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Abstract
The POSIX standard promotes portability of applications across different operating system platforms. This
is especially important for applications designed for longevity, where the hardware and software
infrastructure may change during the application’s life cycle. However in real-time systems, where
predictability and low overhead are important, portability is often sacrificed. In this paper we will discuss
the use of POSIX® in real-time systems, including the POSIX real-time and thread extensions.  We will first
discuss what POSIX covers, and the differences that still exist between operating system implementations.
We will then look at the performance of various POSIX mechanisms, using as case studies a general
purpose OS (SolarisTM 8) and a real-time operating system (LynxOS®).

1 Introduction
In the design of today’s computing systems it is becoming increasingly important to design software with
an open system architecture utilizing industry adopted standards. The need to develop open systems is
driven by three major factors. First, gone are the days where a single developer can implement the entire
system from scratch. Software development programs are continuously growing in scale, requiring teams of
increasing size. Secondly, software does not operate in isolation; it must co-exist with the vast amount of
commercially available software. Lastly, the lifecycle of a software application is typically long requiring
numerous modifications and updates as new features are added.

An open software architecture addresses the challenges of today’s software development process by
defining standard software interfaces, which promotes interoperability and portability. Openly published
standard interfaces also reduce the cost of adding functionality in the future.

Standards are pervasive in today’s computer systems. New standards are constantly being defined to
address the ever-changing state of software technology. A standard will not be effective if it is not used, or
if it is gone tomorrow. To be effective it is important for a standard to be based on well-established
technology and accepted by a wide portion of the industry.

The original Portable Operating System Interface for Computing Environments (POSIX®) standard
was first published in 1990 [1]. POSIX is based on UNIX, a well-established technology dating back to the
early 1970s. POSIX defines a standard way for an application to interface to the operating system. The
original POSIX standard defines interfaces to core functions such as: file operations, process management,
signals, and devices. Subsequent releases of POSIX have also been defined to cover real-time extensions
and multi-threading [1].

In a perfect world, because of the advantages cited above, one would always choose a standard.
However, in the real world, there are a number of questions that must be asked before deciding to use a
standard. These include:
• Does the standard provide the functionality needed by my application?
• Is the performance of the standard, or implementation of the standard, suitable for my application?
• Do commercially available implementations of the standard exist?

In this paper we assess the usefulness of POSIX in real-time time systems by looking at these three
factors: (functionality, performance, and availability.) Because real-time systems typically have stringent
performance constraints emphasis is placed on the performance of POSIX implementations.

This paper is organized into six sections. The following section reviews the features important in a
POSIX operating system. Section 3 discusses implementation details of two POSIX operating systems:



Solaris and LynxOS. Section 4 introduces a set of benchmarks used to measure the performance of real-
time operating systems, and in Section 5 we use these benchmarks to measure the real-time performance of
LynxOS and Solaris. Finally Section 6 presents the conclusions of this paper.

2 POSIX Real-time Operating Systems
The POSIX family of standards includes over 30 individual standards, ranging from specifications for basic
operating system services to specifications for testing the conformance of an operating system to the
standard [2]. This paper focuses on those standards important in the development of real-time embedded
systems. In this section we discuss real-time systems as well as giving a brief review of the relevant POSIX
standards.

2.1 Real-time Systems

A real-time system is one where the timeliness of the result of a calculation is important [3][4]. Examples
include military weapons systems, factory control systems, and Internet video and audio streaming. Real-
time systems are typically categorized into two classes: hard and soft. In a hard real-time system the time
deadlines must be met or the result of a calculation is invalid. For example in a missile tracking system, if
the missile is delayed it may miss its intended target. The timing constraints in a soft real-time system are
not as stringent. There is still some utility to the result of a calculation if it does not meet its timing
deadline. Internet audio/video streaming is an example of a soft real-time system. If a packet of data is late
or lost the quality of the audio/video is degraded, but the stream may still be audible.

To guarantee that the timing requirements of a real-time system are met the behavior, and timing, of
the underlying computing system must be predictable [5]. The time required by all operations must be
bounded for the timing of the system to be called predictable. This implies that the worst case timing of all
operations is known. Typically though a system is called predictable only if its worst case timing is very
close to its average case timing.

Table 1: POSIX Standards
Standard Name Description
1003.1a OS Definition Basic OS interfaces; includes support for: (single process, multi process,

job control, signals, user groups, file system, file attributes, file device
management, file locking, device I/O, device specific, system database,
pipes, FIFO, and C language

1003.1b Real-time
Extensions

Functions needed for real-time systems; includes support for: real-time
signals, priority scheduling, timers, asynchronous I/O, prioritized I/O,
synchronized I/O, file sync, mapped files, memory locking, memory
protection, message passing, semaphores, and shared memory

1003.1c Threads Functions to support multiple threads within a process; includes support
for: thread control, thread attributes, priority scheduling, mutexes, mutex
priority inheritance, mutex priority ceiling, and condition variables

1003.1d Additional
Real-time
Extensions

Additional interfaces; includes support for: new process create semantics
(spawn), sporadic server scheduling, execution time monitoring of
processes and threads, I/O advisory information, timeouts on blocking
functions, device control, and interrupt control.

1003.1j Advanced
Real-time
Extensions

More real-time functions including support for: typed memory, nanosleep
improvements, barrier synchronization, reader/writer locks, spin locks, and
persistent notification for message queues

1003.21 Distributed
Real-time

Functions to support real-time distributed communication; includes
support for: buffer management, send control blocks, asynchronous and
synchronous operations, bounded blocking, message priorities, message
labels, and implementation protocols

1003.1h High
Availability

Services for Reliable, Available, and Serviceable Systems (SRASS);
includes support for: logging, core dump control, shutdown/reboot, and
reconfiguration



2.2 POSIX Real-time Related Standards

Of the more than 30 POSIX standards the seven standards listed in Table 1 are especially relevant to the
development of real-time and embedded systems. With the first three standards (1003.1a,1b,1c) being the
most widely supported. POSIX 1003.1a defines the interface to basic operating system functions, and was
the first to be adopted in 1990 [1][6]. Real-time extensions are defined in the standards 1003.1b, 1003.1d,
1003.1j and 1003.21 [7][8][9][10]. However, the original real-time extensions, defined by 1003.1b, are the
only standard commonly implemented. Support for multiple threads in a process is provided in a separate
standard, POSIX 1003.1c. POSIX also includes support for high availability in the 1003.1h standard [11].

Commercial support for POSIX varies widely. Because POSIX 1003.1a is based on UNIX, any UNIX
based operating system will naturally be very close to the standard.  To be POSIX conformant to the
standard, the operating system, and hardware platform, has to be certified using a suite of tests [12].
Currently test suites exist only for POSIX 1003.1a. Because POSIX is structured as a set of optional
features, operating system vendors can choose to implement portions of POSIX and still be compliant to
POSIX. Compliance only requires the vendor to state which features of POSIX are and are not
implemented. This is a source of confusion because, for marketing reasons, almost all vendors report that
they are POSIX compliant.

2.2.1 POSIX profiles

Embedded systems typically have space and resource limitations, and an operating system that includes all
the features of POSIX may not be appropriate. The POSIX 1003.13 profile standard was defined to address
these types of systems [13]. POSIX 1003.13 does not contain any additional features; instead it groups the
functions from existing POSIX standards into units of functionality. The profiles are based on whether or
not an operating system supports more than one process and a file system. The four current profiles are
summarized in Table 2.

Table 2: POSIX 1003.13 Profiles

Profile
Number of
Processes Threads File System

54 Multiple Yes Yes
53 Multiple Yes No
52 Single Yes Yes
51 Single Yes No

2.2.2 POSIX real-time extensions

POSIX 1003.1b, as well as 1003.1d and 1003.1j define extensions useful for development of real-time
systems. Functions defined in the original real-time extension standard 1003.1b are supported across a
wider number of operating systems than the other two specifications. For this reason this paper focuses on
POSIX 1003.1b. The following features constitute the bulk of the features defined in POSIX 1003.1b:
• Timers: Periodic timers, delivery is accomplished using POSIX signals
• Priority scheduling: Fixed priority preemptive scheduling with a minimum of 32 priority levels
• Real-time signals: Additional signals with multiple levels of priority
• Semaphores: Named and memory counting semaphores
• Memory queues: Message passing using named queues
• Shared memory: Named memory regions shared between multiple processes
• Memory locking: Functions to prevent virtual memory swapping of physical memory pages

Figure 1 shows C code for creating and using a POSIX timer. Creating a timer consists of two steps:
specifying a signal to be used to deliver the timer, and creating/setting the timer itself. In this example we
use the highest priority real-time signal (SIGRTMIN) to asynchronously call the timer handler routine. Two
values must be specified for the timer: the initial expiration time (it_value) and the frequency (tv_sec). The
structure (itimerspec) allows nanosecond time specification; however, actual resolution is dependent on the
system. The POSIX call clock_getres() can be used to determine the actual resolution, typically 10 or 1 ms.



POSIX 1003.1b provides support for fixed priority preemptive scheduling. To be compliant with
POSIX an operating system must contain at least 32 priorities. POSIX defines three scheduling policies to
handle processes running at the same priority. For SCHED_FIFO processes are scheduled first in first out,
and run until completion. For SCHED_RR the scheduler uses a time quanta to schedule processes in a
round robin fashion. The SCHED_OTHER policy is also included to handle an implementation-defined
scheduling policy. Because SCHED_OTHER is implementation dependent, it is not portable across
different platforms, and its use should be limited.

#include <signal.h>
#include <time.h>

void timer_create(int num_secs, int num_nsecs)
{
    struct sigaction sa;
    struct sigevent sig_spec;
    sigset_t allsigs;
    struct itimerspec tmr_setting;
    timer_t timer_h;

    /* setup signal to respond to timer */
    sigemptyset(&sa.sa_mask);
    sa.sa_flags = SA_SIGINFO;
    sa.sa_sigaction = timer_intr;

    if ( sigaction(SIGRTMIN, &sa, NULL) < 0 )
        perror(“sigaction”);

    sig_spec.sigev_notify = SIGEV_SIGNAL;
    sig_spec.sigev_signo = SIGRTMIN;

    /* create timer, which uses the REALTIME clock */
    if (timer_create(CLOCK_REALTIME,&sig_spec,&timer_h) < 0 )
        perror(“timer create”);

    /* set the initial expiration and frequency of timer */
    tmr_setting.it_value.tv_sec = 1;
    tmr_setting.it_value.tv_nsec = 0;
    tmr_setting.it_interval.tv_sec = num_secs;
    tmr_setting.it_interval.tv_sec = num_nsecs;
    if ( timer_settime(timer_h,0,&tmr_setting,NULL) < 0 ) {
        perror(“settimer”);
    }
    /* wait for signals */
    sigemptyset(&allsigs);
    while ( 1 ) {
        sigsuspend(&allsigs);
    }
}
/* routine that is called when timer expires */
void timer_intr(int sig, siginfo_t *extra, void *cruft)
{
    /* perform periodic processing and then exit */
}

Figure 1: Creating and using a POSIX timer



POSIX uses named objects for several different mechanisms including: semaphores, shared memory,
and message queues. These names are analogous, but independent, to names in the file system. For
semaphores one process creates the semaphore, and other processes can attach to the semaphore using its
name. Both processes can perform signal (sem_post) or wait (sem_wait) operations.

2.2.3 POSIX threads

In POSIX, threads are implemented in an independent specification, which means that their specification is
independent of the other real-time features [1][14]. Because of this there are a number of features from the
real-time specification that are carried over to the thread specification. For example priority scheduling is
done on a per-thread basis, but is handled in a similar manner as scheduling in POSIX 1003.1b. A thread’s
priority and scheduling policy is typically specified when it is created.

The POSIX thread specification defines functionality and/or makes modifications to POSIX in the
following areas:
• Thread control: Creation, deletion and management of individual threads
• Priority scheduling: POSIX real-time scheduling extended to include scheduling on a per thread

basis; the scheduling scope is either done globally across all threads in all processes, or performed
locally within each process

• Mutexes: Used to guard critical sections of code; mutexes also include support for priority inheritance
and priority ceiling protocols to help prevent priority inversions

• Condition variables: Used in conjunction with mutexes, condition variables can be used to create a
monitor synchronization structure

• Signals: Ability to deliver signals to individual threads

2.3 POSIX coverage in operating system implementations

Table 3 shows the level of compliance to POSIX 1003.1(a/b/c) for several commercially available
operating systems. General-purpose operating systems like Solaris and IRIX are the most compliant.
LynxOS is conformant to POSIX 1003.1a and with the 3.1 release will be very close to full compliance to
the three standards. VxWorks® only supports a subset of the POSIX standards because VxWorks is based
on a single process model. VxWorks uses its own threading library, but a POSIX thread implementation is
provided through a third party vendor.  Linux® provides good support for the base POSIX APIs and
threads, but is missing real-time features such as timers and message queues.

Table 3: POSIX in commercial operating systems

OS
POSIX 1003.1a
(Base POSIX)

POSIX 1003.1b
(Real-time extensions)

POSIX 1003.1c
(threads)

Solaris Full support Full support Full support

LynxOS Conformant Full support 3.0.1 based on draft and
missing thread attributes;
3.1 based on final
standard

VxWorks Partial support; support
for functions that do not
require a process model

Partial support; support
for functions that do not
require a process model

Support through a third
party product

IRIX Conformant Full support Full support

Linux Full support Partial support; no
support for timers or
message queues

Full support



3 Operating System Design
The design of an operating system can have a significant impact on its ability to be used in a real-time
system. This includes the internal design of the operating system as well as the features it provides to the
application programmer. This section focuses on the design of two operating systems (Solaris, and
LynxOS), and their suitability for use in a real-time system.

3.1 Desired features of a real-time operating system

Real-time systems are typically implemented with multiple asynchronous threads of execution. This is
dictated by the need to react to external events, and control asynchronous devices. Because of this
characteristic a real-time operating system (RTOS) must support multithreading. Also because the
criticality and rates of events are different, the RTOS must support a notion of priority so that a time critical
task is not delayed because of a non-critical task. Furthermore tasks need to communicate, therefore the OS
must provide synchronization and communication facilities.

A real-time OS also needs to support timing features like high-resolution timers and clocks. Timers are
used to support periodic processing and to detect system timeout errors. Clocks are needed to keep track of
time. Typical real-time applications may need to be aware of time at a granularity of micro or milliseconds.

With respect to performance the operating system must be predictable and add minimal overhead. As
discussed in Section 2.1, a real-time system must be predictable or deterministic. This implies that the time
required by all operations, including operating system functions, must be deterministic as well. To be
deterministic an operating system must be preemptable. Meaning that if the OS is processing a request on
behalf of a low priority task, it must be able to stop what it is doing and turn its attention to a higher priority
task. This prevents a situation where a high priority task is forever delayed by the operating system.

3.2 Solaris

Solaris is a general-purpose UNIX operating system available from Sun MicrosystemsTM developed to run
on SPARCTM and PentiumTM class CPUs. Solaris has many of the features required for a real-time system
[15]. These features are detailed below:
• A multithreaded preemptable kernel
• Global priority model: Threads are mapped to lightweight processes, which are allocated to priority

classes and then scheduled globally. See Section 3.2.1 for a discussion of Solaris priority classes.
• Configurable clock tick: The frequency of the clock tick can be changed, thereby increasing or

decreasing the frequency that the scheduler runs.
• High resolution POSIX timers: Solaris defines an additional POSIX timer (CLOCK_HIGHRES) that,

based on the capability of the hardware, can provide timers with nanosecond and µs resolution.

• Priority I/O streams
• Additional support for POSIX real-time APIs: Solaris 8 now supports all of POSIX 1003.1b.
• Symmetrical multiprocessing support: Solaris supports multiprocessing that is transparent to the user.

This also allows processors to be reserved for real-time processing, increasing the determinism.

3.2.1 Solaris thread implementation

Solaris implements both user-level and kernel-level threads. User-level threads are implemented as a
library at the user application level [16]; whereas kernel-level threads are the unit of execution seen by the
kernel. Solaris uses the Lightweight Processes (LWP) mechanism to run kernel-level threads on processors.
The mapping of user-level threads to LWPs can be done in a number of different ways. If multiple user-
level threads are mapped to a single kernel-level thread then at most one thread can be active at a time. To
take advantage of multiple processors user-level threads can be mapped one-to-one to LWPs.

Figure 2 illustrates how Solaris processor sets and processor binding can be used to dedicate
processors for real-time tasks [15][17]. The psrset command is first used to create a pool of one or more
processors. Note that all but one processor is eligible for inclusion in the processor set; one processor is
needed to process lightweight processes outside the set. The psradm command can then be used to disable
unbound interrupts on the processors in the processor set. The psrset command is then used to run real-time
processes on the processors in the bound processor set. All other non-real-time processes, and interrupts,
run on processors outside the real-time processor set. As shown in Section 5, this mechanism has a
dramatic effect on the timeliness of real-time processing.



3.2.2 The Solaris scheduler

To support different types of scheduling policies, Solaris runs each lightweight process in one of four
priority classes. These classes are shown in Table 4 [15]. Interrupt service routines are not part of the
scheduling process, but they are included in Table 4 because they run at a higher priority than all tasks, and
thus can interfere with normal LWP processing. Application LWPs run in one of three classes: Real-time,
System, or Timesharing. Interrupt threads are reserved for interrupt processing not done in the interrupt
service routine.

Scheduling consists of two processes: deciding which LWP to run, and performing tick processing
[18]. When the scheduler is invoked it dispatches the LWP with the highest global priority. If there are
multiple CPUs in the machine, the scheduler can dispatch multiple LWPs. The second aspect of scheduling
is tick processing; the processing that takes place at every clock tick. The scheduler will scan all the active
LWPs and update their state. For timesharing threads the scheduler may increase the priority of a LWP if it
determines that thread is not receiving a fair share of the CPU. Solaris may also promote a LWP to the
system class if the LWP is holding a system resource. Because real-time threads run with a fixed priority
scheduling policy, very little tick processing is done for them.

Table 4: Solaris Priority Classes
Class Priority Range Description
ISRs N/A Asynchronous interrupt service routines; not scheduled
Interrupt threads 160 - 169 Interrupt processing not done in the ISR; scheduled based

on priority of ISR
Real-time 100 -159 Time critical tasks; fixed priority preemptive scheduling
System/Kernel 60 - 99 System level functions
Timesharing/Interactive 0 - 59 General purpose applications; OS may dynamically adjust

priorities to achieve fairness

3.3 Lynx OS

LynxOS is a UNIX style operating system developed for real-time embedded systems. The Lynx kernel is
preemptable, reentrant, and can be scaled down to a footprint as low as 97 Kilobytes [19].

3.3.1 Lynx Scheduling

LynxOS 3.0.1 supports a single scheduling policy, fixed priority preemptive with 256 priority levels. The
clock tick frequency is fixed at 100 Hertz, which limits the resolution of timers to 10 milliseconds. The
scheduler is also invoked in response to asynchronous events and change in the system state.

3.3.2 Lynx priority tracking

LynxOS uses a mechanism called priority tracking to handle interrupt processing not done in the interrupt
service routine [20]. This is in contrast to the interrupt thread class used by Solaris.  The problem with
using an interrupt thread class is that interrupt processing on behalf of low priority tasks will run at higher
priority than application processing of a high priority task. This creates a priority inversion. The way
LynxOS solves this problem is to tie the priority of the interrupt processing to the priority of the application
thread. The 256 task priorities are subdivided into 512 priorities and application threads use the 256 even

CPU1 CPU2 CPU3 CPU4

Time shared
threads and unbound
interrupts

Real-time threads

Figure 2: Solaris Processor Binding and Control



priorities and interrupt threads use the 256 odd priorities. This idea is illustrated in Figure 3, where interrupt
threads run a half step above their corresponding application thread.

Interrupt threads are written as part of the device driver for a particular device, and therefore are not
associated with a particular application thread. Because of this LynxOS provides a mechanism by which
the device driver can determine the priority of the thread that it is currently running on behalf of. Using this
feature, the interrupt thread can adjust its priority to the appropriate level. If in the future a different
application thread needs the same device, the interrupt thread is notified and can change its priority.

4 Testing the Real-time Performance of Operating Systems
The benchmarks used in this study are divided into two categories: those that measure the determinism of
the OS and those that measure the latency of particular important operations. These benchmarks are
motivated by the real-time performance requirements discussed in Section 3.1. The benchmarks test core
operating system capabilities and are independent of any actual application. Also because we are interested
in determining the best possible real-time performance, all real-time threads are run at the maximum
possible real-time priority, and the virtual memory used by the benchmarks is locked into physical memory.
Table 5 summarizes the six benchmarks used in this study.

Table 5: Real-time benchmarks
Benchmark Description Aspect tested Parameters
Timer Jitter Create a periodic thread and

measure the deviation between
desired and actual expiration

Measures the response
time of the operating
system

Timer period:
(1,10,100 ms)

Response Execute a fixed processing load
and measure its execution time
over a number of runs

Determine if a thread can
respond in a
deterministic fashion

Type of processing:
(add,copy,whetstone)

Bintime Call a time of day clock and
measure interval between calls

Measures the maximum
kernel blocking time

None

Sync Measure the latency of thread to
thread or process to process
synchronization

Measures the context
switching time between
threads and processes

Type of semaphore:
(POSIX named/unnamed
semaphore, pthread mutex,
lynx semaphore); process
to process or thread to
thread

Message
passing

Measure the latency of sending
data form thread to thread or
from process to process

Measures the possible
throughput of data
between processes and
threads

Data buffer size; process to
process or thread to thread

RT Signals Measure the latency of real-time
signals between two processes

Measures the latency of
POSIX real-time signals

None

Thread A

Thread B

Thread C

Thread A

Thread B

Thread C

Interrupt Thread A

Interrupt Thread B

Interrupt Thread C

256 user priorities
are mapped to 512
user/interrupt priorities

Lowest
Priority

Highest
Priority

Highest
Priority

Lowest
Priority

Figure 3: Lynx priority tracking



4.1 Deterministic benchmarks

The first three benchmarks shown in Table 5, (Timer Jitter, Response, and Bintime) are designed to
measure the determinism of an operating system [21]. Because determinism implies that the time it takes to
perform an operation is known under all circumstances, we typically report the worst case time for these
benchmarks.

The structure of the Timer Jitter test is shown in Figure 3 below. The test creates a timer, sets it to
expire at a given period, and then when it expires determines the actual expiration time. The jitter is then
defined as the deviation between the actual and desired expiration times. Most current CPUs include a
stamp counter that is updated on every CPU cycle. The POSIX clock_gettime function in most operating
systems uses this stamp counter, giving a high precision time of day clock.

The second deterministic benchmark (Response) measures the actual execution time of a 10
millisecond fixed block of processing. The actual execution time over a number of separate runs is
calculated to determine whether or not application response time is deterministic. The fixed processing is
generated with a loop consisting of one of three different types of operations: additions (add), memory
copies (copy), or the synthetic Whetstone benchmark (whet) [22].

The last deterministic benchmark (Bintime) determines the maximum kernel blocking time [23]. The
benchmark uses a high priority real-time thread to repeatedly call a time of day clock and calculate the time
required by each call. The time required by each call consists of the time to perform the system call and any
time spent blocked in the kernel. Since the time to perform the system call should be constant, the deviation
between the maximum time reported by the benchmark and the average time gives a good indication of the
maximum time spent blocked in the kernel.

4.2 Latency benchmarks

The final three benchmarks test the synchronization, message passing, and RT signaling capabilities of an
operating system. For a real-time system it is important to minimize synchronization and communication
latency. Therefore it is important that the average latency of operations is small to minimize the total
overhead. Bounding the maximum latency is important as well to achieve determinism.

Three different synchronization tests are shown in Figure 5. In the first test a single thread signals (S)
and then waits (W) on a semaphore. This test measures the latency of semaphore system calls. The second
test uses semaphores to signal between two threads. The threads are either in a single, or two different
processes. Measurements from the first two tests can be used to determine the context switching time by
subtracting off the system call overhead, obtained in test one, from half of the roundtrip signaling time,
obtained in test two.

The last test assesses an operating systems ability to deal with priority inversion. The test sets up a
classic priority inversion using semaphores. Note for clarity the semaphores are not shown in the picture.
The priority inversion occurs when a low priority task acquires (A) a resource needed later by a high
priority task. The high priority task blocks waiting on the resource and is delayed indefinitely because a
independent medium priority task is monopolizing the CPU. This is a priority inversion because now the
medium priority task is favored over the high priority task. One typical way of solving this problem is to
allow the low priority task to inherit the priority of the high priority task so that it can run and release the
resource R. In the test a fixed-duration processing loop is used for the medium priority task. If a priority
inversion occurs then the time between when the low priority task acquires the resource and when the high
priority task receives it will be at least the time in this fixed-duration of processing. If the OS
synchronization mechanism prevents a priority inversion then this time will be negligible.

0 100
ms

200
ms

300
ms

400
ms

Timer
Period

Timer
Resolution

Timer Jitter

Desired tick time Actual tick time

time

Figure 4: Timer Jitter benchmark



The message passing benchmark uses POSIX message queues to measure the latency and throughput
of data transfers between two threads in the same process or in different processes. The last benchmark
measures the latency of POSIX real-time signals.

5 Benchmark Results
The benchmarks defined in the previous section were run on two different operating systems: LynxOS and
Solaris 8. The details of the two systems are shown in Table 6. Note that the CPU, amongst other hardware
characteristics, differs between the two platforms. Because our benchmarks were written to test the
determinism of the operating systems, and we observe the worst case time, this difference has little impact
on the results. However, the speed difference should be considered when comparing the results of average
timings.

 Table 6 identifies three different Solaris configurations. These different configurations allow us to
investigate the impact of using multiple CPUs. The first configuration uses the two processor Ultra 60 as is.
For the second configuration one of the CPUs is disabled. In the last configuration one of the CPUs is
reserved and the real-time benchmarks are run on it, as described in Section 3.2.1. Also for this
configuration the reserved processor is sheltered from all unbound interrupts.

Table 6: Experimental platforms
Platform Hardware CPU (Speed) Operating

System
CPU Configuration

Lynx Dell Pentium 2 (266 MHz) Lynx OS 3.0.1 1 CPU
Solaris (2 proc) Sun Ultra 60 SPARC (360 MHz) Solaris 8 2 CPUs
Solaris (1 proc) Sun Ultra 60 SPARC (360 MHz) Solaris 8 1 CPU
Solaris (1 rt) Sun Ultra 60 SPARC (360 MHz) Solaris 8 2 CPUs, 1 CPU reserved to

run RT benchmarks

5.1 Non real-time external load

The benchmarks were run stand-alone, i.e. without any other user processes running, and in combination
with a non-real-time load. Typically a real-time system will run a mixture of applications, some with real-
time requirements and some without. A graphical user interface is an example of a non-real-time
application. Table 7 shows the types of processing used to generate the non-real-time load. The load
contains CPU intensive applications as well as applications that use interrupting I/O devices such as the file
and network subsystems.

Figure 5: Synchronization tests
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Table 7: Non real-time (Heavy) load
Name Description Load Degree
CPU Processing load generated with the Whetstone

synthetic benchmark
10 ms every 100 ms

Disk File write operations 10 ms every 100 ms
Interrupt External serial interrupt 1000 interrupts/sec
Network TCP/IP socket transfers 4000 packets/sec
System call Sequence of utility system calls 10 ms every 100 ms
Memory Dynamic memory allocation 10 ms every 100 ms
File search Search files in a directory and all sub-directories Continuous

5.2 Timer Jitter

Figure 6 shows the results of the timer jitter tests run on all four platforms. Without a load, shown in Figure
6(a), all platforms have acceptable jitter under 200 µsec. Solaris (1 rt) configuration has the least amount of

jitter. The jitter for the Lynx configuration is also quite low. Under a heavy load, shown in Figure 6(b), the
jitter for the Solaris configurations that do not reserve a real-processor is out of bounds. The worst case
jitter, for these configurations, is as great as ten seconds.

5.3 Application Response

Table 7 shows the worst case response results for all configurations. Without a load all configurations have
a response result very close to the calibrated value of 10 milliseconds. With a load only the Lynx and
Solaris (1 rt) configuration come close to the 10 millisecond value. The worst case results for the standard
Solaris platform (Solaris 2 proc) is three orders of magnitude worse than the calibrated value.

Table 8: Worst case response results (in milliseconds)
add copy Whet

Configuration
No Load Heavy

Load
No Load Heavy

Load
No Load Heavy

Load
Lynx 9.9 9.9 10.0 10.1 10.1 10.2
Solaris (2 procs) 10.1 11236.5 10.7 12061.7 10.6 12162.8
Solaris (1 proc) 10.2 7310.7 10.2 4599.3 10.7 6328.2
Solaris (1 rt) 10.0 10.0 10.0 10.0 10.5 10.5

Figure 6: Timer jitter results
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5.4 Bintime

Figure 7 shows the results for the deterministic Bintime benchmark for all configurations. Without a load
the kernel imposes very little delay. For the Solaris (1 rt) configuration the delay is below 10 µsec, and for

all other configurations the delay is at or less than 100 µ secs. Under a heavy load, the Solaris

configurations without a reserved real-time processor again are very non-deterministic. The maximum
delay for the single CPU Solaris configuration is close to 1 second.

5.5 Synchronization

In this section we present the results of the synchronization tests described in Section 4.2.

5.5.1 Test 1 (Signaling within a thread)

Figure 8 shows the results of the simple synchronization test for the Lynx and Solaris (1 rt) configurations.
Four different types of synchronization mechanisms were tested for Lynx, and three for Solaris. As Figure
8(a) shows, the worst case latency for the Solaris platform is much better than the latency for Lynx
platform. Also for both platforms the additional of a load has little affect on the worst case timings.

Figure 8(b) shows the average latencies for the same synchronization mechanisms. For Lynx the lynx
semaphores exhibit the highest latency, most likely due to the fact that priority inheritance is implemented
for this semaphore. For Solaris the latency of the POSIX named semaphore is much higher than the latency
of the other mechanisms. An explanation for this is that the semaphore name is kept in the file system.
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5.5.2 Test 2 (Inter-thread signaling)

Figure 9 shows the results of the inter-thread signaling test for the Lynx and the Solaris (1 rt)
configurations. In all cases the average and worst case round-trip time is better for Lynx than Solaris. This
result is especially significant because the Solaris test was run on a faster processor than the Lynx test.
Figure 9 also shows that the latency of all types of synchronization mechanisms if roughly equal.

5.5.3 Test 3 (Priority inversion)

The results for the priority inversion test are shown in Figure 10 for all configurations. For all cases, except
the lynx (lsem) case, a pthread mutex is used to guard the resource shared by the low and high priority
tasks. Without a load the first Lynx configuration exhibits a latency corresponding to the delay time of the
medium priority task of 10 milliseconds. This is due to the fact that in LynxOS 3.0.1 priority inheritance is
not implemented for pthread mutexes. This problem is not seen with Lynx semaphores. Priority inheritance
is implemented in Solaris, and the latency for all Solaris configurations, without a load, is low.

Under a heavy load only the lynx (lsem) and Solaris (1 rt) configurations exhibit an acceptable latency.
The Solaris 1rt and 2 proc configurations are affected by the heavy load, and the lynx still has a high
latency because of the lack of a priority inheritance protocol.

5.5.4 Context switching time

Table 9 shows context switching time for all platforms computed from the results for memory semaphores
in the first two synchronization tests. The context switching time for Lynx is less than half the value of the
best Solaris configuration. Also for Lynx the process-to-process context switching time is only slight worse
than the thread-to-thread context switching time.
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The context switching time for Solaris threads is more deterministic than the context switching time
for processes. For the Solaris (1 rt) configuration the maximum thread-to-thread context switching time is
close to average. However, for the same configuration, the process-to-process context switching time is an
order of magnitude worse than the average value. Another interesting observation is that for Solaris the
context switching time between processes is slightly better than between threads. In both cases there is a
context switch between LWPs, this seems to imply that the bulk of the overhead is in the scheduler.

Table 9: Context switching times
No Load Heavy Load

Thread Process Thread Process
Configuration Max Avg Max Avg Max Avg Max Avg
Lynx 42.2 20.1 47.2 24.2 40.5 20.1 53.2 24.0
Solaris (1 rt) 65.4 52.9 446.8 49.9 67.2 51.8 461.0 50.6
Solaris (1 proc) 198.9 53.0 459.1 50.3 160.8 53.2 23240 51.4
Solaris (2 proc) 247.5 48.1 119.6 41.4 7149.0 68.7 639191 82.2

5.6 Communication

5.6.1 Real-time signals

Figure 11 shows the results of the real-time signal benchmark for all configurations. The Lynx
configuration has a lower signal latency than any of the Solaris configurations. Also the Solaris 1 proc and
2 proc configurations are severely affected by the addition of a non-real-time load.

Figure 11: Real-time signal latency
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Message queues
The latency and throughput of POSIX message queues for all configurations is shown in   

Table 10 The latency for the Lynx platform is better than the Solaris platform, but the Solaris platform has
better throughput. This better throughput is most likely due to faster hardware on the Solaris platform.

Table 10: POSIX message queues (No Load)
Latency (µµµµsec) Throughput (Mbytes/sec)

Thread Process Thread Process
Configuration Worst Avg Worst Avg Worst Avg Worst Avg
Lynx 50.1 30.5 57.7 35.9 46.2 51.6 45.9 50.0
Solaris (1 rt) 98.7 90.5 118.9 102.7 62.4 77.8 61.5 76.5
Solaris (1 proc) 152.8 89.6 159.0 102.4 77.7 77.3 72.9 76.3
Solaris (2 proc) 148.7 82.8 146.8 77.5 41.3 66.6 58.2 65.5

6 Conclusion
In this paper we have assessed the use of POSIX in the development of software for real-time and
embedded systems. We discussed the features of POSIX and how well these features match the features
required in real-time software development. We also empirically evaluated the real-time performance
characteristics of two implementations of POSIX: LynxOS 3.0.1 and Solaris 8.

The empirical evaluation showed that both LynxOS and Solaris 8 are suitable for real-time systems.
LynxOS exhibited a low overhead for all operations and was deterministic even under heavy loading
conditions. Solaris 8 contains a number of features that are important in real-time development, including:
high resolution timers, processor partitioning, and SMP support. These last two features are key in Solaris’s
use as a real-time operating system. There is a dramatic difference in the determinism of the standard
Solaris configuration versus a configuration were all real-time tasks are run on a dedicated processor. The
standard configuration is unsuitable for real-time, whereas the second configuration is very deterministic.

Although this study did not perform an exhaustive comparison of the POSIX APIs between Solaris and
LynxOS, our conclusion is that there is a great deal in common between the two implementations of
POSIX. The biggest differences are in the areas of clock resolution and number of real-time priorities.
Clock resolution could pose a portability problem if a resolution of greater than 10 milliseconds is needed.
Other differences that we encountered, like discrepancies in the LynxOS threads implementation, are being
rectified in version 3.1 of the operating system.
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