
1

The Design and Implementation of the
Conquest Query Execution Environment

Frank Fabbrocino, Eddie Shek, and Richard Muntz
Data Mining Laboratory

Computer Science Department
University of California, Los Angeles

Los Angeles, California 90024
{frank, shek, muntz}@cs.ucla.edu

Abstract

Given the enormous amount of geo-scientific data that has been collected and is currently being
collected for study, a system for the rapid, efficient and extensible query processing of such data
that effectively hides its vastness, heterogeneity and location is needed. The UCLA Data Mining
Laboratory is developing Conquest, a system that provides a user-extensible, operator-based,
parallel and distributed query execution system within OASIS, an environment for the
collaborative study of potentially distributed and heterogeneous geo-scientific data. This paper
presents the design and implementation of Conquest and its subsystems, and how it meets these
goals. The focus of this paper is on the dynamic query execution environment within Conquest
and the lessons and experiences learned during its development.

1 Introduction

Every day, huge amounts of geo-scientific data are collected by scientific institutions from
instruments such as satellites orbiting the earth, and through experiments and simulations.
Unfortunately, many obstacles prevent scientists from effectively studying this data. For
example, scientists must determine where the data they need is located and how it can be
obtained, and then how to convert the data into a format compatible with their scientific
software. Furthermore, scientists must contend with the difficulties of processing the data, given
the lack of interoperability and extensibility of scientific software in general. In summary,
scientists must tackle the vastness, heterogeneity and distributed nature of scientific data, and
then the inadequacies and inefficiencies of scientific software before they can even begin to
analyze and interpret it.

Consider the complexities of cyclone tracking, where sea-level pressure (SLP) data is
combined with wind directional data to track the paths of low-pressure zones across the earth
over time. Scientists may wish to track cyclones over arbitrarily long periods of time, but given
that such data has been collected over long periods, the potential for crossing data set boundaries
and the resulting format incompatibilities complicates processing in conventional systems.
Furthermore, identification of low-pressure zones involves minima extraction and refinement
over very large multidimensional array data sets, and conventional database systems are
inadequate for such mathematically intensive processing on large data sets. Finally, geo-

2

scientific study is an evolving technology, and scientists may wish to make subtle changes to
processing algorithms and parameters that are not easily supported by conventional systems.

OASIS [4] is a system under development at the Data Mining Laboratory at UCLA that
attempts to address the vastness, heterogeneity, and distributed nature of geo-scientific data and
provides an environment for the analysis, knowledge discovery, visualization and collaborative
study of such data. Within OASIS, Conquest provides an extensible, parallel, geo-scientific
query processing system that is fully interoperable with OASIS services and data objects, as well
as conventional data repositories. Furthermore, it addresses the above complexities of studying
geo-scientific data by providing an extensible, parallel and distributed system for rapid query
development, refinement and execution.

In this paper, the design and implementation of Conquest is presented, giving particular
attention to the implementation and operation of the dynamic query execution environment. The
lessons learned and difficulties encountered during its implementation, as well as a background
of the systems and technologies that influenced its design and implementation will also be
discussed.

The remainder of this paper is outlined as follows. Section 2 gives a brief overview of
Conquest and its architecture. Section 3 describes the implementation of the query execution
environment in detail. Section 4 presents a discussion of the significant difficulties encountered
during Conquest’s implementation. Section 5 discusses the related work that has influenced the
design and implementation of Conquest. Finally, Section 6 concludes the paper.

2 Conquest

Conquest is an extensible, parallel, geo-scientific query processing system designed to be
interoperable with OASIS services and data objects. It harnesses the power of distributed
processing nodes, from workstations to massively parallel machines, for the processing of geo-
scientific data. Conquest consists of three key ingredients that together provide the basis for
meeting these goals:

• Data Modeling: Conquest provides a data model that is both simple and
expressive for representing the geo-scientific data both structurally and
semantically. A collection of basic data types and an associated mapping
allows the modeling of virtually all scientific phenomena.

• Extensible Operator-Based Processing: Queries in Conquest are built by
interconnecting operators that each implements some unique functionality, but
together they produce the desired results. The actual execution of these
operators can be distributed across a network of processing nodes providing
both intra- and inter-operator parallelism. The capability to define and
implement new operators is provided.

• Distributed Architecture: Through its subsystems, Conquest provides the
needed functionality for client interaction, query creation, compilation, and
management, and finally, the dynamic execution environment for geo-scientific
queries across distributed processing nodes. Through the use of CORBA

3

inter-process communication, hardware, software and network transparency is
obtained.

The next 3 subsections examine each of these key components of Conquest in more detail,
with the first examining the data model, the second examining the operators, and the third
presenting the overall distributed system architecture.

2.1 Data Model

The Conquest Data Model is the representation of geo-scientific data in the system. The great
diversity of geo-scientific phenomena appears to require an equally complex data model in the
context of scientific software. However, Conquest provides a semantically rich but conceptually
simple data model based on the observation that virtually all scientific phenomena can be
modeled as a collection of basic data types and an associated mapping called a field.

In cyclone tracking for example, sea level pressure points are modeled as three dimensional
coordinates with the first dimension latitude, the second dimension longitude and the third
dimension time. Furthermore, each coordinate instance maps to a sea-level pressure value.
With such a canonical form as the basis for processing, the heterogeneity of geo-scientific data
representations is resolved and processing primitives can be implemented independently of the
actual representation.

2.2 Operator-Based Processing

Given the task of designing a system that is both fast, efficient and extensible, Conquest utilizes
the concept of operators as the basic building-block of queries. Each operator implements some
unique processing function, and has one or more input streams but only one processed output
stream. Users combine operators into a tree structure or data flow expression that represents the
user’s query and produces the required results. The leaves in this tree consist of operators that
generate or retrieve data from such repositories as databases and flat files. The internal nodes are
where the data is processed and the root node conducts some final processing of the data before it
is returned to the user. Operators that are siblings in the tree operate in parallel for increased
performance whereas those connected in a sequence form a parallel processing pipeline.

For example, a data flow expression for the cyclone tracking example mentioned in Section 1
is given in Figure 1. Four different operators are used in the query, one for reading sea level
pressure from a database, one for extracting minima (points of low pressure) from this data, one
for reading wind directional data from flat files, and finally, one for the actual cyclone tracking
by processing the extracted sea-level pressure minima with the wind directional data. Including
more advanced forms of processing or adding new functionality such as saving the results of a
query is as simple as replacing or adding more operators to the data flow expression.

4

Figure 1: A data flow expression for cyclone tracking.

In order to combine operators to form queries in such a manner, each operator exposes the
exact same interface of the following five methods and their associated semantics:

• init(): Initializes the operator with the passed arguments
• open(): Prepares the operator to begin processing
• next(): Returns the next granule of data processed by the operator
• close(): Gracefully stops the operator from processing
• abort(): Aborts current processing and closes the operator immediately

With this standard interface, the Conquest execution environment need not concern itself with
what a particular operator does, and views the execution of a query as simply a collection of
connected operators. Furthermore, users can add operators of arbitrary new functionality very

data

datadata

data

data

Wind
Data

Track
Cyclones

Read
SLP
Data

Read
Wind
Data

Extract
Minima

SLP
Data

5

easily, provided that they appropriately implement the required interface methods above. These
required methods are referred to as the Standard Operator Interface.

For example, consider the “Read SLP Data” operator that reads the SLP data from a database
system as illustrated in Figure 1. A call to init() would initialize the operator instance with
the name of the database and the relation to be read from, as well as a reference to the consuming
operator “Extract Minima”. A call to open() would cause the operator to obtain a connection
to the database, open the indicated relation, and prepare for retrieving the data. Calls to
next()would cause the operator to retrieve data incrementally from the database and process it
accordingly to extract the SLP data and send it to the “Extract Minima” operator. A call to
close() would cause the operator to close the database connection, and finally, a call to
abort() would immediately cause the operator to suspend all processing.

In the implementation of Conquest, there are actually two different types of operators,
physical and exchange, although they implement the same Standard Operator Interface described
above. The next two subsections explains what each type of operator does and why this
distinction is necessary.

2.2.1 Physical Operators

Physical Operators implement the logical and algebraic operations necessary to perform
computations and functions on geo-scientific data. For example, all of the operators illustrated in
Figure 1 are Physical Operators. Each physical operator has attributes associated with it that are
used during query construction, optimization and processing, including rules, optimization
properties, and physical conditions. In order to achieve the goal of extensibility, Conquest
provides the ability for users to add new, previously undefined operators to the system, provided
that they adhere to the Standard Operator Interface and the Conquest Data Model. Furthermore,
users are able to inherit behaviors and attributes of existing operators to simplify new operator
development.

2.2.2 Exchange Operators

Given the distributed nature of Conquest, the functionality for an operator to send and receive
data to and from other operators on other processing nodes is provided by the Exchange
Operator. Essentially, the Exchange Operator hides the complexity of network communication
by being placed between operators that are executing on different nodes and need to
communicate. The Exchange Operator is actually a logical concept, with its implementation in
two parts: an Exchange Consumer that resides on the sending node with facilities for sending
data across the network, and an Exchange Producer that resides on the receiving node with
complimentary facilities for receiving data from the network. In essence, an Exchange Operator
is split in half, interfacing with Physical Operators on both nodes but utilizing inter-process
communication between the two halves. This is illustrated in Figure 2 with the right side
showing the logical view and the left side showing how the Exchange Operator encapsulates
network communication.

6

Figure 2: How the Exchange Operator hides network communication complexity.

2.3 Distributed Architecture

The architecture of Conquest is divided into four main sub-systems of potentially geographically
distributed services:

• System Catalog
• Query Management
• Query Compilation
• Query Execution

Briefly, the System Catalog maintains metadata used by both the system and its users. Query
Management provides users of Conquest with the ability to interact with the system to compose

Consuming
Physical
Operator

data

Exchange
Operator

data

data

Producing
Physical
Operator

Producing
Physical
Operator

data

Consuming
Physical
Operator

data data

data

Network

data

data data

Exchange
Consumer

Producing
Physical
Operator

Producing
Physical
Operator

Exchange
Producer

7

queries, locate and specify the input data-sets, and control the actual execution of the query.
Query Compilation provides the services to compile and optimize queries that users have
composed. And finally, the Query Execution sub-system consists of the dynamic, run-time
environment within which Conquest queries execute. The next four subsections briefly present
each of these sub-systems.

2.3.1 System Catalog

The System Catalog is a metadata repository used by both Conquest and its users. The System
Catalog is divided into three areas: a Data Dictionary, an Operator Catalog, and a System
Dictionary. The Data Dictionary contains information about both conventional and OASIS data
resources that can be accessed in Conquest queries, such as the type and schema of the geo-
scientific data the resources contain. The Operator Catalog maintains information about both
predefined and user-defined operators and is used by users during building of queries and by the
system during compilation and optimization. Finally, the System Dictionary maintains
configuration information on Conquest itself, such as resource information on the processing
nodes that are available for query processing. Virtually all parts of Conquest depend on the
System Catalog and typically only one exists in a network of machines that can process Conquest
queries. Figure 3 illustrates the internal structure of the System Catalog.

2.3.2 Query Management

The Query Management sub-system provides users with the functionality for initially building
new queries or retrieving existing queries. The sub-system consists of two services, a Query
Manager and a number of Query Agents. The Query Manager represents the entry-point to
Conquest, from which users are able to build queries or retrieve existing queries. Once a query
has been compiled successfully, the Query Manager creates a Query Agent that manages the
execution of that query on behalf of the user. Query Agents are created on a per-query basis, and
its interface allows users to begin, abort, pause and resume the execution of queries. This sub-
system is illustrated in Figure 4.

Operator
Catalog

Data
Dictionary

System
Dictionary

Figure 3: Components of the System Catalog

8

Figure 4: The Processes of Query Management

2.3.3 Query Compilation

The Query Compilation sub-system represents the services for the compilation and optimization
of a Conquest query. The query a user has created using the Query Manager is simply a data
flow expression with internal nodes representing operators and the leaves representing data
sources. Before the query can be processed however, this expression must be converted into one
that specifies exactly how the query is to be processed. This information includes not only the
operators used, but the actual nodes on which the operators execute and the degree of parallelism
on each node and between nodes. The resulting compiled and optimized query is called a query
execution plan.

To accomplish this task, the sub-system consists of two parts, the Query Parser and the Query
Optimizer. The Query Parser, given a query by the Query Manager, verifies that the query is
both syntactically and semantically correct, and if so, passes it to the Query Optimizer, which
compiles and optimizes the query into a query execution plan. By applying transformation and
rewrite rules, the Query Optimizer produces a number of alternative query execution plans. Then
heuristics are used to select the query execution plan with the least processing cost from the
alternates. Once this process is complete, execution can be initiated by the user via the Query
Agent that has been created by the Query Manager. Figure 5 illustrates this process, showing the
interaction between the Query Manager and the Compilation sub-system.

User

create
agent

(2)

control
query

(4)

Query
Manager

Query
Agent

build or
retrieve
query

(1)

return
agent

(3)

9

Figure 5: The Compilation/Optimization Process

2.3.4 Query Execution

The Conquest Query Execution sub-system, whose design and implementation is the central
focus of this paper, provides the services for the dynamic, parallel execution of Conquest queries
across a potentially heterogeneous, distributed network of computers. Given a query execution
plan, the Query Execution sub-system analyzes it and creates the appropriate processes on each
node involved and establishes the data communication paths between them. This process is
called materialization. Once a query execution plan has been materialized, actual execution can
be invoked by the user via the Query Agent. Materialization is a complex process that involves a
number of services within the Query Execution sub-system, the creation of a number of servers,
and a number of recursive calls. The next section will examine the Query Execution sub-system
in more detail.

3 Query Execution Environment in Detail

Given the distributed nature of Conquest, the processing of a query is considerably more
complex than in conventional systems since it involves the services of a number of potentially
heterogeneous and geographically distributed processing nodes. To accomplish this, Conquest
utilizes the dynamic object server creation and communication facilities of CORBA [5]
extensively. The next four subsections examine the Execution environment in great detail, with
the first subsection examining the overall structure, the following two subsections examining the
two principle services used during query execution, and the last subsection describes actual query
processing.

Query
Manager

raw
query

(1)

compiled and
optimized

query
(3)

parsed
query

(2)

Query
Parser

Query
Optimizer

10

3.1 Structure

Each node available for processing a Conquest query is said to be Conquest-enabled when a
single, static Scheduler Service has been installed on it and the appropriate information has been
registered in the System Dictionary of the System Catalog. The Scheduler’s function is to
prepare the node for query processing by creating one or more Executor Servers. The Executor
provides the framework in which one or more operators execute and the control and
communication facilities and primitives for operators on different nodes to exchange data. These
communication facilities are implemented using CORBA inter-process communication, thus
concealing the hardware, software and network heterogeneity of the underlying systems. The
collection of interconnected Executors represents the query processing environment.

 When a user initiates the processing of a compiled query, the Query Agent contacts the
Scheduler of the node at the root of the query execution plan. This Scheduler is known as the
Root Scheduler and begins the materialization of the query execution plan by analyzing the query
execution plan and contacting Schedulers on the indicated processing nodes, passing to each a
subset of the query execution plan, or fragment. The fragment specifies only the part of the
query execution plan that runs on the Scheduler’s processing node. The contacted Schedulers
analyze the fragment and create and initialize Executors appropriately, which in turn analyze the
fragment to determine:

• which operators to dynamically load and initialize
• which Executors are the producers of this Executor’s input stream
• which Executors are the consumers of this Executor’s output stream

Executors that are created using the same fragment are said to belong to the same Executor
Group. Executors that are consumers of another Executor’s data are known as Consumer
Executors, and those that are producers of data for another Executor are known as Producer
Executors. Note that this is only a role distinction for the purpose of indicating relations between
Executors, and in fact, most Executors are both Consumer Executors and a Producer Executors.

The actual algorithm for materialization implements a depth-first-search traversal of the query
execution plan, contacting Schedulers to create Executors during the top-down phase, and
establishing the producer/consumer communication paths during the bottom-up phase. Thus the
overall Conquest execution environment can be viewed as a tree, where the leaf nodes are the
Executors that implement operators that generate or retrieve the input data, the internal nodes are
Executors that process this data, and the root node is the final Executor where the data receives
some final processing and is returned to the user. Furthermore, within each of the Executors
exists a tree of operators that represents that Executor’s processing pipeline.

An example Query Execution structure is illustrated in Figure 6 for the cyclone tracking query
given in Figure 1. There are three Executor Groups (denoted by the dotted boxes), one for
reading sea-level pressure data and extracting minima, another for reading wind data, and finally,
another for tracking cyclones. Because minima extraction is more computationally expensive
than reading wind data, there are three Executor instances (denoted by solid boxes) in the minima
extraction Executor Group, and thus overall processing benefits from the parallelism. However,

11

many possible combinations of Executors and Executor Groups are possible, with the optimal
configuration determined by the Query Optimizer at query compilation time. The next two
subsections examine the Schedulers and Executors in even more detail.

Figure 6: An example query execution environment for cyclone tracking.

3.2 Schedulers

Read
Wind
Data

data

Extract
Minima

Read
SLP
Data

data

Extract
Minima

Read
SLP
Data

data

Extract
Minima

Read
SLP
Data

Track
Cyclones

data

data data data

SLP
Data

Wind
Data

data data data

data

12

Each Conquest Scheduler manages the query execution environment of a single processing node.
During materialization, its job is to analyze the query execution plan and create the Executors in
which one or more instances of operators execute and establish the communication paths
between these created Executors and their corresponding Producer and Consumer Executors at
other processing nodes. Once a query has been materialized and the user initiates query
processing, the Scheduler performs no other functions until either the user aborts query
processing or until query processing has completed. While a query is processing however, a
scheduler may process other materialization requests from other Query Agents.

A number of Schedulers are involved in the materialization of a Conquest query but not all
Schedulers contacted perform the same functions. Some Schedulers including the Root
Scheduler are contacted to materialize Executor Groups and Executors, whereas some are
contacted only to materialize Executors. This distinction in role is achieved through two similar
but different public interface methods defined in the Scheduler’s interface. The two methods are
materializeExecutorGroup() and materializeExecutor(), with the former
responsible for the materialization of an Executor Group, and the later responsible for the
materialization of one or more Executors on a single node. Clearly, a call to
materializeExecutorGroup() will result in one or more calls to
materializeExecutor(). The two method prototypes, using simplified CORBA IDL, are:

NamedExchangeConsumerSeq materializeExecutorGroup(
in QueryExecutionPlan qep,
in NamedExchangeConsumerSeq consumers,
in QueryAgent agent);

NamedExchangeConsumer materializeExecutor(
in QEPFragment qep_fragment,
in NamedExchangeConsumer consumer,

 in QueryAgent agent);

The arguments to materializeExecutorGroup() include the query execution plan, a
sequence of object references to Consumer Executors, each with a sequence of port identifiers
that indicate its Exchange Consumers, and an object reference to the Query Agent that is
controlling the query’s execution. The algorithm for materializeExecutorGroup() is
implemented as two nested for loops where the outer iterates over each fragment in the query
execution plan, and the inner contacts the appropriate scheduler invoking
materializeExecutor(). The return value is a sequence of object references to Executors
created and for each Executor, a sequence of port identifiers that indicate its Exchange
Consumers.

The arguments to materializeExecutor() are very similar to those of
materializeExecutorGroup(), except that information relevant to only a single
Executor is passed. Thus, the caller passes a fragment, an object reference to a single Consumer
Executor with a sequence of port identifiers that indicate its Exchange Consumers, and an object
reference to the Query Agent. The algorithm then locates the parallelism information for the
processing node and creates one or more Executors as indicated using the same fragment. For
each Executor created, the Scheduler initializes it by passing the fragment that indicates the

13

appropriate operators and communication information. The return value is an object reference to
the Executor created with a sequence of port identifiers that indicate its Exchange Consumers.

After the call to materializeExecutorGroup() on the Root Scheduler completes, the
query execution plan has been materialized and the Execution Environment is ready to begin
processing the query’s input. At this point, the top level Executor, or Root Executor, waits for
the signal to begin query processing. When a query has been either aborted or completed, the
Root Scheduler initiates the de-materialization of the Execution Environment, which is
essentially the reverse of materialization: destroying the Executors created and freeing any
allocated resources.

3.3 Executors

A Conquest Executor manages the environment in which a group of operators execute. The
facilities it provides includes the ability to dynamically load operators and the functions for
communication between its operators and those in the relevant Producer and Consumer
Executors located on other processing nodes. In essence, the Executor provides the functionality
of both the Exchange Producer and the Exchange Consumer to operators executing within it.

Schedulers create one or more Executors based on the parallelism information contained in
the relevant fragment. Once an Executor is created, it is initialized with the fragment, and the
fragment is analyzed by the Executor to load the indicated operators. The operators themselves
are implemented as dynamically loaded libraries which, during initialization, are loaded into a
C++ operator class that uses virtual functions to provide the Standard Operator Interface. Thus,
during query processing, the operators are able to interoperate using the Standard Operator
Interface and the Conquest Data Model without regard to what the operator does, and whether or
not they are communicating with an Exchange Operator or Physical Operator.

To manage the communication between operators within an Executor and operators in other
Executors, an Executor implements the functionality of the Exchange Producer Operator by
including the Standard Operator Interface methods in its interface, and one or more Exchange
Consumer Operators through the thread-per-invocation facilities of CORBA. When an operator
in a Consumer Executor requests information from an operator in a Producer Executor, the
former simply invokes the next() method defined on the Producer Executor. The
implementation of next() by the Executor utilizes CORBA inter-process communication
facilities, thus providing architecture, network and location transparency. In the case of
Exchange Consumers, the Executor receives data asynchronously and places it into an input
buffer for its Physical Operators to process.

The two public interface methods that an Executor implements, in addition to the Standard
Operator Interface, are:

ExchangeConsumerPortSeq materializeQEP(
in ConqQueryWKS::QEPFragment qep_fragment,

 in ExchangeConsumerPortSeq consumer,
 in ConqManagement::QueryAgent agent);
void destroy();

14

The method materializeQEP() implements the initialization functionality that the
Scheduler invokes after the Executor is created. The arguments to it are a fragment, an object
reference to a single Consumer Executor with a sequence of port identifiers that indicate its
Exchange Consumers, and an object reference to the Query Agent. This method’s algorithm is
similar to that used in materialization in that it uses a depth-first-search traversal to dynamically
build a tree of operators by loading the corresponding dynamically loaded libraries during the
top-down phase and establishing the communication links between operators during the bottom-
up phase. Then, the init() method is invoked on each operator instance with the arguments
indicated in the query execution plan. The return value of materializeQEP() is a sequence
of port identifiers that indicate the Executor’s Exchange Consumers, if any.

The method destroy() implements the reverse of the initialization function. The method
is invoked by the Root Scheduler when either the query processing completes or when it is
aborted by the user through the Query Agent. In either case, the caller is the Scheduler that
created the Executor via materializeExecutor(). Its implementation releases all
resources allocated by the Executor and then destroys the Executor server instance itself.

3.4 Query Processing

Given the Standard Operator Interface and the Conquest Data Model, query processing is very
simple. Once the query execution plan has been materialized, the user initiates query processing
by signaling the Query Agent to begin. The Query Agent contacts the Root Executor and
invokes the open() method on it to prepare the materialized Executor hierarchy for processing.
This invocation travels recursively down the operator hierarchy until all the operators in this
Executor are ready for processing to begin. Then, the call travels to the Producer Executors of
the Root Executor and so on, until open() has been invoked on all operators.

Once completed, the Agent then invokes the next() method on the Root Executor to
actually begin the processing of data. This call is also recursively invoked throughout all
Executors and their operators in the Executor hierarchy. Once the bottom-most operators have
received the next() invocation, they immediately begin to retrieve or generate the input data as
appropriate and send it back up the operator and Executor hierarchy for processing, to the Root
Executor, and ultimately to the user.

The stream of data within an Executor is demand-driven, meaning that the root operator
explicitly requests data from its descendent operators. The stream of data between Executors,
however, is data-driven, meaning that the Exchange Producers always attempt to transmit data to
their Exchange Consumers, blocking only when there is no more data to transmit or when the
Exchange Consumer’s input buffer is full. The advantage of this distinction is the reduction of
the communication latency between Executor instances, especially when considering the data
marshaling costs and the potential communication latency, while still providing fine grain control
over data streams within an Executor instance.

4 Discussion

15

In order to meet the goals outlined in Section 2, a number of difficulties surface that required
non-trivial solutions. These difficulties included:

• automating system configuration
• operator environment
• operator encapsulation
• exchange consumer identification

The next four subsections discusses each of these difficulties in detail, the justification for the
solutions chosen, and the resulting tradeoffs.

4.1 Automating System Configuration

Given the complexity in a potentially large-scale, geographically distributed system like
Conquest, it was realized early on in its implementation that keeping system administration
overhead to a minimum was an absolute necessity. In terms of the Execution Environment, this
means reliably automating as much as possible the dynamic configuration information the system
depends on. For a Conquest-enabled processing node to be considered for use in a query, it must
be registered in the System Dictionary of the System Catalog. Once registered, the Optimizer
can choose it as a processing node in a query execution plan, unless performance reasons
disqualify it. The difficulty thus became, how can Scheduler registration be coupled with
creation and destruction since these events determined when a Scheduler became available or
not?

Thanks to the Lifecycle Services provided by the Object Development Framework in the Sun
implementation of CORBA, it was possible to reliably automate Scheduler registration and de-
registration with the System Catalog. The Lifecycle Services provided the necessary hooks by
allowing the invocation of methods during object creation and destruction. In other words, it
became possible to automatically invoke a function immediately after a Scheduler is created and
destroyed. The method, _initialize_new_ConqScheduler(), automates registration
by locating the System Catalog using the CORBA Naming Service, and then, after determining
resource information such as hostname, type, number of CPUs, etc., invoking the
registerScheduler() method on the System Catalog with this information to add it to the
database. This information is then used by the Query Optimizer when comparing processing
node capabilities and resources during optimization. Destruction of a Scheduler similarly
invokes unregisterScheduler() on the System Catalog to remove this information from
the database.

4.2 Operator Environment

With the features and communication facilities that CORBA provides, it seems obvious to
implement operators as full-fledged CORBA objects. Therefore, Exchange Operators would no
longer be needed since its functionality would become an integral part of all Physical Operators.
Whether an operator was communicating data to an operator on the same processing node, or to a

16

node across the network, the communication complexity would become completely transparent
to the operators involved. However, this was decided against because CORBA inter-process
communication facilities, although successful in providing architecture, network, and location
transparency, involved too much overhead to provide the level of performance needed in such a
data intensive application—even communication overhead between objects on the same
processing node was significant! One study [1] showed that CORBA inter-process
communication performance averaged 40 megabits per second, whereas sending the equivalent
data using streams averaged 80 megabits per second.

Thus the concept of an Executor was born that would provide operators with the benefits of
CORBA inter-process communication but without this overhead between operators executing on
the same node. Operator communication within an Executor would result in only function call
overhead, but only the communication between operators in different Executors would incur the
CORBA inter-process communication overhead. Unfortunately, communication performance
between Executors is still a serious concern, but work is underway to address this inadequacy.

4.3 Operator Encapsulation

In an attempt to reuse the operators implemented in an earlier version of Conquest (discussed in
Section 5.2), it became necessary to find a way to easily implement the required Standard
Operator Interface. The earlier version of Conquest specified that the operator be implemented
as a library and provide the Standard Operator Interface, but prefix each function name with the
name of the operator. For example, the “TrackCyclones” operator illustrated in Figure 1 would
implement the interface: TrackCyclones_open(), TrackCyclones_close(), and so
on. Thus the difficulty arose of how could operators be invoked via the Standard Operator
Interface when their method names do not follow the Standard Operator Interface convention?

What was needed was a way to automatically mask out the prefixed function names so that a
call to open() invoked TrackCyclones_open(), a call to close() invoked
TrackCyclones_ close(), and so on. This was accomplished by using a combination of
C function pointers and C++ classes. A C++ class, physicalOpExec, was defined with the
Standard Operator Interface methods as function pointers. When an instance of this class is
created, an initializer method dynamically loads the operator library and sets the interface
function pointers to point to the appropriate methods. In the case of “TrackCyclones”, open()
would point to TrackCyclones_open(), close() would point to
TrackCyclones_close(), and so on. Unfortunately, a level of indirection is introduced
during method calls but at the benefit of not having to reimplement existing operators.

4.4 Exchange Consumer Identification

After having decided to load one or more operators within a single CORBA server, a problem
arose in how to uniquely refer to the potentially numerous Exchange Consumer Operators a
single Executor instance could have. A materialized Consumer Executor contains within it a tree
of operators with Exchange Consumer Operators logically as leaves. These Exchange Consumer
Operators receive data from one or more Producer Executors, but each Producer Executor sends

17

data to a specific Exchange Consumer Operator. Given that these Producer Executors run on
different machines, they would be asynchronously sending data to their Consumer Executor’s
Exchange Consumer Operators. However, if there is more than one Exchange Consumer
Operator in the Consumer Executor, how can the Consumer Executor know for which Exchange
Consumer Operator the data is for since the senders of the data have only an object reference to
the Executor? Worse, an Exchange Consumer can receive data from multiple Producer
Executors, so how could the Consumer Executor identify which Producer Executor the data is
from?

Thus, some way was needed for an Executor to indicate not only which Exchange Consumer
Operator in a Consumer Executor was to receive its data, but a way to uniquely identify the
Executor to the Exchange Consumer. For simplification, it was decided that each Exchange
Consumer would have one or more ports through which data from an Producer Executor would
be received. Each port would have a unique number, even if the Executor contained more than
one Exchange Consumer. Thus, the problem became, then how can the port number be conveyed
when a Producer Executor sends data to a Consumer Executor?

Two potential solutions were explored, the first using CORBA sub-objects IDs and the second
by passing an integer indicating a port along with the data. CORBA sub-object IDs provided the
capability to use a portion of the object reference to store the port number. When an invocation
is received, this information is automatically extracted by the ORB and passed as an argument to
the function. The second solution is essentially an inexpensive implementation of sub-object
IDs, in this case the caller explicitly passes the port number to the receiver. The second solution
was chosen because it is simpler to implement, and provides the necessary functionality and
adds only the cost of marshaling an integer.

5 Related Work

The design and implementation of Conquest incorporated ideas from a number of systems. The
next four subsections briefly describe its four primary influences:

• Volcano, a query execution engine that introduced the concept of the exchange
operator and the basic query execution model

• Conquest-PVM, an earlier implementation of Conquest using the PVM
message-passing model

• CORBA, the object-oriented, distributed system standard
• OASIS, an environment for the study of geo-scientific data

5.1 Volcano

Volcano [2], recognizing the need for both high functionality and high performance in emerging
database applications, provides a query execution engine that utilizes parallelism and operator-
based processing extensively. Operators can be combined to form arbitrarily complex query
evaluation plans. Furthermore, to provide for the distribution of such operators, Volcano

18

introduces the exchange operator to hide operators from the complexities of process allocation,
inter-process communication, flow control, and architectural differences.

Volcano also provided the basis for Conquest’s query execution model, and Conquest
extended it with the support of scientific data models including relational data, scientific data
fields, and multidimensional arrays, and with operators specifically for geo-scientific data
mining. Furthermore, support for various external file formats, such as HDF and netCDF, was
added as well as database systems such as Illustra.

5.2 Conquest-PVM

Conquest-PVM [3] is an earlier implementation of Conquest utilizing the PVM message-passing
facility for inter-process communication. Its primary goal was the development of an exploratory
data mining system for the rapid expression and execution of geo-scientific queries in a network
of single processor nodes and even massively parallel machines. The architecture consisted of
three subsystems: a Scientist Workbench for query specification, a Query Manager for query
compilation and optimization, and a Query Execution Server for the actual processing of queries.
Queries in Conquest-PVM are operator based, providing both inter- and intra-operator
parallelism.

5.3 CORBA

The Common Object Request Broker Architecture (CORBA) specification provided the facilities
for building Conquest as a fully distributed system. It is the result of efforts from a consortium
of computing technology institutions and vendors called the Object Management Group (OMG),
whose ultimate goal is to specify an architecture for an open software bus via which object
components provided by different vendors can interoperate across heterogeneous systems and
networks, and the services such objects might require. With objects that are fully CORBA
compliant, implementers will not have to deal with the issues of location and communication in
potentially heterogeneous systems and networks. The architecture itself is an object-oriented,
client/server model that consists of four main elements: a message-passing protocol, an object
model, a virtual communication backbone, and a number of object services.

CORBA has proven to be a successful foundation upon which to build distributed systems,
and was used extensively in both OASIS and Conquest. The facilities that it provides have
significantly reduced the amount of development effort needed when compared to conventional
methods such as Remote Procedure Call (RPC). Furthermore, given its efficient abstraction of
remote invocations, even users with little understanding of distributed system concepts have been
able to produce correct implementations. However, from the experiences in implementing both
OASIS and Conquest, CORBA implementations must improve the performance of inter-process
communication and provide more fully compliant implementations before CORBA can become a
more general and widely used solution. Furthermore, the quality of the development
environment leaves much to be desired.

5.4 OASIS

19

OASIS is a flexible, extensible, and seamless environment for scientific data analysis, knowledge
discovery, visualization, and collaboration. It is funded by NASA under the Earth Observation
System program, whose goal is to develop the next generation systems and technologies for the
geo-scientific study of Earth’s environment. The major design goals of OASIS include the
development of an object hierarchy for the precise representation of geo-scientific data, a query
processing facility for complex scientific queries involving large data-sets (which Conquest
provides), a standard and efficient method for accessing a wide variety of data repositories, and
finally, a basis for the integration of data analysis and visualization with data management. The
foundation for the distributed architecture of OASIS is the CORBA standard.

The success of OASIS both as a distributed system and as a geo-scientific tool provided the
impetus for re-implementing Conquest using CORBA, and integrating Conquest with OASIS.
Thus, users of Conquest can access the features and services that OASIS provides, as well as the
geo-scientific data repositories that it provides uniform access to.

6 Conclusion

Conquest is a distributed, geo-scientific query processing system that has successfully
incorporated distributed object technologies to allow users to efficiently study geo-scientific data
without concern for its vastness, heterogeneity and distributed nature. Furthermore, its
extensibility allows users to address the continually changing and evolving requirements of geo-
scientific study by providing the framework in which to incorporate new query processing
functionality. Such extensibility and performance is necessary to provide scientists with the
facilities for rapid query development, refinement and execution.

Bibliography

[1] A. Gokhale and D. C. Schmidt, “Measuring the Performance of Communication
Middleware on High-Speed Networks”, Proceedings of ACM SIGCOMM 1996, August
1996.

[2] G. Graefe, “Volcano, an Extensible and Parallel Dataflow Query Processing System”,

IEEE Transactions on Knowledge and Data Engineering, 1994.

[3] E. Mesrobian, R. R. Muntz, E. C. Shek, J. R. Santos, J. Yi, K. Ng, S. Y. Chien, C. R.

Mechoso, J. D. Farrara, P. Stolorz, and H. Nakamura, "Exploratory Data Mining and
Analysis Using Conquest", IEEE Pacific Rim Conference on Communications, Computers,
Visualization, and Signal Processing, Victoria, British Columbia, Canada, May 1995.

[4] E. Mesrobian, R. R. Muntz, E. C. Shek, S. Nittel, M. Kriguer, M. La Rouche, and F.

Fabbrocino, "OASIS: An EOSDIS Science Computing Facility", International
Symposium on Optical Science, Engineering, and Instrumentation, Conference on Earth
Observing System, Denver, Colorado, Aug. 1996.

20

[5] The Object Management Group, The Common Object Request Broker: Architecture and

Specification, OMG Document 95.12.29 Revision 2.0, 1995.

