actual ones. As
can be seen from this figure, the RMSE values of the proposed algorithm are around 10

dB away from the CRB in the threshold region (low input SNR) and then closely follow
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the CRB curve with the increase of the SNR. The improved RMSE performance of the
proposed algorithm over existing methods is evident.
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4.12 Conclusions

In the first part of this chapter, we proposed reduced-rank CMV beamforming algo-
rithms based on JIO of filters. The proposed scheme is based on a constrained joint itera-
tive optimization of filters according to the MV criterion. We described CMV expressions
for the design of the transformation matrix and the reduced-rank filter and developed the
RLS adaptive algorithm for their efficient implementation along with an automatic rank
selection technique. An analysis of the stability and the convergence properties of the
proposed algorithms was presented and semi-analytical expressions were derived for pre-
dicting the MSE performance. In the second part of this chapter, we introduced a reduced-
rank method based on a rank reduction matrix and an auxiliary reduced-rank parameter
vector for DOA estimation. The rank reduction matrix maps the full-rank covariance
matrix into a lower dimension and the auxiliary reduced-rank vector is combined to cal-
culate the output power spectrum for each scanning angle. We have derived an efficient
algorithm to jointly update the rank reduction matrix and the auxiliary vector. The pro-
posed JIO-RLS algorithm shows a good resolution for large arrays with uncorrelated or
correlated sources.
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5. ADAPTIVE REDUCED-RANK CCM ALGORITHMS BASED ON
JOINT ITERATIVE OPTIMIZATION OF FILTERS AND AUXILIARY

VECTOR FILTERING FOR BEAMFORMING
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5.1 Introduction

In chapter 4, we presented a review about the current reduced-rank signal processing
algorithms [27, 28, 30, 82]. As we discussed in chapter 2, the CCM criterion is a positive
measure of the deviation of the beamformer output from a constant modulus condition
subject to a constraint on the array response of the desired signal, which provides more
information than the CMV for the parameter estimation of constant modulus constella-
tions in the beamformer design. Thus, it motivates us to develop the reduced-rank adaptive
algorithms according to the CCM criterion for the beamformer design.

In this chapter, we introduce two types of reduced-rank adaptive algorithms accord-
ing to the CCM criterion for beamforming, namely, the JIO reduced-rank algorithms and
the auxiliary vector filtering (AVF) reduced-rank algorithm. The JIO scheme consists
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of a bank of full-rank adaptive filters, which constitutes the transformation matrix and an
adaptive reduced-rank filter that operates at the output of the bank of full-rank filters. This
scheme provides an iterative exchange of information between the transformation ma-
trix and the reduced-rank filter for weight adaptation and thus leads to improved conver-
gence and tracking performance. The scheme is investigated in both direct-form processor
(DFP) and the generalized sidelobe canceller (GSC) [18] structures. For each structure,
a family of computationally efficient reduced-rank SG and RLS type algorithms are de-
rived based on the JIO scheme. The GS technique is employed in the proposed methods
to reformulate the transformation matrix for further improving performance. An auto-
matic rank selection technique is developed according to the CM criterion to determine
the most adequate rank for the proposed algorithms. Besides, the complexity comparison
between the existing and proposed methods are given and the convergence properties for
the reduced-rank scheme are analyzed.

The other type of reduced-rank adaptive algorithm is based on the AVF scheme, which
was reported in [29, 30] and developed for adaptive filtering in [31, 82]. Its application
in adaptive beamforming has been given in [91]. In the AVF scheme, an auxiliary vector
is calculated by maximizing the cross correlation between the outputs of the reference
vector filter and the previously auxiliary vector filters. The weight vector is obtained
by subtracting the scaling auxiliary vector from the reference vector. In [31], the AVF
algorithm iteratively generates a sequence of filters that converge to the CMV filter with
a small number of samples.

Motivated by the fact that the CCM-based beamformers outperform the CMV ones
for the CM signals, we propose an AVF algorithm based on the CCM design for robust
adaptive beamforming. The beamformer structure decomposes the adaptive filter into a
constrained (reference vector filter) and an unconstrained component (auxiliary vector
filter). The constrained component is initialized with the array response of the desired
signal to start the iteration and to ensure the CCM constraint, and the auxiliary vector
in the unconstrained component can be iterated to meet the CM criterion. The weight
vector is computed by means of suppressing the scaling unconstrained component from
the constrained part. The main difference from the existing AVF technique is that, in
the proposed CCM-based algorithm, the auxiliary vector and the scalar factor depend on
each other and are jointly calculated according to the CM criterion (subject to different
constraints). The proposed method provides an iterative exchange of information between
the auxiliary vector and the scalar factor and also exploits the information about the CM
signals, which leads to an improved performance.

The remainder of this chapter is organized as follows: in Section 5.2, the preliminary
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works with the CCM design are reviewed. Section 5.3 presents the reduced-rank CCM
beamformer designs for the DFP and GSC structures. The proposed JIO reduced-rank
scheme based on the CM criterion subject to different constraints is presented in Section
5.4, and the proposed adaptive algorithms based on the JIO scheme are detailed in Sec-
tion 5.5. The complexity and convergence analysis of the proposed methods is given in
Section 5.6. Simulation results are provided and discussed in Section 5.7. The proposed
CCM adaptive algorithm based on the AVF scheme is introduced in Section 5.8 and the
simulation results are given in Section 5.9. The conclusions about the reduced-rank CCM
adaptive algorithms are drawn in Section 5.10.

5.2 Preliminary Works

In this section, based on the system model explained in chapter 2, the full-rank beam-
former design according to the CM criterion subject to the constraint on the array response
is introduced for the DFP and GSC structures.

5.2.1 Full-rank Beamformer Design for the DFP

The full-rank CCM linear receiver design for beamforming is equivalent to determin-
ing a filter w(i) = [w1(i), . . . , wm(i)]T ∈ Cm×1 that provides an estimate of the desired
symbol y(i) = wH(i)x(i). The calculation of the weight vector is based on the mini-
mization of the cost function given in (2.4).

The full-rank CCM design can be implemented by the DFP processor, whose diagram
is depicted in Fig. 5.1 (a). The weight expression obtained from the DFP structure is [28]

Fig. 5.1: (a) The full-rank DFP and (b) the full-rank GSC structures.
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w(i + 1) = R−1
yx (i)

{
pyx(i)−

[
pH

yx(i)R
−1
yx (i)a(θ0)− γ

]
a(θ0)

aH(θ0)R
−1
yx (i)a(θ0)

}
, (5.1)

where Ryx(i) = E[|y(i)|2x(i)xH(i)] and pyx(i) = E[y∗(i)x(i)]. Note that the expression
in (5.1) is a function of previous values of w(i) (since y(i) = wH(i)x(i)) and thus must
be initialized to start the iteration for the solution. We keep the time index in Ryx(i) and
pyx(i) for the same reason.

5.2.2 Full-rank Beamformer Design for the GSC

The GSC structure converts the constrained optimization problem into an uncon-
strained one and adopts an alternative way to realize the beamformer design, as shown in
Fig. 5.1 (b). The constraint in (2.4) is enclosed in the GSC processor. The full-rank CCM
beamformer design of the GSC structure has been reported in [83]. Here, we employ an
alternative way proposed in [84] to describe the design and simplify the derivation. The
CM cost function of the GSC structure can be written as

Jcm-gsc

(
w(i)

)
= E

{∣∣wH(i)x̃(i)− ν
∣∣2

}
, (5.2)

where ygsc(i) = wH(i)x(i) and x̃(i) = y∗gsc(i)x(i). We set ν = 1 in accordance with
(2.4). Note that the expressions of ygsc(i) and y(i) are similar but for the different struc-
tures. We regard x̃(i) as the new received vector to the full-rank CCM filter, as described
in Fig. 1(b).

For the GSC structure, the output is d0(i) = aH
γ (θ0)x̃(i), aγ(θ0) = γa(θ0), γ is a pos-

itive scalar corresponding to that in (2.4), and the transformed vector x̃B(i) ∈ C(m−1)×1

is defined to be an output of the signal blocking matrix given by

x̃B(i) = Bx̃(i), (5.3)

where B ∈ C(m−1)×m is the signal blocking matrix, which can be directly obtained by
the singular value decomposition (SVD) or the QR decomposition algorithms [86]. Thus,
Ba(θ0) = 0(m−1)×1 means that the term B effectively blocks any signal coming from
the look direction θ0. The GSC transformation can be concluded in an operator S =

[aγ(θ0), B
H ]H ∈ Cm×m, which yields a transformed vector

x̃S(i) = Sx̃(i) =

[
aH

γ (θ0)x̃(i)

Bx̃(i)

]
=

[
d0(i)

x̃B(i)

]
, (5.4)
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and associated matrix Rx̃S
given by

Rx̃S
(i) = E

[
x̃S(i)x̃H

S (i)
]

= SRx̃(i)S
H =

[
γ2σ2

0 p̃H(i)

p̃(i) Rx̃B
(i)

]
, (5.5)

where Rx̃(i) = E[x̃(i)x̃H(i)] ∈ Cm×m, σ2
0 = aH(θ0)Rx̃(i)a(θ0), p̃(i) =

E[d∗0(i)x̃B(i)] ∈ C(m−1)×1, and Rx̃B
(i) = BRx̃(i)B

H ∈ C(m−1)×(m−1). The weight
expression for the GSC structure in these transformed coordinates is w′ = [1,−wH

gsc]
H ∈

Cm×1 with
wgsc(i + 1) = R−1

x̃B
(i)p̃B(i), (5.6)

and the weight solution is

w(i + 1) = SHw′(i + 1) = aγ(θ0)−BHwgsc(i + 1), (5.7)

where p̃B(i) = E[(d∗0(i) − 1)x̃B(i)] ∈ C(m−1)×1. It is worth noticing that the expression
in (4.6) is a function of previous values of w(i) and therefore must be initialized to start
the iterations for the solution [85, 87].

The calculation of the weight solutions for the DFP and the GSC requires high com-
plexity and suffers from numerical instability due to the matrix inversion appeared in (5.1)
and (5.6), especially with large m. The SG and RLS-type algorithms can be employed
to reduce the computational load but exhibit slow convergence and tracking performance
when the dimension m is large.

5.3 Reduced-rank Beamformer Design

Fig. 5.2: (a) The reduced-rank DFP and (b) the reduced-rank GSC structures.

For large m, considering the high computational cost and poor performance associated
with the full-rank filter, a number of works in the literature have been reported based on
reduced-rank schemes [21]- [31], [88,89]. In this section, we will describe a reduced-rank
framework that reduces the number of coefficients by mapping the received vector into a
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lower dimensional subspace. The diagrams of the reduced-rank processors for the DFP
and the GSC structures are depicted in Fig. 5.2(a) and Fig. 5.2(b), respectively.

5.3.1 Beamformer Design for the DFP

In the DFP structure, T r ∈ Cm×r denotes the transformation matrix that includes a set
of m × 1 vectors for a r-dimensional subspace with r ≤ m. The transformation matrix
maps the received vector x(i) into its low-dimension version x̄(i) ∈ Cr×1, which has
been referred in chapter 5. We repeat it here for convenience:

x̄(i) = T H
r (i)x(i), (5.8)

where, in what follows, all r-dimensional quantities are denoted by an over bar. An adap-
tive reduced-rank CCM filter w̄(i) ∈ Cr×1 follows the transformation matrix to produce
the filter output y(i) = w̄H(i)x̄(i).

The reduced-rank weight vector is expressed by [28]

w̄(i + 1) = R̄
−1

(i)
{

p̄(i)−
[
p̄H(i)R̄

−1
(i)ā(θ0)− γ

]
ā(θ0)

āH(θ0)R̄
−1

(i)ā(θ0)

}
, (5.9)

where R̄(i) = E[|y(i)|2T H
r (i)x(i)xH(i)T r(i)] ∈ Cr×r, ā(θ0) = T H

r a(θ0) ∈ Cr×1, and
p̄(i) = E[y∗(i)T H

r (i)x(i)] ∈ Cr×1.

5.3.2 Beamformer Design for the GSC

The transformation matrix T gsc(i) ∈ C(m−1)×r for the GSC structure in Fig. 5.2(b)
maps the transformed vector x̃B(i) into a low-dimension version, as described by

x̄B(i) = T H
gsc(i)x̃B(i). (5.10)

The reduced-rank data vector x̄B(i) is processed by the filter w̄gsc(i) ∈ Cr×1 to get the
sidelobe output y0(i) = w̄H

gsc(i)x̄B(i). The reduced-rank weight vector for the sidelobe
of the GSC [18] is

w̄gsc(i + 1) = R̄
−1
x̄B

(i)p̄B(i), (5.11)

where R̄x̄B
(i) = E[T H

gsc(i)x̃B(i)x̃H
B (i)T gsc(i)] ∈ Cr×r and p̄B(i) = E[(d∗0(i) −
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1)T H
gsc(i)x̃B(i)] ∈ Cr×1.

The equivalent transformation operator for the GSC is S̄ = [aγ(θ0), B
HT gsc]

H ∈
C(r+1)×m and the reduced-rank weight vector is w̄′ = [1,−w̄H

gsc]
H ∈ C(r+1)×1. The

full-rank weight vector can be expressed as

w(i + 1) = aγ(θ0)−BHT gsc(i + 1)w̄gsc(i + 1). (5.12)

From (5.9) and (5.11), the challenge left to us is how to efficiently design and calculate
the transformation matrix T r. The PC method reported in [21] uses the eigenvectors of
the interference-only covariance matrix corresponding to the eigenvalues of significant
magnitude to construct the transformation matrix. The CS method [24], a counterpart
of the PC method belonging to the eigen-decomposition family, forms the transformation
matrix by using the eigenvectors which contribute the most towards maximizing the SINR
and outperforms the PC method. Another family of adaptive reduced-rank filters such as
the MSWF [26,27] and the AVF [29] generates a set of basis vectors as the transformation
matrix that spans the same Krylov subspace [65, 80]. Despite the improved convergence
and tracking performance achieved by these methods [26,88], they require relatively high
complexity and suffer from numerical problems.

5.4 Proposed CCM Reduced-rank Scheme

In this section, we introduce the proposed reduced-rank scheme based on the JIO ap-
proach. Two optimization problems according to the CM criterion subject to different
constraints are described for the proposed scheme. Based on this scheme, we derive the
expressions of the transformation matrix and the reduced-rank weight vector. For the
sake of completeness, the proposed scheme is realized for both the DFP and the GSC
structures.

5.4.1 Proposed CCM Reduced-rank Scheme for the DFP

Here we detail the principles of the proposed CCM reduced-rank scheme using a
transformation based on adaptive filters. For the DFP structure depicted in Fig. 5.3(a),
the proposed scheme employs a transformation matrix T r(i) ∈ Cm×r, which is re-
sponsible for the dimensionality reduction, to generate x̄(i) ∈ Cr×1. The dimension
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is reduced and the key features of the original signal are retained in x̄(i) according
to the CCM criterion. The transformation matrix is structured as a bank of r full-
rank filters tj(i) = [t1,j(i), t2,j(i), . . . , tm,j(i)]

T ∈ Cm×1, (j = 1, . . . , r) as given by
T r(i) = [t1(i), t2(i), . . . , tr(i)]. An adaptive reduced-rank filter w̄(i) ∈ Cr×1 is then
used to produce the output. The transformation matrix T r(i) and the reduced-rank filter
w̄(i) are jointly optimized in the proposed scheme. The filter output is a function of the
received vector, the transformation matrix, and the reduced-rank weight vector, which is

Fig. 5.3: Proposed reduced-rank scheme for (a) the DFP and (b) the GSC structures.

y(i) = w̄H(i)T H
r (i)x(i) = w̄H(i)x̄(i). (5.13)

Note that for r = 1, the proposed scheme becomes a conventional full-rank filtering
scheme with an additional weight parameter w̄1 that provides a gain. For 1 < r < m,
the signal processing tasks are changed, namely, the full-rank filters compute a subspace
transformation matrix and the reduced-rank filter estimates the desired signal. For r = m

and T r = Im×m, it is equivalent to the full-rank beamformer design. We find that DFP
has the same structure as introduced in Fig. 4.1. The difference is that the transformation
matrix and the reduced-rank adaptive filter are jointly optimized according to the different
design criteria.

We describe two optimization problems according to the CM cost function subject to
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different constraints for the proposed reduced-rank scheme, which are given by

Problem 1 : min Jcm
(
T r(i), w̄(i)

)
= E

{[|y(i)|2 − 1
]2

}

subject to w̄H(i)T H
r (i)a(θ0) = γ,

(5.14)

Problem 2 : min Jcm
(
T r(i), w̄(i)

)
= E

{[|y(i)|2 − 1
]2

}

subject to w̄H(i)T H
r (i)a(θ0) = γ and T H

r (i)T r(i) = I.
(5.15)

Compared with (5.14), the problem in (5.15) has an orthogonal constraint on the trans-
formation matrix, which is to reformulate T r(i) for performance improvement. The trans-
formation matrix generated from (5.14) has vectors that may perform a similar operation
(e.g., take the same information twice or more), thereby making poor use of the data and
losing performance. The subspace computed with (5.15), which spans the same subspace
as T r(i), generates basis vectors that are orthogonal to each other and which does not af-
fect the noise statistically. The reformulated transformation matrix performs an efficient
operation to keep all useful information in the generated reduced-rank received vector,
which is important to estimate the desired signal and improve the performance. In the
following, we will derive the CCM expressions of T r(i) and w̄(i) for solving (5.14) and
(5.15).

The cost function in (5.14) can be transformed by the method of Lagrange multipliers
into an unconstrained one, which is

Lun
(
T r(i), w̄(i)

)
= E

{[|w̄H(i)T H
r (i)x(i)|2 − 1

]2
}

+ 2R
{

λ
[
w̄H(i)T H

r (i)a(θ0)− γ
]}

,
(5.16)

where λ is a scalar Lagrange multiplier.

Assuming w̄(i) is known, minimizing (5.16) with respect to T r(i), equating it to a
null matrix and solving for λ, we have

T r(i + 1) = R−1
yx (i)

{
pyx(i)w̄

H(i)−
[
w̄H(i)R̄

−1
w̄ (i)w̄(i)pH(i)R−1

yx (i)a(θ0)− γ
]
a(θ0)w̄

H(i)

w̄H(i)R̄
−1
w̄ (i)w̄(i)aH(θ0)R

−1
yx (i)a(θ0)

}
R̄
−1
w̄ (i),

(5.17)

where pyx(i) = E[y∗(i)x(i)] ∈ Cm×1, Ryx(i) = E[|y(i)|2x(i)xH(i)] ∈ Cm×m, and
R̄w̄(i) = E[w̄(i)w̄H(i)] ∈ Cr×r. Ryx(i) and pyx(i) are functions of previous values of
T r(i) and w̄(i) due to the presence of y(i). Therefore, it is necessary to initialize T r(i)
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and w̄(i) to estimate Ryx(i) and pyx(i), and start the iteration.

On the other hand, assuming T r(i) is known, minimizing (5.14) with respect to w̄(i),
equating it to a null vector, and solving for λ, we obtain

w̄(i + 1) = R̄
−1

(i)
{

p̄(i)−
[
p̄H(i)R̄

−1
(i)ā(θ0)− γ

]
ā(θ0)

āH(θ0)R̄
−1

(i)ā(θ0)

}
, (5.18)

where R̄(i) = E[|y(i)|2T H
r (i)x(i)xH(i)T r(i)] ∈ Cr×r, p̄(i) = E[y∗(i)T H

r (i)x(i)] ∈
Cr×1, and ā(θ0) = T H

r (i)a(θ0).

Note that the expressions in (5.17) for the transformation matrix and (5.18) for the
reduced-rank weight vector can be applied to solve the optimization problem (5.14). The
orthogonal constraint in (5.15) can be realized by the Gram-Schmidt (GS) technique,
which will be illustrated in the next section.

5.4.2 Proposed CCM Reduced-rank Scheme for the GSC

For the GSC structure, as depicted in Fig. 5.3(b), the proposed scheme utilizes a
transformation matrix T gsc(i) ∈ C(m−1)×r to map the new transformed vector x̃B(i) ∈
C(m−1)×1 into a lower dimension, say x̄B(i) = T H

gsc(i)x̃B(i) ∈ Cr×1. In our design, the
transformation matrix T gsc(i) and the reduced-rank weight vector w̄gsc(i) for the sidelobe
of the GSC are jointly optimized by minimizing the cost function

Jcm-gsc
(
T gsc(i), w̄gsc(i)

)
= E

{∣∣[aγ(θ0)−BHT gsc(i)w̄gsc(i)
]H

x̃(i)− 1
∣∣2

}
, (5.19)

where the expression in (5.19) for the GSC is obtained by substituting (5.12) into (5.11).
This is an unconstrained cost function that corresponds to (5.14). From Fig. 5.3 (b),
this structure essentially decomposes the adaptive weight vector into constrained (array
response) and unconstrained components (see also Eq. (5.12)). The unconstrained com-
ponent can be adjusted to meet the CM criterion since the constrained component always
ensures that the constrained condition is satisfied. Thus, the proposed GSC framework
converts the constrained optimization problem into an unconstrained one.

Assuming w̄gsc(i) and T gsc(i) are given, respectively, minimizing (5.19) with respect
to T gsc(i) and w̄gsc(i), and solving the equations yields

T gsc(i + 1) = R−1
x̃B

(i)p̃B(i)w̄H
gsc(i)R̄

−1
w̄gsc

(i), (5.20)
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w̄gsc(i + 1) = R̄
−1
x̄B

(i)p̄B(i), (5.21)

where Rx̃B
(i) and p̃B(i) have been defined in the previous section, R̄w̄gsc(i) =

E[w̄gsc(i)w̄
H
gsc(i)] ∈ Cr×r, R̄x̄B

(i) = E[T H
gsc(i)x̃B(i)x̃H

B (i)T gsc(i)] ∈ Cr×r and p̄B(i) =

E[(d∗0(i) − 1)T H
gsc(i)x̃B(i)] ∈ Cr×1 with d0(i) being the desired response of the SOI.

Again, the orthogonal constraint on the transformation matrix can be enforced in the op-
timization problem (5.19) and the GS technique is employed to realize this.

Note that the filter expressions in (5.17) and (5.18) for the DFP and (5.20) and (5.21)
for the GSC are not closed-form solutions. In the DFP structure, the expression of the
transformation matrix in (5.16) is a function of w̄(i) and the reduced-rank weight vector
obtained from (5.18) depends on T r(i). It is necessary to set initial values of T r(i) and
w̄(i) for the iteration procedures. Thus, initialization of the transformation matrix and
the reduced-rank weight vector is not only to get a beamformer output y(i) for estimating
Ryx(i) and R̄(i), but to start the iteration of the proposed scheme. In the case of the GSC,
we initialize T gsc(i) and w̄gsc(i) with the same intention.

Unlike the MSWF [26] and the AVF [29] techniques in which the transformation ma-
trix is computed independently from the reduced-rank filter, the proposed scheme pro-
vides an iterative exchange of information between the transformation matrix and the
reduced-rank filter, which leads to improved convergence and tracking performance. The
transformation matrix reduces the dimension of the received vector whereas the reduced-
rank filter attempts to estimate the desired signal. The key strategy lies in the joint itera-
tive optimization of the filters. In the next section, we will derive iterative solutions via
simple adaptive algorithms and introduce an automatic rank selection technique for the
adaptation of the rank r.

5.5 Adaptive Algorithms of the CCM Reduced-rank Scheme

We derive SG and RLS type algorithms for the proposed CCM reduced-rank scheme.
The devised algorithms are described for the DFP and the GSC structures, respectively, to
perform joint iterative updates of the transformation matrix and the reduced-rank weight
vector. The proposed SG and RLS type algorithms are used to solve Problem 1. The
Gram-Schmidt (GS) technique is employed in the proposed algorithms and imposes an
orthogonal constraint on the transformation matrix for further performance improvement,
which is to solve Problem 2. An automatic rank selection technique is introduced to
determine the most adequate rank for the proposed methods.
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5.5.1 Stochastic Gradient Algorithms

Here, we derive the SG algorithms for both the DFP and the GSC structures.

The SG Algorithm for the DFP

Assuming w̄(i) and T r(i) are known, respectively, taking the instantaneous gradient
of (5.16) with respect to T r(i) and w̄(i), we obtain

∇LTr(i)(i) = 2e(i)y∗(i)x(i)w̄H(i) + 2λ∗Tr
a(θ0)w̄

H(i), (5.22)

∇Lw̄(i)(i) = 2e(i)y∗(i)T H
r (i)x(i) + 2λ∗w̄T H

r (i)a(θ0), (5.23)

where e(i) = |y(i)|2 − 1.

Following the gradient rules T r(i + 1) = T r(i) − µTr∇LunTr(i)
(i) and w̄(i + 1) =

w̄(i)− µw̄∇Lunw̄(i)
(i), substituting (5.22) and (5.23) into them, respectively, and solving

the Lagrange multipliers λTr and λw̄ by employing the constraint in (5.14), we obtain the
following iterative SG algorithm for the DFP:

T r(i + 1) = T r(i)− µTre(i)y
∗(i)

[
I − a(θ0)a

H(θ0)
]
x(i)w̄H(i), (5.24)

w̄(i + 1) = w̄(i)− µw̄e(i)y∗(i)
[
I − ā(θ0)ā

H(θ0)

āH(θ0)ā(θ0)

]
x̄(i), (5.25)

where µTr and µw̄ are the corresponding step size factors for the DFP, which are small
positive values.

The transformation matrix T r(i) and the reduced-rank weight vector w̄(i) operate
together and exchange information at each time instant. A summary of the proposed
CCM reduced-rank SG algorithm based on the JIO scheme, which is denominated as
JIO-CCM-SG, is shown in Table 5.1, where the initialization values are set to satisfy the
constraint in (5.14).
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Tab. 5.1: The JIO-CCM-SG algorithm for DFP
Initialization:

T r(1) = [Ir×r 0r×(m−r)]T ;
w̄(1) = T H

r (1)aγ(θ0)/(‖T H
r (1)aγ(θ0)‖2).

Update for each time instant i

y(i) = w̄H(i)T H
r (i)x(i)

e(i) = |y(i)|2 − 1
T r(i + 1) = T r(i)− µTre(i)y∗(i)

[
I − a(θ0)aH(θ0)

]
x(i)w̄H(i)

y(i) = w̄H(i)T H
r (i + 1)x(i)

e(i) = |y(i)|2 − 1
ā(θ0) = T H

r (i + 1)a(θ0)
x̄(i) = T H

r (i + 1)x(i)
w̄(i + 1) = w̄(i)− µw̄e(i)y∗(i)

[
I − ā(θ0)āH(θ0)

āH(θ0)ā(θ0)

]
x̄(i)

The SG Algorithm for the GSC

For the GSC structure, assuming w̄gsc(i) and T gsc(i) are given in (5.19), respectively,
we get

∇Jcm-gscTgsc(i)
(i) = e∗gsc(i)x̃B(i)w̄H

gsc(i), (5.26)

∇Jcm-gscw̄gsc(i)
(i) = e∗gsc(i)x̄B(i), (5.27)

where egsc(i) = 1−wH(i)x̃(i) and w(i) is obtained from (5.12).

Substituting (5.26) and (5.27) into the gradient rules, we obtain the following iterative
SG algorithm for the GSC:

T gsc(i + 1) = T gsc(i)− µTgsce
∗
gsc(i)x̃B(i)w̄H

gsc(i), (5.28)

w̄gsc(i + 1) = w̄gsc(i)− µw̄gsce
∗
gsc(i)x̄B(i), (5.29)

where µTgsc and µw̄gsc are the corresponding step size factors for the GSC. A summary of
the proposed CCM reduced-rank SG algorithm for the GSC structure is shown in Table
5.2.

5.5.2 Recursive Least Squares Algorithms

In this part, we derive the RLS algorithms for both the DFP and the GSC structures.
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Tab. 5.2: The JIO-CCM-SG algorithm for GSC
Initialization:

T gsc(1) = [Ir×r 0r×(m−r)]T ; w̄gsc(1) = Ir×1.
Update for each time instant i

w(i) = aγ(θ0)−BHT gsc(i)w̄gsc(i)
ygsc(i) = wH(i)x(i)
x̃(i) = y∗gsc(i)x(i)
x̃B(i) = Bx̃(i)
egsc(i) = 1−wH(i)x̃(i)
T gsc(i + 1) = T gsc(i)− µTre

∗
gsc(i)x̃B(i)w̄H

gsc(i)
w(i) = aγ(θ0)−BHT gsc(i + 1)w̄gsc(i)
ygsc(i) = wH(i)x(i)
x̃(i) = y∗gsc(i)x(i)
x̃B(i) = Bx̃(i)
egsc(i) = 1−wH(i)x̃(i)
x̄B(i) = T H

gsc(i + 1)x̃B(i)
w̄gsc(i + 1) = w̄gsc(i)− µw̄gsce

∗
gsc(i)x̄B(i)

The RLS Algorithm for the DFP

Considering the DFP case, the unconstrained least squares (LS) cost function is given
by

Lun
(
T r(i), w̄(i)

)
=

i∑

l=1

αi−l
[|w̄H(i)T H

r (i)x(l)|2 − 1
]2

+ 2R
{

λ
[
w̄H(i)T H

r (i)a(θ0)− γ
]}

,

(5.30)

where α is a forgetting factor chosen as a positive constant close to, but less than 1.

Assuming w̄(i) is known in (5.30), we obtain

T r(i + 1) = R̂
−1

yx (i)
{

p̂yx(i)−
[
p̂H

yx(i)R̂
−1

yx (i)a(θ0)− γ
]
a(θ0)

aH(θ0)R̂
−1

yx (i)a(θ0)

} w̄H(i)

‖w̄(i)‖2
, (5.31)

where R̂yx(i) =
∑i

l=1 αi−l|y(l)|2x(l)xH(l) with y(i) expressed in (5.13) and p̂yx(i) =∑i
l=1 αi−ly∗(l)x(l). The details of the derivation are given in Appendix G. Note that

R̂yx(i) is not invertible if i < m. It can be implemented by employing the diagonal
loading technique [8], [32]. This same procedure is also used for the remaining matrices.

To avoid the matrix inversion and reduce the complexity, we employ the matrix in-
version lemma [18] to update R̂

−1

yx (i) iteratively. Defining Φ̂(i) = R̂
−1

yx (i) for concise
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presentation, the recursive estimation procedures are given by

k(i) =
α−1Φ̂(i− 1)x(i)

(1/|y(i)|2) + α−1xH(i)Φ̂(i− 1)x(i)
, (5.32)

Φ̂(i) = α−1Φ̂(i− 1)− α−1k(i)xH(i)Φ̂(i− 1), (5.33)

where k(i) ∈ Cm×1 is the Kalman gain vector. We set Φ̂(0) = δIm×m, where δ > 0 is a
scalar for numerical stability.

Assuming T r(i) is known in (5.31), we obtain

w̄(i + 1) = ˆ̄R−1(i)
{

ˆ̄p(i)−
[
ˆ̄pH(i) ˆ̄R−1(i)ā(θ0)− γ

]
ā(θ0)

āH(i) ˆ̄R−1(i)ā(θ0)

}
, (5.34)

where ˆ̄p(i) =
∑i

l=1 αi−ly∗(l)x̄(l) and ˆ̄R(i) =
∑i

l=1 αi−l|y(l)|2x̄(l)x̄H(l).

Defining ˆ̄Φ(i) = ˆ̄R−1(i) and employing the matrix inversion lemma, we have

k̄(i) =
α−1 ˆ̄Φ(i− 1)x̄(i)

(1/|y(i)|2) + α−1x̄H(i) ˆ̄Φ(i− 1)x̄(i)
, (5.35)

ˆ̄Φ(i) = α−1 ˆ̄Φ(i− 1)− α−1k̄(i)x̄H(i) ˆ̄Φ(i− 1), (5.36)

where k̄ ∈ Cr×1 is the reduced-rank gain vector and the recursive procedures are imple-
mented by initializing ˆ̄Φ(0) = δ̄Ir×r for δ̄ > 0. In Table 5.3, we give the procedures of
the proposed CCM reduced-rank RLS algorithm for the DFP structure.

The RLS Algorithm for the GSC

For the GSC structure, the LS cost function is given by

Lun-gsc(T gsc(i), w̄gsc(i)) =
i∑

l=1

αi−l
{[

aγ(θ0)−BHT gsc(i)w̄gsc(i)
]H

x̃(l)− 1
}2

.

(5.37)

Assuming the optimal reduced-rank weight vector w̄gsc is known, computing the gra-
dient of (5.37) with respect to T gsc(i), equating it equal to a zero matrix, and using the
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Tab. 5.3: The JIO-CCM-RLS algorithm for DFP
Initialization:

T r(1) = [Ir×r 0r×(m−r)]T ;
w̄(1) = T H

r (1)aγ(θ0)/(‖T H
r (1)aγ(θ0)‖2);

Φ̂(0) = δIm×m, ˆ̄Φ(0) = δ̄Ir×r, p̂yx(0) = 0m×1,ˆ̄p(0) = 0r×1.
Update for each time instant i

y(i) = w̄H(i)T H
r (i)x(i)

p̂yx(i) = αp̂yx(i− 1) + y∗(i)x(i)

k(i) = α−1Φ̂(i−1)x(i)

(1/|y(i)|2)+α−1xH(i)Φ̂(i−1)x(i)

Φ̂(i) = α−1Φ̂(i− 1)− α−1k(i)xH(i)Φ̂(i− 1)

T r(i + 1) = Φ̂(i)
{

p̂yx(i)−
[
p̂H(i)Φ̂(i)a(θ0)−γ

]
a(θ0)

aH(θ0)Φ̂(i)a(θ0)

}
w̄H(i)
‖w̄(i)‖2

y(i) = w̄H(i)T H
r (i + 1)x(i)

ā(θ0) = T H
r (i + 1)a(θ0)

x̄(i) = T H
r (i + 1)x(i)

ˆ̄p(i) = αˆ̄p(i− 1) + y∗(i)x̄(i)

k̄(i) = α−1 ˆ̄Φ(i−1)x̄(i)

(1/|y(i)|2)+α−1x̄H(i) ˆ̄Φ(i−1)x̄(i)
ˆ̄Φ(i) = α−1 ˆ̄Φ(i− 1)− α−1k̄(i)x̄H(i) ˆ̄Φ(i− 1)

w̄(i + 1) = ˆ̄Φ(i)
{
ˆ̄p(i)−

[
ˆ̄pH(i) ˆ̄Φ(i)ā(θ0)−γ

]
ā(θ0)

āH(i) ˆ̄Φ(i)ā(θ0)

}

similar derivation as for (5.31), we have

T gsc(i + 1) = R̂
−1

x̃B
(i)ˆ̃pB(i)

w̄H
gsc(i)

‖w̄gsc(i)‖2
, (5.38)

where R̂x̃B
(i) =

∑i
l=1 αi−lBx̃(l)x̃H(l)BH and ˆ̃pB(i) =

∑i
l=1 αi−l[d∗0(l)− 1]x̃B(l).

Setting Φ̂x̃B
(i) = R̂

−1

x̃B
(i) and employing the matrix inversion lemma yields

kB(i) =
α−1Φ̂x̃B

(i− 1)x̃B(i)

1 + α−1x̃H
B (i)Φ̂x̃B

(i− 1)x̃B(i)
, (5.39)

Φ̂x̃B
(i) = α−1Φ̂x̃B

(i− 1)− α−1kB(i)x̃H
B (i)Φ̂x̃B

(i− 1), (5.40)

where kB(i) ∈ Cm×1 is the gain vector and Φ̂x̃B
(0) = δIm×m for δ > 0. Substituting

(5.39) and (5.40) into (5.38), the transformation matrix can be expressed by

T gsc(i + 1) = T gsc(i)− kB(i)ew̄gsc(i), (5.41)

where ew̄gsc(i) = [1− x̃H(i)w(i)]
w̄H

gsc(i)

‖w̄gsc(i)‖2 and w(i) is defined by (4.12).
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Tab. 5.4: The JIO-CCM-RLS algorithm for GSC
Initialization:

T gsc(1) = [Ir×r 0r×(m−r)]T , w̄gsc(1) = Ir×1

Φ̂x̃B (0) = δIm×m, ˆ̄Φx̄B (0) = δ̄Ir×r.
Update for each time instant i

w(i) = aγ(θ0)−BHT gsc(i)w̄gsc(i), ygsc(i) = wH(i)x(i)
x̃(i) = y∗gsc(i)x(i), x̃B(i) = Bx̃(i), egsc(i) = 1−wH(i)x̃(i)

kB(i) =
α−1Φ̂x̃B

(i−1)x̃B(i)

1+α−1x̃H
B (i)Φ̂x̃B

(i−1)x̃B(i)

Φ̂x̃B (i) = α−1Φ̂x̃B (i− 1)− α−1kB(i)x̃H
B (i)Φ̂x̃B (i− 1)

ew̄gsc(i) = [1− x̃H(i)w(i)]
w̄H

gsc(i)

‖w̄gsc(i)‖2
T gsc(i + 1) = T gsc(i)− kB(i)ew̄gsc(i)
x̄B(i) = T H

gsc(i + 1)x̃B(i)

k̄B(i) = α−1 ˆ̄Φx̄B
(i−1)x̄B(i)

1+α−1x̄H
B (i) ˆ̄Φx̄B

(i−1)x̄B(i)

ˆ̄Φx̄B (i) = α−1 ˆ̄Φx̄B (i− 1)− α−1k̄B(i)x̄H
B (i) ˆ̄Φx̄B (i− 1)

w(i) = aγ(θ0)−BHT gsc(i + 1)w̄gsc(i)
egsc(i) = 1−wH(i)x̃(i)
w̄gsc(i + 1) = w̄gsc(i)− e∗gsc(i)k̄B(i)

On the other hand, considering T gsc(i) is known in (5.37), we get

w̄gsc(i + 1) = ˆ̄R−1
x̄B

(i)ˆ̄pB(i), (5.42)

where ˆ̄Rx̄B
(i) = T H

gsc(i)R̂x̃B
(i)T gsc(i) and ˆ̄pB(i) = T H

gsc(i)ˆ̃pB(i). The recursive estima-

tion of ˆ̄R−1
x̄B

(i) is

k̄B(i) =
α−1 ˆ̄Φx̄B

(i− 1)x̄B(i)

1 + α−1x̄H
B (i) ˆ̄Φx̄B

(i− 1)x̄B(i)
, (5.43)

ˆ̄Φx̄B
(i) = α−1 ˆ̄Φx̄B

(i− 1)− α−1k̄B(i)x̄H
B (i) ˆ̄Φx̄B

(i− 1), (5.44)

where ˆ̄Φx̄B
(i) = ˆ̄R−1

x̄B
(i), k̄B(i) ∈ Cr×1 is the reduced-rank gain vector, and ˆ̄Φx̄B

(0) =

δ̄Ir×r for δ̄ > 0.

Substituting (5.43) and (5.44) into (5.42), we get a recursive expression of the reduced-
rank weight vector, which is given by

w̄gsc(i + 1) = w̄gsc(i)− e∗gsc(i)k̄B(i), (5.45)

where egsc(i) = 1 − wH(i)x̃(i). A summary of the proposed CCM reduced-rank RLS
algorithm for the GSC is given in Table 5.4.
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5.5.3 Gram-Schmidt Technique for Problem 2

As mentioned before, the transformation matrix T r(i + 1) for the DFP is constituted
by a bank of full-rank filters tj(i + 1) (j = 1, . . . , r). According to the optimization
problem in (5.15), by orthogonalizing vectors tj(i + 1) and reformulating the transfor-
mation matrix, the proposed algorithms could reach further improved performance. The
reformulated transformation matrix is composed of r orthogonal vectors and thus keeps
the useful information efficiently in the generated reduced-rank received vector, which is
important to the parameter estimation. Another important aspect of this technique is that
the orthonormal projection maintains the original statistical characteristics of the noise at
the array output. The orthogonal procedure is realized by the Gram-Schmidt (GS) tech-
nique [19]. Specifically, after the iterative processes in (5.24) for SG and (5.31) for RLS,
the GS technique is performed to modify the columns of the transformation matrix as
follows:

tj,ort(i + 1) = tj(i + 1)−
j−1∑

l=1

projtl,ort(i+1)tj(i + 1), (5.46)

where tj,ort(i+1) is the normalized orthogonal vector after the GS process. The projection
operator is projtl,ort(i+1)tj(i+1) = [tH

l,ort(i+1)tl,ort(i+1)]−1[tH
l,ort(i+1)tj(i+1)]tl,ort(i+1).

The reformulated transformation matrix T r,ort(i + 1) is constructed after we obtain a
set of orthogonal tj,ort(i + 1). By employing T r,ort(i + 1) to compute the reduced-rank
weight vectors in (5.25) for SG and (5.34) for RLS, the proposed algorithms could achieve
further improved performance. Following the same procedures, we can also apply the
GS technique to the proposed algorithms for the GSC structure. We denominate the GS
version of the SG and RLS algorithms as JIO-CCM-GS and JIO-CCM-RGS, respectively.

5.5.4 Automatic Rank Selection

The selection of the rank r impacts the performance of the proposed reduced-rank
algorithms. Here, we introduce an adaptive method for selecting the rank according to
the constant modulus criterion. We describe a rank selection method based on the CM
criterion computed by the filters T (r)

r (i) and w̄(r)(i), where the superscript (·)(r) denotes
the rank used for the adaptation at each time instant. We consider the rank adaptation
technique for both the DFP and the GSC structures. Specifically, in the DFP structure,
the rank is automatically selected for the proposed algorithms based on the exponentially-
weighted a posteriori least-squares cost function according to the CM criterion, which
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is

Jpcm
(
T (r)

r (i− 1), w̄(r)(i− 1)
)

=
i∑

l=1

%i−l
[|w̄(r)H(l − 1)T (r)

r (l − 1)x(l)|2 − 1
]2

,

(5.47)

where % is the exponential weight factor that is required as the optimal rank r can change
as a function of the time instant i. The rank adaptation scheme is similar to that given
in chapter 5 and the key quantities to be updated for the rank adaptation are the transfor-
mation matrix T r(i), the reduced-rank weight vector w̄(i), the associated reduced-rank
steering vector ā(θ0) and the matrix ˆ̄Φ(i) (for RLS only).

For each time instant i, T (r)
r (i) and w̄(r)(i) are updated along with the associated quan-

tities ā(θ0) and ˆ̄Φ(i) for a selected r according to the minimization of the cost function
in (5.47). The developed automatic rank selection method is given by

ropt = arg min
rmin≤j≤rmax

Jpcm
(
T (j)

r (i− 1), w̄(j)(i− 1)
)
, (5.48)

where j is an integer ranging between rmin and rmax. Note that a smaller rank may provide
faster adaptation during the initial stages of the estimation procedure and a slightly larger
rank tends to yield a better steady-state performance. Our studies reveal that the range for
which the rank r of the proposed algorithms have a positive impact on the performance
is very limited, being from rmin = 3 to rmax = 7. With the case of large m, the rank
r is significantly smaller than m and the additional computations do not increase the
computational cost significantly.

The proposed algorithms with the rank adaptation technique can increase the con-
vergence rate and improve the output performance, and r can be made fixed once the
algorithms reach the steady-state. Simulation results will show how the developed rank
adaptation technique works. Note that the same idea can be employed in the algorithms
for the GSC structure. We omit this part for simplification and readability.

5.6 Analysis of the Proposed Algorithms

In this section, we provide a complexity analysis of the proposed reduced-rank al-
gorithms and compare them with existing algorithms. An analysis of the optimization
problem for the proposed reduced-rank scheme is also carried out.
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5.6.1 Complexity Analysis

We evaluate the computational complexity of the proposed reduced-rank algorithms
and compare them with the existing full-rank and reduced-rank algorithms based on the
MSWF and the AVF techniques for the DFP and the GSC structures. With respect to
each algorithm, we consider the CMV and the CCM design criteria. The computational
requirements are described in terms of the number of complex arithmetic operations,
namely, additions and multiplications. The complexity of the proposed and existing al-
gorithms for the DFP is depicted in Table 5.5 and for the GSC in Table 5.6, where JIO-
CMV-SG and JIO-CMV-RLS are the algorithms proposed in chapter 5. Since we did not
consider the AVF technique for the GSC structure, we put its complexity for the DFP in
both tables for comparison.

For the DFP structure, we can say that the complexity of the proposed reduced-rank
SG type and extended GS version algorithms increases linearly with rm. The parameter
m is more influential since r is selected around a small range that is much less than m

for large arrays. The complexity of the proposed reduced-rank RLS type and GS version
algorithms is higher than that of the SG type and quadratic with m and r. For the GSC
structure, the complexity of the SG type algorithms has extra m2 terms as compared to
the DFP structure in terms of additions and multiplications due to the blocking matrix in
the sidelobe canceller. There is no significant difference in complexity of the RLS type
algorithms due to the presence of the blocking matrix since (5.41) and (5.45) are recursive
expressions and, as compared to non-recursive versions, reduce the complexity.

In order to illustrate the main trends in what concerns the complexity of the proposed
algorithms, we show in Fig. 5.4 and Fig. 5.5 the complexity of both the DFP and the
GSC structures in terms of additions and multiplications versus the length of the filter m.
Since the complexity of the current algorithms according to the CMV criterion is a little
less than that of the CCM criterion, we only plot the curves for the CCM criterion for
simplification. It is clear that the proposed SG type and extended GS version algorithms
have a complexity slightly higher than the full-rank SG algorithm but much less than the
existing algorithms based on the MSWF and the AVF techniques for both the DFP and
the GSC structures. The curves of the proposed RLS type and GS version algorithms are
situated between the full-rank RLS and the MSWF RLS algorithms in both figures. This
complexity is less than those of the MSWF and the AVF based methods.
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Tab. 5.5: Computational complexity of algorithms for DFP

Algorithm Additions Multiplications

FR-CMV-SG 3m− 1 4m + 1
FR-CCM-SG 3m 4m + 3
FR-CMV-RLS 4m2 −m− 1 5m2 + 5m− 1
FR-CCM-RLS 5m2 + 2m− 1 6m2 + 6m + 3
MSWF-CMV-SG rm2 + (r + 1)m + 2r − 2 rm2 + 2rm + 5r + 2
MSWF-CCM-SG rm2 + (r + 1)m + 4r − 2 rm2 + 2rm + 4r + 4
MSWF-CMV-RLS rm2 + (r + 1)m + 4r2 − 3r − 1 (r + 1)m2 + 2rm + 5r2 + 4r
MSWF-CCM-RLS rm2 + (r + 1)m + 5r2 − r (r + 1)m2 + 2rm + 6r2 + 7r + 3
AVF (4r + 5)m2 + (r − 1)m− 2r − 1 (5r + 8)m2 + (3r + 2)m
JIO-CMV-SG 4rm + m + 2r − 3 4rm + m + 7r + 3
JIO-CMV-GS 7rm−m− 1 7rm− 2m + 8r + 2
JIO-CCM-SG 4rm + m + 2r − 2 4rm + m + 7r + 6
JIO-CCM-GS 7rm−m 7rm− 2m + 8r + 5
JIO-CMV-RLS 4m2 + (2r − 1)m + 4r2 − 4r − 1 5m2 + (3r + 3)m + 6r2 + 4r
JIO-CMV-RGS 4m2 + (5r − 3)m + 4r2 − 6r + 1 5m2 + 6rm + 6r2 + 5r − 1
JIO-CCM-RLS 5m2 + rm + 5r2 + 3r − 1 6m2 + (2r + 6)m + 5r2 + 9r + 3
JIO-CCM-RGS 5m2 + (4r − 2)m + 5r2 + r + 1 6m2 + (5r + 3)m + 5r2 + 10r + 2

Tab. 5.6: Computational complexity of algorithms for GSC

Algorithm Additions Multiplications

FR-CMV-SG m2 + m− 2 m2 + 2m− 1
FR-CCM-SG m2 + m− 1 m2 + 2m + 1
FR-CMV-RLS 4m2 − 6m + 4 5m2 − 4m
FR-CCM-RLS 4m2 − 6m + 2 5m2 − 3m
MSWF-CMV-SG (r + 1)m2 − 2rm + 2r − 1 (r + 2)m2 − (r + 2)m + 2r + 2
MSWF-CCM-SG (r + 1)m2 − 2rm + 2r (r + 2)m2 − (r + 2)m + 2r + 4
MSWF-CMV-RLS (r + 1)m2 − 2rm + 3r2 + r − 1 (r + 2)m2 − (r + 2)m + 4r2 + 4r
MSWF-CCM-RLS (r + 1)m2 − 2rm + 3r2 + r − 1 (r + 2)m2 − (r + 1)m + 4r2 + 4r + 1
AVF (4r + 5)m2 + (r − 1)m− 2r − 1 (5r + 8)m2 + (3r + 2)m
JIO-CMV-SG m2 + 2rm−m− r m2 + 2rm + r + 2
JIO-CMV-GS m2 + 5rm− 3m− 6r + 4 m2 + 5rm− 3m− r + 4
JIO-CCM-SG m2 + 2rm−m− r + 1 m2 + 2rm + r + 4
JIO-CCM-GS m2 + 5rm− 3m− 6r + 5 m2 + 5rm− 3m− r + 6
JIO-CMV-RLS 4m2 + (2r − 8)m + 5r2 − 2r + 4 5m2 + (2r − 6)m + 7r2 + 3r + 2
JIO-CMV-RGS 4m2 + (5r − 10)m + 5r2 − 7r + 8 5m2 + (5r − 9)m + 7r2 + r + 4
JIO-CCM-RLS 4m2 + (2r − 7)m + 5r2 − 4r + 3 5m2 + (2r − 4)m + 7r2 + 2r + 1
JIO-CCM-RGS 4m2 + (5r − 9)m + 5r2 − 9r + 7 5m2 + (5r − 7)m + 7r2 + 3
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Fig. 5.4: Complexity in terms of arithmetic operations versus the length of the filter m for the DFP
structure.
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Fig. 5.5: Complexity in terms of arithmetic operations versus the length of the filter m for the GSC
structure.
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5.6.2 Analysis of the Optimization Problem

Unlike the prior work reported in [90] that considers the CCM criterion as a function of
the weight vector, the analysis here is carried out for the proposed reduced-rank scheme
according to the CCM criterion in (5.14), which depends on the transformation matrix
T r(i) and the reduced-rank weight vector w̄(i). Our approach is based on expressing the
output of the proposed scheme in a convenient form that renders itself to analysis. Note
that the GSC structure is an alternative realization of the DFP beamformer design [15]
and thus we only describe the convexity analysis of the proposed scheme for the DFP.

In the following, the reduced-rank CM cost function is considered first and the con-
straint is enforced during the analysis. In order to proceed, let us express y(i) in an
alternative and more convenient form as

y(i) = w̄H(i)T H
r (i)x(i)

= w̄H(i)




x(i) 0 0 . . . 0

0 x(i) 0 . . . 0
...

...
... . . . ...

0 0 0 . . . x(i)




T 


t∗1(i)

t∗2(i)
...

t∗r(i)




= w̄H(i)ΨT (i)τ ∗(i),

(5.49)

where Ψ(i) ∈ Crm×r is a block diagonal matrix with the received vector x(i) and τ ∗(i) ∈
Crm×1 is a vector with the columns of T r(i) stacked on top of each other.

In order to analyze the proposed reduced-rank scheme, we define f(i) =

[w̄H(i) τ T (i)]T ∈ Cr(m+1)×1. Then, y(i) can be expressed as

y(i) = fH(i)

[
0r×r 0r×rm

Ψ(i) 0rm×rm

]
f(i)

= fH(i)Ω(i)f(i),

(5.50)

where Ω(i) ∈ Cr(m+1)×r(m+1) is a matrix which contains Ψ(i).

According to (5.50) and the definitions of f(i) and Ω(i), we have

|y(i)|2 = fH(i)Ω(i)f(i)fH(i)ΩH(i)f(i)

=
r∑

j=1

r∑

k=1

tH
w̄j

(i)x(i)xH(i)tw̄k
(i),

(5.51)
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where tw̄j
(i) = w̄j(i)tj(i) ∈ Cm×1, (j = 1, . . . , r). The received vector can be expressed

as x(i) =
∑q−1

l=0 Cldl(i)a(θl) + n(i) with Cl being the signal amplitude and dl(i) is the
transmitted bit of the lth user at time instant i, respectively. Note that sl in (2.1) is replaced
by Cldl.

For the sake of analysis, we will follow the assumption in [90] and consider a noise
free case. For small noise variance σ2

n, this assumption can be considered as a small
perturbation and the analysis will still be applicable. For large σ2

n, we remark that the term
γ can be adjusted to ensure the convexity of the cost function. Under this assumption, we
write the received vector as x(i) = A(θ)Cd(i), where A(θ), as before, denotes the
signature matrix, C(i) = diag[C0, . . . , Cq−1] ∈ Cq×q, and d(i) = [d0(i), . . . , dq−1(i)]

T ∈
Cq×1.

For simplicity, we drop the time instant in the quantities. Letting ςj
l = Clt

H
w̄j

a(θl)

(l = 0, . . . , q − 1, j = 1, . . . , r), and ςj = [ςj
0 , . . . , ς

j
q−1]

T ∈ Cq×1 and considering that dl

are independent random variables, the expectation of (5.51) can be written as

E[tH
w̄j

xxHtw̄k
] = E[ςjH

ddHςk] = E[

q−1∑

l=0

|dl|2ςj
l

∗
ςk
l ], (5.52)

E[|y|2] = E[
r∑

j=1

r∑

k=1

q−1∑

l=0

|dl|2ςj
l

∗
ςk
l ]. (5.53)

Now, we consider the constraint in (5.14). To enforce the constraint in the analysis, we
write it as

w̄HT H
r a(θ0) =

r∑
j=1

tH
w̄j

a(θ0). (5.54)

From the definition of ςj
l and (5.48), it is interesting to find

r∑
j=1

ςj
0 = C0

r∑
j=1

tH
w̄j

a(θ0) = C0γ. (5.55)

According to (5.55), the constraint can be enforced in the expression of (5.53), which
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is given by

E[|y|2] = E[|d0|2C2
0γ

2] + E[
r∑

j=1

q−1∑

l=1

ςj
l

∗
ςj
l ] + E[

r∑
j=1

r∑

k 6=j

q−1∑

l=1

ςj
l

∗
ςk
l ]

= E[|d0|2C2
0γ

2] + E[
r∑

j=1

ς̃j
H

ς̃j] + E[
r∑

j=1

r∑

k 6=j

ς̃j
H

ς̃k],

(5.56)

where ς̃j = [ςj
1 , . . . , ς

j
q−1]

T ∈ C(q−1)×1.

We can examine the convexity of (5.14) by substituting (5.56) into (5.14) and comput-
ing the Hessian matrix (Hj , j = 1, . . . , r) with respect to ς̃j using the expression [95]

Hj =
∂

∂ς̃j
H

∂J(ς̃j)

∂ς̃j
, (5.57)

and testing if the terms are positive semi-definite. Specifically, Hj is positive semi-
definite if vHHjv ≥ 0 for all nonzero v ∈ C(q−1)×(q−1) [19]. Thus, the optimization
problem is convex if the Hessian Hj is positive semi-definite for j = 1, . . . , r. Note that
J(ς̃j) is a constrained cost function since the constraint is enforced in (5.56).

Evaluating the partial differentiation in the expression given in (5.57) yields

Hj = 2E
{[ r∑

j=1

ς̃j
H

ς̃jI +
r∑

j=1

ς̃j ς̃j
H]

+
[|d0|2C2

0γ
2 − 1

]
I

+
[ r∑

j=1

r∑

k 6=j

ς̃j
H

ς̃kI +
r∑

j=1

r∑

k 6=j

ς̃j ς̃k
H]}

.

(5.58)

For different j = 1, . . . , r, the results of Hessian Hj are the same. Thus, the convexity
of the optimization problem can be ensured if Hj is positive semi-definite. Apparently,
the terms in the first square brackets yield positive semi-definite matrices. The Hessian
Hj depends on the remaining terms and in principle does not look like a positive semi-
definite. However, there is a term γ2 which is a design parameter and can be set to enforce
the positive semi-definiteness of Hj , thereby enforcing the convexity. The term γ is set
to enforce the convexity and ensure the proposed methods work well, as illustrated in the
simulations that follow.
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5.7 Simulations

In this section, we evaluate the output SINR performance of the proposed adaptive
reduced-rank algorithms and compare them with the existing methods. Specifically, we
compare the proposed SG and RLS type algorithms with the full-rank (FR) SG and RLS
and reduced-rank methods based on the MSWF and the AVF techniques for both the DFP
and the GSC structures. For each algorithm, we consider the CMV and the CCM criteria
for the beamformer design. We assume that the DOA of the desired user is known by
the receiver. In each experiment, a total of K = 1000 runs are carried out to get the
curves. For all simulations, the source power (including the desired user and interferers)
is σ2

s = σ2
i = 1 with white Gaussian noise, and γ = 1. Simulations are performed by an

ULA containing m = 32 sensor elements with half-wavelength interelement spacing.

In Fig. 5.6, we compare the proposed and existing algorithms according to the CMV
and the CCM criteria for the DFP structure of the beamformer design. The simulation,
which includes two experiments, shows the input SNR versus the output SINR. The input
SNR is varied between−10 dB and 10 dB. The number of users is q = 5 with one desired
user. The number of snapshots is fixed N = 500. Fig. 5.6 (a) plots the curves of the
SG type algorithms based on the full-rank, MSWF, AVF and the proposed reduced-rank
scheme, and Fig. 5.6 (b) shows the corresponding RLS type algorithms. The parameters
used to obtain these curves are given and the rank r is selected to optimize the algo-
rithms. From Fig. 5.6 (a), the output SINR of all SG type methods increases following
the increase of the input SNR. The algorithms based on the CCM beamformer design
outperform those based on the CMV since the CCM criterion is a positive measure of the
beamformer output deviating from a constant modulus, which provides more information
than the CMV for the parameter estimation of constant modulus constellations. The pro-
posed CCM algorithms achieve better performance than the existing full-rank, MSWF
and AVF ones. By employing the GS technique to reformulate the transformation matrix,
the GS version algorithms achieve improved performance. Fig. 5.6 (b) verifies the same
fact but for the RLS type algorithms. It is clear that the RLS type algorithms superior to
the SG type ones for all input SNR values.

This simulation verifies that the performance of the adaptive algorithms based on the
CCM beamformer design has a similar trend but is better than that based on the CMV
for constant modulus constellations. Considering this fact, we will only compare the
CCM based adaptive algorithms in the following part for simplification. Note that all
the methods in this simulation are for the DFP structure. The algorithms for the GSC
structure show a similar performance, which is given in the next part.

L. Wang, Ph.D. Thesis, Department of Electronics, University of York 2009



114

−10 −5 0 5 10
−4

−2

0

2

4

6

8

10

12

14

16

SNR (dB)

O
ut

pu
t S

IN
R

 (
dB

)

 

 

FR−CMV−SG
FR−CCM−SG
MSWF−CMV−SG
MSWF−CCM−SG
AVF
JIO−CMV−SG
JIO−CCM−SG
JIO−CMV−GS
JIO−CCM−GS

−10 −5 0 5 10
2

4

6

8

10

12

14

16

18

SNR (dB)

O
ut

pu
t S

IN
R

 (
dB

)

 

 

FR−CMV−RLS
FR−CCM−RLS
MSWF−CMV−RLS
MSWF−CCM−RLS
JIO−CMV−RLS
JIO−CCM−RLS
JIO−CMV−RGS
JIO−CCM−RGS

Fig. 5.6: Output SINR versus input SNR with m = 32, q = 5, SNR= 10 dB, (a) µTr = 0.002,
µw̄ = 0.001, r = 5 for SG, µTr = 0.003, µw̄ = 0.0007, r = 5 for GS; (b) α = 0.998,
δ = δ̄ = 0.03, r = 5 for RLS, α = 0.998, δ = δ̄ = 0.028, r = 5 for RGS of the
proposed CCM reduced-rank scheme.

We evaluate the output SINR performance of the proposed and existing algorithms
against the number of snapshots for both the DFP and the GSC structures in Fig. 5.7 and
Fig. 5.8, respectively. The number of snapshots is N = 500 to ensure that the considered
methods reach their steady-state. There are q = 7 users in the system, including one
desired user. The input SNR is 10 dB. In Fig. 5.7, the convergence of the proposed SG
type and extended GS version algorithms is close to the RLS type algorithm based on the
MSWF, and the steady-state performance is better than other SG type methods based on
the full-rank, MSWF and AVF. The convergence of the proposed RLS type and GS version
algorithms is slightly slower than the AVF, but much faster than that of other existing and
proposed methods. Its steady-state performance outperforms the more complex MSWF
and AVF-based algorithms.

Fig. 5.8 is carried out for the GSC structure under the same scenario as in Fig. 5.7. The
curves of the considered algorithms for the GSC show nearly the same convergence and
steady-state performance as those for the DFP. It implies that the GSC structure is an al-
ternative way for the CCM beamformer design. The difference is that the GSC processor
incorporates the constraint in the structure and thus converts the constrained optimization
problem into an unconstrained one. The adaptive methods of the GSC beamformer de-
sign are different from those of the DFP but the performance is similar. The following
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simulations are carried out for the DFP structure to simplify the presentation.
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Fig. 5.7: Output SINR versus the number of snapshots with m = 32, q = 7, SNR= 10 dB,
µTr = 0.003, µw̄ = 0.003, r = 5 for SG, µTr = 0.0023, µw̄ = 0.003, r = 5 for GS,
α = 0.998, δ = δ̄ = 0.025, r = 5 for RLS, α = 0.998, δ = δ̄ = 0.02, r = 5 for RGS of
the DFP structure.

In the next two experiments, we assess the output SINR performance of the proposed
and analyzed algorithms versus their associated rank r, and check the effectiveness of the
automatic rank selection technique. The experiment in Fig. 5.9 is intended for setting
the adequate rank r of the reduced-rank schemes for a given input SNR and number of
snapshots. The scenario is the same as that in Fig. 5.7 except that the number of snapshots
is fixed to be N = 500 and the rank r is varied between 1 and 16. The result indicates that
the best performance of the proposed SG and RLS type algorithms is obtained with rank
r = 5 for the proposed reduced-rank scheme. The performance of the full-rank methods
is invariant with the change of the rank r. For the MSWF technique, its SG and RLS
type algorithms achieve their best performance with ranks r = 6 and r = 7, respectively.
For the AVF-based algorithm, the best rank is found to be r = 7. It is interesting to note
that the best r is usually much smaller than the number of elements m, which leads to
significant computational savings. For the proposed and analyzed algorithms, the range
of r that has the best performance is concentrated between rmin = 3 and rmax = 7. This
range is used in the next experiment to check the performance of the proposed algorithms
with the automatic rank selection technique.
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Fig. 5.8: Output SINR versus input SNR with m = 32, q = 7, SNR= 10 dB, µTr = 0.0025,
µw̄gsc = 0.002, r = 5 for SG, µTr = 0.003, µw̄gsc = 0.003, r = 5 for GS, α = 0.998,
δ = δ̄ = 0.01, r = 5 for RLS, α = 0.998, δ = δ̄ = 0.0093, r = 5 for RGS of the GSC
structure.

Since the performance of the proposed reduced-rank algorithms was found in our stud-
ies to be a function of the rank r and other parameters such as the step size and the
forgetting factor, we need to consider their impacts on the performance of the system.
Specifically, we assume that the step size of the SG type algorithms and the forgetting
factor of the RLS type algorithms are adequately chosen and we focus on the developed
automatic rank selection technique introduced in the previous section.

In Fig. 5.10, the proposed reduced-rank algorithms utilize fixed values for their rank
and also the automatic rank selection technique. We consider the presence of q = 10

users (one desired) in the system. The input SNR is 10 dB. The results show that with a
lower rank r = 3 the reduced-rank algorithms usually converge faster but achieve lower
steady-state SINR values. Conversely, with a higher rank r = 7 the proposed algorithms
converge relatively slower than with a lower rank but reach higher steady-state SINR
values. The developed automatic rank selection technique allows the proposed algorithms
to circumvent the tradeoff between convergence and steady-state performance for a given
rank, by adaptively choosing the best rank for a given number of snapshots which provides
both fast convergence and improved steady-state performance.

In the last experiment, we evaluate the performance of the proposed and analyzed al-
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Fig. 5.9: Output SINR versus rank r with m = 32, q = 7, SNR= 10 dB.
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Fig. 5.10: Output SINR versus the number of snapshots with m = 32, q = 10, SNR= 10 dB, (a)
µTr = 0.003, µw̄ = 0.004 for SG, µTr = 0.003, µw̄ = 0.001 for GS; (b) α = 0.998,
δ = δ̄ = 0.03 for RLS, α = 0.998, δ = δ̄ = 0.026, r = 5 for RGS with the automatic
rank selection technique.
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gorithms in a non-stationary scenario, namely, when the number of users changes. The
automatic rank selection technique is employed, and the step size and the forgetting factor
are set to ensure that the considered algorithms converge quickly to the steady-state. The
input SNR is 10 dB. In this experiment, the scenario starts with q = 8 users including one
desired user. From the first stage (first 500 snapshots) of Fig. 5.11, the convergence and
steady-state performance of the proposed SG type algorithms is superior to other SG type
methods with the full-rank, MSWF and AVF. The proposed RLS type algorithm has a
convergence rate a little slower than the AVF but faster than the other analyzed methods,
and the steady-state performance better than the existing ones. Three more interferers
enter the system at time instant i = 500. This change makes the output SINR reduce
suddenly and degrades the performance of all methods. Note that the output SINR values
of all the methods at N = 500 are set around 0 dB since it is convenient to show the con-
vergence behaviors. The proposed SG and RLS type algorithms keep faster convergence
and better steady-state performance in comparison with the corresponding SG and RLS
type methods based on the full-rank and MSWF techniques. The convergence of the AVF
method is fast but the steady-state performance is inferior to the proposed methods.
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Fig. 5.11: Output SINR versus input SNR with m = 32, q1 = 8, q2 = 11, SNR= 10 dB, µTr =
0.003, µw̄ = 0.0038, r = 5 for SG, µTr = 0.003, µw̄ = 0.001, r = 5 for GS,
α = 0.998, δ = δ̄ = 0.033, r = 5 for RLS, α = 0.998, δ = δ̄ = 0.028, r = 5 for RGS
of the proposed CCM reduced-rank scheme.
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5.8 Proposed CCM-AVF Algorithm

In this section, we will introduce another CCM reduced-rank adaptive algorithm based
on the AVF scheme for beamforming.

5.8.1 Proposed CCM-AVF Scheme

We define the cost function for the beamformer design, which is

Jav
(
w(i)

)
= E

{∣∣wH(i)x̃(i)− ν
∣∣2}, (5.59)

where x̃(i) = y∗(i)x(i) can be viewed as a new received vector to the beamformer and
ν = 1 is set.

To obtain the weight solution for the time index i, we start the iteration by initializing
the weight vector

w0(i) = a(θ0)/‖a(θ0)‖2. (5.60)

Then, we subtract a scaling auxiliary vector (unconstrained component) that is orthog-
onal to a(θ0) from w0(i) (constrained component) and obtain

w1(i) = w0(i)− µ1(i)g1(i), (5.61)

where g1(i) ∈ Cm×1 with gH
1 (i)a(θ0) = 0, and µ1(i) is a scalar factor to control the

weight of g1(i). The auxiliary vector is supposed to capture the signal components in
x̃(i) that are not from the direction θ0. The aim of (5.61) is to suppress the disturbance
of the unconstrained component while maintaining the contribution of the SOI. The cost
function in (5.59) appears in unconstrained form since the constraint has been incorpo-
rated in the weight adaptation.

5.8.2 Proposed CCM-AVF Algorithm

From (5.61), it is necessary to determine the auxiliary vector g1(i) and the scalar factor
µ1(i) for the calculation of w1(i). Assuming g1(i) is known, µ1(i) can be obtained by
minimizing E{[w1(i)x̃(i) − 1]2}. Substituting (5.61) into this cost function, computing
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the gradient with respect to µ1(i) and equating it to zero, we obtain

µ1(i) =
gH

1 (i)R̃(i)w0(i)− gH
1 (i)p̃(i)

gH
1 (i)R̃(i)g1(i)

, (5.62)

where R̃(i) = E[x̃(i)x̃H(i)] ∈ Cm×m and p̃(i) = E[x̃(i)] ∈ Cm×1. Note that the
situation that µ1(i) = 0, i.e., R̃(i)w0(i) = p̃(i), needs to be avoided here.

On the other hand, the calculation of the auxiliary vector g1(i) should take the condi-
tions gH

1 (i)a(θ0) = 0 and gH
1 (i)g1(i) = 1 into account. The constrained minimization

problem with respect to g1(i) can be transformed by the method of Lagrange multipliers
into

JL
(
w1(i)

)
= E

{[
wH

1 (i)x̃(i)−1
]2}−2 R

{
λ1

[
gH

1 (i)g1(i)−1
]−λ2g

H
1 (i)a(θ0)

}
, (5.63)

where λ1 and λ2 are scalar Lagrange multipliers. For the sake of mathematical accuracy,
we note that the cost function to be minimized is phase invariant, namely, if g1(i) is the
solution of the minimization problem, so does g1(i)e

jφ for any phase φ. To avoid any
ambiguity, we assume that only one auxiliary vector can be obtained.

Following the procedure to get µ1(i), the auxiliary vector can be expressed by

g1(i) =
µ∗1(i)p̃y(i)− λ2a(θ0)

λ1

, (5.64)

where p̃y(i) = E
[(

1 − ỹ(i)
)∗

x̃(i)
] ∈ Cm×1 and ỹ(i) = wH(i)x̃(i). We keep the time

index i in p̃y(i) since it is a function of w(i), which must be initialized to provide an
estimation of ỹ(i) and to start the iteration.

The expression of g1(i) is utilized to enforce the constraints and solve for λ1 and λ2.
Indeed, we have

λ1 =

∥∥∥∥∥µ∗1(i)p̃y(i)−
µ∗1(i)a

H(θ0)p̃y(i)

‖a(θ0)‖2
a(θ0)

∥∥∥∥∥, (5.65)

λ2 =
µ∗1(i)a

H(θ0)p̃y(i)

‖a(θ0)‖2
, (5.66)

where ‖ · ‖ denotes the Euclidean norm. Substitution of λ1 and λ2 back in (5.64) leads
to g1(i) that satisfies the constraints and minimizes (with µ1(i)) the squared deviation of
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ỹ(i) from the CM condition, yielding

g1(i) =
µ∗1(i)p̃y(i)− µ∗1(i)aH(θ0)p̃y(i)

‖a(θ0)‖2 a(θ0)
∥∥µ∗1(i)p̃y(i)− µ∗1(i)aH(θ0)p̃y(i)

‖a(θ0)‖2 a(θ0)
∥∥ . (5.67)

So far, we have detailed the first iteration of the proposed CCM-AVF algorithm for
time index i, i.e., w0(i) in (5.60), w1(i) in (5.61), µ1(i) in (5.62), and g1(i) in (5.67),
respectively. In this procedure, x̃(i) can be viewed as a new received vector that is pro-
cessed by the adaptive filter w1(i)

(
first estimation of w(i)

)
to generate the output ỹ(i),

in which, w1(i) is determined by minimizing the mean squared error between the output
and the desired CM condition. This principle is suitable to the following iterations with
w2(i), w3(i), . . ..

Now, we consider the iterations one step further and express the adaptive filter as

w2(i) = w0(i)−
2∑

k=1

µk(i)gk(i) = w1(i)− µ2(i)g2(i), (5.68)

where µ2(i) and g2(i) will be calculated based on the previously identified µ1(i) and
g1(i). µ2(i)

(
µ2(i) 6= 0

)
is chosen to minimize the cost function E{[wH

2 (i)x̃(i) − 1]2}
under the assumption that g2(i) is known beforehand. Thus, we have

µ2(i) =
gH

2 (i)R̃(i)w1(i)− gH
2 (i)p̃(i)

gH
2 (i)R̃(i)g2(i)

, (5.69)

The auxiliary vector g2(i) is calculated by the minimization of the cost function subject
to the constraints gH

2 (i)a(θ0) = 0 and
gH

2 (i)g2(i)= 1, which is

g2(i) =
µ∗2(i)p̃y(i)− µ∗2(i)aH(θ0)p̃y(i)

‖a(θ0)‖2 a(θ0)
∥∥µ∗2(i)p̃y(i)− µ∗2(i)aH(θ0)p̃y(i)

‖a(θ0)‖2 a(θ0)
∥∥ . (5.70)

The above iterative procedures are taken place at time index i to generate a sequence
of filters wk(i) with k = 0, 1, . . . being the iteration number. Generally, there exists a
maximum (or suitable) value of k, i.e., kmax = K, that is determined by a certain rule to
stop iterations and achieve satisfactory performance. One simple rule, which is adopted in
the proposed CCM-AVF algorithm, is to terminate the iteration if gk(i)

∼= 0 is achieved.
Alternative and more complicated selection rules can be found in [92]. Until now, the
weight solution at time index i can be given by w(i) = wK(i). The proposed CCM-AVF
algorithm for the design of the CCM beamformer is summarized in Table 5.7.
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Tab. 5.7: Proposed CCM-AVF algorithm.
For the time index i = 1, 2, . . . , N .

Initialization:
w(i) = w0(i) = a(θ0)

‖a(θ0)‖2 ; µ0(i) = small positive value.
Iterative procedures:

For k = 1, 2, . . . , K

gk(i) = µ∗k−1(i)p̃y(i)−
µ∗k−1(i)aH(θ0)p̃y(i)

‖a(θ0)‖2 a(θ0)
if gk(i) = 0 then EXIT.
µk(i) = gH

k (i)R̃(i)wk−1(i)−gH
k (i)p̃(i)

gH
k (i)R̃(i)gk(i)

wk(i) = wk−1(i)− µkgk(i)
Weight expression:

w(i) = wK(i).

5.8.3 Interpretations about Proposed CCM-AVF Algorithm

There are several points we need to interpret in Table 5.7. First of all, initialization
is important to the realization of the proposed method. w(i) is set to estimate ỹ(i) and
so R̃(i), p̃(i), and p̃y(i). w0(i) is for the activation of the weight adaptation. Note that
the calculation of the scalar factor, e.g., in (5.62), is a function of g1(i) and the auxiliary
vector obtained from (5.67) depends on µ1(i). It is necessary to initialize one of these
quantities to start the iteration. We usually set a small positive scalar value µ0(i) for
simplicity. Under this condition, the subscript of the scalar factor for the calculation of
gk(i) should be replaced by k − 1 instead of k, as shown in Table 5.7.

Second, the expected quantities R̃(i), p̃(i), and p̃y(i) are not available in practice. We
use a sample-average approach to estimate them, i.e.,

ˆ̃R(i) =
1

i

i∑

l=1

x̃(l)x̃H(l); ˆ̃p(i) =
1

i

i∑

l=1

x̃(l); ˆ̃py(i) =
1

i

i∑

l=1

(
1− ỹ(l)

)∗
x̃(i).

(5.71)

where R̃(i), p̃(i), and p̃y(i) are substituted by their estimates in the iterative procedure
to generate wk(i). To improve the estimation accuracy, the quantities in (5.71) can be
refreshed or further regularized during the iterations. Specifically, we use wk(i) in the
iteration step instead of w(i) in the initialization to generate y(i), and related x̃(i) and
ỹ(i), which are employed to update the estimates ˆ̃R(i), ˆ̃p(i), and ˆ̃py(i). Compared with
w(i) = a(θ0)/‖a(θ0)‖2, wk(i) is more efficient to evaluate the desired signal. Thus,
the refreshment of the estimates based on the current wk(i) is valuable to calculate the
subsequent scalar factor and the auxiliary vector.
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Third, we drop the normalization of the auxiliary vector [31, 82, 92]. Note that the
calculated auxiliary vectors gk(i) are constrained to be orthogonal to a(θ0). The orthog-
onality among the auxiliary vectors is not imposed. Actually, the successive auxiliary
vectors do satisfy the orthogonality as verified in our numerical results. We leave the
analysis about this characteristic for the future work.

The proposed CCM-AVF beamformer efficiently measures the expected deviation of
the beamformer output from the CM value and provide useful information for the pro-
posed algorithm for dealing with parameter estimation in many severe scenarios including
low signal-to-noise ratio (SNR) or steering vector mismatch. The proposed CCM-AVF
algorithm employs an iterative procedure to adjust the weight vector for each time instant.
The matrix inversion appeared in (5.1) is avoided and thus the computational cost is lim-
ited. Since the scalar factor and the auxiliary vector depend on each other, the proposed
algorithm provides an iterative exchange of information between them, which are jointly
employed to update the weight vector. This scheme leads to an improved convergence
and the steady-state performance that will be shown in the simulations.

5.9 Simulations

Simulations are performed for a ULA containing m = 40 sensor elements with half-
wavelength interelement spacing. We compare the proposed algorithm (CCM-AVF) with
the SG [18], RLS [93, 94], MSWF [28], and AVF [31] methods. For each method, we
consider the CMV and the CCM criteria for beamforming. A total of 1000 runs are used
to get the curves. In all experiments, BPSK sources’ powers (desired user and interferers)
are σ2

S = σ2
I = 1 and the input SNR= 0 dB with spatially and temporally white Gaussian

noise.

Fig. 5.12 includes two experiments. There are q = 10 users, including one desired user
in the system. We set µ0(i) = 0.01. In Fig.5.12 (a), the exact DOA of the SOI is known at
the receiver. All output SINR values increase to the steady-state following the snapshots.
The RLS-type algorithms enjoy faster convergence and better steady-state performance
than the SG-type methods. The proposed CCM-AVF algorithm converges rapidly and
reaches the steady-state with superior performance. The CCM-based MSWF technique
with the RLS implementation has comparative fast convergence rate but the steady-state
performance is not as good as that of the proposed method. In Fig. 5.12 (b), we set the
DOA of the SOI estimated by the receiver to be 1o away from the actual direction. It indi-
cates that the mismatch induces performance degradation to all the analyzed algorithms.
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The CCM-based methods are more robust to this scenario than the CMV-based ones since
the CCM deviation between the beamformer output and the constant modulus provides
more information for the parameter estimation. The proposed CCM-AVF algorithm has
faster convergence and better steady-state performance than the other analyzed methods.
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Fig. 5.12: Output SINR versus the number of snapshots for (a) ideal steering vector; (b) steering
vector mismatch 1o.

In Fig. 5.13, we keep the same scenario as that in Fig. 5.12 (a) and check the iteration
number for the existing and proposed methods. The number of snapshots is fixed to
N = 500. The most adequate iteration number for the proposed CCM-AVF algorithm is
K = 3, which is less than those of other analyzed algorithms, but reach the preferable
performance. We also checked that this value is rather insensitive to the number of users
in the system, to the number of sensor elements, and work efficiently for the studied
scenarios.

5.10 Conclusions

In this chapter, we proposed reduced-rank adaptive algorithms according to the CCM
criterion for beamforming. The proposed algorithms can be divided into the JIO scheme
based and the AVF scheme based methods. In the JIO scheme, the dimension of the re-
ceived vector is reduced by the adaptive transformation matrix that is formed by a bank of
full-rank adaptive filters, and the transformed received vector is processed by the reduced-
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Fig. 5.13: Output SINR versus the number of iterations.

rank adaptive filter for estimating the desired signal. The JIO scheme was developed for
both DFP and GSC structures. We derived the CCM expressions for the transformation
matrix and the reduced-rank weight vector, and developed SG and RLS type algorithms
for their calculations. The complexity and convexity analysis of the proposed algorithms
was carried out. In the AVF scheme, the weight solution is iterated by jointly calculat-
ing the auxiliary vector and the scalar factor. The auxiliary vector and the scalar factor
exchange information between each other and lead to a good performance.
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6. CONCLUSIONS AND FUTURE WORK
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6.1 Summary of Work

In this thesis, we have investigated array processing algorithms and their applications
to beamforming and DOA estimation. According to the dimension processed, these algo-
rithms can be categorized into full-rank and reduced-rank. For the full-rank techniques,
we employed two adaptive step size mechanisms to develop the SG algorithms (Chapter
2) and derived constrained CG-based adaptive algorithms (Chapter 3) for the beamformer
design. For the reduced-rank techniques, we proposed the JIO reduced-rank scheme for
both beamforming (Chapter 4, 5) and DOA estimation (Chapter 4) and presented SG and
RLS-based algorithms. The proposed array processing algorithms were derived according
to the CMV and/or the CCM design criteria.

In Chapter 2, we started to introduce the adaptive SG algorithm with the CCM criterion
for beamforming and pointed out the drawback of the performance degradation due to
the inappropriate selection of the step size. Then, we presented two adaptive step size
mechanisms according to the CCM criterion to adjust the step size. We compared the
complexity of the developed mechanisms with the existing fixed and adaptive step size SG
methods. Furthermore, we investigated the characteristics of the proposed SG algorithms.
First, we studied the sufficient condition for the convergence of the mean weight vector.
Then, the steady-state mean and mean-square expressions of the step size were derived.
On the basis of these step size expressions, we employed the energy conservation relation
to give the steady-state and tracking analyses of the proposed methods.

In Chapter 3, we developed two CG adaptive algorithms according to the CMV and
CCM criteria. The existing CG algorithms incorporate the constraints with significant
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high computational cost to solve the system of equations. The proposed algorithms were
motivated to circumvent this problem. We introduced a CG-based weight vector to in-
corporate the constraint of the array response in the proposed methods for beamforming.
A simple relation between the CG-based weight vector and the matrix inversion and the
array response of the SOI was established. The weight solution can be obtained by itera-
tively computing the CG-based weight vector. We derived the convexity condition for the
global convergence of the CCM criterion and compared the complexity of the proposed
algorithms with the existing SG, RLS, MSWF, and AVF methods. The convergence prop-
erties of the proposed methods were also considered here.

In Chapters 4, we introduced a robust JIO reduced-rank scheme according to the CMV
criterion and developed adaptive algorithms. The JIO reduced-rank scheme was motivated
to deal with the beamformer design with large arrays. The essence of the JIO scheme is
to change the role of adaptive filters. It includes a bank of adaptive filters that constitute
a transformation matrix and a reduced-rank filter with the reduced-rank weight vector.
The transformation matrix maps the received vector into a lower dimension subspace to
obtain the reduced-rank received vector, which is processed by the reduced-rank weight
vector to compute the output. The transformation matrix and the reduced-rank weight
vector are joint optimized according to the design criterion. The reduced-rank scheme
provided a iterative exchange of information between the transformation matrix and the
reduced-rank filter for weight adaptation and thus leads to an improved convergence and
tracking performance. We also presented a DOA estimation algorithm based on the JIO
scheme. We derived adaptive RLS algorithms to iteratively update the transformation
matrix and the reduced-rank weight vector according to the minimum variance criterion
for plotting the output power spectrum over the possible scanning angles. The objective
of the proposed algorithms was to resolve the DOA estimation problem with large arrays
and a small number of snapshots. The forward and backward SS technique was employed
in the LS type algorithm to deal with the highly correlated sources’ problem. These
proposed methods exhibit a dominance when many sources are present.

Chapter 5 was devoted to the CCM reduced-rank schemes and algorithms in the ap-
plication of the beamformer design. We introduced the CCM-based JIO reduced-rank
scheme. This scheme was investigated in both DFP and GSC structures. For each struc-
ture, a family of computationally efficient reduced-rank SG and RLS type algorithms
were derived. The GS technique was employed in the proposed methods to reformu-
late the transformation matrix for further improving the performance. An automatic rank
selection technique based on the constant modulus criterion was developed there. The
complexity comparison between the existing and proposed algorithms was given and the
convergence properties for the CCM reduced-rank scheme was analyzed. Besides, we
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proposed a CCM-based AVF algorithm for robust adaptive beamforming in this chapter.
The proposed beamformer decomposes the adaptive filter into a constrained (reference
vector filters) and an unconstrained (auxiliary vector filters) components. The weight
vector is iteratively computed by subtracting the scaling auxiliary vector from the refer-
ence vector. The scalar factor and the auxiliary vector are jointly calculated according to
the CCM criterion. The proposed algorithm shows the robustness in severe conditions.

6.2 Future Work

For the future work, we plan to pay our efforts to the development of array processing
algorithms for beamforming and DOA estimation. Some suggestions for future work
based on this thesis are given below.

In Chapter 4 and Chapter 5, we introduced the JIO reduced-rank scheme with the
CMV and CCM criteria for the beamformer design and developed SG and RLS adaptive
algorithms. For the SG algorithm, it is possible to employ the adaptive step size mech-
anisms reported in Chapter 2 to adjust the step size. One possibility to further develop
the reduced-rank scheme is to utilize the combination of the adaptive filters [104]. This
scheme tries to use a smart way to combine two adaptive filters w1(i) and w2(i). The
key to the scheme is the selection of a scalar mixing parameter η(i) for combining the
two filter outputs. Several approaches have been reported to adapt η(i) [104]- [106].
A combination of adaptive filters can lead to fast convergence and good steady-state
performance. Current works on the combination focus on the full-rank adaptive filters,
like LMS, NLMS, or RLS. It brings us an idea to use this combination for the reduced-
rank processing, namely, two JIO reduced-rank branches can work together by using the
convex combination [105] or affine combination [106]. In each reduced-rank branch, a
transformation matrix and a reduced-rank adaptive filter operate to compute the output.
Another point we could consider in this topic is the stability of the combination. The
combination of two adaptive filters of same type is relatively simple. However, if two
filters does not belong to the same type, how can we efficiently adapt the scalar factor for
combination? This is a choke point of current works, which is also an interesting topic
we can examine in the future.

Regarding another kind of reduced-rank technique, i.e., the CCM-AVF proposed in
Chapter 5, we want to investigate more about its properties. In Chapter 5, we developed
the adaptive algorithm and checked the impact of the selection of the number of iteration
K to the output performance. Actually, K was selected based on the simulation experi-
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ence. The proposed algorithm would be more powerful if it can be selected automatically
according to the design criterion. Besides, the convergence analysis will be an impor-
tant point to keep the integrity of the proposed method and establish formal conditions
of convergence. Different from the convergence analysis presented in [31], our analysis
should consider the impact of the covariance matrix, which does not purely depend on the
received vector but is a function of the weight vector.

In the development of the full-rank and reduced-rank adaptive algorithms, we always
assumed that the locations of the users are fixed. This assumption is weak in practice.
Although the DOA estimation algorithm can be employed to determine the locations of
the users, it always causes the time delay and extra computational load. Besides, we con-
sidered the AWGN channel in simulations. For the application of the proposed algorithms
in wireless communications, it is necessary to consider the impacts of the time varying
channel. These topics are what we should investigate in the future.

For the DOA estimation, polynomial rooting can be considered in the proposed
reduced-rank scheme. By using this technique, we could roughly locate the directions
of the sources and thus reduce the search range. The proposed DOA estimation algorithm
would be operated under this limited scanning angles to plot the output power spectrum
and determine the final DOAs. This technique is an efficient way to avoid the exhaustive
search through all possible angles to estimate the DOAs. A challenge to utilize poly-
nomial rooting in the proposed scheme is that the calculation of the output power with
respect to each scanning angle is a function of both the transformation matrix and the
reduced-rank weight vector, as can be seen in (4.49). It is difficult to transfer this ex-
pression into an alternative one with the summation of only the DOAs and the received
vector, as the polynomial rooting for the Capon’s method. We plan to use the property of
the pseudo-inverse to simplify the expression and make an equivalence between the pro-
posed output power equation and the the Capon’s one, and then employ the polynomial
rooting technique.

Another topic motivated from the DOA estimation is to use subspace tracking algo-
rithms to estimate the signal subspace, avoiding the eigen-decomposition. Actually, the
estimation of the signal subspace can be viewed as a constrained or unconstrained opti-
mization problem, for which the introduction of a projection approximation hypothesis
leads to fast subspace tracking methods, e.g., PAST [97], NIC [98], or API [100]. By
using different optimization problems and realizations of the projection matrix, it is pos-
sible to reach a trade-off between the complexity and estimation accuracy of the signal
subspace. How to efficiently estimate this signal subspace is what we plan to investigate
in the future.
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A. DERIVATION OF (2.28)

In the steady-state environment, applying assumption i) in Chapter 3 to (2.27) and
defining B = ξmin + ξex(∞), we have

E[v2(i)] = (1− β)2[B2 + β2B2 + . . . + β2(i−1)B2]. (A.1)

In a compact way, we also define C = [B2 +β2B2 + . . .+β2(i−1)B2]. By multiplying
β2 on both sides, we obtain

β2C = β2B2 + β4B2 + . . . + β2(i−1)B2 + β2iB2. (A.2)

Since 0 < β < 1, if i →∞, the term β2i in (A.2) can be ignored and then

β2C = C −B2. (A.3)

Rearranging (A.3) to get C, substituting it into (A.1), and recalling assumption ii), we
find

E[v2(i)] =
(1− β)2B2

1− β2
=

(1− β)(ξmin + ξex(∞))2

1 + β
≈ (1− β)ξ2

min

1 + β
. (A.4)



B. CONVEXITY CONDITION FOR THE CCM CRITERION

We consider the cost function (2.4), which can be written as

Jcm = E[|y(i)|4 − 2|y(i)|2 + 1]

= E[|wH(i)x(i)xH(i)w(i)|2]− 2E[|wH(i)x(i)|2] + 1,
(B.1)

where x(i) =
∑q−1

k=0 Bkdka(θk) + n(i) with Bk being the signal amplitude, dk is the
transmitted bit of the kth user, and k (k = 0, . . . , q − 1) is the user number.

For the sake of analysis, we will follow the assumption in [90] and consider a noise free
case. For small noise variance σ2

n, this assumption can be considered as a small perturba-
tion and the analysis will still be applicable. For large σ2

n, we remark that the term γ can
be adjusted to make (2.4) convex, as pointed out in [90]. Under this assumption, we write
the received vector as x(i) = ABd(i), where A, as before, denotes the signature matrix,
B = diag[B0, . . . , Bq−1], and d(i) = [d0(i), . . . , dq−1(i)]

T . For simplicity, we remove the
time instant i in the quantities. Letting rk = Bkw

Ha(θk) and r = [r0, . . . , rq−1]
T , (B.1)

can be written as

Jcm = E[rHddHrrHddHr]− 2E[rHddHr] + 1. (B.2)

Since dk are independent random variables, the evaluation of the first two terms in the
brackets of (B.2) reads

rHddHrrHddHr =

q−1∑

k=0

q−1∑
j=0

|dk|2|dj|2r∗krkr
∗
j rj

rHddHr =

q−1∑

k=0

|dk|2r∗krk.

(B.3)

Substituting (B.3) into (B.2) and using the constrained condition wHa(θ0) = γ, we
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have

Jccm =E
[|d0|2B2

0γ
2 +

q−1∑

k=1

|dk|2r∗krk

]2

− 2E
[|d0|2B2

0γ
2 +

q−1∑

k=1

|dk|2r∗krk

]
+ 1,

(B.4)

where d0 and B0 denote the transmitted bit and amplitude relevant to the desired signal,
and thus

Jccm = E
[|d0|2B2

0γ
2 + r̄H d̄d̄

H
r̄
]2 − 2E

[|d0|2B2
0γ

2 + r̄H d̄d̄
H

r̄
]
+ 1, (B.5)

where d̄ = [d1, . . . , dq−1]
T and r̄ = [r1, . . . , rq−1]

T . To examine the convexity property
of (B.5), we compute Hessian H with respect to r̄H and r̄, that is H = ∂

∂r̄H
∂Jccm
∂r̄

yields

H = 2E
[
(|d0|2B2

0γ
2 − 1)d̄d̄

H
+ d̄d̄

H
r̄r̄H d̄d̄

H
+ r̄H d̄d̄

H
r̄d̄d̄

H]
, (B.6)

where H should be positive semi-definite to ensure the convexity of the optimization
problem. The second and third term in (B.6) yield positive semi-definite matrices,
while the first term provides the condition |d0|2B2

0γ
2 − 1 ≥ 0 to ensure the convex-

ity of Jccm. Since r̄ can be expressed as a linear function of w, i.e., r̄ = Cw, where
B

′
= diag(B1, . . . , Bq−1) ∈ R(q−1)×(q−1), A

′
= [a(θ1), . . . , a(θq−1)] ∈ Cm×(q−1), and

C = B
′HA

′H ∈ C(q−1)×m. This expression shows that Jccm(w) is a convex function of
w as Jccm(r̄) = Jccm(Cw) is of r̄ when

γ2 ≥ 1

|d0|2B2
0

. (B.7)

The optimization problem is convex if the condition in (B.7) is satisfied. Note that this
condition is suitable to all constant modulus constellations.
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C. PRESERVATION OF MV AND EXISTENCE OF MULTIPLE
SOLUTIONS

In this Appendix, we discuss the conditions for which the MV obtained for the full-
rank filter is preserved and the existence of multiple solutions in the proposed optimization
method. Given a transformation matrix T r(i) ∈ Cm×r, where r ≤ m, the MV is achieved
if and only if w which minimizes (2.3) belongs to the Rang{T r(i)}, i.e., w(i) lies in the
subspace generated by T r(i). In this case, we have

MV
(
w̄(i)

)
=

1

aH(θ0)R
−1a(θ0)

. (C.1)

For a general T r(i), we have

MV
(
w̄(i)

) ≥ 1

aH(θ0)R
−1a(θ0)

. (C.2)

From the above relations, we can conclude that there exists multiple solutions to the
proposed optimization problem.



D. ANALYSIS OF THE OPTIMIZATION OF THE JIO CMV SCHEME

We carry out an analysis of the proposed JIO scheme with the CMV criterion and its
optimization. Our approach is based on expressing the output of the proposed scheme and
the proposed constraint in a convenient form that renders itself to analysis. Let us rewrite
the proposed constrained optimization method in (4.7) using the method of Lagrange
multipliers and express it by the Lagrangian

Lun = E
[|w̄H(i)T H

r (i)x(i)|2] + 2 R[λ(w̄H(i)T H
r (i)a(θ0)− 1)]. (D.1)

In order to proceed, let us express y(i) in an alternative and more convenient form as

y(i) = w̄H(i)T H
r (i)x(i)

= w̄H(i)




x(i) 0 0 . . . 0

0 x(i) 0 . . . 0
...

...
... . . . ...

0 . . . 0 0 x(i)




T 


t∗1(i)

t∗2(i)
...

t∗r(i)




= w̄H(i)ΦT (i)τ ∗(i),

(D.2)

where Φ(i) ∈ Crm×r is a block diagonal matrix with the input data vector x(i), and
τ ∗(i) ∈ Crm×1 is a vector with the columns of T r(i) stacked on top of each other.

In order to analyze the proposed joint optimization procedure, we can rearrange the
terms in y(i) and define a single parameter vector f(i) = [w̄T (i) τ T (i)]T ∈ Cr(m+1)×1.
We can therefore further express y(i) as

y(i) = fH(i)

[
0r×r 0r×rm

Φ(i) 0rm×rm

]
f(i)

= fH(i)Ω(i)f(i),

(D.3)

where Ω(i) ∈ Cr(m+1)×r(m+1) is a matrix which contains Φ(i). Now let us perform a
similar linear algebra transformation with the proposed constraint w̄H(i)T H

r (i)a(θ0) = 1
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and express it as
w̄H(i)T H

r (i)a(θ0) = fH(i)A(θ0)f(i), (D.4)

where A(θ0) ∈ Cr(m+1)×r(m+1) is structured as

A(θ0) =

[
0r×r 0r×rm

Φa(θ0) 0rm×rm

]
,

and the block diagonal matrix Φa(θ0)(i) ∈ Crm×r with the steering vector a(θ0) con-
structed as

Φa(θ0) =




a(θ0) 0 0 . . . 0

0 a(θ0) 0 . . . 0
...

...
... . . . ...

0 . . . 0 0 a(θ0)




. (D.5)

At this point, we can alternatively express the Lagrangian as

Lun = E
[|fH(i)Ω(i)f(i)|2] + 2R[λ(fH(i)A(θ0)f(i)− 1)]. (D.6)

We can examine the convexity of the above Lagrangian by computing the Hessian
(H)with respect to f(i) using the expression [95]

H =
∂

∂fH(i)

∂(Lun)

∂f(i)
, (D.7)

and testing if the terms are positive semi-definite. Specifically, H is positive semi-definite
if vHHv ≥ 0 for all nonzero v ∈ Cr(m+1)×r(m+1) [19]. Therefore, the optimization
problem is convex if the Hessian H is positive semi-definite.

Evaluating the partial differentiation in the expression given in (D.7) yields

H = E
[
fH(i)Ω(i)f(i)Ω(i) + Ω(i)f(i)fH(i)Ω(i)

+ Ω(i)fH(i)Ω(i)f(i) + fH(i)Ω(i)Ω(i)f(i) + 2λA(θ0)
]
.

(D.8)

By examining H , we verify that the second and fourth terms are positive semi-definite,
whereas the first and the third terms are indefinite. The fifth term depends on the con-
straint, which is typically positive in the proposed scheme as verified in our studies,
yielding a positive semi-definite matrix. Therefore, the optimization problem can not be
classified as convex. It is however important to remark that our studies indicate that there
are no local minima and there exists multiple solutions (which are possibly identical).

In order to support this claim, we have checked the impact on the proposed algorithms
of different initializations. This study confirmed that the algorithms are not subject to
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performance degradation due to the initialization although we have to bear in mind that
the initialization T r(0) = 0m×r annihilates the signal and must be avoided. We have
also studied a particular case of the proposed scheme when m = 1 and r = 1, which
yields the Lagrangian Lun(w̄, T r) = E

[|w̄Trx|2
]
+ 2R

[
λ(w̄Tra(θ0) − 1)

]
. Choosing Tr

(the ”scalar” projection) fixed with r equal to 1, it is evident that the resulting function
Lun(w̄, Tr = 1, r) = |w∗ x|2 + 2R

[
λ(w̄a(θ0) − 1)

]
is a convex one. In contrast to that,

for a time-varying projection Tr the plots of the function indicate that the function is no
longer convex but it also does not exhibit local minima. This problem can be generalized
to the vector case, however, we can no longer verify the existence of local minima due to
the multi-dimensional surface. This remains as an interesting open problem.
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E. DERIVATION OF TRANSFORMATION MATRIX

In this appendix, we detail the derivation of T r(i) and the simplification shown in
(4.17) for reducing the computational complexity. Let us consider the derivation of T r(i)

obtained from the minimization of the Lagrangian

Lun(T r(i), w̄(i)) =
i∑

l=1

αi−l|w̄H(i)T H
r (i)x(l)|2 + 2 R[λ(w̄H(i)T H

r (i)a(θ0)− 1)].

(E.1)

Taking the gradient terms of the above expression with respect to T ∗
r(i), we get

∇Lun(T r(i), w̄(i))T ∗r (i) =
i∑

l=1

αi−lx(l)xH(l)T r(i)w̄(i)w̄H(i) + 2λa(θ0)w̄
H(i)

= R(i)T r(i)R̄w̄(i) + 2λa(θ0)w̄
H(i).

(E.2)

Making the above gradient terms equal to zero yields

T r(i) = R−1(i)(−2λ)a(θ0)w̄
H(i)R̄

−1
w̄ . (E.3)

Using the proposed constraint w̄H(i)T H
r (i)a(θ0) = 1 and substitut-

ing the above filter expression, we obtain the Lagrange multiplier λ =

−1/2(w̄H(i)R̄
−1
w̄ w̄(i)aH(θ0)R

−1(i)a(θ0))
−1. Substituting λ into (E.3), we get

T r(i) =
R−1(i)a(θ0)w̄

H(i)R̄
−1
w̄ (i)

w̄H(i)R̄
−1
w̄ (i)w̄(i)aH(θ0)R

−1(i)a(θ0)
. (E.4)

The above expression for the matrix filter T r(i) can be simplified by observing the quan-
tities involved and making use of the proposed constraint w̄H(i)T H

r (i)a(θ0) = 1. Let
us consider the term w̄H(i)R̄

−1
w̄ w̄(i) in the denominator of (E.4) and multiply it by the

proposed constraint as follows:

w̄H(i)R̄
−1
w̄ w̄(i) = w̄H(i)R̄

−1
w̄ w̄(i)w̄H(i)T H

r (i)a(θ0)

= w̄H(i)T H
r (i)a(θ0) = 1.

(E.5)
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Now let us consider the term aH(θ0)w̄
H(i)R̄

−1
w̄ (i) and rewrite it as follows:

a(θ0)w̄
H(i)R̄

−1
w̄ (i) = a(θ0)w̄

H(i)R̄
−1
w̄ (i)w̄H(i)T H

r (i)a(θ0)

= a(θ0)a
H(θ0)T r(i)w̄(i)w̄H(i)R̄

−1
w̄ (i)

= a(θ0)a
H(θ0)T r(i) = a(θ0)ā

H(θ0).

(E.6)

Using the relations obtained in (E.5) and (E.6) into the expression in (E.4), we can get a
simpler expression for the projection matrix as given by

T r(i) =
R−1(i)a(θ0)w̄

H(i)R̄
−1
w̄ (i)

w̄H(i)R̄
−1
w̄ (i)w̄(i)aH(θ0)R

−1(i)a(θ0)
=

R−1(i)

a(θ0)āH(θ0)︷ ︸︸ ︷
a(θ0)w̄

H(i)R̄
−1
w̄ (i)

w̄H(i)R̄
−1
w̄ (i)w̄(i)︸ ︷︷ ︸
1

aH(θ0)R
−1(i)a(θ0)

=
R−1(i)a(θ0)ā

H(θ0)

aH(θ0)R
−1(i)a(θ0)

.

(E.7)

This completes the derivation and the simplification.
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F. DERIVATION OF (5.31)

In this appendix, we show the details of the derivation of the expression for the trans-
formation matrix in (5.31). Assuming w̄(i) 6= 0 is known, taking the gradient terms of
(5.30) with respect to T r(i), we get

∇LunT r(i)
= 2

i∑

l=1

|y(l)|2x(l)xH(l)T r(i)w̄(i)w̄H(i)− 2
i∑

l=1

x(l)xH(l)T r(i)w̄(i)w̄H(i) + 2λa(θ0)w̄H(i)

= 2R̂(i)T r(i)w̄(i)w̄H(i)− 2p̂(i)w̄H(i) + 2λa(θ0)w̄
H(i).

(F.1)

Making the above gradient terms equal to the zero matrix, right-multiplying the both
sides by w̄(i), and rearranging the expression, it becomes

T r(i)w̄(i) = R̂
−1

(i)
[
p̂(i)− λa(θ0)

]
. (F.2)

If we define p̂R̂(i) = R̂
−1

(i)
[
p̂(i) − λa(θ0)

]
, the solution of T r(i) in (F.2) can be

regarded to find the solution to the linear equation

T r(i)w̄(i) = p̂R̂(i). (F.3)

Given a w̄(i) 6= 0, there exists multiple T r(i) satisfying (F.3) in general. Therefore, we
derive the minimum Frobenius-norm solution for stability. Let us express the quantities
involved in (F.3) by

T r(i) =




ρ̄1(i)

ρ̄2(i)
...

ρ̄m(i)




; p̂R̂(i) =




p̂R̂,1(i)

p̂R̂,2(i)
...

p̂R̂,m(i)




. (F.4)
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The search for the minimum Frobenius-norm solution of (F.3) is reduced to the fol-
lowing m subproblems (j = 1, . . . , m):

min ‖ρ̄j(i)‖2 subject to ρ̄j(i)w̄(i) = p̂R̂,j(i). (F.5)

The solution to (F.5) is the projection of ρ̄(i) onto the hyperplane Hj(i) =
{
ρ̄(i) ∈

C1×r : ρ̄(i)w̄(i) = p̂R̂,j(i)
}

, which is given by

ρ̄j(i) = p̂R̂,j(i)
w̄H(i)

‖w̄(i)‖2
. (F.6)

Hence, the minimum Frobenius-norm solution of the transformation matrix is given
by

T r(i) = p̂R̂(i)
w̄H(i)

‖w̄(i)‖2
. (F.7)

Substituting the definition of p̂R̂(i) into (F.7), we have

T r(i) = R̂
−1

(i)
[
p̂(i)− λa(θ0)

] w̄H(i)

‖w̄(i)‖2
. (F.8)

The multiplier λ can be obtained by incorporating (F.3) with the constraint
w̄H(i)T H

r (i)a(θ0) = γ, which is

λ =
p̂(i)R̂

−1
(i)a(θ0)− γ

aH(θ0)R̂
−1

(i)a(θ0)
. (F.9)

Therefore, the expression of the transformation matrix in (5.30) can be obtained by
substituting (F.9) into (F.8).
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