
HARDWARE IMPLEMENTATION OF AN ARTIFICIAL NEURAL
NETWORK WITH AN EMBEDDED MICROPROCESSOR IN A FPGA

Gisnara Rodrigues Hoelzle2 and Fernando Morgado Dias 1,2

1 Centro de Ciências Matemáticas – CCM, Universidade da Madeira, Campus Universitário da Penteada,
9000-390 Funchal, Madeira, Portugal

2 Departamento de Matemática e Engenharias, Universidade da Madeira, Campus da Penteada, 9000-390
Funchal, Madeira, Portugal

brasergis@hotmail.com, morgado@uma.pt

Abstract

This article describes the implementation in hardware
of an Artificial Neural Network with an embedded
Microprocessor in a FPGA. The implementation of a
Neural Network in hardware can be desired to benefit
from its distributed processing capacity or to avoid
using a personal computer attached to each
implementation. The relevance of implementing it in a
FPGA comes from its flexibility, low power
consumption and higher performance. This
implementation uses an embedded processor.
Embedding the processor allows achieving the benefits
from hardware and from software in a single platform.
The implementation with a microprocessor can be
quite easy while a regular hardware implementation
can be hard to develop.

The hardware implementation is based in a
Feedforward Neural Network, with a hyperbolic
tangent as activation function, with floating point
notation of single precision. The device used was an
FPGA Virtex II Pro XC2VP30, Xilinx with a
MicroBlaze soft core processor. The microprocessor
soft core subsystem occupied 1766 slices and it used
89KB of RAM for the application, data and results
storage (the base value of on-chip memory is of 64KB).
The Matlab was used to validate the implementation by
comparing it with the results of the hardware solution
while using data from a real system. The results show
that the implementation does not introduce a
noticeable loss of precision but is slower than the
Matlab implementation running in a PC with a
processor running at 2,8GHz.

Keywords: Artificial Neural Network, MicroBlaze,
Hardware Implementation, Hyperbolic Tangent,
FPGA, Embedded Microprocessor.

1. Introduction

The majority of the authors have shown that the
solutions with ANNs (Artificial Neural Networks)
reach better results in the implementation phase with
specific hardware than the most common
implementation using a personal computer or
workstation [1]. The existence of these solutions in
hardware is of extraordinary importance for areas as
Applied Sciences and Health Sciences.

The ANNs are parallel distributed systems, since they
have the capacity to receive several inputs at the same
time and to distribute these inputs in an organized
manner. With this architecture, the information stored
and shared in all the processing units of the ANNs
improve the performance and the reliability in the
systems implemented [1].

The implementation of ANN will have to supply a
signal to the output of the system that will activate the
coupled components, resembling the one that happens
in the Biological Neural Network.

The hardware implementation with the embedded
processor needs to reproduce the architecture of the
ANN needed. This means considering the number of
inputs and outputs, the number of neurons, the number
of connections to each neuron, the number of layers,
the numerical representation and accuracy for the
involved signs.

2. Implementation of the Neural Network

The implementation of Artificial Neural Networks has
become a part of many scientific projects. They are

specific projects and dedicated to the solution of
complex problems that in principle would be insoluble.

2.1 Hardware Platform

The platform chosen for the implementation of the
ANN was a FPGA with an embedded MicroBlaze. This
solution was chosen because of its flexibility, greater
performance and low consumption of energy.

In this project the platform used was a ML310 board,
represented in figure 2.1, with a FPGA Xilinx Virtex-II
Pro XC2VP30 FF896 (Flip-Chip Fine-Pitch BGA
Package) speed grid -6, of the Xilinx. The MicroBlaze
is the embedded microprocessor in the FPGA.

The MicroBlaze is a microprocessor with an RISC
architecture (Reduced Instruction-Set Computer) of 32
bits. This microprocessor is soft core, i.e., it has a set of
features configured through a Hardware Description
Language (HDL). The MicroBlaze is optimized for
implementations in FPGAs, a flexible processor system
that’s easy-to-use, area-efficient, optimized for cost-
sensitive designs, and avoids processor obsolescence
[2]. The number of MicroBlazes that can be embedded
depends exclusively on the capacity of the FPGA.

Figure 2.1 – Platform ML310

Figure 2.2 shows a functional block diagram of the
MicroBlaze. The blocks in blank are the basic feature
for the functioning of the system of the MicroBlaze and
the blocks filled are optional.

 Figure 2.2 – MicroBlaze Processor Block Diagram [2]

2.2 Implementation

The type of Neural Network used in this project was
Feedforward Neural Network, i.e. a network that
allows only connections in the output direction. This
option result of its bigger spreading at the level of the
developed tools that allow the fast implementation of
models [1].

The code programmed for the Neural Network was
developed with the objective of being generic, i.e., the
network would have to receive a variable number of
inputs and neurons. The number of neurons of the
hidden layer allows us to adjust the size of the network
to the complexity of the system being used [1].

During the project, several architectures were tested.
The notation used defines the architecture in a simple
form: they quantify the number of inputs, neurons in
the hidden layer and neurons in the output layer, i.e.,
for the network 3-8-1, we have 3 inputs, 8 neurons in
the hidden layer and 1 neuron in the output layer.

For the internal calculations of the activation function,
an hyperbolic tangent function was used (expression
2.1). This function supplies non linearity to the Neural
Network.

However, in order to make the processing of the
network in the hardware faster, the function was used
in a reduced form, i.e., the function was implemented
as stated in expression 2.2. The advantage is obvious
since it has only one exponential function. In the output
layer, the linear function of expression 2.3 was used.

In the expressions below, y represents the output and x
represents the input.

(2.1)

(2.2)

(2.3)

For the internal representation floating-point notation
with simple precision was chosen, since this allows the
representation of larger number with the same number
of bits, when compared to fixed point notation. To
increase the processing speed of the hardware
implementation, a Floating Point Unit (FPU) was
added to the configuration of the MicroBlaze
embedded system.

3. Tests and Results

Several tests were performed in the ANN
implementation. The tests were used to verify the
correct operation of the network, modifying the size of
the system and comparing the results with the ones
obtained with an implementation in Matlab using a
toolbox developed by Magnus Noorgard [3].

The structure of two of the models used is represented
in figures 3.1 and 3.2.

Figure 3.1 - Neural Network Model For6700

Figure 3.2 - Neural Network Model FORGA001

The embedded microprocessor was programmed in C
language. ANNs of different size were implemented
and memory occupation was between 90 and 100KB.
This allows us to conclude that large networks can be
implemented with the proposed solution.

After verifying the good operation of the network and
test some different network sizes, the implemented
solution was submitted to a comparison with an
application developed in Matlab.

All tests carried through in Matlab were done using
data from a real system. This system is an electric kiln
that was built as part of a research project [4] and had
the objective of developing a kiln with high degree of
control of the profiles temperature for the ceramic
industry and glass. The area of intended operation was
around 750° C, there is an upper limit of 1200° C.

Figure 3.3 – Schematic view of the kiln [4]

4. Results Achieved

Three different reference files for the ANNs were used
for the tests (ID050300, ID13100A and DT030103).

Figures 4.1, 4.2 and 4.3 show outputs obtained for
reference files with ANNs models.

0 500 1000 1500 2000 2500 3000 3500 4000
350

400

450

500

550

600

650

700

750

800

850
 Artificial Neural Network

N1

 O
ut

pu
ts

 F
P

G
A

 a
nd

 M
at

la
b

Figure 4.1 – Outputs obtained for reference ID050300
with model For6700

For this test the mean square error (MSE) was
calculated between the outputs of the ANN
implemented in Matlab and in the FPGA, resulting in a
value of 8.3660x10-20.

0 500 1000 1500
550

600

650

700

750

800

850

900

950
 Artificial Neural Network

N1

 O
ut

pu
ts

 F
P

G
A

 a
nd

 M
at

la
b

Figure 4.2 – Outputs obtained for reference ID13100A
with model For6700

For this test the mean square error (MSE) was
calculated between the outputs of the ANN
implemented in Matlab and in the FPGA, resulting in a
value of 8.5372x10-20.

0 100 200 300 400 500 600 700
600

620

640

660

680

700

720

740

N1

O
ut

pu
ts

 F
P

G
A

 a
nd

 M
at

la
b

Artificial Neural Network

Figure 4.3 – Outputs obtained for reference DT030103
with model FORGA001

For this test the mean square error (MSE) was
calculated between the outputs of the ANN
implemented in Matlab and in the FPGA, resulting in a
value of 8.4063x10-20.

The MSE value was collected for all the tests and is
presented in 4.1.

The analysis of the values allows us to conclude that
the precision obtained in the FPGA implementation
with the embedded MicroBlaze, is very good.

This behavior was expected since the networks have
the same parameters and no approximation was used in
the implementation.

Table 4.1 Mean Square Error of the ANNs Models

The implementation of the embedded MicroBlaze
microprocessor in the FPGA Virtex-II Pro, developed
in this work, used 12.89% of the available slices and
10.51% of the Look Up Tables (LUTs) with four inputs
and with a maximum operating frequency of
120,465MHz.

In the hardware the time necessary from processing
each of the tests was registered:

•For6700/DT030103 and FORGA001/DT030103 –
1434ms

•For6700/ID13100A and FORGA001/ID13100A –
2147ms

•For6700/ID050300 and FORGA001/ID050300 – over
42s

In these last tests an overflow occurred. Since the
microprocessor was running at 100MHz and has 32
bits we can be sure the test took more than 42s.

In Matlab, using a 2,8 GHz processor, the following
values of time, were obtained:

•For6700/DT030103 and FORGA001/DT030103 –
62ms

•For6700/ID13100A and FORGA001/ID13100A –
109ms

•For6700/ID050300 and FORGA001/ID050300 –
283ms

5. Conclusions

This work allowed verifying important aspects
regarding the hardware/software implementation,
including the flexibility and the time of development of
project. The great potentiality of the hardware chosen
for the implementation was also verified, observing
that, after all the network configuration, we used only
33% of the resources offered by the FPGA.

The developed system was tested with different models
of ANNs and using data from a real system. The tests
made it possible to verify the performance of the
network and allowed us to reach the conclusion the
implementation is accurate.

Although this implementation is slower than the one
made using a PC, a FPGA board is less expensive than
a PC and more stable in the sense that it does not
depend of an operating system.

Acknowledgment

The authors would like to acknowledge the Xilinx
University program for support and software used in
this work.

References

[1] Ferreira Pedro, Ribeiro Pedro, Antunes Ana, and
Dias M. Fernando. A high bit resolution FPGA
implementation of a FNN with a new algorithm for the
activation function, Neurocomputing Vol. 71, Issues 1-
3, Pages 71-77, December 2007.

[2] Xilinx: MicroBlaze Processor Reference Guide,
available at
http://www.xilinx.com/support/documentation/sw_man
uals/mb_ref_guide.pdf, June of 2008.

[3] Magnus Noorgard. System Identification and
Control with Neural Networks. PhD thesis, Department
of Automation, Technical University of Denmark,
1996.

[4] Morgado Dias. Non-linear control techniques based
on Neural Networks: from the algorithm to the
hardware. PhD thesis in Electrical Engineering,
University of Aveiro, 2005, available at
http://dme.uma.pt/morgado/Down/TeseCompletaFMD.
pdf, November 2008.

[5] Gisnara Rodrigues. Hardware Implementation of an
Artificial Neural Network with an Embedded
Microprocessor in a FPGA, to be presented at the end
of September.

