LOCALITY OF CONNECTIVE CONSTANTS, II. CAYLEY GRAPHS

GEOFFREY R. GRIMMETT AND ZHONGYANG LI

Abstract

The connective constant $\mu(G)$ of an infinite transitive graph G is the exponential growth rate of the number of self-avoiding walks from a given origin. In earlier work of Grimmett and Li, a locality theorem was proved for connective constants, namely, that the connective constants of two graphs are close in value whenever the graphs agree on a large ball around the origin. A condition of the theorem was that the graphs support so-called 'graph height functions'. When the graphs are Cayley graphs of infinite, finitely generated groups, there is a special type of graph height function termed here a 'group height function'. A necessary and sufficient condition for the existence of a group height function is presented, and may be applied in the context of the bridge constant, and of the locality of connective constants for Cayley graphs. Locality may thereby be established for a variety of infinite groups including those with strictly positive deficiency.

It is proved that a large class of transitive graphs (and hence Cayley graphs) support graph height functions that are in addition harmonic on the graph. This extends an earlier constructive proof of Grimmett and Li , but subject to an additional condition of unimodularity which is benign in the context of Cayley graphs. It implies the existence of graph height functions for finitely generated solvable groups. The case of non-unimodular graphs may be handled similarly, but the resulting graph height functions need not be harmonic.

Group height functions, as well as the graph height functions of the previous paragraph, are non-constant harmonic functions with linear growth and an additional property of having periodic differences. The existence of such functions on Cayley graphs is a topic of interest beyond their applications in the theory of self-avoiding walks.

1. Introduction, and summary of results

The main purpose of this article is to study aspects of 'locality' for the connective constants of Cayley graphs of finitely presented groups. The locality question may be posed as follows: if two Cayley graphs are locally isomorphic in the sense that

Date: 27 January 2015, revised March 11, 2016.

2010 Mathematics Subject Classification. 05C30, 20F65, 60K35, 82B20.
Key words and phrases. Self-avoiding walk, connective constant, vertex-transitive graph, quasitransitive graph, bridge decomposition, Cayley graph, graph height function, group height function, harmonic function, solvable group, unimodularity.
they agree on a large ball centred at the identity, then are their connective constants close in value? The current work may be viewed as a continuation of the study of locality for connective constants of transitive graphs reported in [11]. The locality of critical points is a well developed topic in the theory of disordered systems, and the reader is referred, for example, to [4, 27, 29] for related work about percolation on Cayley graphs.

The self-avoiding walk (SAW) problem was introduced to mathematicians in 1954 by Hammersley and Morton [18]. Let G be an infinite, connected, transitive graph. The number of n-step SAWs on G from a given origin grows in the manner of $\mu^{n(1+\mathrm{o}(1))}$ for some growth rate $\mu=\mu(G)$ called the connective constant of the graph G. The value of $\mu(G)$ is not generally known, and a substantial part of the literature on SAWs is targeted at properties of connective constants. The current paper may be viewed in this light, as a continuation of the series of papers $[9,10,13,11,12]$.

The principal result of [11] is as follows. Let G, G^{\prime} be infinite, transitive graphs, and write $S_{K}(v, G)$ for the K-ball around the vertex v in G. If $S_{K}(v, G)$ and $S_{K}\left(v^{\prime}, G^{\prime}\right)$ are isomorphic as rooted graphs, then

$$
\begin{equation*}
\left|\mu(G)-\mu\left(G^{\prime}\right)\right| \leq \epsilon_{K}(G) \tag{1.1}
\end{equation*}
$$

where $\epsilon_{K}(G) \rightarrow 0$ as $K \rightarrow \infty$. This is proved subject to a condition on G and G^{\prime}, namely that they support so-called 'graph height functions'.

Cayley graphs of finitely generated groups provide a category of transitive graphs of special interest. They possess an algebraic structure in addition to their graphical structure, and this algebraic structure provides a mechanism for the study of their graph height functions. A necessary and sufficient condition is given in Theorem 4.1 for the existence of a so-called 'group height function', and it is pointed out there that a group height function is a graph height function (in the earlier sense), but not vice versa. The class of Cayley groups that possess group height functions includes all infinite, finitely generated, free solvable groups and free nilpotent groups, and to groups with fewer relators than generators; see Theorem 4.1.

There exist Cayley graphs having no group height function, but which possess a graph height function. A criterion is presented for a Cayley graph to have a graph height function, in terms of the projections of its relators. This may be applied, for example, to $\mathrm{SL}_{2}(\mathbb{Z})$, even though its Cayley graph has no group height function; see Theorem 6.1. [GRG:] (We note in passing [11, Thm 4.2], which states that the Cayley graphs of finitely presented, residually finite groups possess graph height functions.)

We turn briefly to the topic of harmonic functions. The study of the existence and structure of non-constant harmonic functions on Cayley graphs has acquired prominence in geometric group theory through the work of Kleiner and others, see $[22,31]$. The group height functions of Section 4, and also the graph height functions
of Theorem 3.3, are harmonic with linear growth. Thus, one aspect of the work reported in this paper is the construction, on certain classes of finitely generated groups, of linear-growth harmonic functions with the additional property of having differences that are invariant under the action of a subgroup of automorphisms. For recent articles on this aspect of geometric group theory, the reader is referred to [28, 33].

This paper is organized as follows. Graphs, self-avoiding walks, and Cayley graphs are introduced in Section 2. Graph height functions and the locality theorem of [11] are reviewed in Section 3, and a further condition is presented in Theorem 3.3 for a transitive graph to support a graph height function. This theorem is a partner of [11, Thm 3.4]; it assumes an additional condition of unimodularity, and it yields a graph height function that has the further property of being harmonic. It may applied to finitely generated, virtually solvable groups; see Theorem 5.1. Non-unimodular graphs may be handled by similar means (see Theorem 3.4), but the resulting graph height functions need not be harmonic.

Group height functions are the subject of Section 4, and a necessary and sufficient condition is presented in Theorem 4.1 for the existence of a group height function. Section 5 is devoted to existence conditions for height functions, leading to existence theorems for virtually solvable groups. Cayley graphs whose cycles project onto a finite quotient graph are the subject of Section 6. In Section 7 is presented a theorem for the convergence of connective constants subject to the addition of further relators. This parallels the Grimmett-Marstrand theorem [15] for the critical percolation probabilities of slabs of \mathbb{Z}^{d} (see also [12, Thm 5.2]). Sections 8-10 contain the proofs of Theorems 3.3-3.5.

2. GRaphs, SELF-AVOIDING WALKS, AND GROUPS

The graphs $G=(V, E)$ considered here are infinite, connected, and usually simple. An undirected edge e with endpoints u, v is written as $e=\langle u, v\rangle$, and if directed from u to v as $[u, v\rangle$. If $\langle u, v\rangle \in E$, we call u and v adjacent and write $u \sim v$. The set of neighbours of $v \in V$ is denoted ∂v. In the context of directed graphs, the words directed and oriented are synonymous.

The degree $\operatorname{deg}(v)$ of vertex v is the number of edges incident to v, and G is called locally finite is every vertex-degree is finite. The graph-distance between two vertices u, v is the number of edges in the shortest path from u to v, denoted $d_{G}(u, v)$.

The automorphism group of the graph $G=(V, E)$ is denoted Aut (G). A subgroup $\Gamma \leq \operatorname{Aut}(G)$ is said to act transitively on G if, for $v, w \in V$, there exists $\gamma \in \Gamma$ with $\gamma v=w$. It is said to act quasi-transitively if there is a finite set W of vertices such that, for $v \in V$, there exist $w \in W$ and $\gamma \in \Gamma$ with $\gamma v=w$. The graph is called (vertex-)transitive (respectively, quasi-transitive) if $\operatorname{Aut}(G)$ acts transitively
(respectively, quasi-transitively). For $\Gamma \leq \operatorname{Aut}(G)$ and a vertex $v \in V$, the orbit of v under Γ is written Γv.

A walk w on G is an alternating sequence $w_{0} e_{0} w_{1} e_{1} \cdots e_{n-1} w_{n}$ of vertices w_{i} and edges $e_{i}=\left\langle w_{i}, w_{i+1}\right\rangle$, and its length $|w|$ is the number of its edges. The walk w is called closed if $w_{0}=w_{n}$, and it is called a trail if no edge is repeated (in either direction). A cycle is a closed walk w satisfying $w_{i} \neq w_{j}$ for $1 \leq i<j \leq n$.

An n-step self-avoiding walk (SAW) on G is a walk containing n edges no vertex of which appears more than once. Let $\Sigma_{n}(v)$ be the set of n-step SAWs starting at v, with cardinality $\sigma_{n}(v):=\left|\Sigma_{n}(v)\right|$. Assume that G is transitive, and select a vertex of G which we call the identity or origin, denoted $\mathbf{1}=\mathbf{1}_{G}$, and let $\sigma_{n}=\sigma_{n}(\mathbf{1})$. It is standard (see $[18,26]$) that
eq:sisub

$$
\begin{equation*}
\sigma_{m+n} \leq \sigma_{m} \sigma_{n} \tag{2.1}
\end{equation*}
$$

whence, by the subadditive limit theorem, the connective constant

$$
\mu=\mu(G):=\lim _{n \rightarrow \infty} \sigma_{n}^{1 / n}
$$

exists. See $[2,26]$ for recent accounts of the theory of SAWs.
We turn now to finitely generated groups and their Cayley graphs. Let Γ be a group with generator set S satisfying $|S|<\infty$ and $\mathbf{1} \notin S$, where $\mathbf{1}=\mathbf{1}_{\Gamma}$ is the identity element. We write $\Gamma=\langle S \mid R\rangle$ with R a set of relators, and our convention for the inverses of generators is as follows. For the sake of concreteness, we consider S as a set of symbols, and any information concerning inverses is encoded in the relator set; it will always be the case that, using this information, we may identify the inverse of $s \in S$ as another generator $s^{\prime} \in S$. For example, the free abelian group of rank 2 has presentation $\langle x, y, X, Y \mid x X, y Y, x y X Y\rangle$, and the infinite dihedral group $\left\langle s_{1}, s_{2} \mid s_{1}^{2}, s_{2}^{2}\right\rangle$. Such a group is called finitely generated, and finitely presented if, in addition, $|R|<\infty$.

The Cayley graph of $\Gamma=\langle S \mid R\rangle$ is the simple graph $G=G(S, R)$ with vertex-set Γ, and an (undirected) edge $\left\langle\gamma_{1}, \gamma_{2}\right\rangle$ if and only if $\gamma_{2}=\gamma_{1} s$ for some $s \in S$. Further properties of Cayley graphs are presented as needed in Section 4. See [1] for an account of Cayley graphs, and [25] for a short account. The books [20] and [23, 30] are devoted to geometric group theory, and general group theory, respectively.

The set of integers is written \mathbb{Z}, the natural numbers as \mathbb{N}, and the rationals as \mathbb{Q}.

3. Graph height functions

We recall from [11] the definition of a graph height function, and then we review the locality theorem (the proof of which may be found in [11]). This is followed by Theorem 3.3 which presents conditions under which a transitive graph has a graph height function that is, in addition harmonic.

Let \mathcal{G} be the set of all infinite, connected, transitive, locally finite, simple graphs, and let $G=(V, E) \in \mathcal{G}$. Let \mathcal{H} be a subgroup of $\operatorname{Aut}(G)$. A function $F: V \rightarrow \mathbb{R}$ is said to be \mathcal{H}-difference-invariant if
eq:hdi2
def:height

$$
\begin{equation*}
F(v)-F(w)=F(\gamma v)-F(\gamma w), \quad v, w \in V, \gamma \in \mathcal{H} . \tag{3.1}
\end{equation*}
$$

Definition 3.1. A graph height function on G is a pair (h, \mathcal{H}), where $\mathcal{H} \leq \operatorname{Aut}(G)$ acts quasi-transitively on G and $h: V \rightarrow \mathbb{Z}$, such that:
(a) $h(\mathbf{1})=0$,
(b) h is \mathcal{H}-difference-invariant,
(c) for $v \in V$, there exist $u, w \in \partial v$ such that $h(u)<h(v)<h(w)$.

We sometimes omit the reference to \mathcal{H} and refer to such h as a graph height function. In Section 4 is defined the related concept of a group height function for the Cayley graph of a finitely presented group. We shall see that every group height function is a graph height function, but not vice versa.

Associated with the graph height function (h, \mathcal{H}) is the integer d given by
eq: defd

$$
\begin{equation*}
d=d(h)=\max \{|h(u)-h(v)|: u, v \in V, u \sim v\} . \tag{3.2}
\end{equation*}
$$

We state next the locality theorem for transitive graphs. The sphere $S_{k}=S_{k}(G)$, with centre $\mathbf{1}=\mathbf{1}_{G}$ and radius k, is the subgraph of G induced by the set of its vertices within graph-distance k of $\mathbf{1}$. For $G, G^{\prime} \in \mathcal{G}$, we write $S_{k}(G) \simeq S_{k}\left(G^{\prime}\right)$ if there exists a graph-isomorphism from $S_{k}(G)$ to $S_{k}\left(G^{\prime}\right)$ that maps $\mathbf{1}_{G}$ to $\mathbf{1}_{G^{\prime}}$, and we let

$$
K\left(G, G^{\prime}\right)=\max \left\{k: S_{k}\left(\mathbf{1}_{G}, G\right) \simeq S_{k}\left(\mathbf{1}_{G^{\prime}}, G^{\prime}\right)\right\}, \quad G, G^{\prime} \in \mathcal{G}
$$

For $D \in \mathbb{N}$, let \mathcal{G}_{D} be the set of all $G \in \mathcal{G}$ which possess a graph height function h satisfying $d(h) \leq D$.

For $G \in \mathcal{G}$ with a given graph height function (h, \mathcal{H}), there is a subset of SAWs called bridges which are useful in the study of the geometry of SAWs on G. The SAW $\pi=\left(\pi_{0}, \pi_{1}, \ldots, \pi_{n}\right) \in \Sigma_{n}(v)$ is called a bridge if

$$
\begin{equation*}
h\left(\pi_{0}\right)<h\left(\pi_{i}\right) \leq h\left(\pi_{n}\right), \quad 1 \leq i \leq n \tag{3.3}
\end{equation*}
$$

and the total number of such bridges is denoted $b_{n}(v)$. It is easily seen (as in [19]) that $b_{n}:=b_{n}(\mathbf{1})$ satisfies

$$
\begin{equation*}
b_{m+n} \geq b_{m} b_{n} \tag{3.4}
\end{equation*}
$$

from which we deduce the existence of the bridge constant

$$
\begin{equation*}
\beta=\beta(G)=\lim _{n \rightarrow \infty} b_{n}^{1 / n} \tag{3.5}
\end{equation*}
$$

Theorem 3.2 (Bridges and locality for transitive graphs, [11]).
(a) If $G \in \mathcal{G}$ supports a graph height function (h, \mathcal{H}), then $\beta(G)=\mu(G)$.
(b) Let $D \geq 1$, and let $G \in \mathcal{G}$ and $G_{m} \in \mathcal{G}_{D}$ for $m \geq 1$ be such that $K\left(G, G_{m}\right) \rightarrow$ ∞ as $m \rightarrow \infty$. Then $\mu\left(G_{m}\right) \rightarrow \mu(G)$.

Since Cayley graphs are transitive, the question of locality for Cayley graphs may be reduced to the existence of graph height functions for such graphs, and much of the current paper is devoted to this question.

A sufficient condition for the existence of a graph height function is provided in the forthcoming Theorem 3.3. The cycle space $\mathcal{C}=\mathcal{C}(G)$ of G is the vector space over the field \mathbb{Z}_{2} generated by the cycles (see, for example, [6]). Let $\mathcal{H} \leq \operatorname{Aut}(G)$ act quasi-transitively on G. The cycle space is said to be finitely generated (with respect to \mathcal{H}) if there is a finite set $\mathcal{B}=\mathcal{B}(\mathcal{C})$ of independent cycles which, taken together with their images under \mathcal{H}, form a basis for $\mathcal{C}(G)$. It is elementary that the Cayley graph of any finitely presented group Γ has this property with $\mathcal{H}=\Gamma$, since its cycle space is generated by the cycles derived from the action of the group on the conjugates of the relators.
[GRG: changed from here to the next theorem] Let $\mathcal{H} \leq \operatorname{Aut}(G)$. The quotient graph $\bar{G}=G / \mathcal{H}=(\bar{V}, \bar{E})$ is defined as follows, as in [11, Sect. 4]. The vertex-set \bar{V} comprises the orbits $\bar{v}:=\mathcal{H} v$ as v ranges over V. For distinct $\bar{v}, \bar{w} \in \bar{V}$, let $E_{\bar{v}, \bar{w}} \subseteq E$ be the set of edges with endpoints v, w satisfying $v \in \bar{v}, w \in \bar{w}$. Two edges $e_{1}=\left\langle v_{1}, w_{1}\right\rangle, e_{2}=\left\langle v_{2}, w_{2}\right\rangle \in E_{\bar{v}, \bar{w}}$ are declared equivalent if and only if there exists $\alpha \in \mathcal{H}$ such that $v_{2}=\alpha v_{1}$ and $w_{2}=\alpha w_{1}$. Let $C_{\bar{v}, \bar{w}}^{1}, C_{\bar{v}, \bar{w}}^{2}, \ldots, C_{\bar{v}, \bar{w}}^{N}$ be the equivalence classes of $E_{\bar{v}, \bar{w}}$, with $N=N(\bar{v}, \bar{w})$. We place N edges between \bar{v} and \bar{w} in \bar{G}, and label these edges by the N equivalence classes.

The quotient graph may also contain loops. Let $\bar{v} \in \bar{V}$, and let $E_{\bar{v}}$ be the set of ordered pairs $\left(v_{1}, v_{2}\right)$ such that $v_{1}, v_{2} \in \bar{v}$ and $\left\langle v_{1}, v_{2}\right\rangle \in E$. Two pairs $\left(v_{1}, v_{2}\right),\left(v_{3}, v_{4}\right) \in E_{\bar{v}}$ are declared equivalent if there exists $\alpha \in \mathcal{H}$ with $v_{3}=\alpha v_{1}$ and $v_{4}=\alpha v_{2}$. We place N loops at $\bar{v} \in \bar{V}$, where N is the number of equivalence classes of $E_{\bar{v}}$, and we label these loops with the classes. This completes the definition of the (multi)graph $\bar{G}=(\bar{V}, \bar{E})$.

We deal next with the projection of vertices and edges.
(a) A vertex $v \in V$ projects onto the vertex $\bar{v} \in \bar{V}$.
(b) An edge $e=\langle v, w\rangle \in E$ with $\bar{v} \neq \bar{w}$ projects onto the edge of \bar{G}, denoted $\pi(e)$, that has endpoints \bar{v}, \bar{w} and is labelled with the equivalence class containing e.
(c) An edge $e=\left\langle v, v^{\prime}\right\rangle$ with $v^{\prime} \in \bar{v}$ needs to be considered in conjunction with a orientation. Let $\vec{e}=\left[v, v^{\prime}\right\rangle$ be obtained from e by adding an orientation. Then \vec{e} projects to the loop at \bar{v}, denoted $\pi(\vec{e})$, labelled by the equivalence class of the ordered pair $\left(v, v^{\prime}\right)$.

A walk $\pi=\left(w_{0}, e_{0}, w_{1}, \ldots, w_{n}\right)$ on G projects onto the walk $\bar{\pi}=\left(\bar{w}_{0}, \bar{e}_{0}, \bar{w}_{1}, \ldots, \bar{w}_{n}\right)$, where

$$
\bar{e}= \begin{cases}\pi(e) & \text { if } e=\left\langle w_{i}, w_{i+1}\right\rangle \text { with } \bar{w}_{i} \neq \bar{w}_{i+1}, \\ \pi(\vec{e}) & \text { if } e=\left\langle w_{i}, w_{i+1}\right\rangle \text { with } w_{i+1} \in \bar{w}_{i}, \text { where } \vec{e}=\left[w_{i}, w_{i+1}\right\rangle\end{cases}
$$

We say that $\bar{\pi}$ lifts to π, and indeed $\bar{\pi}$ has many lifts. Note that a cycle of G projects onto a closed walk of \bar{G}, which may or may not be a cycle. Furthermore, the action of \mathcal{H} on walks w of G satisfies: for $\gamma \in \mathcal{H}$, the projections of w and $\gamma(w)$ are the same.

Theorem 3.3. Let $G=(V, E) \in \mathcal{G}$. Suppose there exist a subgroup $\Gamma \leq \operatorname{Aut}(G)$ acting transitively on V, a normal subgroup $\mathcal{H} \unlhd \Gamma$ satisfying $[\Gamma: \mathcal{H}]<\infty$, and a non-empty, finite set \mathcal{B} of cycles of G such that:
(a) \mathcal{H} is unimodular,
(b) $\mathcal{C}(G)$ is generated by \mathcal{B} (with respect to \mathcal{H}),
(c) every $B \in \mathcal{B}$ projects onto a cycle \bar{B} of \bar{G},
(d) there exists some cycle of \bar{G} of which every lift is a SAW of G.

Then G has a graph height function (h, \mathcal{H}), and furthermore h may be chosen to be harmonic on G.

We have by inspection of the proof (which is given in Section 9) that: (i) there exists a harmonic, graph height function h satisfying $d(h) \leq D$, for some D depending only on the cardinality $|\bar{E}|$, and (ii) there exists a finite-dimensional vector space of linear-growth harmonic functions on G which are \mathcal{H}-difference-invariant. See also [11, eqn (4.1)].

The assumption of unimodularity is as follows. The $(\mathcal{H}-)$ stabilizer $\operatorname{Stab}_{v}\left(=\operatorname{Stab}_{v}^{\mathcal{H}}\right)$ of a vertex v is the set of all $\gamma \in \mathcal{H}$ for which $\gamma v=v$. As shown in [34] (see also [3, 32]), when viewed as a topological group with the topology of pointwise convergence, \mathcal{H} is unimodular if and only if

$$
\begin{equation*}
\left|\operatorname{Stab}_{u} v\right|=\left|\operatorname{Stab}_{v} u\right|, \quad u, v \in V, \quad u \in \mathcal{H} v \tag{3.6}
\end{equation*}
$$

Since all groups considered here are subgroups of $\operatorname{Aut}(G)$, we may follow [25, Chap. 8] by defining \mathcal{H} to be unimodular (on G) if (3.6) holds.

Theorem 3.3 is less general than [11, Thm 3.4] in that it makes an additional assumption of unimodularity. It is, however, more extensive in that the resulting graph height function is, in addition, harmonic. The theorem is included here since its proof highlights the relationship between graph height functions, harmonic functions, and random walk. Furthermore, the unimodularity assumption is benign in the context of a Cayley graph G since subgroups of Γ act on G (by left-multiplication) without non-trivial fixed points, and are therefore unimodular. The proof of Theorem
3.3 may be applied also in the non-unimodular context, but with the loss of the harmonic property. The proof of the following is found in Section 10.
cor:nonunim Theorem 3.4. Let $G=(V, E) \in \mathcal{G}$. Suppose there exist a subgroup $\Gamma \leq \operatorname{Aut}(G)$ acting transitively on V, and a normal subgroup $\mathcal{H} \unlhd \Gamma$ satisfying $[\Gamma: \mathcal{H}]<\infty$, such that \mathcal{H} is non-unimodular. Then G has a graph height function (h, \mathcal{H}), which is not generally harmonic.

The proofs of Theorems 3.3 and 3.4 are inspired in part by the proofs of [24, Sect. 3] where, inter alia, it is explained that some graphs support harmonic maps, taking values in a function space, with a property of equivariance in norm. In this paper, we study \mathcal{H}-difference-invariant, rational-valued harmonic functions. From the proofs of the above theorems, we extract an intermediate step of independent interest, which will be applied also in the context of virtually solvable groups (and beyond) in Theorem 5.1. The proof is given in Section 8.
[GRG: is symmetry needed?]

Theorem 3.5. Let $G=(V, E) \in \mathcal{G}$. Suppose there exist:
(a) a subgroup $\Gamma \leq \operatorname{Aut}(G)$ acting transitively on V,
(b) a normal subgroup $\mathcal{H} \unlhd \Gamma$ with finite index, $[\Gamma: \mathcal{H}]<\infty$, which is unimodular and symmetric,
(c) a function $F: \mathcal{H} \mathbf{1} \rightarrow \mathbb{Z}$ that is \mathcal{H}-difference-invariant and non-constant.

Then:
(i) there exists a unique harmonic, \mathcal{H}-difference-invariant function ψ on G that agrees with F on $\mathcal{H} \mathbf{1}$.
(ii) there exists a harmonic, \mathcal{H}-difference-invariant function ψ^{\prime} that increases everywhere, in that every $v \in V$ has neighbours u, w such that $\psi^{\prime}(u)<\psi^{\prime}(v)<$ $\psi^{\prime}(w)$,
(iii) the function ψ of part (i) takes rational values, and the ψ^{\prime} of part (ii) may be taken to be rational also; therefore, there exists a harmonic graph height function of the form (h, \mathcal{H}).

The first part of condition (c) is to be interpreted as saying that (3.1) holds for $v, w \in \mathcal{H} \mathbf{1}$ and $\gamma \in \mathcal{H}$. Since G is transitive, the choice of origin $\mathbf{1}$ is arbitrary, and hence the orbit $\mathcal{H} \mathbf{1}$ may be replaced by any orbit of \mathcal{H}.

4. Group height functions

We consider Cayley graphs of finitely generated groups next, and a type of graph height function called a 'group height function'. Let Γ be a finitely generated group with presentation $\langle S \mid R\rangle$, as in Section 2. Each relator $\rho \in R$ is a word of the form
$\rho=t_{1} t_{2} \cdots t_{r}$ with $t_{i} \in S$ and $r \geq 1$, and we define the vector $u(\rho)=\left(u_{s}(\rho): s \in S\right)$ by

$$
u_{s}(\rho)=\left|\left\{i: t_{i}=s\right\}\right|, \quad s \in S
$$

Let C be the $|R| \times|S|$ matrix with row vectors $u(\rho), \rho \in R$, called the coefficient matrix of the presentation $\langle S \mid R\rangle$. Its null space $\mathcal{N}(C)$ is the set of column vectors $\gamma=\left(\gamma_{s}: s \in S\right)$ such that $C \gamma=\mathbf{0}$. Since C has integer entries, $\mathcal{N}(C)$ is non-trivial if and only if it contains a non-zero vector of integers (that is, an integer vector other than the zero vector $\mathbf{0}$). If $\gamma \in \mathbb{Z}^{S}$ is a non-zero element of $\mathcal{N}(C)$, then γ gives rise to a function $h: V \rightarrow \mathbb{Z}$ defined as follows. Any $v \in V$ may be expressed as a word in the alphabet S, which is to say that $v=s_{1} s_{2} \cdots s_{m}$ for some $s_{i} \in S$ and $m \geq 0$. We set

$$
\begin{equation*}
h(v)=\sum_{i=1}^{m} \gamma_{s_{i}} . \tag{4.1}
\end{equation*}
$$

Any function h arising in this way is called a group height function of the presentation (or of the Cayley graph). We see next that a group height function is well defined by (4.1), and is indeed a graph height function in the sense of Definition 3.1. Example (d), following, indicates that a graph height function need not be a group height function.
thm3 Theorem 4.1. Let G be the Cayley graph of the finitely generated group $\Gamma=\langle S \mid R\rangle$, with coefficient matrix C.
(a) Let $\gamma=\left(\gamma_{s}: s \in S\right) \in \mathcal{N}(C)$ satisfy $\gamma \in \mathbb{Z}^{S}, \gamma \neq \mathbf{0}$. The group height function h given by (4.1) is well defined, and gives rise to a graph height function (h, Γ) on G.
(b) The Cayley graph $G(S, R)$ of the presentation $\langle S \mid R\rangle$ has a group height function if and only if $\operatorname{rank}(C)<|S|$.
(c) A group height function is a group invariant in the sense that, if h is a group height function of G, then it is also a group height function for the Cayley graph of any other presentation of Γ.

Since the group height function h of (4.1) is a graph height function, and Γ acts transitively,

$$
\begin{equation*}
d(h)=\max \left\{\gamma_{s}: s \in S\right\} \tag{4.2}
\end{equation*}
$$

in agreement with (3.2). In the light of part (c) above, we may speak of a group possessing a group height function.

Remark 4.2. The quantity $b(\Gamma):=|S|-\operatorname{rank}(C)$ is in fact an invariant of Γ, and may be called the first Betti number since it is equals the power of \mathbb{Z} in the abelianization $\Gamma /[\Gamma, \Gamma]$. Group height functions are a standard tool of group theorists,
since they are (when the non-zero γ_{s} are coprime) surjective homomorphisms from Γ to \mathbb{Z}.

Although some of the arguments of the current paper are standard within group theory, we prefer to include sufficient details to aid readers with other backgrounds.

It follows in particular from Theorem 4.1 that G has a group height function if $|R|<|S|$, which is to say that the presentation $\Gamma=\langle S \mid R\rangle$ has strictly positive deficiency (see [30, p. 419]). Free groups provide examples of such groups.

Consider for illustration the examples of [11, Sect. 3].
(a) The hypercubic lattice \mathbb{Z}^{n} is the Cayley group of an abelian group with $|S|=$ $2 n,|R|=n+\binom{n}{2}$, and $\operatorname{rank}(C)=n$. It has a set of group height functions.
(b) The 3 -regular tree is the Cayley graph of the group with $S=\left\{s_{1}, s_{2}, t\right\}$ and $R=\left\{s_{1} t, s_{2}^{2}\right\}$. It has a group height function.
(c) The discrete Heisenberg group has $|S|=|R|=6$ and $\operatorname{rank}(C)=4$. It has a set of group height functions.
(d) The square/octagon lattice is the Cayley graph of a finitely presented group with $|S|=3$ and $|R|=5$, and this does not satisfy the hypothesis of Theorem 4.1(b). This presentation has no group height function. Neither does the lattice have a graph height function with automorphism subgroup that acts transitively, but nevertheless it possesses a graph height function in the sense of Definition 3.1, as explained in [11, Sect. 3].
(e) The hexagonal lattice is the Cayley graph of the finitely presented group with $S=\left\{s_{1}, s_{2}, s_{3}\right\}$ and $R=\left\{s_{1}^{2}, s_{2} s_{3}, s_{1} s_{2}^{2} s_{1} s_{3}^{2}\right\}$. Thus, $|R|=|S|=3$, $\operatorname{rank}(C)=2$, and the graph has a group height function.
A discussion is presented in Section 5 of certain types of infinite groups whose Cayley graphs have group or graph height functions. We present next some illustrative examples and a question. The next proposition is extended in Theorem 5.2.
prop:abel Proposition 4.3. Any finitely generated group which is infinite and abelian has a group height function h with $d(h)=1$.
ex:ladder
Example 4.4. The infinite dihedral group $\operatorname{Dih}_{\infty}=\left\langle s_{1}, s_{2} \mid s_{1}^{2}, s_{2}^{2}\right\rangle$ is an example of an infinite, finitely generated group Γ which has no group height function and yet its Cayley graph has a graph height function (h, \mathcal{H}) with \mathcal{H} acting transitively. The Cayley graph of Γ is the line \mathbb{Z}. This example of a solvable group is extended in Theorem 5.1.
q2 Question 4.5. Does there exist an infinite, finitely presented group whose Cayley graph has no graph height function?

It may be the case that the Cayley graph of the Higman group of Example 6.3 has no graph height function. Question 4.5 is a sub-question of [11, Qn 3.3]. We note one further property of a group height function.
prop:harm3
Proposition 4.6. Let Γ be an infinite, finitely generated group with group height function h. Then h is a harmonic function on the Cayley graph $G=(V, E)$, in that

$$
h(v)=\frac{1}{\operatorname{deg}(v)} \sum_{u \sim v} h(u), \quad v \in V
$$

Proof of Theorem 4.1. (a) Let γ be as given. To check that h is well defined by (4.1), we must show that $h(v)$ is independent of the chosen representation of v as a word. Suppose that $v=s_{1} \cdots s_{m}=u_{1} \cdots u_{n}$ with $s_{i}, u_{j} \in S$, and extend the definition of γ to the directed edge-set of G by

$$
\begin{equation*}
\gamma([g, g s\rangle)=\gamma_{s}, \quad g \in \Gamma, s \in S \tag{4.3}
\end{equation*}
$$

The walk $\left(\mathbf{1}, s_{1}, s_{1} s_{2}, \ldots, v\right)$ is denoted as π_{1}, and $\left(\mathbf{1}, u_{1}, u_{1} u_{2}, \ldots, v\right)$ as π_{2}, and the latter's reversed walk as π_{2}^{-1}. Consider the walk ν obtained by following π_{1}, followed by π_{2}^{-1}. Thus ν is a closed walk of G from 1 .

Any $\rho \in R$ gives rise to a directed cycle in G through 1 , and we write ΓR for the set of images of such cycles under the action of Γ. Any closed walk lies in the vector space over \mathbb{Z} generated by the directed cycles of ΓR (see, for example, [17, Sect. 4.1]). The sum of the γ_{s} around any $g \rho \in \Gamma R$ is zero, by (4.3) and the fact that $C \gamma=\mathbf{0}$. Hence

$$
\sum_{i=1}^{m} \gamma_{s_{i}}-\sum_{j=1}^{n} \gamma_{u_{j}}=0
$$

as required.
We check next that (h, Γ) is a graph height function. Certainly, $h(\mathbf{1})=0$. For $u, v \in V$, write $v=u x$ where $x=u^{-1} v$, so that $h(v)-h(u)=h(x)$ by (4.1). For $g \in \Gamma$, we have that $g v=(g u) x$, whence

$$
\begin{equation*}
h(g v)-h(g u)=h(x)=h(v)-h(u) . \tag{4.4}
\end{equation*}
$$

Since $\gamma \neq \mathbf{0}$, there exists $s \in S$ with $\gamma_{s}>0$. For $v \in V$, we have $h\left(v s^{-1}\right)<h(v)<$ $h(v s)$.
(b) The null space $\mathcal{N}(C)$ is non-trivial if and only if $\operatorname{rank}(C)<|S|$. Since C has integer entries, $\mathcal{N}(C)$ is non-trivial if and only if it contains a non-zero vector of integers.
(c) See Remark 4.2. This may also be proved directly, but we omit the details.

Proof of Proposition 4.3. See Remark 4.2. Since Γ is infinite and abelian, there exists a generator, σ say, of infinite order. For $s \in S$, let

$$
\gamma_{s}= \begin{cases}1 & \text { if } s=\sigma \\ -1 & \text { if } s=\sigma^{-1} \\ 0 & \text { otherwise }\end{cases}
$$

Since any relator must contain equal numbers of appearances of σ and σ^{-1}, we have that $\gamma \in \mathcal{N}(C)$. Therefore, the function h of (4.1) is a group height function.
Proof of Proposition 4.6. We do not give the details of this, since a more general fact is proved in Proposition 8.1(b). The current proof follows that of the latter proposition with $\mathcal{H}=\Gamma, F=h$, and Γ acting on V by left-multiplication. Since this action of Γ has no non-trivial fixed points, Γ is unimodular.

5. Cayley graphs with height functions

The main result of this section is as follows. The associated definitions are presented later, and the proofs of the next two theorems are at the end of this section.
thm:vs Theorem 5.1. Let Γ be an infinite, finitely generated group with a normal subgroup Γ^{*} satisfying $\left[\Gamma: \Gamma^{*}\right]<\infty$. Let $q=\sup \left\{i:\left[\Gamma^{*}: \Gamma_{(i)}^{*}\right]<\infty\right\}$ where $\left(\Gamma_{(i)}^{*}: i \geq 1\right)$ is the derived series of Γ^{*}. If $q<\infty$ and $\left[\Gamma_{(q)}^{*}, \Gamma_{(q+1)}^{*}\right]=\infty$, then every Cayley graph of Γ has a graph height function of the form $\left(h, \Gamma_{(q)}^{*}\right)$ which is harmonic.

The theorem may be applied to any finitely generated, virtually solvable group Γ, and more generally whenever the derived series of Γ^{*} terminates after finitely many steps at a finite perfect group.

In preparation for the proof, we present a general construction of a height function for a group having a normal subgroup. Part (a) extends Proposition 4.3 (see also Remark 4.2).
iq Theorem 5.2. Let Γ be an infinite, finitely generated group, and let $\Gamma^{\prime} \unlhd \Gamma$.
(a) If the quotient group Γ / Γ^{\prime} is infinite and abelian, then Γ has a group height function h with $d(h)=1$.
(b) If the quotient group Γ / Γ^{\prime} is finite, and Γ^{\prime} has a group height function, then every Cayley graph of Γ has a harmonic, graph height function of the form $\left(h, \Gamma^{\prime}\right)$.
Recall that Γ / Γ^{\prime} is abelian if and only if Γ^{\prime} contains the commutator group $[\Gamma, \Gamma]$, of which the definition follows. An example of Theorem 5.2(b) in action is the special linear group $\mathrm{SL}_{2}(\mathbb{Z})$ of the forthcoming Example 6.2 (see [20, p. 66]).

We turn now towards solvable groups. Let Γ be a group with identity $\mathbf{1}_{\Gamma}$. The commutator of the pair $x, y \in \Gamma$ is the group element $[x, y]:=x^{-1} y^{-1} x y$. Let A, B be subgroups of Γ. The commutator subgroup $[A, B]$ is defined to be

$$
[A, B]=\langle[a, b]: a \in A, b \in B\rangle
$$

that is, the subgroup generated by all commutators $[a, b]$ with $a \in A, b \in B$. The commutator subgroup of Γ is the subgroup $[\Gamma, \Gamma]$. It is standard that $[\Gamma, \Gamma] \unlhd \Gamma$, and the quotient group $\Gamma /[\Gamma, \Gamma]$ is abelian. The group Γ is called perfect if $\Gamma=[\Gamma, \Gamma]$.

ex:lampl

eq:deriv

$$
\begin{equation*}
\Gamma_{(i+1)}=\left[\Gamma_{(i)}, \Gamma_{(i)}\right], \quad i \geq 1 \tag{5.1}
\end{equation*}
$$

The group Γ is called solvable if there exists an integer $c \in \mathbb{N}$ such that $\Gamma_{(c+1)}=\left\{\mathbf{1}_{\Gamma}\right\}$. Thus, Γ is solvable if there exists $c \in \mathbb{N}$ such that

$$
\Gamma=\Gamma_{(1)} \unrhd \Gamma_{(2)} \unrhd \cdots \unrhd \Gamma_{(c+1)}=\left\{\mathbf{1}_{\Gamma}\right\} .
$$

A virtually solvable group is a group Γ for which there exists a normal subgroup Γ^{*} which is solvable and satisfies $\left[\Gamma: \Gamma^{*}\right]<\infty$. The reader is referred to [30] for a general account of group theory.

Since every virtually solvable group is amenable, one is led by Theorem 5.1 to ask whether all Cayley graphs of infinite, finitely generated, amenable groups have graph height functions. We do not know the answer to this in general, but it is negative within a significant subclass of cases.

Let Γ be an infinite, finitely generated group with Cayley graph G, and suppose G has a graph height function (h, \mathcal{H}) with the further property that

$$
\begin{equation*}
\mathcal{H} \leq \Gamma, \text { and } \mathcal{H} \text { acts on } G \text { by left-multiplication. } \tag{5.2}
\end{equation*}
$$

Since h is a graph height function, there exists an infinite path of G along which h is strictly increasing. Since \mathcal{H} acts quasi-transitively, there exist $v \in \Gamma$ and $\gamma \in \mathcal{H}$ with $h(v)<h(\gamma v)$. Now, h is \mathcal{H}-difference-invariant, so that $\left(h\left(\gamma^{k} v\right): k \geq 0\right)$, is a strictly increasing sequence, whence γ has infinite order.

In conclusion, if every $\gamma \in \mathcal{H}$ has finite order, there exists no graph height function of the form (h, \mathcal{H}) and satisfying (5.2).
ex:grig Example 5.4. The Grigorchuk group [7] is an infinite, finitely generated, amenable group that is not virtually solvable, with the property that every element has finite order. Therefore, its Cayley graph has no graph height function satisfying (5.2).
Proof of Theorem 5.2. (a) This is an immediate consequence of Remark 4.2. A detailed argument may be outlined as follows. Let $\Gamma=\langle S \mid R\rangle$. If $Q:=\Gamma / \Gamma^{\prime}$ is infinite and abelian, it is generated by the cosets $\left\{\bar{s}:=s \Gamma^{\prime}: s \in S\right\}$, and its relators are the words $\bar{s}_{1} \bar{s}_{2} \cdots \bar{s}_{r}$ as $\rho=s_{1} s_{2} \cdots s_{r}$ ranges over R. Choose $\sigma \in S$ with infinite order, and let

$$
\gamma_{s}= \begin{cases}1 & \text { if } s \in \bar{\sigma} \tag{5.3}\\ -1 & \text { if } s^{-1} \in \bar{\sigma} \\ 0 & \text { otherwise }\end{cases}
$$

It may now be checked that $C \gamma=\mathbf{0}$ where C is the coefficient matrix.
(b) Let G be a Cayley graph of Γ, and let $\Gamma^{\prime} \unlhd \Gamma$ satisfy $\left[\Gamma: \Gamma^{\prime}\right]<\infty$. By assumption, Γ^{\prime} has a group height function h^{\prime}. The subgroup Γ^{\prime} of Γ acts on G by left-multiplication, and it is unimodular since its elements act with no non-trivial fixed points. We apply Proposition 3.5 with $\mathcal{H}=\Gamma^{\prime}$ and $F=h^{\prime}$ to obtain a harmonic, graph height function $\left(h, \Gamma^{\prime}\right)$ on G.

Proof of Theorem 5.1. Since $q<\infty$, we have that $\left[\Gamma: \Gamma_{(q)}^{*}\right]<\infty$, and in particular $\Gamma_{(q)}^{*}$ is finitely generated. Now, $\Gamma_{(q)}^{*}$ is characteristic in Γ^{*}, and $\Gamma^{*} \unlhd \Gamma$, so that $\Gamma_{(q)}^{*} \unlhd \Gamma$.

By applying Theorem 5.2 (a) to the pair $\Gamma_{(q+1)}^{*} \unlhd \Gamma_{(q)}^{*}$, there exists a group height function h_{q}^{*} on $\Gamma_{(q)}^{*}$. We apply Theorem $5.2(\mathrm{~b})$ to the pair $\Gamma_{(q)}^{*} \unlhd \Gamma$ to obtain a harmonic, graph height function $\left(h, \Gamma_{(q)}^{*}\right)$ on Γ.

6. Groups with elementary presentations

In Definition 3.1 is defined a graph height function (h, \mathcal{H}) on a transitive graph $G=(V, E)$. It is useful to allow \mathcal{H} to act only quasi-transitively on G, since there exist transitive graphs G having a graph height function (h, \mathcal{H}) with \mathcal{H} acting quasitransitively but none with \mathcal{H} acting transitively.

In Section 4, we established a necessary and sufficient condition for a Cayley graph to have a group height function, and we pointed out that a group height function is a graph height function with an associated \mathcal{H} that acts transitively. Even when the condition fails to hold, it can be the case that G has a graph height function in the sense of Definition 3.1; consider, for example, the square/octagon lattice and Example 4.4.

We thus seek conditions under which the Cayley graph of a finitely presented group $\Gamma=\langle S \mid R\rangle$ has a graph height function. A sufficient condition is given in the forthcoming Theorem 6.1, which is derived from Theorem 3.3.

Since G is a Cayley graph, the group Γ acts transitively on G by left multiplication. Let \mathcal{H} be a normal subgroup of Γ satisfying $[\Gamma: \mathcal{H}]<\infty$, so that \mathcal{H} acts on G quasitransitively. Now, \mathcal{H} is unimodular, and we may thus define the undirected quotient graph \bar{G} as prior to Theorem 3.3 (see [12]). Since Γ acts transitively on \bar{G}, \bar{G} is transitive.

The presentation $\Gamma=\langle S \mid R\rangle$ is called elementary with respect to \mathcal{H} if each relator $r_{1} r_{2} \cdots r_{m} \in R$ gives rise to a cycle of the Cayley graph \bar{G}, that is, the edges $\left\langle\bar{u}_{i}, \bar{u}_{i+1}\right\rangle, 0 \leq i<m$, form a cycle of \bar{G}, where $u_{i}=r_{1} \cdots r_{i}$ and $\bar{u}=\mathcal{H} u$. The presentation $\Gamma=\langle S \mid R\rangle$ is called elementary if it is elementary with respect to the
trivial subgroup comprising the identity element, that is, every relator gives rise a cycle of G.
thm: cayqt Theorem 6.1. Let Γ be an infinite, finitely generated group. Let $\mathcal{H} \unlhd \Gamma$ be such that $[\Gamma: \mathcal{H}]<\infty$, and assume the presentation $\Gamma=\langle S \mid R\rangle$ is elementary with respect to \mathcal{H}. The Cayley graph G possesses a graph height function (h, \mathcal{H}).
Proof. Let $\mathcal{H} \unlhd \Gamma$ and $[\Gamma: \mathcal{H}]<\infty$. Then \mathcal{H} acts quasi-transitively on G by leftmultiplication. Since \mathcal{H} acts without non-trivial fixed points, it is unimodular. We may take \mathcal{B} to be the cycles through the origin 1 of G to which the relators in R give rise.

Assumption (c) of Theorem 3.3 holds since the presentation is elementary with respect to \mathcal{H}, and the claim follows by that theorem.

There follows an example of a Cayley graph having no group height function, but for which there exists a graph height function (h, \mathcal{H}).
ex:sl2z sl2z

$$
\begin{equation*}
\Gamma=\left\langle x, y, u, v \mid x u, y v, x^{4}, x^{2} v^{3}\right\rangle \tag{6.1}
\end{equation*}
$$

where

$$
x=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad y=\left(\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right)
$$

The presentation has no group height function. Each of the last two relators of (6.1) projects onto a cycle of the Cayley graph, and therefore the presentation is elementary.

The following properties of $\mathrm{SL}_{2}(\mathbb{Z})$ may be found in [5] and [20, p. 66]. The commutator subgroup $\Gamma^{(2)}:=[\Gamma, \Gamma]$ is a normal subgroup of Γ with index 12. The (abelian) quotient $Q=\Gamma / \Gamma^{(2)}$ has elements $\bar{x}^{i} \bar{y}^{j}$ for $i=0,1, j=0,1, \ldots, 5$. Furthermore, \bar{x} has order $4, \bar{y}$ has order 6 , and $\bar{x}^{2}=\bar{y}^{3}$.

The relator x^{4} of (6.1) projects onto the cycle $\left(\overline{\mathbf{1}}, \bar{x}, \bar{x}^{2}, \bar{x}^{3}, \overline{\mathbf{1}}\right)$ of Q, and the relator $x^{2} y^{-3}$ projects onto the cycle $\left(\overline{\mathbf{1}}, \bar{x}, \bar{x}^{2}, \bar{y}^{2}, \bar{y}, \overline{\mathbf{1}}\right)$. Therefore, the presentation (6.1) is elementary with respect to $\Gamma^{(2)}$. By Theorem 6.1, the Cayley graph has a graph height function of the form $\left(h, \Gamma^{(2)}\right)$. This may also be proved via Theorem 5.1.

There exist Cayley graphs for which we have been unable to construct a graph height function (h, \mathcal{H}), even allowing \mathcal{H} to be merely quasi-transitive. Here is an example.
Example 6.3. The Higman group Γ of [21] is an infinite, finitely presented group with presentation $\Gamma=\langle S \mid R\rangle$ where

$$
\begin{aligned}
& S=\left\{a, b, c, d, a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right\} \\
& R=\left\{a a^{\prime}, b b^{\prime}, c c^{\prime}, d d^{\prime}\right\} \cup\left\{a^{\prime} b a\left(b^{\prime}\right)^{2}, b^{\prime} c b\left(c^{\prime}\right)^{2}, c^{\prime} d c\left(d^{\prime}\right)^{2}, d^{\prime} a d\left(a^{\prime}\right)^{2}\right\}
\end{aligned}
$$

The quotient of Γ by its maximal proper normal subgroup is an infinite, finitely generated, simple group. By Theorem 4.1(b), Г has no group height function. Since Γ has no nontrivial normal subgroup N with finite index, the construction of Theorem 6.1 fails.

The commutator group of the Higman group Γ satisfies $[\Gamma, \Gamma]=\Gamma$. This follows by Theorem 5.2(a) and the above (or otherwise).
rem:grig
sec:conv

Remark 6.4. Since writing this paper, the authors have shown that the Cayley graph of neither the Grigorchuk group nor the Higman group possesses a graph height function. See [14].

7. Convergence of connective constants of Cayley graphs

Let $\Gamma=\langle S \mid R\rangle$ be finitely presented with coefficient matrix C and Cayley graph $G=G(S, R)$. Let $t \in \Gamma$ have infinite order. We consider in this section the effect of adding a new generator t^{m}, in the limit as $m \rightarrow \infty$. Let G_{m} be the Cayley graph of the group $\Gamma_{m}=\left\langle S \mid R \cup\left\{t^{m}\right\}\right\rangle$.
torus Theorem 7.1. If $\operatorname{rank}(C)<|S|-1$, then $\mu\left(G_{m}\right) \rightarrow \mu(G)$ as $m \rightarrow \infty$.
Proof. The coefficient matrix C_{m} of G_{m} differs from C_{1} only in the multiplicity of the row corresponding to the new relator, and therefore $\mathcal{N}\left(C_{1}\right)=\mathcal{N}\left(C_{m}\right)$. Since Γ_{1} has only one relator more than $G, \operatorname{rank}\left(C_{1}\right) \leq \operatorname{rank}(C)+1$. If $\operatorname{rank}(C)<|S|-1$, then $\operatorname{rank}\left(C_{1}\right)<|S|$. By Theorem 4.1, we may find $\gamma=\left(\gamma_{s}: s \in S\right) \in \mathcal{N}\left(C_{1}\right)$ such that $\gamma \in \mathbb{Z}^{S}, \gamma \neq \mathbf{0}$. By the above, for $m \geq 1, \gamma \in \mathcal{N}\left(C_{m}\right)$, so that G_{m} has a corresponding group height function h_{m}. By (4.2), $d(h)=d\left(h_{m}\right)=: D$ for all m, so that $G_{m} \in \mathcal{G}_{D}$ for all m.

The group Γ_{m} is obtained as the quotient group of Γ by the normal subgroup generated by t^{m}. We apply [11, Thm 5.2] with $\alpha_{m}=t^{m}$. The condition of the theorem holds since t has infinite order.

As examples of finitely generated groups satisfying the conditions of Theorem 7.1, we mention free groups, abelian groups, free nilpotent groups, free solvable groups, and, more widely, nilpotent and solvable groups Γ with presentations $\langle S \mid R\rangle$ whose coefficient matrix C satisfies $b(\Gamma)=|S|-\operatorname{rank}(C)>1$. Here is an example where Theorem 7.1 cannot be applied, though the conclusion is valid.
ex:dih2 Example 7.2. Let G be the Cayley graph of the infinite dihedral group $\operatorname{Dih}_{\infty}=$ $\left\langle s_{1}, s_{2} \mid s_{1}^{2}, s_{2}^{2}\right\rangle$ of Example 4.4. As noted there, G has no group height function, though it has a graph height function h with $d(h)=1$. Let $\Gamma_{m}=G \times J_{m}$ where $m \geq 2$ and $J_{m}=\left\langle a, b \mid a b, a^{m}\right\rangle$ is the cyclic group $\left\{\mathbf{1}, a, a^{2}, \ldots, a^{m-1}\right\}$. Thus, Γ_{m} is finitely presented but, by Theorem 4.1(b), it has no group height function. In particular, Theorem 7.1 may not be applied.

On the other hand, we may define a graph height function h^{\prime} on G_{m} by $h^{\prime}\left(\gamma, a^{k}\right)=$ $h(\gamma)$ for $\gamma \in \operatorname{Dih}_{\infty}$ and $k \geq 0$. Furthermore, $d\left(h^{\prime}\right)=d(h)=1$. By [11, Thm 5.2], $\mu\left(G_{m}\right) \rightarrow \mu(G)$ as $m \rightarrow \infty$.

8. Proof of Theorem 3.5

Assume that assumptions (a)-(c) of Theorem 3.5 hold. There are two steps in the proof, namely of the following.
A. (Prop. 8.2) There exists $\psi: V \rightarrow \mathbb{Q}$ which is \mathcal{H}-difference-invariant, harmonic, non-constant, and takes values in the rationals.
B. (Prop. 8.4) There exists a graph height function which is harmonic on G.

The vertex 1 may appear to play a distinguished role in this section. This is in fact not so: since G is assumed transitive, the following is valid with any choice of vertex for the label $\mathbf{1}$. The approach of the proof is inspired in part by the proof of [24, Cor. 3.4]. Let $X=\left(X_{n}: n=0,1,2, \ldots\right)$ be a simple random walk on G, with transition matrix

$$
P(u, v)=\mathbb{P}_{u}\left(X_{1}=v\right)=\frac{1}{\operatorname{deg}(u)}, \quad u, v \in V, v \in \partial u
$$

where \mathbb{P}_{u} denotes the law of the random walk starting at u.
Let $V_{1}=\mathcal{H} \mathbf{1}$ be the orbit of the identity under \mathcal{H}, and let P_{1} be the transition matrix of the induced random walk on V_{1}, that is

$$
P_{1}(u, v)=\mathbb{P}_{u}\left(X_{\tau}=v\right), \quad u, v \in V_{1}
$$

where $\tau=\min \left\{n \geq 1: X_{n} \in V_{1}\right\}$. It is easily seen that $\mathbb{P}_{u}(\tau<\infty)=1$ since, by the quasi-transitive action of \mathcal{H}, there exist $\alpha>0$ and $K<\infty$ such that

$$
\begin{equation*}
\mathbb{P}_{u}\left(X_{k} \in V_{1} \text { for some } 1 \leq k \leq K\right) \geq \alpha, \quad u \in V \tag{8.1}
\end{equation*}
$$

We note for later use that, by (8.1), there exist $\alpha^{\prime}=\alpha^{\prime}(\alpha, K)>0$ and $A=A(\alpha, K)$ such that

> eq: bnd2

eq:inv

prop11

$$
\mathbb{P}_{u}(\tau \geq m) \leq A\left(1-\alpha^{\prime}\right)^{m}, \quad m \geq 1, u \in V
$$

Since $\mathcal{H} \leq \operatorname{Aut}(G), P_{1}$ is invariant under \mathcal{H} in the sense that

$$
\begin{equation*}
P_{1}(u, v)=P_{1}(\gamma u, \gamma v), \quad \gamma \in \mathcal{H}, u, v \in V_{1} \tag{8.3}
\end{equation*}
$$

Proposition 8.1.

(a) The transition matrix P_{1} is symmetric, in that

$$
P_{1}(u, v)=P_{1}(v, u), \quad u, v \in V_{1} .
$$

(b) Let $F_{1}: V_{1} \rightarrow \mathbb{Z}$ be \mathcal{H}-difference-invariant. Then F_{1} is P_{1}-harmonic in that

$$
F_{1}(u)=\sum_{v \in V_{1}} P_{1}(u, v) F_{1}(v), \quad u \in V_{1} .
$$

Proof. (a) Since P is reversible with respect to the measure $(\operatorname{deg}(v): v \in V)$, and $\operatorname{deg}(v)$ is constant on V_{1}, we have that

$$
P\left(u_{0}, u_{1}\right) P\left(u_{1}, u_{2}\right) \cdots P\left(u_{n-1}, u_{n}\right)=P\left(u_{n}, u_{n-1}\right) P\left(u_{n-1}, u_{n-2}\right) \cdots P\left(u_{1}, u_{0}\right)
$$

for $u_{0}, u_{n} \in V_{1}, u_{1}, \ldots, u_{n-1} \in V$. The symmetry of P_{1} follows by summing over appropriate sequences $\left(u_{i}\right)$.
(b) It is required to prove that

$$
\sum_{v \in V_{1}} P_{1}(u, v)\left[F_{1}(u)-F_{1}(v)\right]=0, \quad u \in V_{1}
$$

and it is here that we shall use assumption (b) of Theorem 3.5, namely, that \mathcal{H} is unimodular. Since F_{1} is \mathcal{H}-difference-invariant, there exists $D<\infty$ such that

$$
\left|F_{1}(u)-F_{1}(v)\right| \leq D d_{G}(u, v), \quad u, v \in V_{1}
$$

By (8.1), the random walk on V_{1} has finite mean step-size. It follows that the sum in (8.4) converges absolutely.

Equation (8.4) may be proved by a cancellation of summands, but it is shorter to use the mass-transport principle. Let

$$
m(u, v)=P_{1}(u, v)\left[F_{1}(u)-F_{1}(v)\right], \quad u, v \in V_{1}
$$

The sum $\sum_{v \in V_{1}} m(u, v)$ is absolutely convergent as above, and $m(\gamma u, \gamma v)=m(u, v)$ for $\gamma \in \mathcal{H}$. Since \mathcal{H} is unimodular, by the mass-transport principle (see, for example, [25, Thm 8.7, Cor. 8.11]),
eq:mtp1

$$
\begin{equation*}
\sum_{v \in V_{1}} m(u, v)=\sum_{w \in V_{1}} m(w, u), \quad u \in V_{1} \tag{8.5}
\end{equation*}
$$

Now,

$$
\begin{aligned}
\sum_{w \in V_{1}} m(w, u) & =\sum_{w \in V_{1}} P_{1}(w, u)\left[F_{1}(w)-F_{1}(u)\right] \\
& =-\sum_{w \in V_{1}} P_{1}(u, w)\left[F_{1}(u)-F_{1}(w)\right] \quad \text { by part (a) }
\end{aligned}
$$

and (8.4) follows by (8.5).
It is usual to assume in the mass-transport principle that $m(u, v) \geq 0$, but it suffices that $\sum_{v} m(u, v)$ is absolutely convergent.

A function $f: V \rightarrow \mathbb{R}$ is said to have expon (β) growth if there exists B such that

1:expgrowth

102

eq:psidef

eq:harm2

$$
\begin{equation*}
|f(v)| \leq B \beta^{n} \quad \text { if } d_{G}(\mathbf{1}, v) \leq n \tag{8.6}
\end{equation*}
$$

Proposition 8.2. Let $F_{1}: V_{1} \rightarrow \mathbb{Z}$ be \mathcal{H}-difference-invariant, and let

$$
\begin{equation*}
\psi(v)=\mathbb{E}_{v}\left[F_{1}\left(X_{N}\right)\right], \quad v \in V \tag{8.7}
\end{equation*}
$$

where $N=\inf \left\{n \geq 0: X_{n} \in V_{1}\right\}$. Then:
(a) the function ψ is \mathcal{H}-difference-invariant, and agrees with F_{1} on V_{1},
(b) ψ is harmonic on G, in that

$$
\begin{equation*}
\psi(u)=\sum_{v \in V} P(u, v) \psi(v), \quad u \in V \tag{8.8}
\end{equation*}
$$

and, furthermore, ψ is the unique harmonic function that agrees with F_{1} on V_{1} and has expon (β) growth with $\beta\left(1-\alpha^{\prime}\right)<1$, where α^{\prime} satisfies (8.2),
(c) ψ takes rational values.
[GRG: new remark]
Remark 8.3. By part (b), any harmonic extension of F_{1} with such expon (β) growth is \mathcal{H}-difference-invariant. Conversely, any \mathcal{H}-difference-invariant function f has $\operatorname{expon}(\beta)$ growth for all $\beta>0$, whence the function ψ of (8.7) is the unique harmonic extension of F_{1} that is \mathcal{H}-difference-invariant.

Proof. (a) The function ψ is \mathcal{H}-difference-invariant since the law of the random walk is \mathcal{H}-invariant, and

$$
\psi(v)-\psi(w)=\mathbb{E}_{v}\left[F_{1}\left(X_{N}\right)\right]-\mathbb{E}_{w}\left[F_{1}\left(X_{N}\right)\right]
$$

It is trivial that $\psi \equiv F_{1}$ on V_{1}.
(b) By conditioning on the first step, ψ is harmonic at any $v \notin V_{1}$. For $v \in V_{1}$, it suffices to show that

$$
\psi(v)=\sum_{w \in V} P(v, w) \psi(w)
$$

Since $\psi \equiv F_{1}$ on V_{1}, and F_{1} is P_{1}-harmonic (by Proposition 8.1), this may be written as

$$
\sum_{w \in V_{1}} P_{1}(v, w) \psi(w)=\sum_{w \in V} P(v, w) \psi(w), \quad v \in V_{1}
$$

Each term equals $\mathbb{E}_{v}\left[\psi\left(W\left(X_{1}\right)\right)\right]$, where X_{1} is the position of the random walk after one step, and $W\left(X_{1}\right)$ is the first element of V_{1} encountered having started at X_{1}.

To establish uniqueness, let ϕ be a harmonic function with expon (β) growth where $\beta\left(1-\alpha^{\prime}\right)<1$, such that $\phi \equiv F_{1}$ on V_{1}. Then $Y_{n}:=\phi\left(X_{n}\right)$ is a martingale, and
furthermore N is a stopping time with tail satisfying (8.2). By the optional stopping theorem (see, for example, [16, Thm 12.5.1]) and (8.7),

$$
\phi(u)=\mathbb{E}_{u}\left(Y_{N}\right)=\mathbb{E}_{u}\left(F_{1}\left(X_{N}\right)\right)=\psi(u),
$$

so long as $\mathbb{E}_{u}\left(\left|Y_{n}\right| I_{N \geq n}\right) \rightarrow 0$ as $n \rightarrow \infty$. To check the last condition, note by (8.6) and (8.2) that

$$
\begin{aligned}
\mathbb{E}_{u}\left(\left|Y_{n}\right| I_{N \geq n}\right) & \leq B \beta^{n+|u|} \mathbb{P}_{u}(N \geq n) \\
& \leq\left(A B \beta^{|u|}\right) \beta^{n}\left(1-\alpha^{\prime}\right)^{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

where $|u|=d_{G}(\mathbf{1}, u)$.
(c) The quantity $\psi(v)$ has a representation as a sum of values of the unique solution of a finite set of linear equations with integral coefficients and boundary conditions, and thus $\psi(v) \in \mathbb{Q}$. Some further details follow.
[GRG: rest of proof is changed] Let $\vec{G}=(V, \vec{E})$ be the directed graph obtained from $G=(V, E)$ by replacing each $e \in E$ by two edges $\vec{e},-\vec{e}$ with the same endpoints and opposite orientations. Suppose $\delta: \vec{E} \rightarrow \mathbb{R}$ satisfies the linear equations
eq:cycles2
eq:harm
eq:alv

$$
\begin{align*}
\delta(-\vec{e})+\delta(\vec{e}) & =0, & & e \in E \tag{8.9}\\
\sum_{\vec{e} \in W} \delta(\vec{e}) & =0, & & W \in \mathcal{W}(G) \tag{8.10}\\
\sum_{v \sim u} \delta([u, v\rangle) & =0, & & u \in V \tag{8.11}\\
\delta(\alpha \vec{e}) & =\delta(\vec{e}), & & e \in E, \alpha \in \mathcal{H} \tag{8.12}
\end{align*}
$$

where $\mathcal{W}(G)$ is the set of directed closed walks of G. (Equation (8.10) may be viewed as including (8.9).) By (8.10), the sum

$$
\Delta(v):=\sum_{\vec{e} \in l_{v}} \delta(\vec{e})
$$

is well defined, where l_{v} is an arbitrary (directed) walk from 1 to $v \in V$. Equation (8.11) requires that Δ be harmonic, and (8.12) that Δ be \mathcal{H}-difference-invariant.

Since \mathcal{H} acts quasi-transitively, by (8.12), the linear equations (8.9)-(8.11) involve only finitely many variables. Therefore, there exists a finite subset, Eq say, of (8.9)(8.11) such that δ satisfies (8.9)-(8.12) if only if δ satisfies Eq together with (8.12). In summary, any harmonic, \mathcal{H}-difference-invariant function Δ, satisfying $\Delta(\mathbf{1})=0$, corresponds to a solution to the finite collection Eq of linear equations.

With F_{1} as given, let ψ be given by (8.7). By Remark 8.3, equations (8.9)-(8.12) have a unique solution satisfying

$$
\begin{equation*}
\sum_{\vec{e} \in l_{v}} \delta(\vec{e})=F_{1}(v)-F_{1}(\mathbf{1}), \quad v \in V_{1} \tag{8.13}
\end{equation*}
$$

By (8.10), it suffices in (8.13) to consider only the finite set $V_{1}^{\prime} \subseteq V_{1}$ of vertices within some bounded distance of $\mathbf{1}$ that depends on the quotient graph $\bar{G}=G / \mathcal{H}$.

Therefore, Eq possesses a unique solution subject to (8.13) (with V_{1} replaced by $\left.V_{1}^{\prime}\right)$. All coefficients and boundary values in Eq and (8.13) are integral, and therefore ψ takes only rational values.
prop12 Proposition 8.4. Let $F_{1}: V_{1} \rightarrow \mathbb{Z}$ be \mathcal{H}-difference-invariant, and non-constant on V_{1}. There exists a graph height function $h=h_{F}$ which is harmonic on G.

Proof. The normality of \mathcal{H} is used in this proof. A vertex $v \in V$ is called a point of increase of a function $h: V \rightarrow \mathbb{R}$ if v has neighbours u, w such that $h(u)<h(v)<$ $h(w)$. The function h is said to increase everywhere if every vertex is a point of increase. For $v \in V$ and a harmonic function h,

> either: v is a point of increase of h, or: h is constant on $\{v\} \cup \partial v$.

An \mathcal{H}-difference-invariant function h on G is a graph height function if and only if it takes integer values, and it increases everywhere.

Let F_{1} be as given, and let ψ be given by Proposition 8.2. Thus, $\psi: V \rightarrow \mathbb{Q}$ is non-constant on V_{1}, \mathcal{H}-difference-invariant, and harmonic on G. Since ψ is \mathcal{H} -difference-invariant, we may replace it by $m \psi$ for a suitable $m \in \mathbb{N}$ to obtain such a function that in addition takes integer values. We shall work with the latter function, and thus we assume henceforth that $\psi: V \rightarrow \mathbb{Z}$. Now, ψ may not increase everywhere. By (8.14), ψ has some point of increase $w \in V$.

Let $V_{1}, V_{2}, \ldots, V_{N}$ be the orbits of V under \mathcal{H}. Find ω such that $w \in V_{\omega}$. Since Γ acts transitively on G, and \mathcal{H} is a normal subgroup of Γ acting quasi-transitively on G, there exist $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{N} \in \Gamma$ such that $\gamma_{\omega}=1$ and

$$
V_{i}=\gamma_{i} V_{\omega}, \quad i=1,2, \ldots, N
$$

Let $\psi_{\omega}=\psi$ and
eq:psi2def

$$
\begin{equation*}
\psi_{i}(v)=\psi_{\omega}\left(\gamma_{i}^{-1} v\right), \quad i=1,2, \ldots, N \tag{8.15}
\end{equation*}
$$

Since $w \in V_{\omega}$ is a point of increase of $\psi_{\omega}, w_{i}:=\gamma_{i} w$ is a point of increase of ψ_{i}, and also $w_{i} \in V_{i}$.
lem3 Lemma 8.5. For $i=1,2, \ldots, N$,
(a) $\psi_{i}: V \rightarrow \mathbb{Z}$ is a non-constant, harmonic function, and
(b) ψ_{i} is \mathcal{H}-difference-invariant.

Proof. (a) Since ψ_{i} is obtained from ψ_{1} by shifting the domain according to the automorphism γ_{i}, ψ_{i} is non-constant and harmonic.
(b) For $\alpha \in \mathcal{H}$ and $u, v \in V$,

$$
\psi_{i}(\alpha v)-\psi_{i}(\alpha u)=\psi_{\omega}\left(\gamma_{i}^{-1} \alpha v\right)-\psi_{\omega}\left(\gamma_{i}^{-1} \alpha u\right) .
$$

Since $\mathcal{H} \unlhd \Gamma$ and $\gamma_{i} \in \Gamma$, there exists $\alpha_{i} \in \mathcal{H}$ such that $\gamma_{i}^{-1} \alpha=\alpha_{i} \gamma_{i}^{-1}$. Therefore,

$$
\begin{array}{rlrl}
\psi_{i}(\alpha v)-\psi_{i}(\alpha u) & =\psi_{\omega}\left(\alpha_{i} \gamma_{i}^{-1} v\right)-\psi_{\omega}\left(\alpha_{i} \gamma_{i}^{-1} u\right) & \\
& =\psi_{\omega}\left(\gamma_{i}^{-1} v\right)-\psi_{\omega}\left(\gamma_{i}^{-1} u\right) & & \text { since } \psi_{\omega} \text { is } \mathcal{H} \text {-difference-invariant } \\
& =\psi_{i}(v)-\psi_{i}(w) & & \text { by }(8.15)
\end{array}
$$

so that ψ_{i} is \mathcal{H}-difference-invariant.
Let $\nu: V \rightarrow \mathbb{R}$ be \mathcal{H}-difference-invariant. For $j=1,2, \ldots, N$, either every vertex in V_{j} is a point of increase of ν, or no vertex in V_{j} is a point of increase of ν. We shall now use an interative construction in order to find a harmonic, \mathcal{H}-difference-invariant function h^{\prime} for which every w_{i} is a point of increase. Since the w_{i} represent the orbits V_{i}, the ensuing h^{\prime} increases everywhere.

1. If every w_{i} is a point of increase of ψ_{ω}, we set $h^{\prime}=\psi_{\omega}$.
2. Assume otherwise, and find the smallest j_{2} such that $w_{j_{2}}$ is not a point of increase of ψ_{ω}. By (8.14), we may choose $c_{j_{2}} \in \mathbb{Q}$ such that both w_{ω} and $w_{j_{2}}$ are points of increase of $h_{2}:=\psi_{\omega}+c_{j_{2}} \psi_{j_{2}}$. If h_{2} increases everywhere, we set $h^{\prime}=h_{2}$.
3. Assume otherwise, and find the smallest j_{3} such that $w_{j_{3}}$ is not a point of increase of h_{2}. By (8.14), we may choose $c_{j_{3}} \in \mathbb{Q}$ such that w_{ω}, $w_{j_{2}}$, and $w_{j_{3}}$ are points of increase of $h_{3}:=\psi_{\omega}+c_{j_{2}} \psi_{j_{2}}+c_{j_{3}} \psi_{j_{3}}$. If h_{3} increases everywhere, we set $h^{\prime}=h_{3}$.
4. This process is iterated until we find an \mathcal{H}-difference-invariant, harmonic function of the form

$$
h^{\prime}=\sum_{l=1}^{N} c_{j_{l}} \psi_{j_{l}}
$$

with $j_{1}=\omega, c_{\omega}=1$, and $c_{j_{l}} \in \mathbb{Q}$, which increases everywhere.
The function h^{\prime} may fail to be a graph height function only in that it may take rational rather than integer values. Since the $c_{j_{l}}$ are rational, there exists $m \in \mathbb{Z}$ such that $h=m h^{\prime}$ is a graph height function.

Proof of Theorem 3.5. By Propositions 8.1 and 8.2 , there exists $\psi: V \rightarrow \mathbb{Q}$ satisfying (i). The existence of $\psi^{\prime}: V \rightarrow \mathbb{Q}$, in (ii), follows as in Proposition 8.4.

9. Proof of Theorem 3.3

Assume that assumptions (a)-(d) of Theorem 3.3 hold. The conclusion of the theorem follows by Theorem 3.5 and the following proposition.
prop10 Proposition 9.1. There exists a function $F: V \rightarrow \mathbb{Z}$ which is non-constant on the orbit $\mathcal{H} \mathbf{1}$, and is \mathcal{H}-difference-invariant.
Proof. It is proved in [11, Sect. 7] (see the argument leading to equation (7.7) of that paper) that there exists $h: V \rightarrow \mathbb{Z}$ that is \mathcal{H}-difference-invariant. Furthermore, there exists a cycle of the quotient graph \bar{G}, denoted C_{Δ}, which lifts to a SAW of G with distinct endpoints $\mathbf{1}, v \in \mathcal{H} \mathbf{1}$, and such that $h(v) \neq 0$. The proposition follows.

10. Proof of Theorem 3.4

Let G, Γ, \mathcal{H} be as given. The idea is to apply Theorem 3.5 to a suitable triple G^{\prime}, $\Gamma^{\prime}, \mathcal{H}^{\prime}$ satisfying the conditions of the proposition, and to extend the resulting graph height function to the original graph G. The required function F of the theorem will be derived from the modular function of G under \mathcal{H}.

Let \mathcal{S} be the normal subgroup of Γ generated by $\bigcup_{v \in V} \operatorname{Stab}_{v}$, where $\operatorname{Stab}_{v}=\operatorname{Stab}_{v}^{\mathcal{H}}$. We may define a positive weight function $M: V \rightarrow(0, \infty)$ by

$$
\begin{equation*}
\frac{M(u)}{M(v)}=\frac{\left|\operatorname{Stab}_{u} v\right|}{\left|\operatorname{Stab}_{v} u\right|}, \quad u, v \in V \tag{10.1}
\end{equation*}
$$

where $|\cdot|$ denotes cardinality. The weight function is uniquely defined up to a multiplicative constant, and is automorphism-invariant up to a multiplicative constant. Since G is assumed non-unimodular, M is non-constant on some orbit of \mathcal{H}. Without loss of generality, we assume 1 lies in such an orbit and that $M(\mathbf{1})=1$. See $[25$, Sect. 8.2] for an account of (non-) unimodularity.

Let G^{\prime} denote the quotient graph G / \mathcal{S}, which we take to be simple in that every pair of neighbours is connected by just one edge.

Lemma 10.1.

(a) $\mathcal{S} \unlhd \mathcal{H}$.
(b) The function $F^{\prime}: V / \mathcal{S} \rightarrow(0, \infty)$ given by $F^{\prime}(\mathcal{S} v)=\log M(v), v \in V$, is well defined, in the sense that F^{\prime} is constant on each coset in V / \mathcal{S}.
(c) The quotient group $\Gamma^{\prime}:=\Gamma / \mathcal{S}$ acts transitively on G^{\prime}, and $\mathcal{H}^{\prime}:=\mathcal{H} / \mathcal{S}$ acts quasi-transitively on G^{\prime}.
(d) The quotient graph $G^{\prime}=G / \mathcal{S}$ satisfies $G^{\prime} \in \mathcal{G}$.
(e) \mathcal{H}^{\prime} is unimodular and symmetric on G^{\prime}.

Proof. (a) Since $\mathcal{S} \unlhd \Gamma$ and $\mathcal{H} \leq \Gamma$, it suffices to show that $\mathcal{S} \leq \mathcal{H}$. Now, \mathcal{S} is the set of all products of the form $\left(\gamma_{1} \sigma_{1} \gamma_{1}^{-1}\right)\left(\gamma_{2} \sigma_{2} \gamma_{2}^{-1}\right) \cdots\left(\gamma_{k} \sigma_{k} \gamma_{k}^{-1}\right)$ with $k \geq 0, \gamma_{i} \in \Gamma$, $\sigma_{i} \in \operatorname{Stab}_{w_{i}}, w_{i} \in V$. Since $\gamma_{i} \sigma_{i} \gamma_{i}^{-1} \in \operatorname{Stab}_{\gamma_{i} w_{i}}$, we have that $\mathcal{S} \leq \mathcal{H}$ as required.
(b) If $u=\sigma v$ with $\sigma \in \operatorname{Stab}_{w}$, then

$$
\frac{M(u)}{M(w)}=\frac{\left|\operatorname{Stab}_{u} w\right|}{\left|\operatorname{Stab}_{w} u\right|}=\frac{\left|\operatorname{Stab}_{\sigma v}(\sigma w)\right|}{\left|\operatorname{Stab}_{\sigma w}(\sigma v)\right|}=\frac{\left|\operatorname{Stab}_{v} w\right|}{\left|\operatorname{Stab}_{w} v\right|}=\frac{M(v)}{M(w)},
$$

so that $M(u)=M(v)$. As in part (a), every element of \mathcal{S} is the product of members of the stabilizer groups Stab_{w}, and the claim follows.
(c) Let $u, v \in V$, and find $\gamma \in \Gamma$ such that $v=\gamma u$. Since $\mathcal{S} \unlhd \Gamma, \mathcal{S} \gamma(\mathcal{S} u)=\mathcal{S} \gamma u=\mathcal{S} v$, so that $\mathcal{S} \gamma: \mathcal{S} u \mapsto \mathcal{S} v$. The first claim follows, and the second is similar since \mathcal{H} acts quasi-transitively on G.
(d) Since M is non-constant on the orbit $\mathcal{H} \mathbf{1}$, there exist $v, w \in \mathcal{H} \mathbf{1}$ such that $\mu:=M(w) / M(v)$ satisfies $\mu>1$. Let $\alpha \in \mathcal{H}$ be such that $w=\alpha v$. By (10.1), $M\left(\alpha^{k} v\right) / M(v)=\mu^{k}$, whence the range of M is unbounded. By part (b), G^{\prime} is infinite. (The non-constantness of the modular function has been used also in [8].) The graph G^{\prime} is connected since G is connected, and is transitive by part (c). It is locally finite since its vertex-degree is no greater than that of G.
(e) It suffices for the unimodularity that, for $u \in V$ and $\bar{u}:=\mathcal{S} u$, we have that $\operatorname{Stab}_{\bar{u}}:=\operatorname{Stab}_{\bar{u}}^{\mathcal{H}^{\prime}}$ is a single element, namely the identity element \mathcal{S} of \mathcal{H}^{\prime}. (The symmetry follows by [12, Lemma 3.10].) Let $\alpha \in \mathcal{H}$ be such that $\mathcal{S} \alpha \in \operatorname{Stab}_{\bar{u}}$. Then $\mathcal{S} \alpha(\mathcal{S} u)=\alpha \mathcal{S} u=\mathcal{S} u$. Therefore, there exists $s \in \mathcal{S}$ such that $\alpha s(u)=u$, so that $\alpha s \in \mathcal{S}$. It follows that $\alpha \in \mathcal{S}$, and hence $\mathcal{S} \alpha=\mathcal{S}$ as required.

Since M is non-constant on $\mathcal{H} \mathbf{1}, F^{\prime}$ is non-constant on the orbit of \mathcal{H}^{\prime} containing \mathcal{S} 1. By Theorem 3.5, G^{\prime} has a harmonic graph height function $\left(\psi^{\prime}, \mathcal{H}^{\prime}\right)$ satisfying $\psi^{\prime}(\mathcal{S} 1)=0$. Let $\psi: V \rightarrow \mathbb{Z}$ be given by $\psi(v)=\psi^{\prime}(\mathcal{S} v)$. We claim that (ψ, \mathcal{H}) is a graph height function on G.

Firstly, for $\alpha \in \mathcal{H}$,

$$
\begin{aligned}
\psi(\alpha v)-\psi(\alpha u) & =\psi^{\prime}(\mathcal{S} \alpha v)-\psi^{\prime}(\mathcal{S} \alpha u) & & \\
& =\psi^{\prime}(\alpha \mathcal{S} v)-\psi^{\prime}(\alpha \mathcal{S} u) & & \text { since } \mathcal{S} \unlhd \mathcal{H} \\
& =\psi^{\prime}(\mathcal{S} v)-\psi^{\prime}(\mathcal{S} u) & & \text { since }\left(\psi^{\prime}, \mathcal{H}^{\prime}\right) \text { is a graph height function } \\
& =\psi(v)-\psi(u) & &
\end{aligned}
$$

whence ψ is \mathcal{H}-difference-invariant. Secondly, let $v \in V$, and find $u, w \in \partial v$ such that $\psi^{\prime}(\mathcal{S} u)<\psi^{\prime}(\mathcal{S} v)<\psi^{\prime}(\mathcal{S} w)$. Then $\psi(u)<\psi(v)<\psi(w)$, so that v is a point of increase of ψ. Therefore, (ψ, \mathcal{H}) is a graph height function on G.

Finally, we give an example in which the above recipe leads to a graph height function which is not harmonic. Consider the 'grandparent graph' introduced in [34] (see also [25, Example 7.1]). Let T be an infinite degree-3 tree, and select an 'end' ω. For each vertex v, we add an edge to the unique grandparent of v in the direction of ω. Let \mathcal{H} be the set of automorphisms of the resulting graph G that preserve ω. Note that \mathcal{H} acts transitively on G, and is non-unimodular. The above recipe yields (up
to a multiplicative constant which we take to be 1) the graph height function on T which measures the (integer) height of a vertex in the direction of ω. The neighbours of a vertex with height h have average height $h-\frac{7}{8}$, whence h is not harmonic.

Acknowledgements

This work was supported in part by the Engineering and Physical Sciences Research Council under grant EP/103372X/1. Jack Button kindly pointed out an error in an earlier version of this work, and gave advice on certain group-theoretic aspects. The authors are grateful to Yuval Peres for his comments on the work, and for proposing the non-unimodular case of Theorem 3.4.

References

GL-amen

[1] L. Babai, Automorphism groups, isomorphism, reconstruction, Handbook of Combinatorics, vol. II, Elsevier, Amsterdam, 1995, pp. 1447-1540.
[2] R. Bauerschmidt, H. Duminil-Copin, J. Goodman, and G. Slade, Lectures on self-avoiding walks, Probability and Statistical Physics in Two and More Dimensions (D. Ellwood, C. M. Newman, V. Sidoravicius, and W. Werner, eds.), Clay Mathematics Institute Proceedings, vol. 15, CMI/AMS publication, 2012, pp. 395-476.
[3] I. Benjamini, R. Lyons, Y. Peres, and O. Schramm, Group-invariant percolation on graphs, Geom. Funct. Anal. 9 (1999), 29-66.
[4] I. Benjamini, A. Nachmias, and Y. Peres, Is the critical percolation probability local?, Probab. Th. Rel. Fields 149 (2011), 261-269.
[5] K. Conrad, $S L_{2}(\mathbb{Z})$, (2012), http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/ SL (2, Z) .pdf.
[6] R. Diestel, The cycle space of an infinite graph, Combin. Probab. Comput. 14 (2005), 59-79.
[7] R. Grigorchuk, Solved and unsolved problems around one group, Infinite Groups: Geometric, Combinatorial and Dynamical Aspects, Progr. Math., vol. 248, Birkhäuser, Basel, 2005, pp. 117-218.
[8] G. R. Grimmett, A. E. Holroyd, and Y. Peres, Extendable self-avoiding walks, Ann. Inst. Henri Poincaré D 1 (2014), 61-75.
[9] G. R. Grimmett and Z. Li, Counting self-avoiding walks, (2013), http://arxiv.org/abs/ 1304.7216.
[10] , Self-avoiding walks and the Fisher transformation, Electron. J. Combin. 20 (2013), Paper P47.
[11] , Locality of connective constants, I. Transitive graphs, (2014), http://arxiv.org/ abs/1412. 0150.
[12] , Strict inequalities for connective constants of regular graphs, SIAM J. Disc. Math. 28 (2014), 1306-1333.
[13] , Bounds on the connective constants of regular graphs, Combinatorica 35 (2015), 279294.
[14] , Self-avoiding walks and amenability, (2015), http://arxiv.org/abs/1510.08659.
[15] G. R. Grimmett and J. M. Marstrand, The supercritical phase of percolation is well behaved, Proc. Roy. Soc. London Ser. A 430 (1990), 439-457.
[16] G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes, 3rd ed., Oxford University Press, Oxford, 2001.
[17] M. Hamann, Accessibility in transitive graphs, (2014), http://arxiv.org/abs/1404.7677.
[18] J. M. Hammersley and W. Morton, Poor man's Monte Carlo, J. Roy. Statist. Soc. B 16 (1954), 23-38.
HW62
19] J. M. Hammersley and D. J. A. Welsh, Further results on the rate of convergence to the connective constant of the hypercubical lattice, Quart. J. Math. Oxford 13 (1962), 108-110.
[20] P. de la Harpe, Topics in Geometric Group Theory, Univ. of Chicago Press, Chicago, IL, 2000.
[21] G. Higman, A finitely generated infinite simple group, J. Lond. Math. Soc. 26 (1951), 61-64.
[22] B. Kleiner, A new proof of Gromov's theorem on groups of polynomial growth, J. Amer. Math. Soc. 23 (2010), 815-829.
[23] W. Ledermann and A. J. Weir, Introduction to Group Theory, Addison Wesley Longman, Harlow, 1996.
[24] J. R. Lee and Y. Peres, Harmonic maps on amenable groups and a diffusive lower bound for random walks, Ann. Probab. 41 (2013), 3392-3419.
[25] R. Lyons and Y. Peres, Probability on Trees and Networks, Cambridge University Press, Cambridge, 2016, http://pages.iu.edu/~rdlyons/.
[26] N. Madras and G. Slade, Self-Avoiding Walks, Birkhäuser, Boston, 1993.
[27] S. Martineau and V. Tassion, Locality of percolation for abelian Cayley graphs, (2013), http: //arxiv.org/abs/1312.1946.
[28] T. Meyerovitch and A. Yadin, Groups with finite dimensional spaces of harmonic functions, (2014), http://arxiv.org/abs/1408.6243.
[29] I. Pak and T. Smirnova-Nagnibeda, On non-uniqueness of percolation on non-amenable Cayley graphs, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), 495-500.
[30] D. J. S. Robinson, A Course in the Theory of Groups, 2nd ed., Springer-Verlag, New York, 1996.
[31] Y. Shalom and T. Tao, A finitary version of Gromov's polynomial growth theorem, Geom. Funct. Anal. 20 (2010), 1502-1547.
[32] P. M. Soardi and W. Woess, Amenability, unimodularity, and the spectral radius of random walks on infinite graphs, Math. Zeit. 205 (1990), 471-486.
[33] M. Tointon, Characterisations of algebraic properties of groups in terms of harmonic functions, Groups, Geometry, Dynamics (2014), http://arxiv.org/abs/1409.6326.
[34] V. I. Trofimov, Automorphism groups of graphs as topological groups, Math. Notes 38 (1985), 717-720.

Statistical Laboratory, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, Cambridge CB3 0WB, UK

Current address (Z.L.): Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269-3009, USA

E-mail address: g.r.grimmett@statslab.cam.ac.uk
URL: http://www.statslab.cam.ac.uk/~grg/
E-mail address: zhongyang.li@uconn.edu
URL: http://www.math.uconn.edu/~zhongyang/

