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Summary

In this paper we study the intrinsic noise effect on the switching behavior of a simple
genetic circuit corresponding to the genetic toggle switch model. The numerical results
obtained from a noisy mean-field model are compared to those obtained from the stochastic
Gillespie simulation of the corresponding system of chemical reactions. Our results show
that by using a two step reaction approach for modeling the transcription and translation
processes one can make the system to lock in one of the steady states for exponentially
long times.

1 Introduction

A large number of experimental data have demonstrated the presence of noise in gene regula-
tion processes, where the small number of interacting molecules can lead to significant noise
levels [1]-[3]. Obviously, the differential equations derived in a simplified mean-field model are
deterministic and they fail to predict the fluctuations in the levels of molecular species presented
in the system. Therefore, the mean-field description, which treats concentrations as continu-
ous variables, is not suitable for systems consisting of small numbers of molecules in which
individual reaction events dominate the behavior. In this case, stochastic kinetics methods are
necessary for proper description of the system. A first possibility is to incorporate noise in the
mean-field model by explicitly adding a random variable to the differential equations describing
the system [4]-[6]. This approach results in a stochastic differential equation or Langevin equa-
tion. It is well known that the Langevin equation is asymptotically equivalent (under certain
conditions) to the chemical master equation [7]. A second possibility is to employ a stochas-
tic simulation algorithm for the chemical master equation. For example, the solutions of the
stochastic formulation of coupled chemical reactions can be computed using the Monte Carlo
algorithm introduced by Gillespie [8]. The Gillespie algorithm calculates the time evolution of
the system by determining the probabilities of each discrete chemical reaction and the resulting
changes in the number of each molecular species presented in the system. This algorithm has
rigorous theoretical foundations, and gives the exact solution for a system of elementary chem-
ical reactions in the approximation of a well-mixed environment. Also, the Gillespie algorithm
accounts for most of the intrinsic noise of the system but not for the extrinsic noise generated
by the intercellular interactions.

In this paper we study the intrinsic noise effect on the switching behavior of a simple genetic
circuit corresponding to the genetic toggle switch model [9]. Such a genetic toggle switch can
be formed from a pair of genesA andB that mutually repress each other’s expression. We
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consider two cases: a noisy mean-field approximation and Gillespie stochastic simulation. We
show that the simplified mean-field model depends only on two parameters. These parameters
measure the net effect of the expression, binding and degradation reaction rates. In a well-
mixed system with a high number of molecules the reaction rates are considered constant.
However, in reality the reaction rates fluctuates around some average values. For example,
molecules fluctuate through structural microstates that can affect rate constants. Also, the cell
is not a well stirred system, so local fluctuations in parameters such as pH can affect reaction
constant rates. Assuming that the intrinsic noise arises from these processes, we add to each
of these two parameters a random variable governed by a Gaussian distribution. This is a
drastic approximation, because to be realistic one would need to model noise at each step of the
expression, binding and degradation steps. However, this approach gives a simple alternative
to capture the global contribution of these processes, to the intrinsic noise. The results obtained
from the noisy mean-field model are compared to those obtained from the stochastic Gillespie
simulation of the corresponding system of chemical reactions.

The paper is organized as following. In the first section we formulate the system of chemical
reactions corresponding to the genetic toggle switch. The second section describes the mean-
field model. In the third and forth sections we give the simulation results obtained from the
noisy mean-field model and from the Gillespie stochastic simulation. In order to characterize
the noise effects we compute the distributions of the switching time as a function of differ-
ent parameters in the system and we show that the switching time is exponentially distributed.
Also, we show that the constant rate of the protein degradation reactions and the total number
of the molecules in the system play an important role in increasing the bistability of the system.
We would like to note that the proposed noisy mean-field model captures very well most of
the characteristics of the system, observed using the Gillespie stochastic simulation approach.
Also, our simulations show that by using a two step reaction approach for modeling the tran-
scription and translation processes one can make the system to lock in one of the steady states
for extremely long times. These results provide a quantitative support to some conjectures
previously reported in the literature.

2 The chemical system

Before describing the toggle switch system, let us analyze the gene expression process [10].
The genetic information is first transcribed into messenger RNA (mRNA) and then translated
into proteins (M ) by ribosomes (Ribo). The transcription process can be described by a se-
quence of reactions, in which the RNA polymerase (RNAp) binds to a promoter (P ) leading
to transcription of a completemRNA molecule:

RNAp + P
k1−→ C1

k2−→ ...
kn−→ Cn

kn+1−→ RNAp + P + mRNA. (1)

Here,Ci corresponds to the complex formed in the intermediate reactioni = 1, ..., n. Since, the
waiting times are independent statistical quantities, the waiting time for the whole sequence of
intermediate complex formation is the sum of the waiting times for the individual steps. Also,
we should note that the central limit theorem indicates that the lumped reaction of the open
complex formation will tend to have a Gaussian distribution of waiting times, converging to aδ
function for a very large number of intermediate steps. Thus, in terms of reaction rates (which
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have units of inverse time) we havek−1 =
∑n

i=1 k−1
i . For example, if we consider equal waiting

times for each individual step, then from the above equation we obtainki = nk, i = 1, ..., n.

From the above considerations, it follows that the whole sequence of reactions (1) can be ap-
proximated by the following two reactions

RNAp + P
kα−→ C

kβ−→ RNAp + P + mRNA, (2)

wherekα =
(∑n

i=1
1
ki

)−1
andkβ = kn+1.

Let us now analyze the translation process, in which the information initially transcribed into
mRNA is now translated intor copies of proteinsM . To describe this we consider the follow-
ing additional reactions:

Ribo + mRNA
kγ−→ Ribo + mRNA + rM, (3)

mRNA
kδ−→ ∅. (4)

The reaction (3) idealizes the multistep translation process, under the further idealization that
if multiple ribosomes bind themRNA at a time, then a time averaged rate,r, of proteins can
be used. The reaction (4) captures the degradation ofmRNA. In a steady state(dC/dt = 0),
the rate of transcription iskα and it balances the rate of degradationkδ. Therefore, the mean
number ofmRNA is kαk−1

δ . EachmRNA producesr protein molecules at a ratekγ, hence
the overall rate of protein production isrkαkγk

−1
δ .

From the above analysis it follows that the transcription and translation processes can be con-
densed in two reactions

RNAp + P
k′−→ C

k′′−→ RNAp + P + M, (5)

wherek′ = rkαkγk
−1
δ andk′′ = kβ.

We conclude that this is the minimal system which takes into account the delayτα ∼ k−1
α , cor-

responding to intermediate complex formation. Also, we should note that this analysis idealizes
mRNA and protein levels as their steady state levels.

A genetic toggle switch can be formed from a pair of genesA andB that mutually repress each
other’s expression. In this system protein homo-multimers are responsible for gene regulation
and are allowed to bind to the promoter site. The chemical reactions are:

RNAp + PA

k′A−→ CA

k′′A−→ RNAp + PA + MA, (6)

RNAp + PB

k′B−→ CA

k′′B−→ RNAp + PB + MB, (7)

PA + (MB)m

k1
A←− k0

A−→ PA(MB)m, (8)

PB + (MA)n

k1
B←− k0

B−→ PB(MA)n, (9)

nMA

k−A←− k+
A−→ (MA)n, (10)

mMB

k−B←− k+
B−→ (MB)m, (11)

MA

kδ
A−→ ∅, (12)

MB

kδ
B−→ ∅. (13)
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Eqs. (6)-(7) correspond to the gene expression process. Repression of gene expressions is
captured in Eqs. (8)-(9). For example, geneA is expressed if and only if(MB)m is not bound.
Eqs. (10)-(11) corresponds to the multimerization reactions. Eqs. (12)-(13) take into account
the degradation of the protein monomers.

3 The mean-field model

In this model we are simplifying gene expression even more by condensing the two reactions
process (5) in only one reaction. This simplification can be made under the assumption that one
of the two reactions is much slower/faster than the other one (k′ À k′′ or viceversa). Therefore,
in the mean-field model we replace the first two equations (6)-(7) by

RNAp + PA
kA−→ RNAp + PA + MA, (14)

RNAp + PB
kB−→ RNAp + PB + MB. (15)

In a steady state the binding (8)-(9) and multimerisation reactions (10)-(11) are in equilibrium
and we can write:

k0
A[PA][(MB)m] = k1

A[PA(MB)m], (16)

k0
B[PB][(MA)n] = k1

B[PB(MA)n], (17)

k+
A [MA]n = k−A [(MA)n], (18)

k+
B [MB]m = k−B [(MB)m]. (19)

Therefore, the probabilities of the genes promoter states{PA, PA(MB)m}, {PB, PB(MA)n} are
in the ratio:

[PA(MB)m]

[PA]
=

k0
A

k1
A

[(MB)m] =
k0

Ak+
B

k1
Ak−B

[MB]m = xm
B , (20)

[PB(MA)n]

[PB]
=

k0
B

k1
B

[(MA)n] =
k0

Bk+
A

k1
Bk−A

[MA]n = xn
A, (21)

wherexA andxB are the reduced concentrations of the proteins. The probability of the promoter
A/B to be in the state where the geneA/B is expressed is therefore:

fA(xA, xB) =
1

1 + xm
B

, (22)

fB(xA, xB) =
1

1 + xn
A

. (23)

In a steady state, the rate of expressionkA/B should be equal to the rate of degradation and we
can write:

kAfA(xA, xB) = kδ
A[MA], (24)

kBfB(xA, xB) = kδ
B[MB]. (25)

Thus, using the reduced concentrations we obtain the following steady state equations:

ηAfA(xA, xB) = xA, (26)

ηBfB(xA, xB) = xB, (27)
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where the coefficients

ηA =
kA

kδ
A

(
k0

Bk+
A

k1
Bk−A

)1/n

, (28)

ηB =
kB

kδ
B

(
k0

Ak+
B

k1
Ak−B

)1/m

, (29)

measure the net effect of the expression, binding and degradation rates.

It follows that around the steady state, the dynamics of the chemical system can be approxi-
mated by the following nonlinear dynamical system:

d

dt
xA = ηAfA(xA, xB)− xA = FA(xA, xB), (30)

d

dt
xB = ηBfB(xA, xB)− xB = FB(xA, xB). (31)

Figure 1: Geometrical structure of the mean-field model of the genetic toggle switch: (a) the
monomer case; (b) the multimer case.

3.1 The monomer case

In this case we haven = m = 1. The intersection of the nullclines

FA(xA, xB) = 0, (32)

FB(xA, xB) = 0, (33)

gives the unique steady state of the dynamical system (Fig. 1a). In order to analyze the behavior
of the above system we have to verify if this steady state is unstable.

A steady state can be classified into one of several classes using linear stability analysis. The
stability matrix of the system is:

A(xA, xB) =

(
∂FA

∂xA

∂FA

∂xB
∂FB

∂xA

∂FB

∂xB

)
. (34)
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The analysis of the eigenvalues ofA(xA, xB) characterizes the type of steady state. To find the
eigenvalues ofA we need to solve the equation

|A− λI| = 0, (35)

which in this case gives the solutions:

λ1,2(xA, xB) = −1±
√

ηAηB

(1 + xA)(1 + xB)
. (36)

At the steady state, the constantsηA andηB can be eliminated from the Eqs. (26)-(27) and we
obtain:

λ1,2(xA, xB) = −1±
√

xAxB

(1 + xA)(1 + xB)
< 0, ∀xA, xB > 0. (37)

Obviously, the unique steady state is stable and the mean field model of the monomer system
does not predict a switching behavior, which requires transitions between two steady states. Fig.
2 shows the typical dynamics of the system for different initial values and parameter values.
One can see that the system converges quickly to the unique steady state. However, we will
see later that by using the stochastic simulation approach, the system does exhibit switching
behavior due to the intrinsic noise generated by the system.

Figure 2: Dynamics of the mean-field model in the monomer case.

3.2 The multimer case

In this case, we haven,m ≥ 2. The eigenvalues of the stability matrix are:

λ1,2(xA, xB) = −1±
√

nmxn
Axm

B

(1 + xn
A)(1 + xm

B )
. (38)

Therefore, the determinant of the stability matrix is given by:

D(xA, xB) = λ1(xA, xB)λ2(xA, xB) =
1 + xn

A + xm
B − (nm− 1)xn

Axm
B

(1 + xn
A)(1 + xm

B )
. (39)
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The sign ofD(xA, xB) coincides with the sign of the function:

∆(xA, xB) = 1 + xn
A + xm

B − (nm− 1)xn
Axm

B . (40)

So, if ∆(xA, xB) < 0 at a steady state, that steady state is unstable in one direction (saddle
point) (λ1 > 0, λ2 < 0). Moreover, for any(xA, xB) the function∆(xA, xB) has a definite
sign, independent of the values of(ηA, ηB). The region∆(xA, xB) < 0 contains all the possible
unstable steady states. The regions of positive and negative signs are separated by∆(xA, xB) =
0 (Fig. 1b). It can be easily shown numerically that forn,m ≥ 2 and appropriate values of
(ηA, ηB) the nullclines (32)-(33) intersect in three points, corresponding to the three steady
states of the system (Fig. 1b). Two of the steady states are in the stability region, where∆ > 0,
while one steady state is in the unstable region∆ < 0 (Fig. 1b).

Figure 3: Dynamics of the mean-field model in the multimer case.

Fig. 3 shows the typical dynamics of the system for different initial values. One can see that,
depending on the initial values, the system will settle in one of the stable states which are
separated by the separatrix that travels through the unstable steady state. The separatrix divides
the (xA, xB) state space into two basins of attraction. IfxA(0) < xB(0) then the system will
settle in the upper steady state, while ifxA(0) > xB(0) then the system will settle in the lower
upper state. The separatrix itself is a 1-dimensional manifold where trajectories flow to the
unstable steady state.

We conclude that in order to obtain bistability, the protein inhibitors must repress the expression
of the other with cooperativity greater than one. This suggests that repressor multimerization is
necessary to obtain bistability. Higher-order multimerization will increase the robustness of the
system, allowing weaker promoters to achieve bistability. The state of the toggle is switched
by the application of a pulse that pushes the system away from the stable steady state, over the
separatrix, and into the opposite basin of attraction.

4 Noisy mean-field model simulation

The system (30)-(31) is modified by assuming that the parametersηA/B are affected by noise
ηA = ηB = η0+ρξ, whereξ is a random variable governed by a Gaussian distribution with zero
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mean and variance equal to one, andρ ≥ 0 is a parameter measuring the strength (variance) of
the noise. The system of differential equations is solved numerically using the 4th-order Runge-
Kutta method. The Gaussian distribution was sampled by the use of the standard Box-Muller
method. As a measure of flipping the switch from one state to the other we are considering
q(t) = xA(t)− xB(t) which serves as an order parameter. Below we give the numerical results
obtained for the monomer and multimer systems.

4.1 The monomer case

In Fig. 4 we give the temporal evolution ofq(t). The parameterη is set toη0 = 2 and the noise
strength isρ = 0.5. The initial state corresponds to the stable state of the deterministic system:
xA(0) = 1, xB(0) = 1. Without the noise the system will stay in this stable state. If the noise is
present then the system will fluctuate around the stable state. In Fig. 5 we give the distributions
of the noiseh(η) and of the order parameterh(q) for the above initial values. One can easily
see thath(q) is also Gaussian distributed. This is normal since the system has only one stable
state from which it cannot escape.

Figure 4: Temporal evolution of the order parameter q(t) for the noisy mean-field model in the
monomer case.

Figure 5: The distributions of the noiseh(η) and of the order parameterh(q) for the noisy mean-
field model in the monomer case.

Let us now consider the switching time parameterθ which is defined as the time interval for
which the system stays above/below the separatrix. Assuming that the distribution is exponen-
tial

h(θ) = c1 exp(−c2x), (41)

then we obtain the cumulative distribution

H(x ≥ θ) =
∫ ∞

θ
h(x)dx = exp(aθ + b), (42)

wherea = −c2, b = ln(c1/c2). Therefore

ln(H(θ)) = aθ + b, (43)
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Figure 6: The fit of the cummulative distribution H(θ) of the switching time parameterθ for the
noisy mean-field model in the monomer case.

and we should be able to fit the simulation results using a straight line. One can see that the fit
results correspond almost perfectly to the exponential distribution (Fig. 6).

4.2 The multimer case

In our simulations we consider the dimer system withn = m = 2 andηA = ηB = η0 = 2.2.
Also, we consider that the initial state of the system corresponds to the unstable state of the
deterministic system (which is obtained solving the steady state equations). Without the noise,
the system will stay in this unstable state situated on the separatrix. If the noise is present, then
the state of the system will move above or below the separatrix. If the noise strength is low,
then the system will be locked and it will fluctuate around the upper/lower steady state. If the
noise strength is high enough then the state of the system can cross the separatrix and we obtain
a switching behavior. In Fig. 7 we give the temporal evolution of the order parameterq(t) for
the following values of the noise strength isρ = 0.3, 0.4, 0.5. One can see that by increasing
the noise strength the stability of the system decreases and the switching behavior increases in
intensity. In Fig. 8 we give the distributions of the noiseh(η) and respectively of the order
parameterh(q). One can see how the probability around the separatrix increases by increasing
the noise strength parameterρ. Also, the two probabilities maxima, corresponding to the stable
states of the deterministic system, decrease as the noise strength increases. In Fig. 9 we give
the fit of the cumulative distribution of the switching time parameterθ for the same values of
the noise strength.

5 Stochastic simulation

Here we give a short description of the stochastic Gillespie algorithm. The rigorous derivation
of the algorithm has been given elsewhere and it has been shown to remain ”exact” for arbi-
trary low number of molecules [8]. Consider a system composed ofN chemical speciesXν

(ν = 1, ..., N) interacting throughM reactionsRµ (µ = 1, ..., M) in the cell volumeV . Every
reactionµ is characterized by its stochastic rate constantkµ, which depends on the physical
properties of the molecules taking part in the reaction. The productkµdt is the probability that
one elementary reactionµ happens in the next infinitesimal time intervaldt. For the above sys-
tem of reactions, the algorithm answers the following questions: (a) what is the waiting timeτ
for the next reaction to occur and (b) which reactionµ in the system will occur. These questions
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Figure 7: Temporal evolution of the order parameter q(t) for the noisy mean-field model in the
multimer case.

are answered by generating two random numbers according to the following probability density
function:

P (τ, µ) = aµ exp(−a0τ), (44)

where

aµ = mµkµ, a0 =
M∑

µ=1

aµ. (45)

Here,mµ is the number of distinct reactant combinations available for the reactionRµ at the
given state of the system. The coefficientaµ is called the propensity of reactionRµ. P (τ, µ) is
the probability that the next reaction will occur in the infinitesimal time intervaldτ and that it
will be theRµ reaction. After determination of(τ, µ), the numbers of molecules in the system
and the time of the simulation are adjusted accordingly. The larger the propensity is, the greater
the chance that a given reaction will happen in the next step of the simulation. Also, we should
mention that there is no constant timestep in the simulation. The timestep is determined in every
iteration and it takes different values depending on the state of the system. The implementation
of the algorithm is straightforward and the reader can find excellent descriptions in the literature
[11]-[12].

5.1 The monomer case

This is the case of system (6)-(13) withn = m = 1 and in which the Eqs. (6)-(7) are replaced
by Eqs. (14)-(15). In Fig. 10a we have a typical temporal evolution of the order parameter
q(t). All the reaction constants are set to one. The initial values of the molecule numbers are
set to zero, with the exception ofRNAp = 200 andPA = PB = 1. The behavior of the system
depends very strongly on the degradation reaction constants. In Fig. 11 we give the distribution

http://journal.imbio.de/


Journal of Integrative Bioinformatics 2006 http://journal.imbio.de/

Figure 8: The distributions of the noiseh(η) and of the order parameterh(q) for the noisy mean-
field model in the multimer case.

Figure 9: The fit of the cummulative distribution H(θ) of the switching time parameterθ for the
noisy mean-field model in the multimer case.

of the order parameterq(t) = MA − MB as a function of the degradation reaction constants
kδ

A = kδ
B = kδ. One can see that by increasing the value ofkδ the distribution changes its

aspect considerably. For smallkδ = 0.1 (which is equivalent toη0 = 10 in the noisy mean-field
model) the distribution is close to the Gaussian distribution obtained in the noisy mean-field
model (Fig. 5). However, by increasing the value tokδ = 0.25; 0.5; 1 (equivalent toη0 = 4; 2; 1
in the noisy mean-field model) a bistable behavior emerges in the system. We should mention
that this bistable behavior is actually not predicted by the mean-field model. This behavior
occurs because the states(xA → ∞, xB → 0) and(xA → 0, xB → ∞) are also asymptotic
solutions of the steady states equations (11). The stochastic system is attracted by these steady
states, but because the number of protein molecules cannot increase to infinite (they are limited
by the total number of molecules in the system) and because of the intrinsic noise, the system
will tend to switch its state above/below the separatrix. Our simulations have shown that the
system becomes more bistable by increasing the degradation reaction constantskδ. However,
the switching time cannot be made arbitrarily long. This means that the system cannot be
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Figure 10: Temporal evolution of the order parameterq(t) for the Gillespie stochastic simulation:
(a) the monomer case; (b) the multimer case.

locked in a state above/below the separatrix for an arbitrary long period of time. In Fig. 13a-
13b we give the fit of the cumulative distribution of the switching time parameterθ for a typical
trajectory of the system (kδ = 1).

Figure 11: The distribution of the order parameter h(q) for the Gillespie stochastic simulation
as a function of the degradation constant in the monomer case: (a)kδ = 0.1; (b) kδ = 0.25; (c)
kδ = 0.5; (d) kδ = 1.

5.2 The multimer case

Because the simulation process is quite intensive we are limiting our investigation to the dimer
case in whichn = m = 2. Also, first we assume that the Eqs. (6)-(7) are replaced by Eqs.
(14)-(15). In Fig. 10b we have a typical temporal evolution of the order parameterq(t). All the
reaction constants are set to one with the exception ofkA/B = 2.2 andk+

A/B = k−A/B = 10−3.
This means that the number of dimers in the system is kept at a low level. This also means
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Figure 12: The distribution of the order parameter h(q) for the Gillespie stochastic simulation as
a function of the number of RNAp molecules in the multimer case: (a)N = 50; (b) N = 100 ; (c)
N = 150; (d) N = 200.

that the dimer creation is a much slower process compared to the other reactions. The effect
of this is the increase in the bistability of the system. This values of the reaction constant
rates will give an equivalent value ofη0 = 2.2, which we have used in the noisy mean-field
simulation. The initial values of the molecule numbers are set to zero, with the exception of
RNAp = 200 andPA = PB = 1. Our simulations have shown that the bistability of the switch
increases very fast by increasing the number of molecules in the system. In Fig. 12 we have
represented the distribution of the order parameterq(t) as a function of the initial number of
RNAp molecules(RNAp = 50; 100; 150; 200). The bistability of the system and the switching
time increases very fast with the increase of the number of theRNAp molecules. This gives
a quantitative support to the conjecture that the switching time grows exponentially with the
number of molecules from the system [13]. This conjecture is also sustained by the stochastic
simulations reported in [14] for a different model. Also, we should note that the system can be
locked for a long period of time around the upper/lower steady state by increasing the number
of molecules in the system. In Fig. 13c-13d we give the fit of the cumulative distribution of
the switching time parameterθ for a typical trajectory of the system (RNAp = 100). The
distribution of the switching time is again exponential.

We have performed also simulations for the more general case of the system (6)-(13) in which
we have considered the transcription and translation processes described by two reaction steps,
with the assumption that one of the two reactions is much more slower/faster than the other
one (k′ À k′′ or viceversa). For very small values of the ratiok′/k′′ À 10−2 (or viceversa)
we recover similar results to those obtained by assuming only one reaction step. However, by
using the same initial values as before and setting the ratiok′/k′′ ≈ 10−2 (or viceversa) the
system locks around one of the steady states for extremely long time. We have not counted any
switching for extremely long trajectories (107 simulation steps). This corresponds to lifetimes
measured in years. Such long lifetimes have been previously reported in the literature [15]. Our
simulations give a quantitative support for these results.
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Figure 13: The fit of the cummulative distribution H(θ) of the switching time parameterθ for the
Gillespie stochastic simulation: (a)-(b) the monomer case; (c)-(d) the multimer case.

Conclusion

In this paper we have proposed a noisy mean-field model of the genetic toggle switch. We have
shown that this model approximates very well the characteristics of the system, observed using
the Gillespie stochastic simulation algorithm. This means that the noisy mean field model cap-
tures very well the intrinsic noise effects corresponding to the considered stochastic system. In
order to characterize the noise effects we have computed the distributions of the switching time
as a function of different parameters in the system and we have shown that the switching time
is exponentially distributed. We have shown that the constant rate of the protein degradation
reactions and the total number of the molecules in the system play important roles in increasing
the bistability of the system. Also, our simulations have shown that by using a two step reac-
tion approach for modeling the transcription and translation processes one can make the system
lock in one of the steady states for extremely long times. These results provide a quantitative
support to some conjectures previously reported in the literature [13]-[15].
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