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ABSTRACT

The objective was to build an efficient algorithm �1� to esti-
mate seismic velocity from time-migration velocity, and �2� to
convert time-migrated images to depth. We established theoreti-
cal relations between the time-migration velocity and seismic ve-
locity in two and three dimensions using paraxial ray-tracing the-
ory. The relation in two dimensions implies that the conventional
Dix velocity is the ratio of the interval seismic velocity and the
geometric spreading of image rays. We formulated an inverse
problem of finding seismic velocity from the Dix velocity and de-
veloped a numerical procedure for solving it. The procedure con-
sists of two steps: �1� computation of the geometric spreading of
image rays and the true seismic velocity in time-domain coordi-
nates from the Dix velocity; �2� conversion of the true seismic ve-
locity from the time domain to the depth domain and computa-
tion of the transition matrices from time-domain coordinates to
r
�
t

i
H
e
c
h
v

d
e
1

er 2008
of M

. and K

ey, Cali

VE205
epth. For step 1, we derived a partial differential equation �PDE�
n two and three dimensions relating the Dix velocity and the
eometric spreading of image rays to be found. This is a nonlin-
ar elliptic PDE. The physical setting allows us to pose a Cauchy
roblem for it. This problem is ill posed, but we can solve it nu-
erically in two ways on the required interval of time, if it is suf-
ciently short. One way is a finite-difference scheme inspired by

he Lax-Friedrichs method. The second way is a spectral Cheby-
hev method. For step 2, we developed an efficient Dijkstra-like
olver motivated by Sethian’s fast marching method. We tested
umerical procedures on a synthetic data example and applied
hem to a field data example. We demonstrated that the algo-
ithms produce a significantly more accurate estimate of seismic
elocity than the conventional Dix inversion. This velocity esti-
ate can be used as a reasonable first guess in building velocity
odels for depth imaging.
INTRODUCTION

Time-domain seismic imaging is a robust and efficient process
outinely applied to seismic data �Yilmaz, 2001; Robein, 2003�.
apid scanning and determination of time-migration velocity can be
ccomplished either by repeated migrations �Yilmaz et al., 2001� or
y velocity continuation �Fomel, 2003�. Time migration is consid-
red adequate for seismic imaging in areas with mild lateral velocity
ariations. However, even mild variations can cause structural dis-
ortions of time-migrated images and render them inadequate for ac-
urate geologic interpretation of subsurface structures.

To remove structural errors inherent in time migration, it is neces-
ary to convert time-migrated images into the depth domain, either
y migrating the original data with a prestack depth-migration algo-
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ithm or by depth migrating poststack data after time demigration
Kim et al., 1997�. Each option requires converting the time-migra-
ion velocity to a velocity model in depth.

The connection between the time- and depth-domain coordinates
s provided by the concept of image ray, which was introduced by
ubral �1977�. Image rays are seismic rays that arrive normal to the

arth’s surface. Hubral’s theory explains how a depth velocity model
an be converted to time coordinates. However, it does not explain
ow a depth velocity model can be converted to the time-migration
elocity.

Moreover, image-ray tracing is a numerically inconvenient proce-
ure for achieving uniform coverage of the subsurface. This could
xplain why simplified image-ray-tracing algorithms �Larner et al.,
981; Hatton et al., 1981� did not find widespread practical applica-
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ions. Other limitations of image rays are related to the inability of
ime migration to handle large lateral variations in velocity �Bevc et
l., 1995; Robein, 2003�.

The objective of this work is to find an efficient method for build-
ng a velocity model from time-migration velocity. We establish new
ay-theoretical connections between time-migration velocity and
eismic velocity in two and three dimensions. These results are
ased on the image-ray theory and paraxial ray-tracing theory
Popov and Pšenčik, 1978; Červený, 2001; Popov, 2002�.

The results can be viewed as an extension of the Dix formula �Dix,
955� to laterally inhomogeneous media. We show that the Dix ve-
ocity is seismic velocity divided by the geometric spreading of im-
ge rays. Hence, we use the Dix velocity instead of time-migration
elocity as a more convenient input. We develop a numerical ap-
roach to find �1� seismic velocity from the Dix velocity, and �2�
ransition matrices from time-domain coordinates to depth-domain
oordinates. We test the approach on synthetic and field data exam-
les. This approach is complementary to more traditional velocity-
stimation methods. It can be used as the first step in a velocity mod-
l-building process.

TIME-MIGRATION VELOCITY

Kirchhoff prestack time migration commonly is based on the fol-
owing traveltime approximation �Yilmaz, 2001�. Let s be a source, r
e a receiver, and x be the reflection subsurface point. Then the total
raveltime from s to x and from x to r is approximated as

T�s,x� � T�x,r� � T̂�x0,t0,s,r� , �1�

here x0 and t0 are effective parameters of the subsurface point x.
The approximation T̂ usually takes the form of the double-square-

oot equation

T̂�x0,t0,s,r� ��t0
2 �

�x0 � s�2

Vm
2 �x0,t0�

��t0
2 �

�x0 � r�2

Vm
2 �x0,t0�

,

�2�

here x0 and t0 are the escape location and traveltime of the image
ay �Hubral, 1977� from the subsurface point x. Regarding this ap-
roximation, let us list four cases depending on the seismic velocity
and the dimension of the problem:

� Velocity V is constant. Equation 2 is exact, and Vm � V.
� Velocity V depends on only the depth z. Equation 2 is a conse-

quence of the truncated Taylor expansion for the traveltime
around the surface point x0. Velocity Vm depends on only t0 and
is the root-mean-square velocity

Vm�t0� �� 1

t0
�
0

t0

V2�z�t��dt . �3�

In this case, the Dix inversion formula �Dix, 1955� is exact. We
formally define the Dix velocity VDix�t� by inverting equation 3
as follows:
VDix�t0� �� d

dt0
�t0Vm

2 �t0�� . �4�

� Velocity is arbitrary in two dimensions. Equation 2 is a conse-
quence of the truncated Taylor expansion for the traveltime
around the surface point x0. Velocity Vm�x0,t0� is a certain kind
of mean velocity, and we establish its exact meaning in the next
section.

� Velocity is arbitrary in three dimensions. Equation 2 is heuristic
and not a consequence of the truncated Taylor expansion. To
write an analog of traveltime approximation 2 for the three-di-
mensional case, we use the relation �Hubral and Krey, 1980�

� � �V�x0�R�x0,t0���1, �5�

where � is the matrix of the second derivatives of the travel-
times from a subsurface point x to the surface, R is the matrix of
radii of curvature of the emerging wavefront from the point
source x, and V�x0� is the velocity at the surface point x0.

For convenience, we prefer to deal with matrix K	��1, which is,
ccording to equation 5,

K�x0,t0� 	 V�x0�R�x0,t0� . �6�

he traveltime approximation for three dimensions implied by the
aylor expansion is

T̂�x0,t0,s,r� � �t0
2 � t0�x0 � s�T�K�x0,t0���1�x0 � s�

� �t0
2 � t0�x0 � r�T�K�x0,t0���1�x0 � r� .

�7�

he entries of the matrix K�x0,t0� have dimensions of squared veloc-
ty and can be chosen optimally in the process of time migration.

It is possible to show, however, that one needs only the values of

det
 �

� t0
K�x0,t0�� �8�

o perform the inversion. This means that the conventional 3D
restack time migration with traveltime approximation 2 provides
ufficient input for the inversion procedure in the 3D case. The deter-
inant in equation 8 is well approximated by the square of the Dix

elocity obtained from the 3D prestack time migration using the ap-
roximation given by equation 2.

One can use more complex and accurate approximations than the
ouble-square-root equations 2 and 7, e.g., the shifted hyperbola ap-
roximation �Siliqi and Bousquié, 2000�. However, other known ap-
roximations also involve parameters equivalent to Vm or K.

SEISMIC VELOCITY

In this section, we establish theoretical relationships between
ime-migration velocity and seismic velocity in two and three di-

ensions.
The seismic velocity and Dix velocity are connected through the

uantity �Q�, the geometric spreading of image rays. The quantity
Q� is a scalar in two dimensions and a 2�2 matrix in three dimen-
ions. The simplest way to introduce Q is the following. Trace an im-
ge ray x�x0,t�; x0 is the starting surface point, and t is the traveltime.
all this ray central. Consider a small tube of rays around it.All these



r
l
w

t
x
t
Q
a
a
č

w
�
v
i
T
a

i
a

i
t

t
D
F

F
t
c
c

2

a
P

t
d
I
T

t

T
s
d

I

3

w
w

F

Velocity estimation using time migration VE207
ays start from a small neighborhood dx0 of the point x0 perpendicu-
ar to the earth’s surface. Thus, they represent a fragment of a plane
ave propagating downward.
Consider a fragment of the wavefront defined by this ray tube at

ime t0. Let dq be the fragment of the tangent to the front at the point
�x0,t0� reached by the central ray at time t0 and bounded by the ray
ube �Figure 1�. Then, in two dimensions, Q is the derivative
�x0,t0� � dq/dx0. In three dimensions, Q is the matrix of the deriv-

tives Qij�x0,t0� � dqi/dx0j, i, j � 1,2, where derivatives are taken
long certain mutually orthogonal directions e1, e2 �Popov and Pšen-
ik, 1978; Červený, 2001; Popov, 2002�.

The time evolution of the matrices Q and P is given by

d

dt

Q

P
� � � 0 V0

2I

�
1

V0
V 0 

Q

P
� , �9�

here V0 it the velocity at the central ray at time t, V
�� 2V/�qi�qj�i,j�1,2, and I is the 2�2 identity matrix. The absolute

alue of det Q has a simple meaning: it is the geometric spreading of
mage rays �Popov and Pšenčik, 1978; Červený, 2001; Popov, 2002�.
he matrix �, introduced in the previous section, relates to Q and P
s � � PQ�1. Hence, K � QP�1.

In Cameron et al. �2007�, we prove that

VDix�x0,t0� 	� �

� t0
�t0Vm

2 �x0,t0�� �
V�x�x0,t0�,z�x0,t0��

�Q�x0,t0��

�10�

n two dimensions, where Vm�x0,t0� is the time-migration velocity;
nd

�

� t0
�K�x0,t0�� � V�x�x0,t0���Q�x0,t0�QT�x0,t0���1

�11�

n three dimensions, where K is defined by equation 6 and can be de-
ermined from equation 7.

PARTIAL DIFFERENTIAL EQUATIONS FOR THE
GEOMETRIC SPREADING OF IMAGE RAYS

In this section, we derive the partial differential equations for Q in
wo and three dimensions. From now on, we denote the square of the
ix velocity by f in two dimensions and the corresponding matrix by
in three dimensions, to avoid the subscript

F 	
�

� t0
�K�x0,t0�� . �12�

urthermore, we imply that t0 denotes the one-way traveltime along
he image rays. Finally, we assume that the domain does not contain
austics; i.e., the image rays do not cross on the interval of time we
onsider.

D case

Consider a set of image rays coming to the surface. Suppose we
re tracing them all backward in time along with the quantities Q and
. Let us eliminate the unknown velocity V in system 9 using equa-
ion 10. Moreover, let us eliminate the differentiation in q using the
efinition of Q and rewrite it in the time-domain coordinates x0,t0.
ndeed, Q � dq/dx0, hence d/dq � �dx0/dq��d/dx0� � Q�1d/dx0.
herefore, system 9 becomes

Qt0
� �fQ�2P, Pt0

� �
1

fQ

 �fQ�x0

Q
�

x0

. �13�

Eliminating P in system 13, we get the following partial differen-
ial equation �PDE� for Q,


 Qt0

f2Q2�
t0

� �
1

fQ

 �fQ�x0

Q
�

x0

. �14�

he initial conditions are Q�x0,0� � 1, Qt0
�x0,0� � 0. Equation 14

implifies in terms of the negative reciprocal of Q as follows. Intro-
uce y � �1/Q. Then equation 14 becomes


 yt0

f2 �
t0

�
y

f 

 f

y
�

x0

y�
x0

. �15�

n the expanded form, equation 15 is

yt0t0

f2 � 2
yt0

f t0

f3 � y
fx0x0

f
� yx0

fx0

f
� yx0x0

�
yx0

2

y
.

�16�

D case

Equation 11 can be rewritten in the following form,

V � �4 det F�det Q�2, �17�

here F is the left-hand side of equation 11.As in the 2D case, we re-
rite system 9 in time-domain coordinates �x0,t0�. Then we get

Qt0
� V2P , �18�

igure 1. Illustration for the definition of geometric spreading.
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Pt0
� �

1

V
Q�1���Q�1 � V�T�Q , �19�

here V is given by equation 17, and the gradients are taken with re-
pect to x0.

Then the PDE for Q is


 1

V2Qt0�
t0

� �
1

V
Q�1���Q�1 � V�T�Q . �20�

he initial conditions are Q�x0,0� � I2, Qt0
�x0,0� � 0. The required

nput �det F is well approximated by the squares of the Dix velocity
btained from the 3D prestack time migration. We emphasize that
espite the fact that Q is a matrix in three dimensions, scalar data are
nough for its computation.

auchy problem for elliptical equations

Equations 14 and 20 reveal the nature of the instabilities in the
roblem at hand. These PDEs are elliptic. The physical setting al-
ows us to pose only a Cauchy problem for them, which is known to
e ill-posed. Furthermore, the PDEs involve not only the Dix veloci-
y, but also its first and second derivatives. This dependency leads to
igh sensitivity of the solutions to input data.

Nonetheless, we found two ways for solving these PDEs numeri-
ally on the required, and relatively short, interval of time: namely, a
nite-difference scheme inspired by the Lax-Friedrichs method and
spectral Chebyshev method. A detailed analysis of the problem

hows that these methods work because of

� the special input VDix, corresponding to a positive finite seismic
velocity

� the special initial conditions Q�x0,t0 � 0� � 1, Qt�x0,t0 � 0�
� 0 that correspond to the image rays

� the fact that our methods damp the high harmonics �either by
including error terms in the finite-difference method or by trun-
cation of the polynomial series in the spectral Chebyshev meth-
od�

� the short interval of time, in which we need to compute the solu-
tion so that the growing low harmonics fail to develop sig-
nificantly

Items 1 and 2 say that the exact solutions of PDEs for the hypo-
hetical, perfect Dix velocity given by equations 10 and 11 are finite
nd nonzero. Items 3 and 4 say that the numerical methods take care
f the imperfection of the data and computations on a short-enough
ime interval.

INVERSION METHODS

Numerical reconstruction of true seismic velocity V�x� in depth-
omain coordinates from the Dix velocity given in the time-domain
oordinates �x0,t0� consists of two steps:

Step 1. Compute the geometric spreading of image rays in the
ime-domain coordinates from the Dix velocity by solving equation
4 in two dimensions and equation 20 in three dimensions. Then find
�x0,t0� from equation 10 in two dimensions and equation 17 in three
imensions.

Step 2. Convert the seismic velocity V�x0,t0� in the time-domain
oordinates to depth-domain coordinates x using the time-to-depth
onversion algorithm, which is presented by Cameron et al. �2007�.
t is a fast and robust Dijkstra-like solver motivated by the Fast

arching Method �Sethian, 1996, 1999�.
We performed step 1 in two ways, a finite difference method and a

pectral Chebyshev method.

inite-difference method

This method was inspired by the Lax-Friedrichs method for hy-
erbolic conservation laws �Lax, 1954� because of its total variation
iminishing property. We use the “Lax-Friedrichs averaging” and
ide five-point stencil in space. The scheme is given by

Pj
n�1 �

Pj�1
n � Pj�1

n

2
�

�t

4�x

1

Vj
n

�
Vj�2
n � Vj

n

Qj�1
n �

Vj
n � Vj�2

n

Qj�1
n � , �21�

�
1

Qj
n�1 � �

1

Qj
n �

�t

2
��f j

n�2Pj
n � �f j

n�1�2Pj
n�1� ,

�22�

here V	 fQ.
We impose the following boundary conditions Q0

n � Qnx�1
n � 1,

P0
n � Pnx�1

n � 0 corresponding to the straight boundary rays. We set
he initial conditions Qj

0 � 1, Pj
0 � 0 corresponding to the initial

onditions for the image rays traced backward: Q � 1, P � 0.

pectral Chebyshev method

Alternatively, we solve the PDE in the form given by equation 15
y a spectral Chebyshev method �Boyd, 2001�. Using cubic splines,
e define the input data at Ncoef Chebyshev points. We compute the
hebyshev coefficients and coefficients of the derivatives in the

ight-hand side of equation 15. Then we use a smaller number Neval of
he coefficients for function evaluation. We need to do such Cheby-
hev differentiation twice.

Finally, we perform the time step using the stable third-order Ad-
ms-Bashforth method �Boyd, 2001�, which is

un�1 � un � �t
23

12
Fn �

4

3
Fn�1 �

5

12
Fn�2� , �23�

here Fn 	F�un,x,tn� is the right-hand side. In numerical examples,
e tried Ncoef�100 and Neval�25. This method allows larger time

teps than the finite-difference method, and it has the adjustable pa-
ameter Neval.

For step 2, we use a Dijkstra-like solver introduced in Cameron et
l. �2007�. It is an efficient time-to-depth conversion algorithm moti-
ated by the fast marching method �Sethian, 1996�. The input for this
lgorithm is V�x0,t0�, and the outputs are the seismic velocity V�x,z�
nd the transition matrices from time-domain to depth-domain coor-
inates x �x,z� and t �x,z�.
0 0
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We solve the eikonal equation with an unknown right-hand side
oupled with the orthogonality relation

� � t0� �
1

V�x0�x,z�,t0�x,z��
, � t0 · � x0 � 0. �24�

he orthogonality relation means that the image rays are orthogonal
o the wavefronts. Such time-to-depth conversion is very fast and
roduces the outputs directly on the depth-domain grid.

EXAMPLES

ynthetic data example

Figure 2a shows a synthetic velocity model. The model contains a
igh-velocity anomaly that is asymmetric and decays exponentially.
he corresponding Dix velocity mapped from time to depth is shown

n Figure 2b. There is a significant difference between both the value
nd shape of the velocity anomaly recovered by the Dix method and
he true anomaly. The difference is explained by taking into account
eometric spreading of image rays. Figure 2c shows the velocity re-
overed by our method and the corresponding family of image rays.
n analogous 3D example is provided in Cameron et al. �2007�.

ield data example

Figure 3, taken from Fomel �2003�, shows a prestack time-migrat-
d image from the North Sea and corresponding time-migration ve-
ocity obtained by velocity continuation. The most prominent fea-
ure in the image is a salt body, which causes significant lateral varia-
ions of velocity.

Figure 4 compares the Dix velocity converted to depth with the in-
erval velocity model recovered by our method. As in the synthetic

a)

b)

c)

igure 2. Synthetic test on interval velocity estimation. �a� Exact ve-
ocity model. �b� Dix velocity converted to depth. �c� Estimated ve-
ocity model and the corresponding image rays. The image-ray
preading causes significant differences between Dix velocity and
stimated velocity.
 c
xample, there is a significant difference between the two velocities
aused by the geometric spreading of image rays. The middle part of
he velocity model might not be recovered properly. The true struc-
ure should include a salt body visible in the image. The inability of
ur method to recover it exactly shows the limitation of the proposed
pproach in the areas of significant lateral velocity variations, which
nvalidate the assumptions behind time migration �Robein, 2003�.

Figure 5 compares three images: poststack depth-migration im-
ge using Dix velocity, poststack depth-migration image using the
elocity estimated by our method, and prestack time-migration im-
ge converted to depth with our algorithm. The evident structural
mprovements in Figure 5b in comparison with Figure 5a, in particu-
ar near salt flanks, and a good structural agreement between Figure
b and c, serve as an indirect evidence of the algorithm’s success.An
ltimate validation should come from prestack depth-migration ve-
ocity analysis, which is significantly more expensive.

igure 3. �a� Seismic image from the North Sea obtained by prestack
ime migration using velocity continuation �Fomel, 2003�. �b� Cor-
esponding time-migration velocity.

a)

b)

igure 4. Field data example of interval velocity estimation. �a� Dix
elocity converted to depth. �b� Estimated velocity model and the
orresponding image rays. The image-ray spreading causes signifi-

ant differences between Dix velocity and true velocity.
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CONCLUSIONS

We have applied the recently established theorem that the Dix ve-
ocity obtainable from time-migration velocity is the true interval
elocity divided by the geometric spreading of image rays to pose
he corresponding inverse problem.

We have suggested a set of numerical algorithms for solving the
roblem numerically. We have tested these algorithms on a synthetic
ata example with laterally heterogeneous velocity and demonstrat-
d that they produce significantly better results than simple Dix in-

)

)

)

igure 5. Migrated images of the field data example. �a� Poststack
igration using Dix velocity. �b� Poststack migration using estimat-

d velocity. �c� Prestack time migration converted to depth with our
lgorithm.
ersion followed by time-to-depth conversion. Moreover, the Dix
elocity might differ qualitatively from the output velocity. We have
lso tested our algorithm on a field data example and validated it by
omparing a prestack time-migration image mapped to depth with
oststack depth migrated images.

Our approach is complementary to velocity estimation methods
hat work directly in the depth domain. Therefore, it can serve as an
fficient first step in seismic velocity model building.
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