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Abstract

Service providers today face several challenges. By all accounts Internet traffic is
growing at 40-50% per year, necesstating costly upgrades to carrier infragructure. Y et
cariers do not see a commensurate increase in revenue, nor do they see relative
reductionsin capital and operational expenditures (Capex and Opex).

Part of the problem is that service providers today separately own and operate two
distinct networks: packet-switched IPPMPL S networks and circuit-switched TDM/WDM
Transport networks. These networks are typically planned, designed and managed by
separate divisons even within the same organization, leading to substantial management
overhead, functionality/resource duplication, and increased Capex/Opex. This is clearly
an expensve and inefficient way to run networks. There have been other attempts to
unify the control and management of circuit and packet switched networks — essentially
run one converged network instead of two — but none have taken hold.

In this thess, we propose a Smple way to unify both types of network usng an
emerging concept called Software Defined Networking (SDN). SDN advocates the
separation of data and control planes in networks, where the data-plane can be abstracted
and represented to external software-controllers running a Network Operating System
(NetOS). All network control functions are implemented as applications on top of the
NetOS. The applications make control decisons that manipulate an annotated-map of the
network presented to them and kept consistent by the NetOS. In turn the NetOS trand ates
the map-mani pulations into data-plane reality by programming the data-plane switch flow-
tables via a switch-API like OpenFlow. As circuits can readily be defined as flows, the
basic idea is that a common-flow abstraction fits well with both packet and circuit
switches; provides a common paradigm for control using a common-map abstraction; and
makes it easy to control, jointly optimize, and insert new functionality into the network.

We call our SDN based solution pac.c for packet and circuit .network convergence.



We defined the common-flow abstraction as flow-tables that take the form of |ookup-
tables in packet switches and cross-connect tables in circuit switches. Together with a
switch-API like OpenFlow, which we extended for circuit switches, it abstracts away
layer and vendor specific hardware and interfaces, while providing a flexible forwarding
plane for manipulation by a common control plane. The common-map abstraction was
defined as one which provides full vishility into both packet and circuit switched
networks, while abgracting away the complexity of date-dissemination from
applications, allowing the latter to be implemented in a centralized manner.

We built several prototypes to demonstrate and verify our architectural constructs.
Our complete pac.c prototype emulates an inter-city carrier network, with access packet-
switches in three cities, interconnected by hybrid packet-optical switches in the
backbone, all under OpenFlow/SDN control. With this prototype, we verified the
smplicity and extensbility of our architectural solution, compared to current state-of-the-
art indugtry practice. More importantly, we presented qualitative architectural insghts
into why our solution fares better; and gave reasons why our control solution can succeed
where GMPLS - the only previous attempt at unified control over packets and circuits -
failed. Finally, we identified and demonstrated several new networking capabilities
enabled at the packet-circuit interface, and offered architectural solutions to a number of
deployment challenges faced by any new control solution.

To demongtrate the benefits of reduced Total Cost of Ownership (TCO), we designed
and analyzed today’s IP networks and contrasted it with a converged packet-circuit
network based on our control architecture. We found nearly 60% Capex savings and
40% Opex savings. More importantly the savings are insendtive to varying traffic
matrices and grow as we dimenson the network for increasng traffic demand. And
finally, we introduced the map-abstraction in MPLS networks and demonstrated how
existing packet services like traffic engineering can be replicated in an SDN based
network, without the complexities of the IPPMPLS control plane. In doing so we drew
parallelswith SDN based control for packetsand circuits.
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To summarize, we have proposed, designed, analyzed and demonstrated a converged
IPIMPLSOptical network architecturally based on SDN. The common platform helps
reduce expenditures, provides existing services, and helps carriers innovate by easing the
introduction of new revenue-generating services that differentiate them from other
carriers. Our work is in the early stages but with further development, if these ideas are
adopted by service providers, its main impact would be that they can remain profitable as
the Internet grows. As a result they would then have greater incentive to invest in their

networks, which in-turn could benefit society immensdly.
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Chapter 1

Introduction

Large scale networks are expensve to operate and service providers are always looking
for ways to reduce their capital and operational costs. One approach involves reducing
the number of different types of networks they own. This can be accomplished by
converging the different services the networks offer on to one network. For example,
many service providers have diminated specialized core-telephony networks and
converged voice services with data services on to | P networks.

This thes's however, is about the convergence of networks running at two layers.
Large service providers such as AT& T and Verizon support two infrastructures — a Layer
3 IP network and an underlying Layer 1/0 optical transport network. Today these
networks are run separately; they are planned, designed and operated by different groups
of people, evenif they are in the same organization.

Partly this separation is because of the different heritage of the two networks.
Transport networks — with their telecom heritage — tend to be tightly managed and over-
engineered for extreme reliability and redundancy. Detalled and sophisticated
management systems have always been integral to the design of transport networks. On
the other hand, the Layer 3 networks have precious few management capabilities. The
general approach isto configure - in a distributed fashion - each large router, with many

locally created scriptsand tools and | et automated control mechanisms take over.



2 CHAPTER 1. INTRODUCTION

The network technologies are also quite different - IP networks are packet-switched,
while transport networks are circuit-switched' - and there is a lack of common control
mechanismsthat support both technologiesin a simple, unified way.

Whatever the reasons are, one thing is clear - operating two networks with two
completely different mechanismsis clearly more expensive and inefficient than running
one converged network with a unified control mechanism. There have been other
attempts to unify the control and management of Layer 3 and Layer 1 networks — in
particular, GMPLS — which is overly complicated, and seems unlikely to be adopted.
Even if it was used, GMPLS tends to preserve rather than break down the traditional
separation between the two networks.

In thisthes's, we propose a smple way to converge both types of networks based on
an emerging concept known as Software Defined Networking (SDN). We use SDN
principles to define a common-flow abstraction that fits well with both types of network
and provides a common paradigm for control; and a common-map abstraction, which
makes it ampler and easier to insert new functionality into a converged packet-circuit
network.

In this chapter, we first introduce the two wide-area network infrastructures and
highlight their main differences. We then date the problem as one where we wish to
samplify and unify the management of Layer 3 and Layer 1 networks, so that the network
can bejointly optimized to provide the best service for customers. We discuss the state-of
the-art and briefly touch on reasons why previous approaches have not worked. We then
introduce our unified control architecture by giving details on the two abstractions they
are based on and discussng their benefits. Finally we summarize our contributions, and
outlinetheres of thisthess.

T Note that the use of the term ‘circuit’ in this thesis does zof imply low bandwidth (kbps) telephony-circuits.
Circuits in the optical transport network range from several hundred Mbps to tens of Gbps. The use of the term
‘circuit’ simply implies guaranteed-bandwidth that is provisioned before it is used. This thesis interchangeably uses
the terms ‘circuit-switching” and ‘optical-switching’. We consider optical switches in the transport network that
have digital switching fabrics (eg. time-slot switching) as well as photonic switching fabrics (eg. wavelength-
switching). We do not consider forms of optical-switching that are not circuit-switched (eg. optical packet and
burst switching).



1.1 The Transport Network and the Internet

Wide area | P networks form the backbone of the Internet today. |P networks are packet-
switched, i.e. packets are individually switched hop-by-hop from source to destination by
IP routers. However, the packets are physically transported between the routers in an
underlying nation/world-wide network of optical fibers and circuit switches (Fig. 1.1).
Collectively this underlying network is known as the Transport Network. We take a

closer look at the two networksin the following sections.
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Figure 1.1: IP and Transport Networks
1.1.1 Internet Architecture

Architectural components of the Internet (layers, naming, addressing, protocols etc.) have
been widdy covered in several books. The Internet is a collection of interconnected IP
networks. The congituent networks that make up the Internet have independent
ownership, administration and management. To achieve global connectivity these
networks use E-BGP to advertize | P address reachability and choose routes across routing

domains known as Autonomous Systems (AS) [1].
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This thes's is not about Internet architecture as a whole, but it does deal with the
architecture of 1P networks within an AS in the wide-area (WAN). A closer look at such
intra-domain' IP core-networks reveal the following:

e [P networks have automated, fully-distributed control mechanisms. Such control
mechani smsinvolve routing protocols (1-BGP, OSPF etc) and in some cases signaling
protocols (LDP, RSVP etc) implemented in each router (Fig. 1.2). An IP router is
both the control e ement which makes control decisons on traffic routing, as well as
the forwarding element responsble for traffic forwarding. Control mechanisms are
automated - after a router has been ‘ configured’ (either manually or using scripts), the
router automatically discoversits neighbors, the network topology, exchanges routing

information, forwards packets, learns of failures and re-routes packets around them.

Features/functions/services Fully distributed
implemented in fully control mechanisms
distributed ways

All IP Routers from a
single vendor

Figure 1.2: Intra-domain IP Networks

e Services (or network functions/features) in IP networks, also tend to have fully-
digtributed implementations, which interact in subtle ways with the fully distributed

control mechanisms (Fig. 1.2). These subtle interactions and the fully-distributed

T Intra-AS is sometimes also referred to as intra-domain in routing-protocol terminology. For example,
OSPF, IS-IS and I-BGP are examples of intra-domain routing protocols while E-BGP is inter-domain. In
this thesis we subscribe to the use of ‘domain’ from routing protocol terminology.



nature of their implementation make the features offered by an IP router-vendor non-
gandard (and as a result non-interoperable with other implementations), even though
the control mechanisms are standardized. As an example, consder the network-
function of traffic-engineering. Such a function today is provided by MPLS-TE
(Traffic Engineering — discussed in more detail in Chapter 5). It depends on the
IPIMPLS control plane which comprises of standardized protocols IS-IS and RSVP-
TE. But the function of engineering traffic itsdlf is proprietary and non-standardized.
Traffic engineering on Cisco routers does not interwork with TE on Juniper or
Huawei routers. And so, core I P networksare typically single-vendor networks.

e Networks perform poorly when congested. It has long been recognized that over-
provisioning a packet network helps performance and end-user experience. Even
though the public Internet remains best-effort end-to-end, Service Level Agreements
(SLAS) and Quality-of-Service (QoS) guarantees exist between an IP network and its
customers (such as other 1P networks or large enterprises). Over-provisioning helps
meet SLAs as wdll. And so we find that intra-domain IP core-networks are typically
2-4X over-provisioned.

e Management functions in IP networks involve configuration (typicaly via a
Command Line Interface (CLI)), monitoring (typically via SNMP) and periodic
maintenance. |1P networks are generally perceived as hard to manage [2]. It is fair to
say that P management is ad-hoc and labor intensve. Teams of highly qualified
personnel manually tweak the network, in the hope of achieving a balance between

thelocal goals of each provider, and the global need to maintain connectivity.

To summarize, the Internet today provides a datagram, best effort service end-to-end;
However the Internet is made up of intra-domain IP networks which are over-provisioned
for acceptabl e performance and the need to meet SLAS, have automated, fully distributed
control mechanisms, implement services in a distributed way making them typically

sngle-vendor networks; and remain hard to manage.
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1.1.2 Transport Network Architecture

The fundamental goal of a transport network is to provide communication bandwidth
from one geographic location to another. For example, the I P link between two routersin
awide-area intra-domain |P network is alogical one — it may be established with atime-
dotted circuit or with a wave ength-circuit in the transport network (Fig. 1.3). Here the IP
network isregarded asa client to the transport network.

Logical Link between two Routers over the Wide-Area

TDM Switch
(SONET/OTN)

Physical
RouterLink

Other

Other
Clients

Clients

40-160 WDM Switch
Wavelengthschannels (ROADM)
each at 2.5, 10 or 40Gbps

Figure 1.3: IP Router Connectivity in the Transport Network

|P Networks

Cellular

TRANSPORT Network

Figure 1.4: Transport Network and its Clients



Today transport networks support several “client networks’: IP core networks, the
Public Switched Telephone Network (PSTN), the cellular network, point-to-point
private-lines and enterprise private-networks (Fig. 1.4).

The transport network itsef comprises of optical fibers with many (40-160)
independent wavelength channels terminated at the WDM line-systems. The same
wavelength in adjacent line systems may be stitched together to form a wave ength
circuit (or path) via physical cables or via a waveength-switch (WDM switch). Each
wavelength channel operates at 2.5, 10 or 40 Gbps, 100Gbps waveengths will be
available in the near future. Because the wave ength channels operate at such high line-
rates, the transport service provider often wants to sub-divide it to give sub-wave ength
granularity connectionsto clients. Such granularity is provided by TDM switches.

The generic functional architecture of a transport network is described by the ITU in
[3]. While we don’t go into deep details of the architecture and its terminology (whichis
substantial), from a high level it conssts of several layers and partitions[4].

We make the foll owing observations on transport networks:

e In contrag to IP networks, transport networks are always intra-domain (intra-AYS),
i.e. there is no equivalent to the Internet’s inter-domain (AS to AS) interaction.
Instead the transport network describes partitions as “domains’ (Fig. 1.5). Idands of
equipment from different vendors, with different control or management procedures
that do not interoperate, force the transport network to be partitioned into vendor-
specific-idands’. So while the transport network is a multi-vendor network (unlike IP
networks), they are not automated. In fact, transport networks are highly managed,
where a hierarchy of Element and Network Management Systems (EMS/NMS)
together with the OSS (Operations Support Systems) perform al control and
management tasks (Fig. 1.5). In general, these sysems are not programmatic
interfaces, but full-blown GUIs which are vendor proprietary and triggered manually

by teams of specialized network operators.

T With this definition, the control and management functions within an island are referred to as intra-domain and
the interactions between islands as inter-domain. In this thesis, we will refrain from using “domain” to refer to
vendor-islands to avoid confusion with the usage in IP networks. Also within a single vendor-island, there may
be topological partitioning to improve the scalability of control procedures.
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Figure 1.5: Transport Network Control & Management (OSS functions from [5])

Providing a service in a transport network is a lengthy manual process. Consider a
service supported by circuits in the data plane [4]: Firs, the path is planned by
different planning groups in a piece-wise manner from one city to another. Then
different provisioning groups execute the plan by manually configuring the transport
network eements and their corresponding management systems along the path, and
finally testing teams verify that the service is actually working and the associated
management databases are being updated. It is easy to see why provisioning such a
service takes weeks to months, and once up, why these circuits are static and stay in
place for months or years.

Traditionally, transport networks have lacked distributed control planes, but have
aways had a clean separation between data and management planes, where the
EMSNMS are physically separate from the data plane switches. They also tend to be
more centralized in their control and management functions. Even when an automated
digtributed control plane exigts, it does so within avendor idand making it proprietary
and non-interoperable with other islands. Furthermore the automated control planeis
dill typically triggered manually via EMSNMS.

A transport network always provides hard guarantees in SLASs typically in terms of
‘big-pipes of bandwidth with high availability', delay and jitter bounds. For example



- guaranteed 10Gbps from point A to point B with 99.999% availability — the latter is
known as five 9s availability which corresponds to about 5Smins of downtime in a
year. The ‘big-pipe€ granularity comes from the fact that in most cases, traffic has
been aggregated the point where they require big pipes for transport. But it also stems
from the fact that because it takes so long for a customer to ‘get’ such a service, the
customer often prefers to get more at one time and keep it for a long time (Satic)

without having to ask for more (and be subject to the long provisoning times).

1.2 Problem Statement

Service providers such as AT&T and Verizon today separately own and operate two
distinct wide-area networks: packet-switched IPPMPLS networks and circuit-switched
TDM/WDM transport networks. In fact, the biggest transport service providers
(carrierdtelcos) in the world are also the biggest Internet Service Providers (ISPs). For
example, traditional carriers like AT&T, Verizon, British Telecom, Deutsche Teekom,
NTT, Level 3/Global Crossng, Tataand othersarealso Tier 1 and Tier 2 ISPs[6].

These two networks are typically planned, desgned and managed by separate
divisons even within the same organization. Clearly owning and operating two separate
networks is inefficient. At the very lead, it leads to substantial management overhead
from two teams of operators trained on different modes of operation and different
management tools. But more importantly, it has a profound effect in terms of the Total
Cogt of Ownership (TCO).

Capex: To cope with Internet traffic growth (40-50% per year [7]), carriers would
like to see lower Capex per Gbps' when upgrading their infrastructure. However, this has
not been true in practice. Operating two networks separately typically involves
functionality and resource duplication across layers. Fault tolerance is a prime example:

The underlying transport network often operates with 1:1 protection, while the IP

T For example, a 2X increase in cost for a 4X increase in capacity
“ Upgrading from 10G to 40G links required more than 4X increase in equipment cost [9]
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network running on top operates at less than 30% link utilization in preparation for

unexpected traffic surgesand link failures.

Opex: Operational expenditures can account for nearly 60-80% of the Total Cost of
Ownership (TCO) of the network”. Such cost involve labor costs, costs for network
Operations, Administration, Maintenance and Provisoning (OAM& P); equipment rack
and PoP/CO' building rentals, and power consumption for operation and cooling.
Separate operation of the two networks also involves time and labor-intensve manual
coordination between the teams for service provisioning and mai ntenance tasks.

Service-Differentiation/Innovation: Service providers find it hard to
differentiate their service-offerings from other carriers. Networks today are built usng
closed-systems (routers and switches) from the same set of vendors with the same set of
features. The features are private “ secret sauce’ created insde each vendor's product. As
a result, features are frozen insde each box, making innovation slow. The vendors have
little incentive to innovate and create a barrier to entry for others, in both I P and transport
networks.

Thus it is clear that from a service provider perspective, two separate networks that
operate differently are inefficient. In networking, two is Ssmply not better than one. In
this thesis, we ask the question — is there a way to run one network instead of two? The
problems outlined above led us to define three main goal s underlying our work:

e To amplify and unify the control and management of IP and transport networks, so
that the network can be jointly optimized to provide the best service for customers.
Today, these planesare so different, and so complicated, that thisis not feasible.

e Allow network operators to create and add new features to their packet and optical
networks to provide revenue generating services that differentiate them from other
carriers, thereby enabling a path of continuous innovation in the infrastructure.

e To alow network operators to use lower cos, lower power and more scalable optical

Layer 1 trangport switchesin places they would use large, complex | P routers today.

TPoP — Point-of-Presence; CO- Central Office
" From private communications with several large cattiers.
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1.3 State of the Art

In this section, we discuss two topics that are dtate-of-the-art for IP and transport
networks. The first involves a viewpoint popularly held by router-vendors. The second

discusses the only previous attempt at unifying the control of the two networks.

1.3.1 IP over WDM

In this viewpoint, running one network instead of two can smply be achieved by
eliminating circuit switching between the routers.

Recall that in Section 1.1.2, we stated that the transport network currently supports
multiple client networks (Fig. 1.4). In recent years, there has been a trend to migrate the
other client networks to the Internet. For example, traditional voice services are moving
to IP, both at the end-user and in the service provider's core Meanwhile 4G cdlular
networks are also transtioning to all-1P networks for both data and voice. Previoudy (in
2G/3G) they used the IP network for data but circuit-switched networks for voice.
Finally, point-to-point private-lines and enterprise private-network customers are
increasingly moving to packet-network based solutions (eg. VPNS).

It is therefore entirely conceivable that in the near future, in contrast to Fig. 1.4, the
only client for the transport network will be the Internet (Fig. 1.6(a)). In such a scenario,
itisentirely valid to ask if thereisaneed for circuit switching in the underlying transport
network.

All Services ) o= All Services

@ Internet (b)

Transport
Network

Figure 1.6: Possible Futures
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For example, IP routers could be directly connected by point-to-point optical WDM
links, in which case the WDM line systems are subsumed by the IP network (Fig. 1.6(b))
and transport switching is entirely eliminated — |P over WDM (no circuit switches).

We don’'t believe circuit switching will (or should) be diminated. On the contrary, we
believe that circuit switching is here to stay in the core, as it can make the Internet more
efficient, with the caveat that for this to happen, the two networks must work together
dynamically.

Fundamentally, packet switching is always going to be more expensive than circuit
switching, simply because it performsa lot more functions, and does so at a much smaller
granularity at much faster time-scales. In Appendix A, we show that our expectations are
matched by numbers we obtain from real-world packet and circuit switches in the
industry. Circuit switches are much more scalable; a circuit switch can switch much
higher data rates, and consume much less power than an eectronic packet switch. A
useful rule of thumb isthat an optical circuit switch consumes about 1/10" of the volume,
1/10™ of the power and costs about 1/10" the price asan el ectronic packet switch with the
same capacity (Appendix A). As a consequence, they are smpler, lower cost and more
space efficient than an e ectronic packet switch.

Thisis not an attempt to say that packet and circuit switches are equivalent, because
clearly they are not — while they both provide connectivity, they do so very differently.
However, there are some functions that circuits can perform exceedingly well in the core
— functions like recovery, bandwidth-on-demand, and providing guarantees (which we
discuss in Chapter 3) — such that if circuits are eliminated, and those functions are then
provided by packets, it comes at the cost of price (Capex), power consumption and size
(Opex). In Chapter 4, we show the Capex and Opex inefficiencies of designing an IP-
over-WDM network (without circuit switching), when compared to a packet network that
interacts with a dynamic-circuit-switched network under common control.

On the other hand, a circuit switch doesn’t have the statistical multiplexing benefits of
a packet switch. This matters little at the core of the network where flows destined to the
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same next hop are naturally bundled, and their aggregate is relatively smooth [9]. Closer
to the edge of the network, however, packet switching offers big benefits due to statistical
multiplexing and more fine-grain control.

Thus we believe that packet switching is here to stay at the edge and dynamic-circuits
offer significant advantages in the core. Indeed others have shown similar benefits [10,
79, 82-84].We do not know where the boundary between the edge and core lies, but
preferably it isa flexible one. Diverdgty in the data plane is beneficial as both packets and
circuits offer unique capabilities and cost vs. performance benefits in the data plane. But
thereis no real need for diversity in the control plane! And so the only way to run one
network instead of two isto have a sngle converged control plane for packet and circuit

switched networks. Thisthes s proposes a means for achieving such convergence.

1.3.2 MPLS/GMPLS

We are not the first to suggest a unified way to control packet and circuit switches. Most
notably GMPLS offered an alternative approach [19], which has undergone
gandardization within the IETF (snce 2000 [20]), and variations of the protocol suite
have al so gone through standardization at the ITU [21] and the OIF [22].

Generalized Multi-Protocol Label Switching (GMPLS) was designed as a superset of
MPLS, and intended to offer an intelligent and automated unified control plane (UCP) for
a variety of networking technologies — both packet and circuit. Its origin could be traced
to the fact that MPLS already enforced a flow abstraction in core 1P networks. Since
circuits could readily be thought of as flows, a common-flow abstraction seemed natural.
The logical next step involved developing a unified control framework on top of this
common flow abstraction. And snce MPL S already had a well developed control plane
(derived from a well-developed IP control plane), GMPLS smply extended the same
digributed routing and signaling protocols (OSPF-TE, RSVP-TE) to control circuit
switches[5, 23-25].
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However, despite a decade of standardization, implementation by transport egqui pment
vendors and several interoperability demongrations, GMPLS has yet to see even one
sgnificant commercial deployment as a unified control plane across packets and circuits.
In fact, it isn't even used asa control plane just for transport networks[26, 27].

We do beieve that the initial choice to use the concept of a flow in the data plane as
the common abstraction was the right one. However, the subsequent choices either made
or overlooked have contributed sgnificantly to its failure. In the rest of this thess we
will offer our perspective on where GMPLS went wrong, by highlighting these choices
and comparing and contrasting our solution to them [29].

One fundamental observation we make hereisthat MPLSGMPLS networks lack the
common-map abstraction, and in principle all other deficiencies can be traced back to this
observation. For example, without the common-map abstraction you lose the ability to
implement control-functions in a centralized way. As a result features have to be
implemented in a distributed way and be dependent in subtle ways on distributed
protocoals, increasng complexity and reducing extensibility (which we show in Chapter
3). Additionally using distributed protocols has its own issues with stability and being
able to provide a gradual adoption path (Chapter 3). And without the common map you
lose vighility across packets and circuits, which in turn makes services dependant on an
interface such as the UNI [22], where the possible service requirements have been pre-
supposed (pre-defined) and baked into the protocols, thereby hurting programmability
and extensibility (also discussed in Chapter 3). Ultimately we argue that only control

architectural changes will enable true converged operation.

1.4 Proposed Solution: Unified Control Architecture

Accomplishing the goal of a unified control plane for packet and circuit networks is not
trivial. From our discussion in Sec. 1.1, it is easy to see that the control and management

architectures of the two networks are vadly different (upper half of Fig. 1.7).
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Furthermore the data plane units of packets and circuits (wavelengths, time-dots etc.) are
also quite different from a control perspective.
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Figure 1.7: Path to Convergence

Thus in order to create commonly-operated converged packet and circuit networks,

we ask ourselvesthe following questions (lower half of Fig. 1.7):

1. Can we find a common data-plane construct that would apply to both packets and
circuits? Essentially a common data-plane abstraction that would provide a common
paradigm for smple multi-layer control; one that allows flexible and vendor agnostic
interfaces that can eliminate vendor islands and proprietary interfaces in running
multi-vendor networks?

2. Can we develop a separate, common control construct that representsthe networksin

a common way? One that eases the development and fast deployment of automated
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network-functions and services across packets and circuits, while giving the network

operator the choice of sdecting the best mix of technologies for their service needs?

We bdieve that such constructs are indeed possble, but require changes in control
architecture. And so we propose a unified control architecture which has its
underpinnings in two abstractions — the common flow abstraction and the common-map
abstraction [11, 13]. Our work is heavily influenced by an emerging new direction in
packet networks called “ Software Defined Networking (SDN)” [16, 17]. SDN originslie
in fostering innovation in campus networks, by enabling researchers and network
operators to experiment with new ideas ‘in’ the networks they use every day [12]. It was
born out of related work that looked at security management issuesin enterprise networks
(ETHANE project [18]). We have applied SDN ideas to circuit-switching and carrier
networks to propose a solution to converged operation of | P and transport networks.

1.4.1 Common Flow Abstraction

In a traditional 1P backbone network, routers use a ‘datagram’ moded, where they deal
with each packet in isolation, rather than viewing the packets as part of some end-to-end
communication. In other words, treatment given to a packet is independent of what
packets came before or what packets might come afterwards.

But data-packets are naturally part of flows — i.e. they are naturally part of some
communication (not necessarily end-to-end). Packets that are part of the same
communication have the same logical association. Consider Table 1.1: it shows multiple
different definitions of flows (i.e. different logical associations between packets); gives
examples of what these flows can represent, and in the last column presents ways to
identify these flows from fields in the packet-headers. The concept of flowsis not a new
one. In core networks today, flows exist as FECs coupled with LSPs (we discuss thisin
more detail in Chapter 5). To define the common-flow abstraction, we define flowsin the

following way:
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Flow definition: logical
association of packets

Packet flow examples

Flow-identifiersfrom
packet header fields

End —to— End flows

All packets sent when we
watch a'Y ouT ube video

All packetsin afile transfer

All packets in a VolP call
(in one direction)

Well known 5-tuple of - IP
source, IP dedination, IP
protocol (payload identifier)
and Transport layer source
and destination ( TCP, UDP
etc. ports)

Common-degtination flow | All  packets destined to | IP degtination prefix for
China China
Common-source flow All  packets from an|IP source prefix for

enterprise branch location

addresses  alocated to
enterprise branch

Common- traffic type flow

All web traffic

IP protocol (to identify
TCP) and TCP des. Port
numbersto identify HTTP

Common- traffic type flow
from a particular end-host

All voice traffic from a
handset

MAC source (to identify
end-host), Eth-type (to
identify 1P packets) and IP
ToS (to identify traffic type)

Common - source and

destination routers

All traffic between two
routers

MPLS labdl id

Table 1.1: Packet flow definitions, examples and identifiers

Packet-flows: If a) packets are classified by their logical association and such soft-

date is retained in switches to remember the nature of the flows which are passng

through them; and b) the same set of actions are performed on all packets that have the

same logical-association (flow-definition); and c) resource management and accounting

of packets are done as part of flows, then the fundamental data-plane unit to control is the

flow (and not the individual packets). Instead of the datagram, the ‘flow’ becomes the

fundamental building block in packet networks.

Circuit-flows: In circuit networks, the fundamental data-plane unit to control is

the circuit. And circuits are flows too — the circuit itsdlf is the logical association for the
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data that is being carried in it between two end-points in a network. Only the flow
identifiers for circuit flows are different from packet-flows. For example a circuit-flow
could be:

e atime-slot on multiplelinks, making up a TDM signal-path, or

e acollection of time slots, on multiple different paths, bound together, or

e asinglewavelength-path, or

e awavelength path comprising different wavel engths along the path, or

e aset of timedots on a particular wavelength, or

e awaveband —i.e. collection of wavel engths along a path.

Note the smilarity of the above example for circuit-flows to the examples for packet
flowsin the middle column of Table 1.1.

Common-Flow Abstraction: It is easy to see that in most cases, the
information identifying the logical association of packets in a packet-flow exists within
the header fields of all the packetsin the flow. And while the identifiers of circuit flows
are different, both sets of identifiers can be placed in forwarding tables found in both
packet and circuit switches (Fig. 1.8).

For packet switches the forwarding tables take the form of |ookup-tables which can
match incoming packet header-fields to ‘rules that define the flow. These rules are
combinations of flow-identifiers (right-most column in Table 1.1) that embody the |ogical
association between packets that are part of the same flow. Most packet-switches support
lookup tables that match on only one kind of identifier — eg. Ethernet switches match on
MAC addresses, |IP routers match on |IP addresses etc. But all packet-switches also
support other tables (eg. Ternary CAMs) which allow flexible rule definitions that
include combinations of identifiersaswell as‘don’t cares. These tables support flexible
rules-definitions for packet flows, and perform the same actions on all packetsthat match
the rule. Thus with a packet-switch abstraction of <matching-rule, actions, statistics>, an

incoming <packet, port> can be trandated to an outgoing <packet’ , port’ > [12].
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Figure 1.8: Packet Switch and Circuit Switch Internals (Appendix A)

For circuit switches the forwarding tables are cross-connect tables that control the
scheduling of the circuit switch fabric to create a circuit within the switch. In circuit
switches the forwarding table is not in the datapath. Nevertheless, the table supports a
trandation of an incoming wave ength, time-slot or fiber-port (A, t, port) to an outgoing
(A, t, port’ ). Thus a circuit switch can also be abstracted as a table that supports
<cross-connect rules, actions, statistics> [13].

The common-flow abstraction (Fig. 1.9) is therefore a common-forwarding
abstraction (or a common-table abstraction), where we abstract away all kinds of packet
and circuit switch hardware, by presenting them as forwarding tables for direct
manipulation by a switch-API. In other words, switches are no longer viewed as Ethernet
switches, IP routers, L4 switches, MPLS LSRs, SONET switches, OTN switches,
ROADMS, or multi-layer switches — they are just tables; tables that support the flow
identifiers irrespective of which traditional layer of networking (LO-L4), or combination
of them, the flow may be defined with. In Appendix B we describe a switch-API for

manipulating our common-table abstraction.
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Figure 1.9: Common-Flow Abstraction

Benefits of the Common-Flow Abstraction: The main benefits of the
common-flow abstraction are:

e Simple, Flexible Multi-layer Control: Today’ s networks require multiple independent
control planes for switching in different layers — for example Ethernet switching has
its own set of control-protocols (STP, LACP, LLDP etc); IP has its own (OSPF,
iBGP, PIM etc); so does MPLS (LDP, RSVP, MP-BGP); as well as SONET(RSVP-
TE, OSPF-TE); OTN and ROADMSs have proprietary solutions. The common-flow
abstraction eliminates the need for multiple independent distributed control planes, by
giving an external controller the ability to define packet and circuit flows flexibly and
map them to each other, irrespective of which traditional layer of networking the flow
identifier may belong to — from Layer O to Layer 4. In a way the common flow
abstraction de-layers networks by treating packets and circuits as part of flows. The
immense direct benefit is areduction of complexity in control planes. In Chapter 3 we
show an exampl e of how we control flows on the basis of Layer 4 (TCP/UDP), 3 (IP),
2 (VLAN) and 1 (SONET) identifiers and quantify the reduction in complexity of our
control planeimplementation compared to industry solutions.

e Vendor-agnogtic Control: The common-table abstraction together with the use of the
switch-API makes our solution independent of vendor-specific solutions. Carriers

benefit from this as packet-networks need no longer be single-vendor networks (Sec.
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1.1.1) while remaining fully automated and feature-rich. Similarly carriers can
eliminate multiple non-interoperable vendor-idands in transport networks (Sec.
1.1.2). The ability to run multi-vendor automated converged packet-circuit networks
fully interoperable in the control plane provides an economic benefit which we will

quantify in Chapter 4.

To summarize, the common-flow abstraction is a common-forwarding abstraction that
lets us think of packets and circuits commonly as flows, thereby providing a common

paradigm for flexible and vendor-agnostic control across multi-layer networks.

1.4.2 Common Map Abstraction

We find that in modern networks, there are several functions that we need from the
network itself— examples of these functions are routing, access-control, mobility, traffic-
engineering, guarantees, recovery, bandwidth-on-demand — the list goes on. Some of
these may apply to packets-networks, some to circuits-networks, and some to both.

Ultimately these functions are implemented as control programs. And these control
programs are easest to write when they operate in a centralized way, with a global view
of the network — both packet and circuit. Thus the second abstraction is a common-map
abstraction across both packet and circuit switched networks. The global-map is an
annotated graph of the network topology which we describe next.

Common-Map: The global-map is a database of the network topology (Fig. 1.10).
It is a collection of network nodes - both packet and circuit switches. The node's
switching capabilities are represented by their forwarding tables (the common-flow
abstraction) together with the features the tables support (match-fields, cross-connections,
forwarding actions, mapping actions etc.). The switch information also includes
collections of entities such as ports, queues, and outgoing link information. Example
attributes of each entity are listed in Fig. 1.8. This database is created, presented to
control applicationsand kept up-to-date by the map-abstraction.



22 CHAPTER 1. INTRODUCTION

lookup-table cross-connect-table

Packet-header field match support Cireuit xconn support

Packet-header field wildcard support Circuit min switching granularity

Flow actions support Packet-Circuit mapping actions support

Statistics Recovery actions support

Statistics
flow tables
Common-Map is a collection q q
of network nodes — l b
NodelD o / ports
! " =
5 :__,,L—f Port id
outgoing links o - ! A Port type [physical, virtual)
—_———— Port line-rate (1G, 10G, ..)

Link id queues Port framing [Eth, SDH, OTN ..}
Link type (physical, virtual) Port address
Link dir unidirectional, bidi) / Queueid Port linkiD
Link myportiD y Queue properties Port queuelDs|]
Link dstportiD / {type, scheduling Port Stats
Link dstNodelD _ mechanisms - fifo, pQ, Port Status
Link maxResBw WFQ, CBQ etc., policing,
Link reserved Bw/priority shaping, congestion-
Link unreserved BW/priority avoidance/notification
Link weight mechanisms)
Link attribute bitmap Queue Stats

Figure 1.10: Annotated Graph (Database) of Network Topology

Aside from the nodes and links another database for flow-state can be created if the
control applications need to retain such information. Fig. 1.11 shows the entities involved
in retaining packet and circuit flow-state and their attributes. While the flow (both packet
and circuit flows) databases can be a part of the common-map as they reflect network
date (Fig.1.9), the decision to retain such state isleft up to the control application. Thisis
because flow-date is typically ephemeral, and knowledge of individual flow-state is
usually not necessary for making control decisons. What is necessary is the aggregate
effect the flows have on various parts of common-map. Such aggregates are reflected in
the gtati stics maintained in common-map entities (tables, ports, queues etc.).
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Figure 1.11: Flow Databases

Common-Map Abstraction: The global map and databases shown above are at
the heart of the common-map abstraction. It allows control programs to be implemented
in a centralized way, where they could be implemented to take advantage of both packets
and circuits, using a network-API which manipulates a global-view of the networks. In
Appendix C, we describe a network-API for applications across packet and circuits.

The common-map abstraction abstracts away the following (Fig. 1.12):

e The control program need not worry about how the map is being created and how it is
being kept up-to-date. All it knows is that it has the map as input; it performs its
control function; and delivers a decision.

e The control program also does not need to care about how that decision is compiled
into forwarding plane identifiers and actions (usng the common-flow abstraction),
and then disgtributed to the data plane switches. State collection and dissemination
have been abstracted away from the control program by the common mayp abstraction.
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Finally, each individual control function does not have to worry about conflicts that
may arise between decisions it makes and decisions made by other control functions.
Thus application-isolation is part of the abstraction provided to control functions.
Applications
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Figure 1.12: Common-Map Abstraction

Benefits of the Common-Map Abstraction: The main benefits of the

common-map abstraction are:

Programmability: Instead of defining network behavior up-front and baking it into the

infrastructure, the common-map abstraction hel ps networks become programmable. It
eases the path to innovation by offering a network APl to programs for controlling
network behavior. What does the network API include? Today, the three networking
tasks of: i) configuring switches, ii) controlling forwarding behavior; and iii)
monitoring network state; are performed separately. Configuration typically uses a
CLI or NMS/EMS, forwarding state is determined by distributed routing/signaling or
other special purpose protocols, and monitoring is done via SNMP, NMSEMS,
Netflow, sFlow etc. The network API can present calls for all three tasks together to
network applications.

Simplicity & Extengbility: The common-map abstraction breaks the chains that bind

together today’s distributed-implementation of network services to the date-
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digtribution mechanisms that support them. With the common-map abstraction the
digribution mechanisms are abstracted away, so the control function can be
implemented in a centralized way. Centralization makes implementing individual
control functions smpler; but just asimportantly the abstraction makes inserting new
control functions into the network easy (extensible). This is because the state-
dissemination problem has been solved once and abstracted away, so new control-
programs do not have to worry about it by creating new distribution mechanisms or
changing existing ones. We will show examples of simplicity and extensbility in
writing control-programs in Chapter 3.

Joint & Global Optimization: The common map-abstraction offers full visbility

across packets and circuits. In other words it offers applications the ability to perform
joint-optimization of network functions and services across both technologies;
leveraging off the different-benefits of both packet and circuit switching; and doing
so with aglobal view of the network.

Choice: With the common-map abstraction and its global view, new features can be
supported that take advantage of both packets and circuits. Additionally it allows the
network programmer the choice of writing control programs in a variety of ways in
the context of packet and circuit networks. A particular control program could still
treat the packet and circuit flows asif they werein different layers, where they would
have separate topologies, but ill be commonly controlled. A different control
program could treat them as part of the same layer with a single topology (and till
commonly controlled). Y et another control program could go further and treat them
as separate topologies while completely ignoring one of them. The common-map
abstraction does not preclude any of the cases, and we will give examples of all of
these cases in Chapters 3 and 5. In other words, with the common-map abstraction,
the control function programmer/network operator has maximum flexibility to choose

the correct mix of technologies for the servicesthey provide.
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1.4.3 Unified Control Architecture
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To summarize, our control architecture has its underpinnings in the two abstractions
we have discussed in the previous two sections. If we combine Fig. 1.9 & Fig. 1.12, we
can develop a more complete picture of the unified control architecturein Fig. 1.13.

The job of the unified control plane that sits between the common-map and the
switchesisthree-fold. Firg, it providesthe functions of state collection/di ssemination and
conflict resolution, which were abstracted away from the control functions by the
common-map. Second, it includes the interface that instantiates the common-flow
abstraction by providing the switch-API. Third the control plane should be engineered so
it can scale to large carrier networks without suffering from poor performance and
reliability. In the next chapter, we discuss how we have ingantiated the common-flow
and common-map abstractions using an interface called OpenFlow [14] and a Controller
(external to the data-plane switches) running a Network Operating System (NOX [15]).
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1.5 Contributions of Thesis

This thesis makes the following contributions:

Architecture: We have proposed and defined a unified control architecture for the

converged operation of packet and circuit switched networks. The architectura

underpinnings of our proposal include:

A common-flow abstraction: that provides a common paradigm for flexible control
across packet and circuit switches. We instantiated the common-flow abstraction by
first creating a flow-table based abstraction for different kinds of circuit switches. We
took into account switching-fabric types and port/ bandwidth representations, as well
as various ways in which packet and circuit switches can be interconnected based on
interface-type, framing method and line-rates (Ch.2). We also developed a switch-
APl for creating, modifying and deleting circuit flows, mapping packet-flows to
circuit-flows and back with suitable adaptations;, neighbor discovery and recovery
messages, and finally error and statistics messages for circuit ports, links and flows
(Ch.2 and Appendix B). OpenFlow v1.0 [28] was extended to include this API.

A common-map abstraction: that liberates network control functions from the task of
digtributed state collection and dissemination. We extended an existing Controller
called NOX [15] to smultaneoudy control both packet and circuit switches, thereby
creating an instance of the common-map abstraction. We also developed link-
discovery methods that do not preclude a layering choice and created a network-AP

for applications to manipulate the common-map (Ch.2 and Appendix C).

Validation of Architectural Benefits: We implemented our architectural

approach in several prototypes (named pac.c for packet and circuit .convergence) to

validate the smplicity and extensbility of our approach:

We built three pac.c prototypes - the first two systems demonstrated common control

over packet switches and two different kinds of circuit switches— a TDM based one
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and the other a WDM based one. The more complete pac.c prototype, was used to

emulate an inter-city wide-area network structure, with packet switches in 3 cities

interconnected by circuit switchesin the backbone, al under unified operation.

We validated the smplicity of our proposed solution by:

o

Implementing and demonstrating a network-application across packets and
circuits on top of our prototype emulated WAN — the network-application’s goal
wasto treat different kinds of network-traffic differently.

0o Comparing our work to existing network control solutions - we found that

implementation of the defined control-function in our control architecture takes 2

orders of magnitude | ess lines-of-code compared to existing solutions.

We validated the extens bility of network-control functionsin our architecture by:

o

o

I dentifying and demonstrating multiple networking-applications across packets
and circuits on our pac.c prototype. Examples include: Variable Bandwidth
Packet Links, Dynamic Optical Bypass, Unified Routing & Recovery. The
applications suggested are by no means the only possible applications, as service
providers can define their own applicationsto meet their service needs.

Comparing our work to existing network control solutions — we show how
exiging rigid control interfaces cannot reproduce our network applications
exactly, nor can they eadly add new services given the tight coupling between

applications and state distribution mechanisms.

Design & Analysis: We designed WAN infrastructures and performed Capex and

Opex analyses on them to validate cost-savings from operating a network with both

packet and circuit switching if done from a single control viewpoint -- i.e. using our

unified control architecture.

We outlined a design procedure for IP over WDM networks (reference design) and

applied a cost-mode to the components. Our Capex analysis for this reference design

is more detailed than previous attempts, as we include access routers and dimension
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the IP network for recovery and traffic uncertainty. We accounted for static optical
bypass in our IP over WDM reference design and showed a 10-15% decrease in
Capex. We have also shown that this gain level s off as we add more bypass.

Next, we outlined a design procedure that modeled a converged packet-circuit
network based on our unified control architecture. Overall Capex and Opex savings
of nearly 60% and 40% respectively are achieved in comparison to today’ s | P-over-
WDM core networks. Furthermore such savings are found to be insendtive to varying
traffic-matrices; and scale better (at a rate of $11m/Thps vs. $26m/Thps) as the
overall traffic grows to five times the original aggregate.

Introduced Map-Abstraction into MPLS based Networks: We have
mentioned before that MPLS networks have the flow-abstraction but lack the map-

abstraction. We further validated our architectural approach, by introducing the map-
abstraction into MPL S networks, and replicating services offered by MPLS today.

We identified how we can replace all MPLS control plane functionality like
sgnaling (RSVP) and routing (OSPF) within a controller’s domain by writing
network applications on top of OpenFlow/NOX. We have replicated discovery,
recovery, label digribution, bandwidth reservation, and admission control via
Congrained SPF calculations, while still using the standard MPL S data-plane.

We built another prototype to demonstrate an MPLS - Traffic Engineering service
that traffic engineered L SPs based on bandwidth-reservation and admission control.
We have also shown how our TE-LSPs can have al the features they have today
such as auto-bandwidth, priority, and explicit routes. Our solution again involved 2
orders of magnitude lesser line-of-code compared to the existing MPLS contral.
Finally we have identified opportunities where our control architecture can

potentially solve problemsthat the existing MPLS control cannot.
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1.6 Organization of Thesis

This chapter is essentially an extended summary of the thesis. We briefly described the
sgnificant differencesin IP and transport network architectures, how they are separatdy
designed and controlled today, and then defined the problem statement as one where we
need to find a way to run one network instead of two. We discussed an alternative
viewpoint in which the goal of running one network can be achieved by diminating
circuit switching in transport networks; but showed why both packets and circuits belong
in future networks and a better idea would be to converge their operation.

We proposed our solution to convergence — unified control architecture — as a
combination of two control abstractions: a common-flow abstraction and a common-map
abstraction. We showed how the former fits well with both types of network and provides
a common paradigm for control, while the latter makesit easy to insert new functionality
into the network. We briefly discussed a previous attempt at unified control (GMPLS)
and identified reasons for its failure, the fundamental one being the lack of a map
abstraction. And finally we summarized our contributions in the previous section. The
res of thisthessisorganized as follows.

In Chapter 2, we describe the common-flow and common-map abstractions in more
detail. We describe how packets and circuits can be abstracted as flows, and then delve
into abstractions for different kinds of circuit switches and requirements for a common-
switch API. Next we detail the representation, congruction and maintenance of a
common-map as well as the requirements of a common-network-APl. We present three
prototypes (named pac.c) we built to validate our architectural and control plane
congructs. We explore the extend ons we have made to the OpenFlow interface to create
a common API for both kinds of switches, and the changes we made to a network-
operating-system (NOX) to have it present a common-map and network-API to network-

control-functions.
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In Chapter 3, we demonstrate the smplicity and extensibility of our proposed unified
control architecture. First we demonstrate an implementation of a control function across
packets-and-circuits using our full pac.c prototype in an emulated-WAN structure. Then
we compare our implementation to one which would use existing control-solutions in the
industry today. Then we give examples of more new control applications across packet
and circuits, and show how our work is far more extens ble than existing control -solution
in the industry. Finally we discuss solutions to three deployment challenges faced by any
unified control solution for packet and circuit networks.

In Chapter 4, we give a detailed example of today’s IP over WDM design
methodol ogy, which we model as a reference design. We then propose a core network
that benefits from both packet-switching and dynamic circuit switching under an SDN
based unified control architecture. We perform a comprehensive Total Cost of Ownership
(TCO) analyss to judge the economic impact of our proposed changes. More
importantly, we provide technical solutions to practical issues that have hampered the
adoption of some of these ideas in the recent past.

In Chapter 5, we show how existing MPL S applications and services can be offered
by an IPPMPLS network based on our control architecture. We show that by introducing
the map-abstraction and retaining the MPLS data plane (flow abstraction) we can replace
all MPLS control-plane functionality. We present implementation details of our prototype
system where we have shown applications like MPLS Traffic Engineering on top of the
map abdraction. Finally, we discuss how introducing the map-abstraction in MPLS
networks fits well with our unified-control architecture for packet and circuit networks- a
fact that makes our control architectureideal for multi-layer networks

We conclude in Chapter 6, and present related work and future research directionsin
thisarea.



Chapter 2

Architecture & pac.c Prototypes

In the previous chapter, we introduced the concept of a unified control architecture for
the converged operation of packet and circuit switched networks [11]. Our control
architecture (Fig. 2.1) is based on two abstractions: the common-flow abstraction and the
common-map abstraction.
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Figure 2.1: Unified Control Architecture
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The common-flow abstraction is based on a data-abstraction of switch flow tables
manipulated by a switch-API. The flow tables take the form of lookup-tables in packet
switches and cross-connect tables in circuit switches, and together with the common
switch-API, abstract away layer and vendor specific hardware and interfaces.

The common-map abstraction is based on a data-abstraction of a network-wide
common-map manipulated by a network-API. The common-map has full vishility into
both packet and circuit switched networks, and allows creation of network-applications
that work across packets and circuits. Implementing network-functions in such
applications is smple and extensible, because the common-map abstraction hides the
details of state distribution from the applications.

In this chapter we give details of the design of the two abstractions. We discuss the
flow abstraction as applied to packet-switches [12] and then give design-details on what
is needed to apply such an abstraction to circuit-switches [13]. Further we show how a
common-switch APl can be desgned to manipulate this data-abstraction. For the
common-map abstraction, we give design details on how we represent such a map, how it
can be built and maintained, and briefly what a network API that manipulates such a map
could look like.

Next we present implementations of our architectural approach. We deve oped
prototypes to help us validate our architectural constructs and improve on ther
implementation. We give details of three prototypes systems we built (and named pac.c
for packet and circuit .convergence). Two early prototypes helped us design and validate
the circuit-switch abstraction and common switch-API. Accordingly they use different
kinds of circuit switches — a wavelength switch and a time-dot based switch — together
with packet switches. The third, more complete prototype helped us understand the
intricacies of building a converged packet-circuit network with a common-map and
network-API. We discuss the ideas we demonstrated and the lessons we learned with

each prototype.
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2.1 The Common-Flow Abstraction

The objective is to develop a generic data-plane abstraction based on flows, for all kinds
of packet and circuit switches. We first discuss packet-switches and then extend those

ideas to circuit switchesto develop a common-flow abstraction and switch-API.

2.1.1 Packet-switching and the Flow Abstraction

Our discussion of the packet-flows is based on a generic packet-switch abstraction that is
implicit in the design of the OpenFlow protocol [12, 14]. Here we wish to give an
overview of the abstraction and the reasoning behind it.

We dart by discussing the various kinds of packet-switches used today and their
common characteristics. We then discuss a generalization of these switches into a single
representation; and detail the relationship of that representation with the concept of a
‘flow’, both within a switch as well as across multiple switches in the network. Finally

we outline the main functions of an interface (a switch-API) used to manipulate such a

representati on.
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Figure 2.2: Different kinds of packet-switches
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Packet-Switching: Switching in packet-networks is often defined in a layer-
specific way. The network layer (or Layer 3 or L3) originally represented the switching
(or routing') layer. But switching exists in the lower layers (L2), higher layers (L4-L7),
and new intermediate layers (L2.5) have been coined. And so it is worth noting that
today @) the layer terminology smply refers to the different parts of the packet-header;
and b) packet switches in different layers make forwarding decisions based on the layer
they are part of (Fig. 2.2). For example:

e AnIProuter (L3) may typically forwards a packet based on the I P destination address
in the | P header of the packet.

e A traditional Ethernet bridge (L2) forwards packets based on MAC addresses and
VLAN ids. If the bridge includes ‘routing’ functionality i.eif it looks at |P packetsto
route between VLANS, it becomesa L2/L3 multi-layer switch.

e Some routers forward packets based on ‘tags such as MPLS labels. Since the label is
inserted in a packet typically between a MAC header (L2) and an IP header (L3), itis
referred to asL 2.5 switching.

e And there are other, more special-purpose switches (or appliances or middieware)
that forward packets (forward, drop, modify-and-forward etc.) based on yet other
parts of the packet header.

And so, it is clear that irrespective of the type of packet switch, all of them perform
the same basic functionality of identifying the part of the packet-header they are
interested in; matching that part to related-identifiers in a lookup-table (or forwarding
table); and obtaining the decison on what-to-do with that packet from the entry it
matches in the lookup-table. Some other aspects of packet-switching intoday’ s networks:
e In mog cases packets are switched independently within a switch, without regard to

what packets came earlier or which ones might come afterwards. Each packet is dealt

with in isolation while ignoring the logical -association between packets that are part

of the same communication’.

“Routing is just another name for switching in 1.3, just like bridging is another name for switching in 1.2.
" Examples of such communications and logical-associations were discussed in Chapter 1 (Table 1.1).
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As packets travel from switch to switch, each switch makes its own independent
forwarding-decision. Packets correctly reach their destination because the switches
base their forwarding decision on some form of coordination mechanism between the
switches. But such coordination mechanisms typically tend to be a) restricted to the
layer/network in which the switch operates; and b) only give information for the part
of the packet-header related to that network. For example,

0 STP co-ordinates Ethernet networks by preventing loops in the network topology,
so that switches can learn about destinations only from packets coming in from
un-blocked ports, and also forward packetsto only those un-blocked ports.

o0 |IPnetworksuse completely different coordination-mechanisms (routing protocols
OSPF, IS-IS, I-BGP) that only refer to | P-destination prefixes.

0 MPLS networks use LDP or RSVP as co-ordination mechanisms smilar to
sgnaling. Here too the co-ordination is layer specific — bindings of MPLS label's
to | P addresses.

Finally, because packets are switched in isolation within and across switches, and the

logical association between packetsis typically not processed; it becomes very hard

to perform accounting and resource management in a packet network. For example, if
it is difficult to get a common handle for a stream of packets between two servers
travelling across an Ethernet network; it is very difficult to tell which how much
bandwidth the stream is consuming (accounting); or make resource decisions for just

that stream (a specific path, bandwidth-reservation, etc.).

Packet-Flow Abstraction: From the previous discusson, it is clear that there

are advantages to defining a generic (layer independent) data-plane abstraction for
packet-switches based on ‘flows :

A packet-flow is alogical association (or classification) between packets that are part
of the same communication and are given the same treatment in the network (within a

switch and from switch-to-switch);
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The data-abstraction is the representation of a packet-switch as flow-tables, ports and
gueues. The flow (or the logical-association) is defined in the flow-tables which have
the ability to indentify the flow generically (in a layer independent way) from
multiple parts of the packet header. For example:

o |If the logical association is smply a destination MAC or IP address, then the
generic flow table should be able to behave like layer-specific switch-tables (eg.
L2-tablesin Ethernet switches or L3 tablesin IProuters);

o But if the logical association requires a mix of packet-header fields for
identification, the table should be able to process this as well (for example the
flow identification could require a mix of |Pand TCP fields).

Once the logical association has been identified, then all packets that have the same

association are treated the same way within the switch; where the flow-table applies

the same set of actions on all packets that are identified as part of the same flow.

Furthermore, each switch that ‘ sees the flow, does not make an independent, isolated

decision on the treatment to the same flow. The decison on the treatment given to all

packets in the flow is communicated in a layer-independent way to all switches
through which packetsin the flow traverse;

The flow-definition serves as a common-handle with which accounting and resource-

management in the network can be performed on a flow-level (not packet-level).

Finally, the data-abstractions in all switches are manipulated by a layer-independent

switch-API, which we discuss next.

Layer

/" independent
Switch - API

Data abstraction:
Layer-independent tables

Packet-flow: ‘actions
defined in all switches =

that see the flow, as series of identifiers and actions

identifiers |

identifiers actions

Figure 2.3: Packet-flows
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Switch API: With the aforementioned definition of packet-flows in switches based
on data abstractions of <flow-tables, ports, queues>; any entity that makes decisons on
flows needs a layer-independent switch-API to manipulate the data-abstractions. For
example, such an entity decides on what constitutes a flow (the logical association);
determines how to identify the flow (packet-header fields); and how to treat all packets
that match the flow-definition in all switches that the packets flow through. In order to
enabl e the entity to make these decisons, it needs to a) understand the capabilities of the
data-abstractions (the flow-tables, ports, queues) and have control over its configurable
parameters, b) have full control over the forwarding path; and c) have the ability to
monitor or be notified of changesin switch state. Thus the layer independent switch-API
includes the following set of functions:

o Get/Set Capabilities and Configuration:

0 Methodsto get the representation of the switch as data-abstractions. ports, queues,
tables and their features.

0 Methods to get the capabilities of the flow-tables for example, the flows
identifiers and actions the table can process.

0 Methods to set configurable parameters for the data-abstractions. a) locally on
port, tables or queues; and b) globally on a switch level.

0 Methodsto query default or current values of these configurable parameters.

e Control forwarding state:

0o Method for adding flow definitions by specifying the flow-identifiers and related
set of actions. Method for del eting the flow definition.
o Method for changing the actions applied to a flow-definition.
0 Methodsto set advanced forwarding state eg. logical ports.
e Monitor: Statisticsand Status
o0 Methods for querying flow-table state and flow gatistics.
0 Methods for querying tables, port, queue and switch statistics.
0 Methods for setting traps for change in switch-state.
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The methods described above may or may not dicit a response from the switch. In
some cases, there are explicit-replies;, for example - to request methods (get). In other

cases there may be explicit or silent acknowledgements, or replies to indicate errors.

2.1.2 Circuit-switching and the Flow Abstraction

Circuit-Switching: Like packet-switches, circuit-switches can also be defined in
layer-specific ways (Fig. 2.4). For example, time-slot switching, usng SONET/SDH or
OTN dandards, are often described as Layer 1 (or L1) or physcal-layer switching.
Additionally, wavelength or fiber switches are described as LO switches, not because a
new layer has been included in the OSI model, but because it is a convenient way to

describe switching at an even coarser physical granularity than time-dots.

L1 TDM: SONET/SDH, OTN switches
A

TDM Signal | Starting
Type Time-slot

TDM Signal | Starting
Type Time-slot

7 cross-connect % Port
table

LO Fiber-Crossconnects circuit-switch
——

Port Port

Figure 2.4: Different kinds of circuit switches

Nevertheless, all circuit switches maintain forwarding tables in the form of cross-
connect tables with entries that are suited to the switching-type of the switch. In the
following discusson, we consder two kinds of circuit switches - TDM and WDM;
describe the creation of a circuit in each layer; and then relate a circuit to a ‘flow’. We
then deve op the circuit-flow abstraction; show how to map packet-flows to circuit-flows

and describe a common switch-API can be used to manipulate both data-abstractions.
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TDM switching: A time-dot based switch has a time-synchronous switching fabric. It

cross-connects time-slots on incoming ports to time-dots on outgoing ports. The

following factors need to be considered for TDM switches':

e Framing: There are different framing standards for TDM switch ports — SONET,
SDH and OTN —frames differ in szesand overhead bytes

e Linerate: In the SONET sandard, an interface with ~ 10Gbps line-rate (actually
9.95328 Gbps) isan OC192, but in OTN it isOTU2 (10.709225 Gbps).

e Time-dots Inan OC192, the number ‘192’ comes from the fact that the line-rate can
be divided into 192 time-d ots each with a data-rate of roughly 50 Mbps.

e Signal-type The smallest signal isthe 50Mbps time-dot (STS-1). But larger sgnals
are defined which use more time-dots. Thus the OC192 can carry multiple signals
concurrently — 192 STS-1s; or 20 STS-1sand 10 STS-3s with 142 unused time-dots;
or even 1 big STS-192c. Thus a SONET ‘signal’ is defined by the number of time-
dotsit usesand its starting (lowest) time-slot in an optical carrier (OCXx).

e Concatenation: In SONET/SDH, signals can further be concatenated using contiguous
(STS-3c, STS-12¢, VC-4-4c etc.) or virtual concatenation (VCAT, ODUflex);

Switching-granularity: It is necessary to undersand the minimum switching
granularity of the switching fabric — for example, if it has the ability to switch time-
dotsas small as STS-1s.

TDM switch port STS-3¢ ST:S-3|:
63 47 : ’ 8 7 6 5 4 3 2 1 0
a4 (] | |- B - Y 3) 2
8 1= . ; |
Time-slots at min. switch granularity; used/available STS-1 STS-1

Figure 2.5: Representing bandwidth in TDM switches

e Bandwidth representation: Given the line-rate & the minimum switching granularity,
a bandwidth representation of a time-dotted port can be drawn up (Fig. 2.6). It is not

enough to give cumulative numbers for reserved and un-reserved bandwidth; instead

T Other factors such as signal-multipliers, transpatency, and rules for contiguous and virtual concatenation
have been left out for clarity
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each minimum-granularity time-dot on a port can be represented by a bit field in a
bit-map. Thena 1 or 0 value for the bit sgnifiesthe availability of that time-dot.
Cross-connection: To specify a cross-connection, the input and output time-d ots have
to be specified (Fig. 2.4). The time-slots can be specified as a 3-tuple of <port, TDM
sgnal-type, starting-time-slot>. The port identifies the physical port; the signal-type
identifies the number of time-dots; and the starting-time-slot identifies the lowest (or
earlies-in-time) time-dot in the carrier where the signal garts. In Fig. 2.5, one of the
STS-3cs darts at time-dot #10 (bit number 9) in the OC-48 the bit map represents,
and sinceit isan STS-3c signal it occupies 3 time-slots (10-12). In the same exampl e,
we see that the carrier currently has 2 STS-1s and 2 STS-3cs (shaded) and 40 free
(unused) time-slots.

TDM circuit: Therefore a circuit in a TDM network is simply a series of cross-
connections in switches. As an example, consder the STS-3c circuit (150 Mbps) in
Fig. 2.6. The signal-type (STS-3c) must remain the same throughout the circuit
definition. The port numbers have significance only to the switch the port belongs.
And the time-slots can interchange in a connection if the switch supports such
behavior. But the time-slots on a link must be the same. For example, the outgoing
STS-3c signal on the first switch starts on the 10" time-dlot (on port 4). Therefore the
cross-connection on the second switch must specify the same start-time-slot on port 5,
which connectsto port 4 on the first switch.

Bi-directionality: Circuits are always bidirectional. Thus specifying a cross-
connection from an ‘in’ 3-tuple to an ‘out’ 3-tuple, simultaneously specifies exactly
the same cross-connection in the reverse direction.

k4, sTs-3¢,10>

<2, 5T5-3¢,10> : <1,5TS-3¢, 6

32, STS-3¢, 1>
<5, 5T5-3¢,10

< 7,STS-3¢c, 6>

in/out out/in

Figure 2.6: TDM circuit
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WDM switching: A waveength switch cross-connects an incoming wavelength (or

set of wavelengths) on a port connected to an outgoing same-or different wavelength (or

set of waves) on a different port. Typically it is implemented as a combination of a

wavelength-demultiplexer, a switching-fabric that switches light-beams and a wavelength

multiplexer. The following factors need to be considered for WDM switches:

e Switching-granularity: Does the switch support a minimum-switching granularity of a
sngle waveength or band of waveengths. If it is the latter, then how is the band
defined (in terms of the number of wave engths). A fiber-switch may be consdered as
a soecial case of a wavelength switch, where the ‘band’ is defined as all the
wavelengthsthat can be supported in the fiber.

e Linerate: A waveength switch has mux/demux filters designed to operate in at a
certain line-rate, which must be specified. Optical  fiber-switches are typicaly
agnogtic to whatever sgnals are carried in the incoming fiber. However, there may be
transponders or WDM filters attached to the ports that may limit the switch to asingle
line-rate. Then the line-rate and wave engths of the signals have to be considered.

e Fabric-technology: For WDM switches, depending on whether a wavelength is
switched electronically or optically, a number of additional factors crop up. If the
switching fabric is eectronic, the framing used has to be taken into consideration.
Also the incoming wavel ength can be switched to a different out-going wavelength.
There may also be other technology dependant feature support — eg. out-going
wavelength tunability; variablelinerate; optical supervisory channd (OSC) support.

e Bandwidth representation: A wavelength switch port can be represented as a bit-map.
The bits in the bit-map represent the ITU grid frequencies [30]. Flags can be used to
identify the spacing of the frequency channels — 25 GHz, 50 GHz, 100GHz etc.; and
toidentify aC, L or Sband system. Fig. 2.7 shows a 100 GHz spaced C-band system
(191.3 THz to 196.7 THz). Using multiple bit-maps, the switch can report the waves
it supports on a port, and the onesthat are currently cross-connected (in-use).
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WDM switch port
63 10 98 76543210

ITU- Grid Frequencies used/available on port FLAGS

W D e
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Figure 2.7: Representing bandwidth in WDM switches

Cross-connections. To specify a cross-connection, the input and output wavelengths
have to be specified (Fig. 2.4). The wavelengths can be specified as a 2-tuple of
<port, ITU-grid-frequency-numbers>. The port identifies the physical port; the
wavelength or a set of contiguous waveengths (for a waveband) on the physical port
are identified by their corresponding bits in the relevant 1ITU-grid-bitmap. All other
technology dependant factors have to be (implicitly) consdered when specifying this
cross-connection. For example, two different wave engths cannot be cross-connected
when wave ength conversion is not supported; if there are transponders or wavelength
filters then different line-rates should not be cross-connected; wavebands have to be
of the same g ze (same number of lambdas) etc.

Wavedength circuit: A circuit in a WDM network is then smply a series of cross-
connectionsin switches. Fig. 2.8 shows a sngle-wavelength circuit (not waveband) in

a network of electronically-switched wavelength switches, where each hop of the

circuit comprises of a different wave ength.

<32, A10>

in/out out/in
Figure 2.8: Wavelength circuit
Bi-directionality: Similar to TDM circuits, wavelength-circuits or fiber-circuits are
always bidirectional. Specifying a cross-connection from an in-lambda to an out-
lambda smultaneously specifies exactly the same cross-connection in the reverse
direction.
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Viewing a Circuit as a Flow: It is worth comparing Figs. 2.6 and 2.8 which
show TDM and wave ength circuits, to Fig. 2.3 which shows a packet flow. We note the
following smilarities:

e Both packet switches and circuit switches can be represented as forwarding-tables
that support translations — in the packet case, an incoming <packet, port> is trandated
to an outgoing <packet’, port’>; in the circuit case, an incoming < A, time-slot, port>
is translated to an outgoing <A’, time-slot’, port’>.

o A packet-flow is series of <match-identifiers, actions> in all packet-switches that the
flow traverses, Likewise a circuit is a series of <in-x-tuple, out-x-tuple> cross-
connections in all the switches the circuit passes through. Furthermore a decison to
create a cross-connection within a switch is not-independent of cross-connections in

other switchesthat make up the circuit (Smilar to our definition of packet flows).

And so, given these smilarities, it is easy to see that the data-abstraction and switch-
API that we discussed in the previous section can potentially be used in smilar waysin
the circuit-switching context.

There is however one important distinction. A packet-flow is the logical-association
between packetsthat are part of the same communication. The packet-flow exigtsin itself
to bind-together the packets as they flow in the network. On the other hand, a circuit as
defined so far is a carrier; and it only becomes a logical-association for something
between two-communi cation end-points, when that something is mapped into the circuit.

And so, to complete our analogy to packet-flows, a circuit becomes a circuit-flow
only when we account for the end-points of the circuit in relation to what gets mapped
into the circuit. Such an end-point is represented as a virtual-port with associated
mappi ng-actions.

Packet-flow => <identifier, action> + <identifier, action> + <identifier, action> + <identifier, action>

Circuit-flow => <virtual-port, mapping-action>+ <in, out> + <in, out> + <virtual-port, mapping-action>

the cireuit
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I Layer
Data abstraction: e = /' independent
Cross-connect tables " Switch - API
circuit
] - )
Circuit-flow: _ . _ : virtual
s - in/out out/in '
combination of port

(virtual port, mapping actions) + the circuit (series of cross-connections)

Figure 2.9: Circuit-flows

Circuit-Flow Abstraction: We are now ready to define a generic data-plane

abstraction of circuit switches based on flows:

A circuit-flow is a logical association between a payload that is carried by a circuit
and is therefore given the same treatment in the network (from one end of the circuit
to the other);

The data-abstraction is the representation of a circuit switch as flow-tables and ports:
the flow is defined by a) virtual-ports that identify the end-points of the circuit with
mapping-actions to map payloads into-and-out of the circuit; and b) a bidirectional
cross-connection which trandates an incoming circuit-identifier to an out-going
circuit-identifier;

The decison on the treatment given to the payload in the circuit-flow is
communicated in a layer-independent way to all switches which ‘see’ the flow, ie. the
switches through which the circuit passes,

The circuit-flow definition serves as a common-handle with which accounting and
resource-management in the network is performed on the circuit-level.

Finaly, the data-abgtraction in all circuit-switches is manipulated by a layer-
independent switch-APl. Given the smilarities between the data-abstraction for
packet and circuit switches, it is easy to see that the APl can be a common one for
both kinds of data-abstractions.
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Mapping Packet-flows to Circuit-flows: Representing circuit-flows as
combinations of virtual-ports and cross-connections presents a way to map packet-flows
to circuit-flows, irrespective of the way in which packet and circuit switches are
interconnected. Consder the different ways in which packet and circuit switches can be
interconnected. In Fig. 2.10,

o |f the packet switch P is connected to the TDM circuit switch via a Packet over
SONET (POY) interface, then the virtual port is manifested by the PoS port.

e If Pisconnected to a hybrid switch (with both packet/circuit switching fabrics) via an
Ethernet interface (ETH), then the hybrid switch has the capability to adapt Ethernet
frames to TDM frames (SONET or OTN). The virtual port is then manifested by a
mapper that performs this mapping.

virtual-port

} [mov
. [z0 0]
[zoo]

Youler®

'o
T-m|
[z=m]
[zOm]

6 »—
U Er—=

('; " Fiber

s [ Xconn
— =

S
.".W- k]
P ibbE ROADM ot ROADM

Anf
/ﬁ
. L

Figure 2.10: Various ways to interconnect packet and circuit switches
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If P is connected via a fiber cross-connect (Xconn) to a DWDM line-system, then
again the POS port is an instance of the virtual-port. This PoS port typically does not
use high quality transcelvers needed for long distance communications neither does it
use the standardized ITU grid wavelengths- hence DWDM transponders are needed
before the sgnal is transmitted over the DWDM line sysems. Such transponders are
reported as technology-specific switch-features by the Fiber-Xconn.

If P uses DWDM transceivers (with suitable framing), it could connect to the DWDM
line-sysem via a wavelength-switch (ROADM). The virtual port is the DWDM
interface on the packet switch. The waveength on the transmitters may even be
tunable. If insead P uses an Eth interface with a transgponder to connect to the
ROADM, the virtual port would be the transponder in the ROADM interface.

Lastly, different ports on the packet switch could use different combinations of the
above, in which case the virtual ports for each of the circuit-flows could be in
different switches.

To map a packet-flow into a circuit- flow (Fig. 2.11), the last action in the action-set

defined for a packet-flow, forwards all packets that match the packet-flow definition to

the virtual-port. This way multiple packet-flows can be mapped into the same circuit-

flow. At the other-end of the circuit-flow, the packet-flow identifiers match on the

virtual-port and any other packet-header-fields to distinguish between and de-multiplex

the packet-flows coming out of the virtual port.

Layer
independent
Switch - API

Data abstraction:
Flow tables

v
circuit-flow

packet-flow

Figure 2.11: Mapping packet-flows to circuit-flows (and back)
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Switch API: The circuit-flow abgraction holds remarkable smilarities to the
packet-flow abstraction. Unsurprisingly, the switch-API that manipulates a circuit switch
abstracted as <flow-tables, ports>, aso has a similar set of functions — the ability to
understand the capabilities of the data-abstraction and have control over its configuration;
full control over the forwarding state; and the ability to monitor status and obtain
datigtics. In fact a common switch-API can be developed for both packet and circuit
switches, with small modifications to account for technology-dependant features. We
detail s such modifications bel ow:

o Get/Set Capabilities and Configuration:
0 Methodsto get the capabilities of the cross-connect-tables. Featuresinclude:
= Switching fabric type—time-dot (TDM), wavelength (WDM) or fiber;
= Switching-granularity — TDM: smallest signal-type that can be switched;

WDM: single wavel engths or band of wavelengths,

= TDM sgnal support, WDM wavelength range

= Mapping-Actions support: TDM: virtual-concatenation support usng VCAT
(SONET/SDH) or ODUflex (OTN), LCAS support etc; WDM: variable line-
rate support, tunable wavel ength support etc.

0 Methodsto get the switch make-up: port, tables and bandwidth representations.

= Port representations — line rates (OC48, OC192, OTU0/1/2/3 etc.), framing
types (SONET, OTN, Ethernet etc.)

= Bandwidth representations — TDM ports. used and available time-slots at
minimum switch-granularity; WDM ports. used and available wave engths for
adefined grid spacing and range

= Recovery support — most circuit switches have in-built hardware support for
link recovery. Such recovery typesareknownas1+1, 1:1, N:1 etc.

= Neghbor discovery support — some circuit-switches (digital ones) have the

ability to discover their neighbors on the linksthey share with them.
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= Technology dependant switch features —eg. WDM: waveength converson
capabilities, transponders, WDM filters etc.

Methods to set configurable parameters on alocal port or table bass as well ason

aglobal switch bass.

Method to query default or current values of these configurabl e parameters.

e Control forwarding sate:

o

o

Method for adding circuit-flow definitions by specifying the virtual-port and
mapping-actions.

Method for creating cross-connections between: physical fiber-ports, wave engths
and time-dots. Also means for connecting virtual-ports to any physical fiber-port,
wavelength or time-slot.

Method for changing the mapping-actions applied to a circuit-flow’ s virtual-port.
Method for deleting the circuit-flow definition — both cross-connections and
virtual-ports. Deleting a virtual port is equivalent to deleting the cross-
connections that support it within a switch.

Methods to set recovery state eg. link-protection.

e Monitor: Statistics and Status

o

o

Methods for querying cross-connect tabl e state

Methods for querying virtual-port state (example: the packet-flows mapped into
the port) and stati stics (transmitted/received bytes etc.).

Methods for setting traps for change in switch-state: example physical port
up/down, or virtual-port queue depth (queue of packets entering circuit)

As before, the methods described above may dicit a reply from the switch with

requested information, positive acknowledgements or error messages, or the switch may

smply process the function with silent acknowl edgements.

In our work, we have implemented the common-switch-APlI by extending the

OpenFlow protocol to manipulate circuit switch flow-tables[36].
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2.2 The Common-Map Abstraction

The common-map abstraction is based on a data-abstraction of a network-wide common-
map manipulated by a network-API (Fig. 2.12a). The common-map has full vishbility into
both packet and circuit switched networks, and allows the creation of network-
applications that work across packets and circuits. The common-map is created and kept
updated and consistent with network state by the unified-control -plane (UCP).

| Applications
H | (network functions)
across packets and

circuits
| J Network -API ;

v

Common
Global Map

Abstracted away by Unified Control Plane

I I
I I
I I
: State Collection :
| ﬁ State Dissemination & ﬁ I
I 4 Application Isolation [
I |
| I

Figure 2.12(a): Common-Map Abstraction (same as Fig. 1.12)

The common-map makes it smpler to implement network functions by abstracting
away (hiding) the means by which network state is collected and disseminated. Today
network functions are implemented as distributed applications tightly coupled to the
dtate-distribution mechanisms that support them. By breaking this coupling, the common-
map abstraction allows applications to be implemented in a centralized manner. Not only
does this make the applications Smpler, it also improves extenghility, as inserting new
functions into the network becomes simpler. Moreover, the network itself becomes
programmable, where functionality does not have to be defined up-front by baking it into
the infrastructure. A network-APlI can be used to write programs that introduce new
control-functionality as the need for it arises. With its full visibility, the common-map

allows new features to be supported that take advantage of both packets and circuits.
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Importantly it gives the application-programmer the choice to treat packets and circuits
together or as separate layers, or even completely ignore one or the other in the
application context. Together the common-map abstraction benefits of programmability,
samplicity, extengbility and choice ease the path to convergence and innovation in packet
and circuit networks.

In the following discussion we firg briefly describe a representation of the common-
map. We then describe means by which it can be congructed and maintained, with
emphasis on the important aspects of link-discovery and layering. Finally we detall
possible features of the network-API.

2.2.1 Common-Map Representation

In Chapter 1, we introduced the common-map as an annotated graph (or database) of the
network topology (Fig. 2.12b). This graph is a collection of network Nodes. In the
context of wide area networks, the nodes are essentially switches'; packet, circuit, and
hybrid-switches which have both packet and circuit switching features.

Nodes Each node is a callection of the following: flow-tables (both lookup-tables
and cross-connect tables); outgoing links (physical and virtual); ports (physical and
virtual); and queues. The node is a data-structure that represents the switch abstracted as
<tables, ports, queues>. In itself there is not much information regarding the node other
than a unique identifier such as a Node-id. However, the collections held within a Node
give more details of the data-abstraction.

Ports: The port data-structure includes information on the type of port — either
physical or virtual. It has a unique identifier (Portld) and one or more network addresses
and names. A physical port can have meaningful line-rates and framing type and aLinkld
for the physical Link for the connected link. It can also have a number of Queues
attached it (or at least indexes into the Queue collection). A virtual-port can be of many
types. It can represent the end-point of a circuit flow into which packet flows are mapped.

T Note that in other networking contexts such as enterprise or campus LANs, ‘Nodes’ can also include end-
hosts or middleware connected to the switches.
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lookup-table cross-connect-table
Packet-header field match support Circuit xconn support
Packet-header field wildcard support Circuit min switching granularity
Flow actions support Packet-Circuit mapping actions support
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2.12(b): Common-Map Databases (same as Fig. 1.10 and Fig. 1.11) |
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In some cases it can be manifested by a physical port. In other cases, it can represent
a group of physical-ports for a variety of purposes, such as broadcast or multipath load-
balancing. Finally, port level gatistics and status indicators are also maintained as part of
this collection.

Tables: The flow-table information for the lookup (packet) and cross-connect (circuit)
tables mainly includes information of the capabilities and features supported by the
tables. For example, the lookup table matching and wildcarding support for packet-
header-fields, and the actions that can be applied to a packet are stored here. For the
cross-connect table, the particular kind of switching fabric, minimum switching
granularity, mapping-actions and recovery types supported are stored here. Lastly
dtatistics are maintained on a table bass.

Queues. The queue-data gtructure can include information such as the Queuel d; the
Portld of the port it is assigned to; Queue dtatistics, and any other information regarding
the type of queue — min-rate, max-rate, associated scheduling mechanisms like FIFO,
WFQ, priority queueing, class-based-queueing, policing and shaping support, congestion
avoidance (RED) and other AQM support. It can also include information on traps set by
the user to be notified for queue occupancies cross set thresholds.

Links While linksin the network can be maintained in a database separate from the
nodes-database, there are many advantages to maintaining it as part of the nodes data-
gructure. For example, it is a convenient way to quickly get the outgoing links from a
node which is required by many routing algorithms; it is also convenient to represent
unidirectional links (for eg. unidirectional MPLS tunnels or other virtual-links) or link
features which are different in either directions (such as bandwidth reservationsin MPLS
tunnels). The link data-structure includes information on the destination portld and
nodeld. It also includes information of max bandwidth, reserved bandwidth, unreserved
bandwidth, and actual bandwidth usage for the out-going direction. The actual bandwidth
representation depends on the type of link — eg a packet-link (used for MPLS-TE) or a
TDM circuit link or a WDM fiber link. In all cases the notion of bandwidth and its
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reservation holds. Additionally the links database can maintain a link-cost (or weight)
useful in certain path-calculations, as well as a set of attributesthat the user can define for
amilar purposes. Ultimately the links data-structure is a repodtory of all link
information. It is up to the user to use-or-ignore parts of the structure in the context of the

application or its corresponding networking domain.

2.2.2 Common-Map Construction & Maintenance

To create a common-map, the unified control-plane learns about switch ports, queues,
tables, and other switch characteristics and capabilities usng the switch-API (discussed
in the previous section as Get/Set Capabilities and Configuration). However, the network
database is incomplete without information on network links. Thus as an important part
of the congtruction of the common-map, we discuss various kinds of packet and circuit
link-discovery mechanisms.

Link Discovery: With reference to Fig. 2.13, we define a packet link to be one
that interconnects interfaces on two packet switches (or the packet switching part of
multi-layer switches). These interconnections could be physical (for example two Gigabit
Ethernet ports inter-connected by an Ethernet cable) or they could be virtual (eg. two PoS
or GE interfaces connected over the wide-area by an underlying circuit). Circuit links are
always physical links — essentially fiber or wavelengths that interconnect interfaces on
circuit switches (or the circuit switching part of multi-layer switches).

Packet switching part
(@) of multi-layer switch (b)

\ Virtual Packet-link |
Packet Packet \L | Packet
Switch H ‘ switeh NGOV __ /.| Switch
Physical Packet-link
Figure 2.13: Physical and virtual packet links
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Physi cal-packet links: Discovery can be performed by the control plane using test-

packets. With the use of a mechanism to send packets selectively out of packet-interfaces,
the UCP can send specially generated test-packets out of all known ports on switches that
it has control over. When such a test-packet is received back by the UCP from a switch
other than the one it was sent out of, the UCP can determine which port on the receiving

switch is connected to which port on the sending switch (Fig. 2.14a).
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Figure 2.14: Discovery of packet and circuit links

TDM Circuit Links: On circuit switches such a mechanism is possible, but dightly
more involved. Condder first a TDM switch based on SONET/SDH (but applicable to
TDM switches based on OTN as well). SONET switches periodically send out SONET
frames on al interfaces (eg. 8000 frames/sec). Each frame consgts of a payload and a
header, and there exists special header bytes (the DCC bytes [5]) reserved for packet-
communications. These bytes can be used to carry the packets sent by the packet-out

mechanism, with the understanding that software on the receiving end must put together
the packet (soread over the DCC bytes in multiple consecutive frames), then add its
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receiving port and switch-id and make it available to the UCP. This scenario is depicted
in Fig. 2.14b and is a viable way to support discovery of physical circuit-links.

Another way to achieve the same result for both packet and circuit physical linksisto
have the switches themselves perform this discovery using software/hardware outside the
purview of the UCP. Since a lot of existing equipment already uses these DCC bytes to
do neighbor discovery, all that is required isto report the results of the discovery process
to the UCP as part of the switch-API (Fig. 2.14c).

One advantage of doing some link-layer tasks in the switches is that very fast keep-
alives can be sent switch-to-switch to monitor the health of the link (link up-or-down)
and save the UCP from processing the keep-alive. However, the disadvantage is that
these protocols are vendor proprietary today making them hard to interoperate for
discovery or keep-alives. We feel that both cases should be allowed, together with the use
of standardized neighbor discovery (like LLDP [31]) and fault-detection protocols (like
BFD [32]).

WDM Circuit Links: In the case of wavelength and fiber based circuit switches,

where there is no vishility into packets, neighbor discovery and therefore link-discovery
is hard to achieve. However we find that supporting the trend towards multi-layer
switches, a lot of waveength-switches are supporting packet interfaces with limited
packet switching capability [33, 34]. We can then support the discovery of circuit linksin
wavelength/fiber switches via mechanisms shown in Fig. 2.14d. A packet sent via a
packet-out message is periodically sent out of a virtual-port which is cross-connected to
one of the interfaces. A virtual port on a recelving switch is cross-connected in round-
robin order with all circuit ports. When one of the test-packets periodically sent out is
eventually received successfully on a particular connection, the corresponding-link can
be discovered.

However, this procedure has two drawbacks — @) it is time consuming as the round-
robin nature needs to be repeated for all portsin all switches; b) it is disruptive to service

as while this discovery procedure is going on, live traffic cannot be carried over the
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switches. For these two reasons, in this case, instead of doing live discovery it may be
better to ‘configure the switches with their neighbor switch and port ids, so that the
switch can report it to the UCP viathe switch-API.

Given the above argument and keeping Fig.2.14c in mind, we included the ability to
report peer switch-id and port-id per switch circuit-port in the switch-API as neighbor-
discovery support; as well as the packet-infout mechanism for UCP based discovery in
the switch-API. Note that use of this APl feature means that the UCP is not directly
involved in the discovery process. Thus the reporting of neighbor information requires
the UCP to have a verification methodology that ensures that different switches which
report each other as peers on a certain port, report their peer’s switch and port id
correctly. A circuit or packet link reported thisway is deemed discovered only when both
sdes of thelink report the other end correctly.

Constructing Layers: In discussing the common-map abstraction we said that
we can choose whether to treat packet and circuit switches as part of the same topology
or as part of different topologies (and thus different layers).

Creating network applications across packets and circuits is smple when we treat
both kinds of switches as part of the same topology or layer (a sea-of-switches). On one
hand, the right-side of Fig. 2.15 shows how physical packet links can be discovered by
the controller (using test-packet-in and outs) and physical circuit links can be reported by
the circuit (or multi-layer) switches and verified by the UCP, usng any of the
mechanisms shown in Fig. 2.14. This allows the creation of a single physical topology
comprising of a sea of packet and circuit switches. We show an example of a network
application on top of such atopology in Chapter 3.

On the other hand, the left-sde of Fig. 2.14 shows a mechanism for creating separate
packet and circuit topologies, where the network application treats them as separate
layers. The packet layer (or topology) can conss of physical packet links when they link
together packet switchesthat do not go over the wide-area. These links can be discovered

by the packet-in-and-out mechanism provided by the switch-API. Similarly physical
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circuit links can be discovered or verified by the methods mentioned in the previous
section. These links then form a separate circuit-topology (or layer). Importantly the
circuit layer also includes the packet-switches that are at the border of the packet-network
and connect physically to circuit-switches. These physical connections (either packet or
circuit links) are also part of the circuit-topology as they contain vital information for

maypping packet flows to circuit flows.
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Network Application
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Figure 2.15: Layering and the Common-Map Abstraction

Discovery of virtual-packet links over the wide area can be performed by tunneling
test-packets from packet switches over circuits created to support the virtual-packet-link.
At the other end of the tunnel, the test-packets are received by the UCP completing the
discovery of the virtual packet-link acrossthe wide area.

Common-Map Maintenance: Entities such as ports and nodes report ther
gatus to the UCP via the switch-API. Additionally the status of links can be discovered,
implied (from port status) and verified by the UCP via the switch-API. The common-map
is updated and maintained by reacting to these status updates by creating/removing/or
updating the relevant data-structures for the entities.
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2.2.3 Network-API

A network-API for the common-map can have two parts: one that allows switch-level
control and the other allows network-wide control. We consider them separately below.
In discussing the network-API we do not distinguish between API calls for packet flows
and circuit flows. The set of calls described, apply to both packet switched networks and
circuit switched networks. The only difference is in the switching technology. Thus the
implementation of these API calls is typically technology specific. For example, a
function-call to setup a flow can involve ingalation of only packet-header fields in
packet flow tables, while a circuit flow setup can include creating virtual ports at the end-
points and setting up switch-fabric-specific (WDM, TDM) cross-connects for the circuit.

Switch-Level Control: A network application may require access to (internal)
switch level detail for a variety of reasons depending on where the switch islocated in the
network topology and the kind of network function being targeted — examples include
access-control, specialized/advanced forwarding (multipath-selection), monitoring queue
depths etc. In such cases, the network-API essentially provides a wrapper around the
switch-API calls. Thus all (or most of) the switch-API calls discussed in Secs. 2.1.1 and
2.1.2 could in principle be wrapped into a network-API call as (network-node-id, switch-
API-call). Such callsinclude commands that the application can use to change/configure
attributes in the switches and control the forwarding path within a switch. Also amost all
network-wide monitoring is done on a per-switch bass. The application can register to be
notified when such monitoring-events happen. Behind the scenes, the network API
wrapper setsthe switchesusing the ‘trap’ functionality of the switch-API.

Network-Level Control: Network applications may require the following min-
set of capabilities from the network-AP!I:

e Topology-choice: Depending on requirements the common-map abstraction may

provide a single-topology or multiple topologies — two common examples are a)

virtual-topology of packet-links on a physical-topology of circuit links, and b) a
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virtual topology of tunnels (eg. MPLS) on a physical-topology of packet-links. The

application needs to choose which topology it works with for routing etc.

Routing: In general routing can itself be consdered as an application on top of the

network-map. The user can define a routing-algorithm to support the following API

calls, or the UCP could include a built-in generic routing-algorithm that supports the

APl. One example of a generic routing-API uses a Condrained Shortest Path First

(CSPF) algorithm that finds the shortest path in the network given certain constraints.

Such congraints can be bandwidth, delay, or any other user-defined link - attribute.

0 Methods to set attributes for links in the chosen topology before routing can be
performed. Simple attributes are link-costs and maxi mum reservable bandwidth.

0 Method to get a route (get_route) on the chosen topology between source and
destination nodes, depending on a specified set of congtraints- thisis essentially a
check to see if a route can be found that meets all the congtraints (applies well to
MPLS-TE and circuit networks). Note that get_route can be run with multiple
congraints simultaneously, or with no condraints at all. In the latter case the
caller would get the path with the shortest cost. If all link costs are the same, the
route would have the shortest number of hops.

0 Method to check an explicit route - the application can specify an explicit route
by detailing the nodes along a path from source to degtination. This call will
verify the validity of the explicit route, given the current state of the network and
the specified constraints.

0 Method to check an existing route — the application can specify an existing route
explicitly and check for the feaghility of a change in a congraint along that route.
For example, applications can check if a flow (with reserved-bandwidth) can
increase its bandwidth-reservation along the path it currently takes.

0 Method to detail aloose-route — loose routes are partially specified routes. This
call fillsin the details of the nodes along the loose route by checking for all the

specified congraints along the |oose route.
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e Flow-setup:

o

o

o

o

Method to setup a flow (packet or circuit flow) in the network — given a route, and
a st of <flow_definitions, associated actions> for each node along the route, a
flow is created (packet-flow, circuit —flow, virtual-circuit-flow). Under the hood,
the UCP sets up the flow-table entries in each switch along the route usng the
switch-API. If such a call changes the link-attributes then the common-map is
updated. For example when a circuit is created with a certain bandwidth, it
consumes that bandwidth along the links the route traverses. Thusthe linksin the
common-map have their attributes updated.

Method to delete a flow (which updates the map if necessary)

Method to re-route a flow by changing the set of actions associate with the flow or
changing the route.

Method by which an application can register for a type-of flow so that if matching

packets arrive then they can be routed.

e Recovery:

o

o

o

Methods to inform applications of changes in network topology (link or node
failures) so that the application can figure out new routes and install them.

Method to configure the routing engine to automatically respond to change in
network topology by re-routing flows without waiting for the application to
explicitly re-route them.

Methods to set advanced re-routing state, so that the switches have pre-ingalled
date for re-routing when network failures occur. Such pre-ingtalled state could be
backup paths (like MPL S Fast Reroute or circuit protection paths)

e Network-wide Monitoring:

o

o

Methods for the application to be notified of network-state along a route or on
specific links eg. congestion
M ethods for sampling packets along ingtalled packet-flows in the network.
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2.3 pac.c Prototypes

We discuss three prototypes we built to validate our architectural and control plane
congtructs [35]. The Unified Control Plane (UCP) from Fig. 2.16 congsts of:

e OpenFlow: An interface/protocol that instantiates the common-flow abstraction by

enabling the switch-API into packet and circuit switches. Our work extended verson
1.0 of the protocol [28, 36] for circuit switches (Sec. 2.1.2).
e A Controller running a network-wide Operating System called NOX [15]. We

ingtantiated our common-mayp abstraction by building and maintaining the common-
map and network API on top of NOX, withideas discussed in Sec 2.2

e A Slicing Plane (not implemented) which is crucial to the practical deployment of the

common-map, as we show in Chapter 3.
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Figure 2.16: Implementation of our Architectural Approach

We firgt present two early proof-of-concept prototypes we built with two different

kinds of circuit switches - wavelength & TDM. These prototypes focused on validating

the flow-abstraction. Our third and more compl ete pac.c prototype validates the common-

map abstraction.
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2.3.1 Prototype #1: Packet & Wavelength Switch Control

Goal: Validation of the common-flow abstraction by demonstration [37, 38] of
unified control over OpenFlow enabled packet switches and an OpenFlow enabled
optical wavelength switch.

Data-Plane: The main circuit switching element is a Wavedength Selective Switch
(WSS) from Fujitsu which forms the bass of the Flashwave ROADM systems [34]).
The WSS isan al-optical waveength- switch in a 1X9 configuration. It has the ability to
independently switch any of 40 incoming wavel engths at the single input port, to any of 9
output ports (Fig. 2.17). The incoming wavelengths (100 GHz spaced, ITU C-band) are
de-multiplexed and directed to ther respective MEMS mirrors, which are rotated to
direct the wavelength to any of the 9 output ports, where they are multiplexed back into

DEMUX  SW  MUX
IJ.I_I_I_I]_I.I. w— Y 4

. Wb, Ao,

OpenFlow |nput

Protocol

OpenFlow
o Client /
| .
RS-232 | WSSDriver
p - v —

Figure 2.17: OpenFlow enabled Wavelength Selective Switch(WSS)

the outgoing fiber.

Controller

1 X9 WSS
Configuration

The WSS mirrors are controlled with a voltage-driver, which is sent commands
over RS232 from a PC. The PC runs a modified verson of the OpenFlow reference
switch [39]. We used the OpenFlow client part of the code which interacts with the
Controller and modified according to our changes to the OpenFlow protocol [36]. The
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rest of the code that implements packet-switching in software is eliminated. The modified
client was integrated with an RS-232 driver to send commands to the voltage-driver that
directs the mirrors. Together the OpenF ow-client PC, voltage-driver and the WSS can be
regarded as an OpenFl ow-enabl ed circuit switch.

The data plane also consists of two OpenFlow enabled packet-switches implemented
in software with the OpenFlow reference switch [39]. The switches can be hosted in any
PC with multiple Ethernet interfaces. In our testbed we used PCs with NetFPGAS as 4-
port Network I nterface Cards (NIC) [40].

Control-Plane: Our controller was implemented by making changesto the ssimple
reference-controller that is distributed with the reference switch [39]. The focusin this
prototype was on implementing the common-flow abstraction correctly. As a result the
smple controller used in this prototype does not really create the common-map. Instead it
treats each packet-switch as independent Ethernet | earning-switches.

Experimental Setup: Fig. 2.18 shows our experimental setup. Two packet-
switches NF1 and NF2 are connected via an optical link. Each packet-switch has four
Gigabit-Ethernet (GE) electrical interfaces. One of the electrical ports (on each switch)
was converted to an optical interface via a GE-to-SFP el ectrical-to-optical converter from
TrendNet [43]. We used 2.5 Gbps SFP transceiver modules from Fujitsu in the converter,
which transmitted DWDM ITU grid wavelengths 553.3 nm and 1554.1 nm. These
wavelengthstrave in opposite directions to form the bidirectional optical link.

The optical link comprised of 25km of single-mode fiber separating the two packet
switches. The two wavelengths that form the bidirectional link were multiplexed/de-
multiplexed into the fiber at the output/input of NF1 by a waveength mux/demux
(AWG). At the other end of the link, the wavelengths are again multiplexed/de-
multiplexed into NF2 by the wavelength switch (as the switch has mux/demux
capabilities as well). Initially however the wavelength switch is ‘open’ and so the
wavelength coming out of NF2's transmitter (1554.1nm) does not reach NF1, and the
wavelength transmitted by NF1 (1553.3nm) does not reach NF2. In other words the

* The NetFPGA is a programmable hardware platform [41]. Implementations are available now that can be
installed in the NetFPGA to make it behave like an OpenFlow enabled hardware packet-switch [42].
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optical- link is broken, and so is the Ethernet link it supports between NF1 and NF2. The
optical link is monitored by tapping-off a small percentage of the light (2%) before the
receivers in both directions, and feeding the tapped-light into an Optical Spectrum
Analyzer (OSA). Finally we connected client PCs (end-hosts) to the other GE interfaces
on NF1 and a video-server PC to NF2.

Controller

OpenFlow Protocol

NetFPGA based OpenFlow
packet switch " NF1

25 km SMF

| 1X9Wavelength

Iselective Switch {Wss)i
S 1

WSS based OpenFlow circuit
switch

h GE to DWDM SFP
= Al 1553.3 nm 192.168.3.10
192.168.3.12 192.168.3.15 ‘ convertor

= A2 1554.1 nm

Video Clients Video Server

Figure 2.18: Prototype #1 - Packet and Wavelength switches

Experiments & Results: The basc ideais that the video-clients make requests
for videos from the video-server. The video request is transported over TCP. But initially
the client PC is not aware of the MAC address corresponding to the IP address of the
video-server. It therefore sends out an ARP request, which isreceived by NF1. Since the
ARP packet does not match any flow entriesin NF1', it gets forwarded to the OpenFlow
controller as a packet-in message.

Upon receiving the ARP packet, the controller decides that in order to reach the
server, a circuit needs to be created between NF1 and NF2. The controller uses the

OpenFlow protocol to insert rules into the WSS cross-connect table, thereby making the

T Actually all flow-tables (in NF1, NF2 and the WSS) are empty at the start of the experiment.
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cross-connection for each wavelength in the WSS. Once the bi-directional optical link is
up, the Ethernet link also comes up between NF1 and NF2. The controller also inserts
flow table entries in the packet-switches to broadcast the ARP request to all interfaces
other than the one in which it received the packet. This results in the ARP request
reaching the server PC via the WSS and NF2. The server PC sends the ARP reply,
following which TCP handshaking takes place and the video request is transported to the
server. To serve the video request, the server streams the video data packets usng RTP
over UDP. These packets are transported over the same bidirectional circuit created by
the controller, and are received and displayed by the video-client.

We measured the time taken by various steps of the process (Table 2.1). The
measurements were made using Wireshark running on NF1, NF2 and the WSS driver PC.

Details of the configurations and the measurement procedures can be found in[37].

Steps GE-Optical-GE link GE-Optical-GE link GE-GE link (no
with WSSinitially not | with WSS dready optics)
cross-connected cross-connected

WSS connect 1ms - -
command received

Cross-connection 13s - -
confirmation

TrendNet GE-SFP 474 s 410s -
module link-up

NetFPGA GE-GE 1ms 1ms 1ms
link-up

Table 2.1: Prototype #1: Time taken for connection set up

Conclusions: We make the following observations from our first prototype:

e The most important lesson from this prototype is the feasibility of our common-flow
abstraction; that it was possble to treat OpenFlow-enabled packet and circuit
switches as flow-tables that switch at different granularities (packet and lambda) and
can be commonly-controlled by an external controller usng a common switch-API.

e Wefound that the time taken to create a wavelength cross-connectionis high (1.3sec).

However this has nothing to do with our implementation of the OpenFlow protocol.
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Instead the time is actually taken by the RS-232 communication between the driver
PC and the WSS voltage-driver, which is not optimized for fast setup of connections.
For example, while the mirrors can be rotated smultaneoudy, the cross-connect
commands (over RS-232) are sent one at a time, and the second command cannot be
sent until detailed feedback is read off from the serial port for the firss command. We
believe that optimizing thisinterface can reduce this number to tens of ms.

e The time taken by the GE-SFP convertor to recognize a link-up is high (4.10s), most
likely because the internal mechanisms of the converter box have not been optimized
for rapid link-up. We believe that a dedicated ASIC/FPGA optimized for fast setup
will helpinthisregard.

2.3.2 Prototype #2: VLAN & TDM Switch Control

Goals: To build on our implementation of the common-flow abstraction by
abstracting a different kind of circuit switch — a SONET/SDH based TDM switch; To
explore the implementation of a smple-application across packet-and-circuit switches.

Data-Plane: The data-plane consists of carrier-class Ciena CoreDirector (CD/CI)
switches [44].The CDs are hybrid switches — they have both Layer 2 (GE) interfaces with
a packet switching fabric, as well as Layer 1 (SONET/SDH) interfaces with a TDM
switching fabric (Fig. 2.19a). The packet switching capabilities on the CD are limited to
switching on the basis of VLANS (and incoming- port). Nevertheless, the prototype has
both packet and circuit switches (albeit housed in the same box).

Working with Ciena's development team, the OpenFlow protocol was extended to
serve as a switch-API into the CD’s VLAN and TDM (SONET) switching fabrics.
Ciena's development team added native support in their switches for the OpenFlow
protocol (and its circuit-extensions [36]) to serve as a switch-API. Smultaneoudy, we
worked on a controller to communicate with the CD and run unit-tests to debug the

devel opment of the OpenFlow client in the CD.
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Control Plane: The control plane featured a controller running NOX [15] over an
out-of-band Ethernet network. NOX was modified to include our changes to the
OpenFlow protocol for circuit switching. We retained only the basc NOX event-engine
and connection-handler part of NOX (known as nox-core — see Fig. 2.19b). This early
prototype did not include any of the discovery and layering features presented in Section
2.2. Neither did it use the built in features in NOX for packet link discovery and
topology, as there aren't any standalone packet switches in this prototype (like the
software packet-switches in Prototype #1). The map abstraction for this topology only
applies to the circuit-topology which was datically defined (i.e. the topology was hard-
coded; not discovered). The circuit-API shown in NOX was basically a wrapper around
the switch-APlI commands in OpenFlow. The controller also interfaces with a GUI that
shows network state in real-time (Fig. 2.20b, created usng ENVI [47]).

Experimental Setup: We used three CDs in our prototype connected to each
other via OC-48 (2.5 Gbps) SONET/SDH links (Fig. 2.20a). Similar to prototype #1, we
connected video clients and server PCs to our switches, except this time instead of
standal one software packet switches, we connected the PCs directly to the Ethernet (GE)
interfaces on the CDs. The three CDstogether form a small demo-network.

Rule Action Stats Connect

P1 +VLAN10, | veers [€> [P11 |ves | 1| Fo.nt.rollelr_ i
OUTVPort 3 |P22 |vc4 [ 4 |
| &= :
P2 +VLAN 20, : Network Applications
OUTVPort 3 :
P3 +VLAN 45, Congestion-aware |
OUTVPort3 Bandwidth-on-Demand |
Operfflow ‘ o e o o e T B o P e e I P R e . ]
(software)
GUI P .
5 st T A Circuit Topology Circuit
Statically Defined API
\ - (L) 5
—Y 1 ; 3
(a) Packet TDM 5 NOX core :
b) ion Hand| i
- e, | I : (Connection Handler, Event engine) -
..... '{ - : E
A T Ea T . . . Sesses . sesssssd
| Nk L
== Switeh Fabric 1 Switch Fabric
B To switches.. OpenfFlow
. rotocol
SE Virtual Port TOM :

ports ports

Figure 2.19: (a) CD internals and Flow Tables (b) Controller internals
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Experiments: The focus was gill on validating the switch-API (OpenFlow) for
TDM switching, and devel oping the common-flow abstraction by interfacing TDM flows
with VLAN based packet-flows. The best way to show this was by demonstrating the
capability in NOX to set-up, modify and tear-down both L1 (SONET) and L2 (VLAN)
flows on—demand. Once we had the ability to dynamically create and map packet-flows
to circuit-flows, we wished to explore a ample network-application across them. And so,
we created an application that dynamically responds to and relieves network congestion
by adding bandwidth on-demand (Fig. 2.16b) [45, 46]. We discuss each of these
experiments next.

Figure 2.20: Prototype #2 Experimental Setup and Demo GUI

L1 and L2 control: The objectiveis smilar to the one in the previous prototype where

video-clients make requests for videos from remote streaming-video servers. When such
packets (TCP SYN) from the first client arrive at the GE interfaces of the CDs, the CD
tries to match the packet to rules in its packet-flow-table. Since the flow-table does not
have entries for such packets, they are redirected to the OpenFlow controller (as packet-
ins). The controller decidesthat for the packets to reach the IP address of the server, there
needsto be a circuit-flow between CDs#1 and #2. Thus our application:
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e Creates virtual-ports in the CDs to serve as end-points for circuit-flows, where
packet-flows can be mapped into them — eg. VPort3 in Fig, 2.19a;

e Inserts rules in the packet-flow tables that dictate that all packets coming in from
client GE-port (eg. P1 in CD #1) and the video server GE-port (in CD #2) are tagged
with a particular VLAN-id (eg. VLAN1O for P1 in CD#1) and forwarded to the
virtual portsin the respective CDs (as shownin Fig. 2.19a);

e Insertsrulesin the packet-flow tables for the opposite direction, which stipulate that
all packets matching the <virtual port and VLAN-id> combination, have the VLAN
tag stripped and then forwarded to the GE port corresponding to the client-PC (not
shownin Fig. 2.19a);

e Insertsrulesin the cross-connect tables that connect the virtual port to SONET signals
(timeslots) that connect the two CDs bi-directionally (eg. in Fig. 2.19a, VPort3 is
cross-connected to two VC4s — 150Mbps each — which start on timeslots 1 and 4 on
ports P11 and P22 respectively). The cumulative circuit-bandwidth isthen 300Mbps .
All subsequent packets (in both directions) for this client-server pair match the

exigting flow definitions and get directly forwarded in hardware. For other client-server
pairs the application chooses a different VLAN tag, so the CD’ s packet-switch fabric can
distinguish between packets coming in from the virtual-port and destined to different
client/server pairs. As video data is received from the server, the packets are tagged with
the internal VLAN id and mapped to the virtual-port. At the client side, the packets
received from the virtual-port are switched to the client port based on the VLAN tag,
which is then stripped off before the packets are forwarded to the client PCs, where the
video is displayed on the screen. Packet flows are shown in the GUI (Fig. 2.20b) between
the PCsand the CDs, and circuit flows are shown between the CDs.

Congestion-aware Bandwidth-on-Demand: Initially, the cumulative data-rate of two

video streamsislessthat the bandwidth of the circuit flow they are multiplexed into (Fig.

2.20b), and the videos play smoothly on the client PC displays. However, when a third

" The virtual-port is created using SONET Virtual Concatenation (VCAT) and Link Capacity Adjustment Scheme
(LCAS) features [5].
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video stream is multiplexed into the same circuit-flow, the bandwidth is exceeded,

packets start getting dropped, congestion develops in the network, and the video displays

gall. However our application monitors network performance by acquiring circuit-flow

datistics from the virtual portsin the CDs. It becomes aware of the packet drops, makes

sure that the congestion is due to long-lived flows, and then responds by increasing the
circuit bandwidth by adding more TDM sgnals to the virtual-port (Fig. 2.20c); thereby

relieving congestion & restoring the video streams which start displaying smoothly again.

Conclusions: From this second prototype, we arrived at the following conclusions:
Validation of our common-flow abstraction; that it was possble to treat a hybrid
packet-circuit switch as a combination of flow-tables that switch at different
granularities (packet and time-slot) and can be commonly-controlled by an external
controller usng a common switch-API.

Validation of the flexibility of virtual-ports as the mapping-functions between packet
and circuit domains. Prototype #1 had the virtual-port represented by the physcal
GE-wavelength (SFP) convertor-ports in the packet switches, and Prototype #2 had
the virtual port represented by a GE-TDM mapper in the hybrid switches.

We learnt a number of lessons about how the API can be improved. For example, our
TDM port bandwidth representation in v0.2 of the extensions (which we used in this
prototype [35]) is cumbersome - and so in v0.3, we use a much simpler representation
[36]. Another example relates to the use of a common structure to represent packet &
circuit ports. In v3 we use separate structures, as it helps implementation. For
example, vendors of packet-only-switches need not implement circuit-related features
of the OpenFlow protocol (switch-API) and vice-versa.

With the common-flow abstraction feasibly instantiated, we made our first foray into
developing network-applications that worked across packets and circuits. But we did
so without the important features of discovery and fault-detection, which help create

the common-map and keep it updated. This was fixed in the next prototype.
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2.3.3 Prototype #3: Full pac.c Prototype

The early prototypes discussed in the previous sections were useful as proof-of-concept
demongtrations of our architectural constructs. They were also useful for demonstrating
smple applications in the controller across packets and circuits. However they were
limited in the following ways — the prototype in Sec. 2.3.1 had standalone packet
switches and a wavelength switch, but it was only a single-link demonstration; the
prototype in Section 2.3.2 was more involved but had limited packet switching capability
(only VLAN); finally both prototypes lacked a more evolved implementation of the
common-map abstraction as described in Sec. 2.2 (no discovery, recovery etc.) In this
section and the next Chapter, we describe our evolved and compl ete pac.c prototype.

Goals: The initial goal of this prototype was to instantiate the common-map
abstraction by creating and maintaining a common-map and network-API. Then building
on the initial goal: we wished to create a full pac.c prototype network with standalone
packet and circuit switches that emulated WAN structure; we wished to provide the
choice of treating packet and circuits in different layers, and use different data-plane
packet-flow to circuit-flow mappings than what had been previoudy demonstrated.
Finally, the ultimate goal of this prototype was to enable the creation of a fairly involved
network application across packets and circuits; and then using this experience to validate
our architectural claims of smplicity and extensibility.

Data-Plane: In part, the data-plane consgts of the same three Ciena CoreDirector
(CD) hybrid packet-circuit switches from the previous prototype (Fig, 2.21). The
OpenFlow client firmware ingde the CDs was upgraded to support all the features of
version 0.3 of the circuit switching extensions to the OpenFlow protocol [36]. Discovery
and recovery features were added and other deficiencies (mentioned in previous section’s
conclusions) were corrected in this verson of the extensions. The CD firmware was also
upgraded to support versionl.0 of the packet-switching part of the OpenFlow protocol
(previous prototype was based on v0.8.9).
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In addition to the hybrid switches, in this prototype we added standalone packet-
switches with full capability to support packet-switching based on the OpenFlow spec
v1.0 [28] (Fig.2.21). We used a single 48 port GE switch from Pronto (earlier Quanta
[48]) supporting the Indigo firmware [49]. The single switch was ‘diced’ to behave like
seven independent packet-switches each with 6 GE ports. The dicing plane was based on
a modified version of the FlowVisor [50]. The basic idea of the FlowVisior is that a
switch can be sliced to behave like multiple switches with each dice of the switch under
the control of a different controller. But if we give the control of each dice to the same

controller, then the diced switch appears to that controller as multiple switches.

Hybrid Packet-Circuit Switches

Figure 2.21: Full pac.c Prototype

Control-Plane: In this prototype we focused initially on devel oping the common-map
abstraction. Similar to Prototype #2 we again used NOX as our controller. NOX was
written mainly for enterprise networks, which have host-machines and middleware
directly connected to the network. In our work, to develop the common-map abstraction
for carrier networks, we ignored most of the LAN-related-functionality that NOX
provides (eg. authenticator, host-namespace, DHCP/DNS modules €tc.).

TThe NOX paper [15] briefly discusses the internal architecture of the network-OS.
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The parts of NOX we did use are the bas ¢ event-engine and connection handlers that
are collectively referred to as nox-core (similar to Prototype #2). Additionally some
modules we used, that come built-in [51], include packet-link discovery and packet-
topology, together with library-support and GUI API’'s (Fig. 2.22). Network applications
(shown above the horizontal dashed-line) such as routing, can use these modules to
implement network-functions, together the built-in modules create a network map for
packet networks and keep it updated with network state.

Network Applications

Packet Routing Circuit Routing

[ Packet Topology }( Circuit Topology ]
Packet Circuit

API Packet Link Circuit Link API
Discovery

Common
‘' Map

NOX core Abstraction

(Connection Handler, Event engine)

Verification

To switches.. OpenFlow

protocol

Figure 2.22: Common-Map Abstraction instantiated in NOX

In NOX-core we changed the definition file for the OpenFlow protocol, in order to
include the changes we made to the protocol to support the common-flow abstraction
(Sec. 2.1). The switch-features message allows us to build up the map representation for
nodes, ports, flow-tables, and queues. We discover physical packet-links via the NOX’s
discovery module. For reasons mentioned in Sec. 2.2.1, we have the TDM switches
perform neighbor-discovery and report on their peers as part of switch-features. We
added a circuit-link verification module (Fig. 2.22) to ensure that the peers reported by
the switches on ether end of a circuit-link matched-up, and only then were the links

included in the topol ogy.
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At this point, both physical packet and circuit links had been discovered. However we
wished to enable the treatment of packet and circuit switches as part of different layers
(as discussed with respect to Fig. 2.15). The reason relates to our ultimate goal of using
this prototype to validate our architectural claims. In order to do that we need to compare
our work with the way industry ‘ sees these networks today — as part of different layers.
And so we followed the procedure briefly mentioned in Sec. 2.2.2 to create these layers
with separate topol ogies. Importantly, since we aready had all physical links, we needed
a way to discover virtual-packet-links, which are supported by underlying circuits over
the wide-area.

We detail the procedure followed in the context of NOX. We quote from [15] (with
small clarifications): “To cope with network change events, NOX applications use a set
of (event) handlers that are registered to execute whenever a particular event happens.
Event handlers are executed in order of their priority (which is specified during event
registration). A handlers return value indicates to NOX whether to stop execution of this
event, or to continue by passing the event along to the next registered handler.”

Using NOX’s event priorities, discovery of virtual packet-links can be performed as
follows. Condgder the stuation where two standalone packet switches are connected over
the wide area through multi-layer transport switcheslike the CDs.

e Since there are two discovery modulesin NOX, we give higher priority to the circuit-
discovery module to received discovery events. The module can ignore or pass-on the
discovery packet to the packet-discovery module (depending on the layering choice).

e The discovery-packet sent out through a standal one packet-switch isreported back to
NOX by the packet part of the CD. The circuit discovery module receives it and
discoversthe physical packet link connecting the standal one packet-switch to the CD.
But now it chooses to stop the execution of the event. So the packet-discovery
modul e never learns about this physical packet-link.

e The circuit discovery module is already aware of the circuit-links via the CDs

SONET discovery mechanisms. It then has all the information it needs to complete
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the circuit topology — the CDs, the circuit links that connect them, the packet switches

that are physically connected to the CDs and the physi cal-packet links being used for

those connections.

e The controller then enters rules in the packet-switch part of the CD to tunnel all
subsequent discovery test-packets from the packet-switch through the circuit-flow to
the packet-switch at the other end of the circuit flow.

e At the other end of the circuit-flow, the discovery packets are reported back to the
NOX by the other packet-switch; thistime the test packet isignored and passed on by
the circuit-link discovery module; and received by the packet discovery module. The
latter can therefore receive this message and determine the (virtual) packet-link,
which inter-connects the standal one packet-switch interfaces via the circuit-flow over
the wide area.

In this way the packet, the packet topology (i.e the packet-layer) can be completed
with standalone packet switches and physical as well as virtual packet links, and kept
separate from the circuit-layer (which includesthe CDs and circuit-links).

We kept the common-map updated via two different mechanisms. The packet-layer
uses the packet-discovery process as keep-alives to discover link-downs. The circuit-
layer uses SONET’ s ability to quickly discovery link-down and report it to the controller
asa port-status message; at which point the circuit-link goes down in the circuit topol ogy,
and the virtual-link it supports in the packet-topology may also go down (depending on
the type of recovery mechanism selected"). Finally we also implemented the beginnings
of a network-AP!I (including routing and recovery from Sec. 2.2.3) to manipulate the
common-map.

Experimental Setup: With this prototype we had most of the eements
necessary to emulate a wide-area network. Importantly, we emulated WAN structure i.e.
packet-switches (access and core routers) clustered in a city’ s Point-of-Presence (PoP);
with the core routers connected over the wide area (inter-city) by optical transport

equi pment.

T For example if all recovery is deemed to be handled by the circuit-layer, then the virtual-packet-link does not go
down. It simply gets supported by a different recovery-circuit.

* as opposed to WAN latencies that come from propagation over thousands of miles in the wide-area. All our
switches are housed in the same lab with only a few meters of fiber connecting them.
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Figure 2.23: Prototype #3: WAN Emulation

The links shown within the cities in Fig. 2.23 correspond to physical GE links
between the independent Quanta packet switches; and also between the packet switches
and the CoreDirector (CD)’s Ethernet ports. For example, in the San Francisco (SFO)
cloud, we see two (access) switches connected by GE links to a single core switch. The
SFO core switch in turn is connected to the SFO CD via GE links. The CDs in turn are
connected by OC-48 optical-fiber-links over the wide-area. Asbefore, all the switchesare
OpenFlow enabled and communicate with the controller over an out-of-band Ethernet
network (non-OpenFlow controlled).

Experiment: We have implemented a fairly complex network-function in a
network-application on our controller, that makes use of both packets and circuits at the
same time, to achieve the functionality. We defer the discussion of the entire application,
and the conclusons we drew from the implementation, to the next chapter. Here we
demondtrate some of the underlying flow-table manipulations our application drives with
special emphasis on how packet-flows get mapped into different circuit flows. With this
experiment we show how we can write an application that s multaneoudy controls flows
on the basis of identifiersthat belong to Layer 4 (TCP/UDP), L3 (IP), L2 (VLAN) and L1
(SONET).
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Fig. 2.24 presents a snapshot of the forwarding tables in the SFO core packet-switch
and the SFO transport-switch (CD) physically connected to it. The objective of this
experiment is to show that packet-flows for different types of traffic (voice, video and
web) can be identified and mapped into different circuit-flows.

In this snapshot, rules have been inserted into the SFO core packet-switch's flow-
table that differentiate between three different types of traffic from the same customer —
in other words, three different packet-flows have been created. The customer is identified
by the IP source-address range of 10.44.64.0/18. The different traffic-types are
differentiated on the basis of well-known (eg, HTTP traffic on TCP port 80) or registered
(eg. VLC media player RTP/UDP stream) transport port numbers [55]. Thus each ruleis
acombination of the I P src-address (L 3) and a different TCP/UDP destination port (L4).
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P2, vlan50 Out VPort? VPort? | €% [p22vca |7
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Figure 2.24: Programming the Flow-Tables
The basic idea is to map the three different packet-flows into three independent
circuit-flows. One way to achieve this could be to use three different physical-ports

between the core-packet switch and the CD. But thisis an expens ve approach, especially
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snce the application learns from the common-map that the transport switch’'s (the CDs)
packet-forwarding table is capable of matching on <input-port, VLAN tags>; and is
therefore capable of demultiplexing packet-flows coming in from the same physical port
on the basis of different VLAN-ids. Thus the application performs the following actions
on all packets that match the rules in the core-packet-switch. It adds VLAN tags (L2)
with different VLAN ids (30, 50 and 75) and forwards the flows out of a single port
(port#2) on the core-packet-switch'.

The application also adds rulesin the CD’ s packet-flow-table to match on incoming-
port P2 and the different VLAN ids, with the action defined to forward all packets that
match the rules to different virtual ports (end-points of circuit flows). For example,
HTTP packets which had VLAN3O0 inserted into them by the core-packet switch, match
the rule in the CD with the corresponding action that forwards them out of virtual-port 3.
The virtual ports have been created beforehand by the application and they contain the
maypping actions necessary to map Ethernet framesto SONET frames.

Finally the snapshot shows that the application has inserted rules that cross-connect
the virtual-ports to time-dots on the physical SONET ports. For example, HTTP traffic
(VPort3) is assigned 150 Mbps of bandwidth (VC4) on SONET port P11 (starting at
time-slotl), while the video-traffic aggregate (VPort 7) gets 450 Mbps bandwidth (three
VC4s) spread over 3 different SONET ports (usng VCAT).

In this way packet-flows for three different traffic types from the same customer have
been mapped into separate circuit-flows with different bandwidths. The application has
the power to dynamically change any of these mappingsasit sees fit. For example:

e The packet-flows could be bundled into the same circuit-flow by changing the VLAN
idsin the core-packet-switch. Or by forwarding to the same virtual-port in the CD.

e Packet-flows from different cussomers can be mapped into the same circuit-flow by
matching on the different customer IP-src address but adding the same VLAN tag.

T Note that if the packet-flow-table in the CD had full matching capabilities, we wouldn’t need the VLAN tag
insertion. The same flow-table rules based on IPstc/TCP/UDP could have been used in the transport switch as
well. However the use of a tag/label has another advantage. In a flow-table implemented with TCAMs, rules
based just on tags or labels take less space.
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Bandwidth alocations for the circuit-flows can be changed on the fly by cross-
connecting the virtual -ports to more (or less) time-dots. Time-dots can be re-assigned
by cross-connecting them to other virtual ports.

New circuit-flows can be created by adding new virtual-ports, cross-connecting them
to time-dots, and re-directing packet-flows by forwarding them to the newly created
virtual port

Conclusions: To summarize, we draw the following conclusions:

We achieved our initial goal of ingtantiating the common-map abstraction, by using
features built-in to NOX for packet-switching, and by adding a set of modules for
discovery, topology and recovery for circuit-switching. Compare Fig. 2.22 to the
usage of NOX in Prototype #2 (Fig. 2.19b).

We were able to create the choice of viewing packet-switches and circuit-switchesin
different layers usng an innovative procedure for discovering virtual-packet-links. In
the next Chapter we will explore an application that treats the switches as different
layers but still under common-control.

In support of our larger goals to converge packet-and-circuit network operation in
WAN:s, this prototype was sufficiently evolved to emulate WAN structure (unlike the
previoustwo prototypes).

Finally we were able to demondtrate control over a wide variety of data-plane flow-
identifiers (L1-L4) and mappings that showed the power of this approach as a multi-
layer control plane.

Prototype #3 implements most of the features of our architectural approach — the

common-flow and common-map abstractions via a unified-control plane. It therefore

gives us an opportunity to compare and contrast our work, to industry solutions for

common-operation of packet and circuit switched networks. In the next chapter, we

validate the smplicity and extensbility clams we made for our unified-control-

architecturein Ch. 1 by comparing our work these industry solutions.



81

2.4 Summary

In this chapter, we gave details of the design of the two abstractions we introduced in
Ch.1, as part of our unified-control architecture for packet and circuit network control .

We firg discussed the common-flow abstraction. We showed what the flow-
abstraction means in the context of packet-switching, and then showed how it can apply
equally well to circuit-switching and different kinds of circuit switches. We then gave
design details of a common switch-API to manipulate the data-abstraction of flow-tables
in both packet and circuit switches. Importantly, we showed how the data-plane construct
of a virtual-port can flexibly map packet and circuit flowsto each other.

Next, we gave design-details of the common-map abstraction. We briefly discussed
the representation of the common-map and how it can be built and maintained. We
detailed the discovery of packet and circuit links which isan important part of the puzzle
when building a common-map. And we outlined procedures via which the common-map
can be represented as single or dual layers'topologies. Finally we discussed a set of
network-API calls that are needed to manipulate the common-map.

We then delved into ingantiations of the common-flow and common-map
abstractions in the OpenFlow protocol and a network-operating-system called NOX. We
presented three prototypes that helped us progressively validate our desgn congtructs.
Two early prototypes focused on the common-flow abstraction for packet-switches
working with different kinds of circuit-switches (wavelength and time-slot based). The
third, more complete prototype focused on the common-map abstraction and building a
testbed that emulates WAN sructure. We will use the latter in Ch. 3 to validate the

smplicity and exteng bility claims of our control architecture.



Chapter 3

Simplicity & Extensibility of
Architecture

We proposed a unified control architecture for packet and circuit networks based on two
abstractions. the common-flow and the common-map abstraction. We discussed an
implementation of the architectural approach usng OpenFlow and NOX, and presented
several prototypes that helped us undersand and refine our implementation. In this
chapter we wish to validate the smplicity and extensbility claims of our architectural
approach. Unified control over packets and circuits enables us to develop new
networking capabilitiesthat benefit from the strengths of the two switching technologies.
Thus, the first step of our validation methodology involves devel oping a new network
capability; in this work, we choose to devel op the ability for the network to treat different
kinds of traffic differently, usng both packets and circuits at the same time. Specifically
the network treats voice, video and web traffic differently in terms of the bandwidth,
latency and jitter experienced by the traffic, as well as the priority with which traffic is
re-routed around a failure. We implement this capability on an emulated WAN using the
full pac.c prototype discussed in Sec. 2.3.3. The second step of the validation process
involves comparing our implementation, to an implementation which would use the

current state-of-the-art industry-standard control-plane solution.
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In support of our smplicity claim, we find that our implementation requires two
orders of magnitude less code than the industry-standard solution. Lines-of-code
differing by orders of magnitude are good indicators of the complexity in developing and
maintaining one code-base compared to another. And so we conclude that our control-
architecture enables s mpler implementations of control-applications.

In support of our extenghility claim, we first discuss the two reasons that make our
solution extensible: @) full vighility across packets and circuits, and b) the ability to write
control applications in a centralized way, where the state-distribution mechanisms have
been abstracted away. We find that the current industry standard supports neither of the
two; which iswhy it is not surprising that even with two orders of magnitude more code,
the industry solution cannot replicate the network capability we demondstrate. Next, as
further proof of extenshbility, we discuss three other examples of applications enabled at
the intersection of packet and circuit switching: dynamic packet-links, variable-
bandwidth packet links; and unified-routing.

Finally we discuss three deployment challenges faced by any unified control solution
for packet and circuit networks. The challenges include: a) the reluctance of network
operators of packet and circuit networks to share information with each other; b) the
conservative nature of transport network operators towards automated control planes; and
¢) the conservative nature of P network operators towards increasing load on distributed
routing protocols. As final validation of the simplicity and extensbility of our work, we
propose solutions based on our control architecture to all the deployment challenges

mentioned above.

3.1 Demonstration of New Network Capability

The goal of the network function (or capability) we have chosen to implement is ‘to treat
different kinds of traffic differently’. We first describe what kinds of traffic we deal with,

and briefly why we wish to give them different treatment. We identify how we achieve
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our goals by leveraging the benefits of both packets and circuits, as well as our common-
global view of both networks and common control over both switching technologies (Fig.
3.1). We then briefly describe the software architecture of our syssem and network
application, and give detail s of our demongtration [52, 53].

[:] Network Function:
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Figure 3.1: Example Network Function

3.1.1 Example Network Function

The network function is designed to provide differential treatment to three types of traffic
— voice, video and web. Table 3.1 showsthe differential treatment we designate for these
types of traffic with respect to delay, jitter and bandwidth experienced by the traffic, and
priorities given to re-routing said traffic around failures.

It isimportant to note that thisis just an example of a function that we (as a network
operator) wish for our network to perform. It is by no meansthe only application that can
be performed, nor isit the only kind of treatment that can be delivered to these types of

traffic. We have smply chosen this treatment to demongrate a reasonably involved
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network function. Other network operators may wish to provide different treatment and
that too can be implemented easily with our architectural approach.

Differential Treatment: For Voice-over-IP (VolP) traffic, it is important to
minimize latency i.e. the delay experienced by packets carrying voice data. This is
because voice communication (eg. a Skype or Google-Voice call) is usually interactive
and bi-directional, which makes it important that both communicating parties receive
packets as quickly as possible in order to respond. At the same time, bandwidth required
by Vol P trafficis usually low.

Traffic-type Delay/Jitter Bandwidth Recovery
VolP Lowest Delay Low Medium
Video Zero Jitter High Highest
Web Best-effort Medium Lowest

Table 3.1: Example Network Control Function

In contrast, streaming video involves mostly one-way communication - for example,
Netflix servers streaming video to an end-user; or the streaming of a live-event (like
gports) by a channd (like ESPN3). In such cases, overall delay matters, but less than in
bidirectional voice communications. What matters more is the variation in delay (or
jitter) as such variations can cause unwanted pauses or artifacts when rendering the video
on the client’ sdevice.

The bandwidth experienced by video traffic is important as well. Note that when we
talk about bandwidth, we are not referring to the data-rate of the video stream'. Instead
we refer to the share of link data-rate ‘ seen’ by the video traffic asit propagates through
the network. If this share is congtant, then as more video streams are added to the links,
each stream experiences less data-rate, congestion develops and video-packets are
dropped. While voice traffic can in most cases tolerate some packet 10ss (eg. users can

repeat what they said), such packet-losses can be devadating to user experience when

T This data-rate typically varies depending on the amount of visual change in the video and the compression
mechanism (eg. I-frames in MPEG video have higher instantaneous data-rates than B or P frames).
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watching video (pauses, artifacts such as black-spots or discoloration). And so, not only
do we give a larger share of bandwidth to video traffic, we ensure that as more video is
added to the network, the bandwidth experienced by the traffic remains high in order to
avoid or minimize video-packet | osses.

Finally we deem web-traffic’ to be best effort, in that we do not make any special
requirements for delay or jitter. We choose to all ocate medium levels of data-rate for this
traffic class (more or smilar to voice but less than video). I mportantly, we do not ensure
that data-rate ‘seen’ by web or voice traffic remains at the same levels at all times. And
when failure of some kind happens in the network (link or node), we prioritize the
recovery of all video traffic, over voice or web traffic.

Approach: Our solution for realizing the aforementioned network capability has
four digtinct parts (Fig. 3.2); each of the partsis made poss ble by our SDN-based unified
control architecture for packet and dynamic-circuit switching:

1. Dynamic Service-Aware Aggregation - Aggregation is necessary in WANS <o that

core-routers have more manageable number of rulesin their forwarding tables (a few
hundred thousand instead of millions). Aggregation can take the form of IP
supernetting (or CIDR; eg. usng /20s instead of individual /24s) or by the insertion of
labels and tags. Often, aggregation is manually configured, static and error-prone. But
our switch-API (OpenFlow) allows great flexibility in defining flow granularity: We
can dynamically and programmatically perform aggregation in packet-switches
smply by changing the definition of a flow [54]. For example, all the flows from one
customer may take the same route in a network; then we can perform aggregation
samply by entering a single flow-table entry to match on the cusomer’s source-IP
address (instead of matching different destination-I1P addresses). Note that the packets
themselves do not change, just their representation in the packet-switches flow table
changes. And so, in the core we can collectively reference all flows with a sngle
aggregated flow bundle (using the source addr). We could also perform supernetting
or label insertion if desired. We can go further by differentiating between traffic types

T In this work we still classify voice and video traffic over HT'TP (eg. You-Tube or Netflix) as web traffic.
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from the same customer (as required by our control function), by creating separate
bundles (or aggregates) that match on the cusomer’s source IP address and the
tcp/udp port in the packet header — eg. web (tcp port 80), voice (tcp port 5060) and
video (udp port 1234) traffic.

. Mapping & Bandwidth: Next we map the aggregated packet-flowsto different circuit-

flows, in order to give different service quality to each bundle in the transport
network. We assign different bandwidths for the circuit-flows, thereby partially
satisfying the bandwidth requirements in Table 3.1. For example, from a single
10Gbps packet interface, we map the three traffic bundles to three circuits, with the
video circuit assgned 5 Gbps, the voice traffic 1 Gbps, and the web traffic-circuit
assgned the rest. Additionally we selectively monitor the bandwidth usage of the
circuit-flows, and as usage varies, we dynamically resize the circuits according to our
control-function needs. For example, as more video traffic passes through the link,
the control function requires that the video traffic collectively still experiences high
bandwidth. And so, by sdectively monitoring the bandwidth consumption of the
video-circuit, we can dynamically change its sze when sustained video-traffic surge
is observed. Such additional bandwidth can, for example, be borrowed from the web

traffic-circuit to ensure low video-packet loss.
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Figure 3.2: Control Function Implementation Using Packets & Dynamic Circuits
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CHAPTER 3. SSMPLICITY & EXTENSBILITY OF ARCHITECTURE

Routing for Delay & Jitter: We can tailor a circuit to have routing characteristics

beneficial for an application or service. For ingtance, the Vol P traffic-circuit can be
routed over the shortest path in the physical fiber topology. In contrast, the video-
bundle can be routed over a path with zero-jitter by bypassng intermediate packet-
switches (that would introduce jitter) between source and destination routers.

Prioritized Recovery: Finally, once we have global knowledge and centralized

decision making, we can recover from network failures so as to meet application
needs. For example, video traffic could be circuit-protected with pre-provisoned
bandwidth (ensuring fastest recovery), while all voice could be dynamically re-routed

by the controller before any web-traffic is re-routed.

Software Architecture & Implementation: Next we present the software

architecture of our implementation on top of the common-map abstraction. We highlight

a few features of the software architecture with respect to discussons from previous

chapters.

Firg, note that Fig. 3.3 is an extenson of Fig. 2.19, where we have added network-
applications on top of the changes we previously made to NOX. To recap, such
changes were required to create the common-map abstraction; and they included
changes to the OpenFlow protocol; modules for Circuit-Link-Verification and circuit
Topology; a Circuit-Smtch-API for manipulating switches in the common-map
directly; aswell asanetwork-API for network-wide control functions.

Second, we had previously stated that the common-mayp abstraction does not preclude
any layering choice for packets and circuits. In this particular example we choose to
treat the circuit and packet topologies in different layers (corresponding to the left-
sde of Fig. 2.12). As an example of a different layering choice, later in this chapter
(Sec. 3.4) we discuss an exampl e application that treats the topologies asone (in a de-
layered way).
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e Third, while flow databases (for both packet and circuit flows- see Fig. 1.11) can bea
part of the common-map as they reflect network sate, often the decison to retain
such date in the controller is left up to the application-writer. Applications may
decide not to keep any flow-gate in the controller as such state can be voluminous
and ephemeral (and therefore quickly get out of hand). In such cases, when thereis
change in network-state which requires changes to flow-state, the latter can be re-
computed. But more dowly varying flow-state such as aggregated packet-flows and
more manageable flow-gtate such as circuit flows (fewer cflows than pflows) may
well beretained in the controller. Accordingly we choose to retain state of such flows
in the AggregationDB and cFlowDB.

Controller
e e G A e AR e kAR S SRR R R R %
Service-Aware Mapping & Prioritized Ne.twn.rk
Aggregation Bandwidth Recovery '_Appllcatlons
- Aggregati . '
: | ggreDgBa = Packet Routing Circuit Routing cFlowDB
—__ Network
- API
Packet l Packet Topology J[ Circuit Topology } Circuit | :
Switch- s T T Switch- | :
API acket Lin H ircuit Lin } API :
l Discovery Verification : Commen
: = Map
. | Abstraction
NOX core g
(Connection Handler, Event engine) :

To switches.. OpenFlow

protocol

Figure 3.3: Software Architecture
Since we chose to retain packet and circuit layering in this example, we have separate
routing modules for packets and circuits. The Packet-Routing module is responsible for

finding shortest paths over the packet topology for aggregated bundles of packet-flows.
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Such aggregated bundles are created by the Service-Aware Aggregation module, which
classfies incoming packets into traffic-type specific bundles and informs the Mapping &
Bandwidth module of desred circuit-flow characteristics. The latter application maps
aggregated packet-flows to circuit-flows, and determines their bandwidth allocations. It is
also responsible for congtraining the Circuit-Routing module to determine routes for the
circuits according to traffic-specific requirements (delay, jitter, bandwidth etc.).
Additionally it monitors certain circuit flows for their bandwidth usage and resizes the
circuits according to application needs. Finally the Prioritized Recovery module re-routes

circuit-flows upon link-failure according to the network-function guidelines.

3.1.2 Experimentation

The network application we discussed in the previous section is demonstrated on our full
pac.c prototype. Details of this prototype and the way in which it emulates WAN
gructure (Fig. 3.4a) were discussed in Sec. 2.3.3. We also created two GUI s that display
network state for the emulated WAN in real-time. Importantly, the GUI s present different
views of the same network — the packet layer in the upper GUI in Fig. 3.4b (including
physical and virtual links); and circuit layer in the lower GUI (with only physical Ilnks)T

Multiple
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packet rows’

= Access ™
OpenFlow Protocol NEW YORK Routers"" 4
Physical GE link Same
Core
Virtual pkt-link (underneath _ﬁifiouters
_ =
— GElink g ;
— OC-48 link (o iii-.gg - y;z‘ N~
w s . “. / Physical
term Transport Switch (CD) LAY fiber link
CoreDirector a
- H;T‘
Circuit between

SF-Houston

Figure 3.4: (a) Emulated WAN structure (b) GUIs displaying real-time network state
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GUI-views: The upper GUI in Fig. 3.4b shows packet-switches in three city-PoPs.
Physcal GE links connect Access-Routers to Core-Routers within each PoP. Between
cities, the links shown in the upper GUI correspond to virtual packet-links. These virtua
links are supported by circuits-flows in the underlying circuit-layer (shown in the lower
GUI). The packet-layer view in the upper GUI also shows packet flows currently routed
in the network — for example, multiple packet-flows are shown in Fig. 4.3b routed from
an SFO Access Router to aNY Access Router via the Core Routersin SFO, Houston and
NY (obscuring the view of the links underneath). Note that the upper GUI does not show
any circuit-switching equipment.

The lower GUI in Fig. 3.4b displays the transport-switches — i.e. the CoreDirectors
(CDs); the physical fiber topology; and only those packet switches that are physically
connected to the CDs. As a result, note that the Core-Routersin all three cities appear in
both GUIs— in the upper one they are at the ends of the virtual-packet links over the wide
areg; and in the lower one, they are physically connected to the CDs. The lower GUI also
displays circuit-flows — for example two circuits are shown, one each between SF-
Houston and Houston-NY, which support the virtual-packet-links and packet-flows
shown in the upper GUI. To further clarify, note that a virtual-packet link between core-
routers (in the upper GUI) can be supported by single or multi-hop circuits in the

transport network (lower GUI view), asshownin Fig. 3.5.
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Figure 3.5: GUI views
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Application-Aware Aggregation: Initialy, traffic conssts of 10 flows from
customer 1. The flows are routed from SF to NY via the Houston Core-Router. Without
aggregation, each flow is treated individually by the network, based on the shortest path
between source and destination. In other words, there are 10 flow-table entries, for each
flow's destination |P address, in each packet-switch along the path. The Service-Aware
Aggregation module dynamically performs aggregation by creating three bundles
(aggregated packet-flows), one for each traffic type from the same customer, by matching
on the customer’ s source |IP address and the tcp/udp ports in the packet header (packet
GUI inFig. 3.6a).

Note from the circuit GUI in Fig. 3.6a, these 3 application-specific bundles still take
the same route in the core, i.e they go from the SF Core Router to the SF CD, then over
the circuit to the Houston CD; then to the Houston Core Router; where it gets switched
back to the Houston CD to go over the circuit to the NY CD and finally to the NY Core

Router. In other words, all 3 bundlesare ill treated the same way in the network.
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Figure 3.6: (a) Service-aware Aggregation (b) VoIP treatment
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Re-routing VoIP Traffic: The Service-Aware Aggregation module informs the
Mapping & Bandwidth module of the low-latency and bandwidth needs for the VolP
bundle. The latter uses the Circuit Routing module to pick the shortest propagation path
in the circuit network that satisfies the bandwidth requirements (which in this case is the
direct fiber linking the trangport switch in SF to the one in NY). It then dynamically
creates a circuit between SF and NY that in-turn brings up a virtual packet-link between
the Core Routersin SF and NY (Fig. 3.6b). It does so by transparently transporting link-
discovery packets sent-out by the controller from the SF Core-Router to the NY Core-
Router”. Notethat in Fig. 3.6ano such link existed between SF and NY Core-Routersin
the packet-layer. The Service-Aware Aggregation module then selectively re-routes just
the Vol P bundle over the newly-created packet link (Fig. 3.6b).

Video bundle re- :.-'1"*“\.\“ i More Video, VoIP. -
routed over ‘L“‘mk f and HTTP packet- -
previously created & flows mapped into
(virtual) packet-link $ the same circuit_
~ flows
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)\_/‘/ 4" -\.“ .‘.’

Video packets in newly®s. j

created video circuit

that bypasses Houston B
packet-switch HOUSTON

(a)

Figure 3.7: (a) Video treatment (b) More aggregates mapped

Re-routing Video Traffic: For video, the Circuit Routing module picks a non-
shortest path circuit (delay less important) with a higher bandwidth requirement (than
VolP). Such a circuit is dynamically created between SF and NY, after which the

Aggregation module reroutes the video-bundle. Importantly this video-bundie goes

t See discussions in Sec. 2.2.2 and 2.3.3
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through the Houston PoP but stays in the circuit layer, bypassing the Houston Core
Router, and therefore avoids potential jitter in that router.

Note that in the packet-GUI in Fig. 3.7a, the video-bundle appears to go over the
same virtual-packet-link between SF and NY that was created for the VolP bundle. In
reality the Vol P and Video bundles use the same physical-port on the SF Core Router but
end up taking different physical pathsin the circuit network (as discussed in Sec. 2.3.3);
ones that are suited for the traffic-type.

Also note that the web-traffic gill uses the original SF-Houston-NY path in the
packet-layer and is therefore treated as best-effort; i.e. no special circuits are created for
web traffic. As more traffic arrives for al three kinds of traffic, from the same or
different customers, they are smilarly aggregated and mapped into the circuit-flows
created for them (see upper GUI in Fig. 3.7b).

\(ijjj h . .'? ----- .. Video-circuit

N A = ¢ o rerouted with
/ Fiber-cut higher priority than
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Figure 3.8: (a) Bandwidth increased for Video (b) Prioritized Recovery

Monitoring & Recovery: Al as traffic increases, the Mapping & Bandwidth
module monitors the bandwidth usage of the circuits to accommodate for traffic growth.

In Fig. 3.8a, the video-circuit is dynamically re-szed when sustained traffic surge is
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observed, as per the requirement of having video-traffic experience high-bandwidth.
Finally, the Prioritized Recovery module dynamically re-routes circuits upon failure. In
Fig. 3.8b, when the fiber-link between SF and Houston breaks, all video-traffic based
circuits are re-routed before re-routing the circuits meant for best-effort web traffic.

Conclusions: In this section, we achieved the firs step of the validation
methodology outlined in the introduction. We discussed a new network capability and
showed how it could be implemented using packets and dynamic-circuits commonly
controlled within our unified control architecture. We showed how voice, video and web
traffic can be classified, aggregated and mapped into specially routed, dynamically
created, monitored circuits to achieve differential treatment. In the next two sections, we
move to the next step of our validation methodology, by comparing our work with ways
in which such capabilities could be replicated using current industry solutions.

3.2 Comparison to Existing Solutions: Simplicity

In the previous chapters we claimed the benefits of simplicity and extensibility of our
architecture compared to existing industry solutions. In this section we validate our
samplicity claim. But first we explain what we are comparing our solution to, by detailing
the current industry solution. We investigate the requirements for providing a service or
network capability such as one described in Sec. 3.1, across packets and circuits with
such industry-based control architecture.

To compare between our implementation and one based on industry solution, we
contrast the Lines of Code required to implement the function. Why do we use Lines of
Code? Because orders of magnitude difference between the lines-of-code for different
software projects can estimate the complexity of the project, in terms of the amount of
effort required to develop the code-base as well the effort required to maintain or change
the code-base after release [59]. We count the physical lines-of-code (without blank and

comment lines) using CLOC [60]. Tables from the analysis are shown in Appendix D.
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3.2.1 Implementation with Industry Solution

Today’ s packet and circuit networks are not converged networks. Core packet networks
(IPIMPLYS) are planned, designed and operated separately from core circuit networks
(Transport networks), even if both networks are owned by the same service provider.

IP Networks: Today’s |P core-networks are no longer plain-vanilla IP networks —
MPLS is widely used. In fact there isn't a single Tier-1 ISP today that does not run an
IP/MPLS network [56]. We make the observation that MPLS' introduces the concept of
‘flows in IP networks [57]. In principle, packets can be classfied into Forwarding
Equivalence Classes (FECs); all packetsin the same FEC are forwarded the same way via
Label Switched Paths (L SP); and accounting/resource management can be performed on
an LSP level; making FEC+L SPssmilar to our ‘ flow’ definition (Sec. 1.4.1).

Transport Networks: Today's transport networks are divided into vendor-
idands (Fig. 3.9). The switches within a vendor-island support proprietary control and
management interfaces that only work with the vendor’s EMSNMS. In other words, they
do not interoperate on the control plane with switches in other vendor islands. Note that
the multiple vendor islands shown in Fig. 3.9 still represent a single carrier’ s transport
network, and the operation of such a network is highly manual (human-driven NMYS).
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Figure 3.9: Industry Solution for IP and Transport Network Control

T We will have much more to say about MPLS, the flow-abstraction and the map-abstraction in Ch. 5
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The industry has developed an interoperable automated, control plane solution
(GMPLYS) based on the MPLS control plane protocols. Such protocols were adopted and
extended for circuit switching features by the standards bodies (IETF and ITU). GMPLS
protocols were used to stitch together the vendor-idands as a layer above the proprietary
interfaces, which remained the same as before. Collectively the proprietary interfaces are
known as I-NNI and the gtitching interface is the E-NNI. Finally, an additional interface
known as the UNI was defined, for client-networks (such as the I P network) to interface
with and request services from the transport network .

So collectively the MPLS/GMPLS/UNI/NNI solution would look like Fig. 3.9. As
noted in Sec. 1.5, thisindustry solution (GMPLS and UNI) has never been commercially
adopted [26, 27]. But it is the only solution proposed by the industry for packet-circuit
network control, and so we useit to investigate and compare to our solution.

Software Stack: The IPPMPLS network is a fully-distributed network where
each router makes decisons on packet forwarding based on a variety of network control-
functions (Fig. 3.10). There are two consequences of such design:
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Figure 3.10: Software Stack in Fully-Distributed Control Planes
1. Complexity: Since each router in the network largely makes its own decision,
network-functions/ applications/services are then in most cases, necessarily
implemented in fully digtributed-ways, in each and every router in the network. Such

digtributed network functions need to implement their own distribution mechanisms,

T For more details on the origins and choices made for GMPLS, see the Related Works Section in Ch. 6.



98

2.

CHAPTER 3. SSMPLICITY & EXTENSBILITY OF ARCHITECTURE

and depend on them for proper working, leading to exposure to distributed state and
aubtle interactions with the mechanisms. This in turn makes it harder to implement
the function (more code to touch), get it right (testing and verification) and maintain it
over time (as function requirements change and/or new functions are introduced). As
an example, from Fig. 3.10, the network functions of distributing IPv4 address,
MPLS labels and link-state are handled by a variety of protocols each with their own
characteristics and nuances. And these are just for unicast |Pv4. There are many more
protocols for handling state-distribution for other purposeslike IPv6, multicast, etc.

Extensibility: In most cases, changes to a network function requires changes to the
distribution mechanism' or the creation of an entirely new distribution mechanism'.
This hurts extensibility of such control-architectures, which we will discuss in the
next section. Here we merely wish to point out again why distributed features are tied

to the distribution mechanisms that support them.

Lines-of-Code: Our control function (in Sec. 3.1) requires the network to a)

differentiate between different types of traffic (voice, video, web) to create traffic-type

specific aggregates and b) forward the aggregates (bundles) differently i.e. not

necessarily along the shortest path in the network. Given the industry standard solution

and dructure shown in Fig. 3.9, we need the following protocols and feature

implementations:

|P-network: An IPMPLS network would require Policy-Based-Routing [61] for
differentiating between traffic types and forwarding them to different traffic-type
specific tunnels, created usng Diffserv-aware MPLS Traffic Engineering (DS-TE)
mechanisms [62]. The DS-TE tunnels can then be routed along paths in the network
that are not necessarily the shortest ones. PBR and DS-TE are typically implemented
by router vendors. We were unable to find an open-source implementation of either.
While PBR is alocal-hack in arouter at the source-end of an MPLS-TE tunnel, DS-
TE isadigributed application dependant on the distribution mechanisms of OSPF-TE

T The original RSVP protocol (hosts signaling for services - not used anymore), has undergone no less than three
such ‘extensions’ — first it was given TE extensions for MPLS, then extensions for transport switches in GMPLS,
and then it was extended again for supporting the UNI/E-NNI intetfaces.

~ When the MPLS control plane was extended for GMPLS, a new protocol, LMP (RFC 4204) was created in
addition to extensions for OSPF and RSVP.
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and RSVP-TE. Thus we present lower-end estimates for the number of lines of code
that need to be touched for implementing the packet-part of our control-function. We
have counted the lines-of-code (in Appendix D) for two open-source projects that
have implemented OSPF-TE and RSV P-TE. The Quagga project [63] implements the
former in 34,244 lines-of-code, where we have only accounted for the ‘ospfd
implementation and not any of the other routing protocols that are part of Quagga.
Also snce the Quagga suite does not include RSVP-TE, we use the IST-Tequila
project implementation for RSVP-TE [64, 65] (49,983 lines of code).

e UNI Interface: To implement our control function usng packets and circuits (Fig.
3.9), one or more routers would have to request services from the transport network
using the UNI interface. The UNI is typically ingantiated using a signaling protocol
like RSVP-TE with suitable extensions [22]. We count 9,866 lines-of-code from an
implementation of the OIF UNI protocol from the IST-MUPBED project [66, 67].

e Transport-Network: Finally the GMPLS protocols for the transport network control

plane include further extensions of the MPLS control plane protocols— OSPF-TE and
RSVP-TE. Such extensons have been sandardized [20]. We use the DRAGON
project [68, 69] for representative open-source implementations of the GMPLS
protocols — 38,036 lines-of-code for OSPF-TE and 43,676 for RSVP-TE. Note that
we are ignoring the code required for the proprietary interfaces in the transport
network vendor idands (the I-NNI protocols).
If we put together all the lines of code across packet and circuit control-planes, we get
a total of 175,805 lines of code for just the state-distribution mechanisms. In addition,
more lines-of-code would be required to implement the distributed-control logic that
performs the task required by the control function. These logic components would
include PBR, DS-TE, a CSPF agorithm for routing of primary/backup circuit-paths, and
glue-code for translating GMPLS messages to the proprietary interfaces. Based on our
experience with implementing distributed protocols any one of the mentioned logic

components would at a minimum require 5-10k lines-of-code, pushing the total lines-of-
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code to well over 200,000. Approximate totals for the lines-of-code are depicted in Fig.
3.11 below.
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Figure 3.11: Lines-of-Code in Industry Standard Solution

It is worth mentioning that the 175,000 + ‘X’ lines of code only relate to the network
applications, which include the function-logic as well as the distribution mechanisms.
These applications are implemented on top of some base code — for example, the Quagga
software suite is based on the zebra-daemon and related libraries. This gives us about
52,000 lines of code for the Quagga-base code, built on top of the Linux kernel. Finally,
Fig. 3.12 aso shows a closed-source implementation of router software from vendors
such as Cisco (10S) and Juniper (JUNOS). Such implementations of functions and
services together with distributed protocols and the base operating system for the router

have been known to total approximately 20 million lines-of code (in each router) [70].
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Figure 3.12: Source Lines-of-Codes in Distributed Approaches
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3.2.2 Implementation with Unified Control Architecture

Simplicity comes from not having to implement each control functions as a distributed

system, and not having to worry about interactions with state-distribution mechanisms.

Therearetwo kinds of state-distribution mechanismsin SDNs (Fig. 3.13a):

1.

State Distribution

One is between the controller and the switches. In SDNs, the OpenFlow protocol
could be used for this purpose where the controller communicates directly with the
switches one-on-one. Since decison making is no longer the switch’'s responsihility,
the need for digributed routing and signaling protocols is removed within a
controllers domain. And so such protocols are €iminated.

The second digtribution mechanism is between the multiple physical servers that
make up a controller. In our work we use NOX as the network OS. NOX is meant to
run on a single server. Commercial network OSes running on multiple servers have
additional functionality for distributing state between these serversthereby increasng
the lines of code for the Net-OS. Importantly, these additions only need to be done
once and are then abstracted away from multiple (centralized) applications that can be
written on top of the common-map abstraction. With proper implementation, these
gate-distribution mechanisms would not count as part of feature development cost as

they do not need to be changed or touched in order to implement a new feature.
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Figure 3.13: (a) Software Stack and (b) Source Lines-of-Code in SDN
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The advantage of our approach can be eadly seen in Fig. 3.13b. Our control
applications [71] are implemented on top of NOX. NOX itself is based on the Linux
kernd (millions of lines of code [59]). The base code of NOX is roughly 67,700 lines of
code (Table 3.6 and [51]) to which we have added 1100 lines to support circuit-
switching. While the base line-of-code for NOX is on the same order of magnitude as the
Quagga-base code (Fig. 3.12), it is completey different in functionality and purpose from
Quagga. Importantly, the SDN based approach of our control architecture (Fig.3.13a),
helps us implement the control function in only 4726 lines-of-code — two orders of
magnitude less than the industry solution (details in Appendix D). This significant
difference validates the smplicity claim of our control architecture. Our implementation
is not production-ready. But being two orders of magnitude less than distributed
implementations | eaves plenty of room to grow.

To summarize, the objective of this exercise was to show the smplicity of writing
applications in a non-digtributed way afforded by the common-map abstraction. The
objective was not to count all the lines-of-code in a system; but to emphas ze the code-
lines that potentially need to be dealt with when a new function is introduced in the
network.

3.3 Comparison to Existing Solutions: Extensibility

In the previous section we found that implementing control-applications with our solution
can be two orders of magnitude simpler, when measured in terms of lines-of-code,
compared to implementing with current industry solutions. In this section we show how
our solution affords greater extensibility compared to the same industry-solutions.

We show extensghility by first discussng why the common-map abstraction is the
right abstraction for writing applications across packets and circuits, as opposed to the
UNI interface. And then we discuss other applications enabled at the packet-circuit
interface and show why they are hard or impossi bl e to implement with the UNI interface.
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3.3.1 Why the Common-Map is the Right Abstraction!

It is readily obvious from Fig. 3.14 that the lines of code involved in creating an
application across packets and circuits usng current industry solutions are high — nearly
200k. But what isless obvious, isthat even with 200k lines-of-code, the network-function
and demongtration presented in Sec. 3.1 cannot be exactly reproduced. Hereiswhy:
Lack of Visibility: The primary reason is the lack of vishility across the UNI
interface. The abstraction ingtantiated by the UNI interface is that of a black box. No
information about either of the networks or their resources is exchanged across the
interface in either direction. In other words, the I P network has no visibility into transport
resources, and likewise the transport network has no vishility into | P services or traffic.

lines of code: (82000 + logic + proprietary interfaces) + (10000) + (84000 + logic)
| _ |
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Figure 3.14: Issues with Industry Solution for Packet-Circuit Control

Table 3.2 shows the parameters used when a client (such as an IP Router) requests a

connection (circuit) from the transport network using the UNI interface [72]. The shaded
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parts of Table 3.2 offer some insght into the kind of requests that can be made. An

application in the packet-world can specify: traffic-parameters (which gets resolved into

required-bandwidth for a circuit provisoned in the transport network); a level -of-service;

and desired diversity of new circuit paths from existing paths originating from the same

UNI.

The rest of the parameters in Table 3.2 identify the end-points of the

communication and other names, ids, labels and contracts associated with the connection.

What this basically meansis that an application in the IP network cannot specify any

of the following: circuit-route, delay, recovery mechanism, recovery priority, pre-

emption, which circuits to monitor, or receive dtatistics from. But given full visibility, all

of these were possible and demonstrated with our control-architecture in Sec. 3.1.

Attributes Applicability Call/Conn Reference

Source TNA Name (M) Casssland2 | Cdl Section 10.13.1.1
Source Logical Port Identifier (M) Casel Connection Section 10.13.1.2
Source Generdlized Labe (O) Casel Connection Section 10.13.1.3
Destinaiion TNA Name (M) Casesland2 | Cadl Section 10.13.1.1
Destination Logica Port Identifier (O-1, M-2) | Casesland2 | Connection Section 10.13.1.2
Destination Generalized Labd (O-1, M-2) Casesland2 | Connection Section 10.13.1.2
Loca connection ID (M) Casesland2 | Connection Section 10.13.1.4
Contract ID (O) Casel Call Section 10.13.4.1
Encoding Type (M) Casssland2 | Cdl/Connection | Section 10.13.2.1
Switching Type (M) Casesland2 | Cdl/Connection | Section 10.13.2.2
SONET/SDH, OTN or Ethenet traffic | Casesland2 | Call/Connection | Section 10.13.2.3
parameters (M)

Directiondlity (O) Casesland2 | Connection Section 10.13.2.4
Generdized Payload Identifier (O) Casssland2 | Cdl Section 10.13.2.5
Service Level (O-2) Casssland2 | Cal Section 10.13.2.6
Diversity (M) Casesland2 | Cal/Connection | Section 10.13.3.1
Call Name (O-1,M-2)* Casesland2 | Cdl Section 10.13.1.5
Bandwidth M odification Support(M) Casesland2 | Connection Section 10.13.2.7

Table 3.2: UNI 2.0 Connection Setup Request Parameters (Table 5-11 from [72])

It is possible to define *some of the parameters mentioned above in an indirect way

through the Service Levd. Such classes of service are desgnated Gold, Silver, or Bronze

and are pre-determined offline by the transport service provider. In other words, the

packet—network (or any other client) is limited to the exact service-level definitions the
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transport network deemsfit. Thislack of vighility across the UNI interface coupled with

the pre-supposition of services absolutdy kills programmability.

Further, the trandation of these levels of service into actual circuit-characteristics
(route, delay, recovery etc.) is baked into the infrastructure via configuration of the UNI
interface on the transport-side; and their digtribution to other elements in the transport
network by the dissemination mechanisms (GMPLS protocols and proprietary interfaces).
And so if the service requirements change from the packet-network, such change cannot
be handled by the transport network unless the new requirements exactly match with one
of the other pre-existing service specifications. If it does not, then manual-coordination is
required between IP and transport teams to draw up a new service definition and possibly
a new contract; and then to trandate this new service to actual circuit characteristics,
potentially all the lines-of-code shown in Fig. 3.14 may need to be touched. Clearly this
hampers extensibility of servicesor network features.

Distributed Applications: Even if we assume that the philosophy behind the
UNI interface were to change and full vishbility were allowed across the interface; it ill
does not change the fact that introducing new network functionality is hard, due to the
digtributed nature of their implementation coupled with the lack of a network-AP!.

Consder the challenges outlined below in implementing the network capability from
Sec. 3.1, despitethe use of a hypothetical full-vishbility UNI:

e The head-end of an MPLS tunnel would need to create traffic-type specific tunnels
(aggregates/bundles) and route them differently using DS-TE. But DS-TE only allows
reserving bandwidth for a sngle traffic type.

0 Oneoption could be that generic tunnels (with AutoRoute tuned off) may be used

with policy-routing via manual (or scripted) use of the CLI to create the policy.

0 Or DS-TE can be changed to allow creating traffic-type tunnels for more than one

type. But this would involve changing the link-reservation mechanism in OSPF-
TE. And it would still need PBR to actually get specific-traffic into the tunnels.
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Once the traffic reaches a router at the edge of the transport network, it needs to be
mapped into circuits designed for the traffic. This router acts as the UNI client and
needsto know the requirements of each traffic-type:

o Either by configuration, which would be static;

0 Or the tunné-head-end has to have some way to communicate with this router,
which would mean a new protocol;

Assuming that the UNI client router is aware of the service requirements, it needs full

vighility into the transport network. Thisrequiresthe following:

0 One choiceisto diminate the UNI and make the (former) UNI client router part
of the OSPF-TE ingtance running in the transport network. This is possble but
now the router runs two instances of OSPF-TE (one in the packet later and the
other inthe circuit layer), which increases|oad on the router CPU.

0 The other choice is to change the UNI and convey summary information of the
transport network to the router.

In either case the UNI client would need to deal with conflicts in its decisions for

services from the transport network with decisions made by other UNI-clients. It also

needs to deal with possbly conflicting requests from multiple MPLS tunnel head-
endsat the same time.

Also monitoring of these circuits can by the management systems (NMS/EMS) today

and theoretically it is possble to tie this monitoring capability to the CSPF algorithm

running in the UNI client router, to re-route bandwidth based on usage. This would
require change to the UNI or the use of a new protocol.

Likewise such tie-ins can also be created with glue-code to develop a programmatic

way for alarm generation (when network-failure events happen) to trigger a CSPF

calculation and subsequent prioritized protection/re-routing. Again separate protocols
and APIswould have to be used.
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From the above discusson we see that full vighility across packets and circuits is
essential to replicate our control-function, but even with full-vighility, a host of other
glue-code and patchwork is needed to existing protocols, together with possbly some
new protocols. And so it is easy to see that the current industry solution lacks ease of
extensbility.

Common-Map Abstraction: Our SDN based solution is more easly extensble
to the creation of new services or network functions (Fig. 3.15) because it gives full
vighility of both networks to the network application in a programmatic way. It does not
involve configured, presupposed/pre-baked service choices, mappings and CLI based
policy rule-insertions. All of these can be dynamic and programmatic. And the common-
map abgraction abdracts away the distribution mechanism from the applications,
allowing them to be implemented in a centralized way with a well-defined and rich
network-API.

For these reasons we believe the common-map abstraction, instead of the UNI, isthe
right abstraction for implementing smple and extensible services over packets and
circuits. In the next section we give further validation of the extenshbility of our
architectural solution.
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Figure 3.15: Simplicity & Extensibility of Unified Control Architecture
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3.3.2 Other Applications with Packets and Circuits

In Section 3.1, we showed an example of our control architecture enabling network-
capabilities that are end-user application or service aware. Such end-user services can be
related to the traffic-type (voice, video, http, ftp) or some higher order application (like
data-backup, live-TV, mobility). The network-capabilities for such end-user services
include application-aware-routing, recovery and service-guarantees, all which can be
easly performed with dynamic circuit-flows working closay with packet-flows. In this
section, we briefly detail three other capabilities across packets and circuits made
possible by our control architecture.

Dynamic Packet Links: |P topologies today are gatic. IP links over the wide-
are pre-planned and put in-place using static-circuits in the underlying transport network.
Information about link-state is carried by distributed link-state routing protocolsto every
router in the network. Routers make forwarding decisions based on SPF calculations
performed on the map they create from the link-state information. Any change to the
network-topology (say from link-failures) results in routing-protocol re-convergence,
where every router re-converges to a consgent view of the network. Convergence is
consdered disruptive. Disappearing or re-appearing links require SPF calculations in
every router, potentially re-routing packet flows everywhere in the network. Thusit is not
aurprising that IPlinks are always satic.

But an OpenFlow based network eliminatesthe need for distributed routing protocols
within the Controller’ s domain, as the switches do not make routing decisons. There are
two advantages here:

1. With centralized-decison making, dynamic packet-link creation is convergence-free.

We can create packet-links where none existed (using underlying dynamic circuits).

And such newly created links no longer require distributed-routing protocol

convergence, as routers no longer make routing decisions. And so circuits can change
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as dynamically as needed to bring up/down packet-links in an IP-topology without
fearing routing-protocol meltdown.

2. We can choose which flows to effect and which flow routes to leave unchanged. In
sharp contrast to today’s IP networks, none of these dynamic link-changes are
disruptive to existing packet flows elsewhere in the network. The controller makes
the decision of creating/changing/ deleting a link, and it only affects the flows chosen

for the link and nowhere € se.

SR <52 58— +32 S5 P
Nz \/ -\ /

Figure 3.16: Dynamic Packet-Links

Fig. 3.16 shows how packet-links can be dynamically created and removed by
redirecting underlying circuits (not shown) between three packet-switches, using the
same set of packet-interfaces on each switch. The capability to create new packet-links
can have several use-cases. One could involve relieving congestion between two routers.
Other cases could involve time-of-day or application needs, where say between two data-
centers depending on the time-of-day, or some bandwidth hungry application like data-
backup, there is a need for more bandwidth. But at other times those same circuits could
be re-routed away to buttress bandwidth needs e sewhere. This way expensive WAN
bandwidth is shared between router-ports, bandwidth can be flexibly available where and
when needed; and all of this can be done programmatically.

Variable Bandwidth Packet Links: There are two ways to consder packet-
links that have variable bandwidth. One of these, shown in Fig. 3.17, isa variation of the
dynamic links scheme proposed earlier. Here instead of using circuits to create new
packet-links, existing packet links have their underlying circuit-bandwidth re-directed
over the WAN.
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Consder the 10GE router links in Fig. 3.17a. Instead of being supported by 10Gbps
circuitsin the transport network, one of them is supported by less (say 5 Gbps), while the
other is supported at full line-rate. The lower part of 3.17a shows the same routers but
also shows the transport equipment they are connected to. So when the lower-provisioned
router-interface needs more bandwidth, circuits could be re-routed or created to support
it. As an example of the former, in Fig. 3.17b, circuit-bandwidth has been re-routed from
the previoudy fully provisoned router-link. Alternately, circuits could be created from
elsewhere to support both router interfaces at full line rate, but only for a period of time;

thisis essentially a pay-per-use mode for expensve WAN bandwidth.
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Figure 3.17: Variable Bandwidth Packet Links — Type I

The other kind of variable bandwidth packet-link involves dividing a packet link over
multiple circuits of variable bandwidth in the transport layer. In Fig. 3.18, the same
(virtual) packet-link uses two circuits (of variable bandwidth) to make up the full-line-

rate of the router interfaces.
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Figure 3.18: Variable Bandwidth Packet Links — Type II

Use-cases for doing so may include:
¢ |oad-balancing over different pathsin the transport network;

e routing multiple circuits over diverse paths to support the same packet-link, so that
the packet-link never goes down — if one of the circuit paths fail the other takes over
with full line rate;

e Or as we showed in Sec 3.1.2, different services or traffic can be supported by
different circuits (with different characteristics) over the same packet-link (i.e the
same packet-interfaces).

Unified Routing: This particular application takes a look at how routing can be
performed, were the packet and circuit switched networks consdered part of the same
‘layer’. In other words if the common-map were to be constructed based on the right-side
of Fig. 2.12. Note that in this de-layered view, packet and circuit switches appear as a sea
of switches connected by physical links (no virtual-links).

We show a way to do smple shortest-path IP routing; that does not resort to any
complicated CSPF algorithms or traffic-engineering mechanisms, and yet, is aware of
and accounts for network state and resources. Consider Fig. 3.19 - three packet switches
(P) interconnected by existing circuit flows established on the circuit switches (C).
Contrary to IP routing today, the connections between the packet-switches have costs

assgned to them in a piecewise manner.
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As an example, the circuits have costs inversaly proportional to the bandwidth of the
path, and directly proportional to the propagation delay and usage of the path. This way,
higher the bandwidth of the circuit, or shorter the path, the cost of the circuit-path is
lower. These parameters are fixed. However the usage parameter is variable and
dependent on the actual traffic traversing the circuit flow. Higher the usage: the greater is
the cost. As new packet flows get added to circuit flows, the usage (and cost) increases,
discouraging the use of the circuit and potentially avoiding future congestion by making
aternate (less-utilized) paths more attractive. As packet flows expire and usage goes

down, the cost decreases.

(e —
,

Figure 3.19: Unified Routing in a De-layered Packet-Circuit Network

The C to P connections also have costs assgned to them in a way that penalizes the
use of the link. Let us see how — a packet-flow from Pa to Pc can take the direct path
from Pato Pc (via Ckt 3) or the indirect one that transits Pb. Assuming that the costs of
the circuits sum up equally (ckt3 = cost of cktl+cost of ckt2), the direct path would be
preferred over the indirect path due to the penalty incurred in transiting Pb. So the packet
flow gets routed over ckt3. But as circuit flow costs are variable, as usage increases on
ckt. 3, the indirect path becomes more attractive.

To have ‘usage’ be reflected in the ‘cost’ used for an SPF calculation, allows efficient

and yet smple routing. Unlike regular | P networks, the use of variable link-costs do not
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imply that packet flows aready established in the network are effected (rerouted), as
again the controller may re-route only the new flows entering the network, while leaving
exigting flows untouched.

To summarize, we provided further validation of the extensibility of our control
architecture by showing examples of how packets can interact with dynamic circuits to
provide varied services, beyond the ones discussed in Sec. 3.1. It is worth noting that
most likely these services cannot be implemented with existing industry solutions due to
lack of vighility between packets and circuit domains. But even if these examples could
be implemented with existing industry-based control solutions, the sheer number of
protocoals, their distributed nature, and their potentially dangerous interactions, make the

solutions so complex that no service provider would want to use them in their network.

3.4 Deployment Challenges & Proposed Solutions

As final validation of the smplicity and extensbility of our work, we propose solutions
based on our control architecture to three deployment challenges faced by any unified
control solution for packet and circuit networks'.

Challenge #1: Reluctance of network operators of packet and circuit networks to
share information with each other. We noted that UNI interface blocks all vishility at the
boundary between IP and transport networks. The interface merely implements the
philosophy of not wanting to share information across network boundaries. This remains
an issue even with our solution (presented thus far). The operators of these networks
smply do not wish to share information about their networks. And this problem is more
acute in the case where the networks are owned by different businesses (analogousto AS-
to-AS communications in the Internet where internal AS topology is not shared across
AS boundaries). How then to create a common-map across packets and circuits?

Proposed Solution - Slicing & Transport Switching-as-a-Service:
With reference to Fig. 3.1, so far we have only talked about the Net OS and OpenFlow as

T As an aside, note that the common-map abstraction for packet and circuit switching, applied to other
network contexts such as data-centers and enterprise networks may 7ot have these deployment challenges.
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part of the unified control plane (UCP) that supports our abstractions. We now present
the dicing-plane as a key component of the UCP that hel ps us meet several challenges.

In dicing, a new control layer is placed between the underlying switches and the
controller-layer. This new control layer (the slicing layer) partitions the underlying data-
plane into multiple dices, where each dice can then be put under the control of different
controllers. An example of the implementation of the slicing-planeisthe FlowVisor [50].

In the context of packet and circuit networks, a dice is defined as the combination of
bandwidth and circuit-switching resources. It is worth noting that transport networks
today also provide dices of their network to ISPs. However such slices only provide
static bandwidth with no control over that bandwidth (where by control we mean the
ability to route it differently, change its Sze etc.). Such static bandwidth is often referred
to asa dumb-pipein the industry.

However our slice definition includes bandwidth plus the ability to manipulate it via
control over switching resources in that slice [11]. Circuits in a dice already provide
data-plane isolation between dices. The slicing plane crucially provides control-plane
isolation. With the dicing plane under the transport network operator’s control, the
control of each dice can beturned over to the | SP that purchasesthe dice (Fig 3.14).
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Figure 3.19: Slicing the Transport Network [11]
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The dlicing-plane ensures that no-ISP can malicioudy or inadvertently control any
transport switching resources that are not in its slice of the transport network. The dicing
plane achieves this control-isolation by monitoring the messages between the switches
and the controllers and checking them againgt the slice-policy. It can ether passvedy
relay the messages or trandate them where appropriate. Or it can reect the messages if
they are in violation of the dice-policy.

Slicing enables the ISP to run the common-map abgtraction in its controller. This
controller has view of the packet switches that belong to the ISP. It also has view of the
circuit-switching-resources that are part of its dice of the transport network, thereby
enabling the | SP to create a common-mayp abstraction across packets and circuits. In other
words the ‘slice’ is the common-map that presents the same map-abstraction and
network-API discussed in Chapters1 and 2.

Note that this view of the circuit-switching-resources in the transport network is
restricted to only the dice that the | SP has purchased and not the entire transport network.
It thus overcomes the lack-of-information-sharing seen in packet and circuit networks
today, by sharing only a part of the information (instead of divulging information about
the entire-network). And the transport network carrier has incentive to share this partial
information about the dice because it enables a new service (new revenue opportunities).
Today transport networks share no information and offer only static-bandwidth (dumb
pipes). With dicing, transport networks can offer dices which include bandwidth and
isolated transport-switch control to | SPs, thereby offering anew service[73] .

It is worth noting that in the absence of such sharing models, the only option is to
share no information, leading to interfaces between |P and transport networks like the
UNI. And we have shown issues with such interfaces in the previous sections, which we
believe are key reasons behind the commercial-failure of the UNI (and GMPLS). But
with our proposed technical solution based on dicing, and our economic solution of
offering transport dices-as-a-service, we believe the practical-challenge of information
sharing can be solved.

t The creation of the slice or modifications to what falls within a slice requires an out-of-band channel (either

manual or automated), and is outside the scope of OpenFlow. Once the slice is created, our control architecture
provides control over switching resources in the slice and control-plane isolation between multiple slices.
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Challenge #2: Conservative nature of transport network operators towards
automated control planes. Transport network operators would like to respond faster and
provide more dynamic services to meet their client needs, but loathe giving up precise
manual control over the way traffic is routed over their network to a software control
plane, irrespective of how inteligent that control plane may be [26]. Is there a way that
allows decades of established procedures to co-exist with new ways to deploy services
and operate the network?

Proposed Solution - Slicing based Gradual Adoption Path: Again it
is the dicing plane that provides a gradual adoption path, that can let established
procedures co-exist with new ones. Consider this — the transport network operator
initially dices only a small part (5%) of its network and hands over control to an ISP's
controller through its slicing plane. As long as the dicing plane guarantees isolation of
the dices in both the data and control plane, the transport network operator retains
control over the undiced part of the transport network which can ill be run manually,
using established procedures, as it is today. Meanwhile the ISP is free to use whatever
automated intelligent control algorithmsit may desrein itsisolated dice of the transport
network (any of the examples from the previous section). Over time as more confidence
is gained in the dicing framework, more parts of the transport network could be sliced
and offered as a service to other 1SPs. It is worth noting that GMPLS provides no such
means for such flexible and gradual adoption.

Challenge #3: A final challenge faced by any unified control plane solution for
packet and circuit networks, involves the conservative nature of IP network operators
towardsincreasing load on distributed routing protocols.

When the same business owns both networks, a single instance of a distributed
routing protocol could disseminate information on packet and circuit link state leading to
the creation of a common-map. However this is not done today smply because IP

network operators loathe exposing their distributed link-state routing protocols to
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transport network link attributes in fear of increasing load on router-CPUs and de-

gabilizing their network. Let’ s see why.

Distributed link-state routing protocol like OSPF or 1S-IS have convergence and

dability issues if network state changes too fast or too often. Stability in a distributed

routing protocol can be defined in several ways.

A clear indicator is the network convergence time i.e. the times taken by al the
routers to return to Steady state operation after a change in network date.
Convergence time has a propagation component, which is the time taken for the new
information to be disbursed viathe IGPto all the routers so they can update their link-
dtate databases; and a re-route component where new SPTs are calculated or TE paths
arere-routed if necessary. Clearly alow convergence time indicates a stable network.

A related parameter often is the number of route flaps, which refer to routing table
changes in a router in response to change in network state. A large number of flapsin
a short time can adversdly affect network stability.

But by far the key indicator of stability isthe routing load on switch CPUs. Thisisa
measure of how much time a router spends in processing control packets from the
routing protocol. If there are frequent changes in the network state, and update
messages are sent frequently (sometimes called churn), the router CPU may spend a
lot of time doing route calculations; this in turn may lead to ingress CPU queues
getting filled and incoming packets getting dropped (including hellos); dropping
keep-alives may cause timeouts and dropping of routing- adjacencies, which again
leads to more control packets getting generated and greater routing load. This
cascading effect resultsin longer convergence times, routing loops, more route flaps,
greater CPU loads, and in the worst case network meltdown [74].

To avoid routing protocol ingability, router vendors apply several damping

mechanisms to keep things under control. For example, the router is informed of bad

news (link down) by the link layer fast, but good news (link up) is ddlayed (many

seconds) to avoid potential link flaps. The generation of link update messages and the
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occurrence of SPT recalculations are throttled by dynamic timers that exponentially
increase their times during periods of ingtability to prevent processor meltdown.

It is therefore easy to see that distributed routing protocols are fragile, and require
careful tuning and tweaking to keep them stable. Changesthat are too fast or too often are
not tolerated and carefully damped. This is the fundamental reason why IP networks
today do not support dynamic links or dynamic link weights[75].

And so to extend OSPF/IS-IS and use it in a dynamic circuit network with its effect
being felt by the same or another instance of the distributed routing protocol in the packet
network is smply dangerous and unwarranted. Unfortunately, this is exactly what
GMPLS proposes.

Our Solution - Elimination of Distributed Routing Protocols: We
have mentioned several times before that distributed routing protocols are unnecessary in
an SDN controller’ sdomain. The eimination of distributed routing protocolsisa natural
consequence of the adoption of SDN ideas and OpenFlow to form our unified control
architecture. But it is worth pointing out that in the context of packet and circuit network
control, we find that SDN/OpenFlow has the direct benefit of removing one of the key
hindrances to the deployment of dynamic circuit switching in today’s networks; by no
longer being subject to a) stability issues of dynamic routing protocols, and b) limited
processing powers on switch CPUSs.

3.5 Summary

The goal of this chapter was to validate the smplicity and extensibility claims we made
for our architectural solution. For the smplicity claim, we took a new and fairly involved
network capability; implemented it with our control architecture; and then compared our
implementation to our best guess of what it would take to implement the same functions

using current industry-standard solutions for packet-circuit control.
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We performed a lines-of-code analys's and found our solution to be two orders-of-
magnitude smpler. We provide qualitative architectural insghts into why our solution
takes far less line-of-code. And while our work is not production-ready, two orders of
magnitude difference gives us confidence that even production quality code in our
architecture would be much simpler.

Next we reasoned that even with two orders of magnitude more code, current industry
solutions would not be able to exactly replicate our work. We believe it is because of two
main reasons: the use of the UNI interface which resultsin loss of visibility across packet
and circuit networks; and the implementation of services as distributed systems which are
tied to the digtribution mechanisms. We explained how our common-map abstraction
does not suffer from these limitations, and therefore not only is it ample to implement
control-functions across packet and circuits; it is easy to introduce new functionality, or
change existing functionality in the network just as eadly; thereby validating our
extenghility claim. As further judtification of extenghility, we described three other
applications enabled at the packet-circuit boundary by our unified-control architecture.

Finally we detailed deployment issues faced by any control-solution for common
packet-circuit control. We proposed the use of ‘slicing’, a key component of our control
architecture, to overcome these challenges. For transport network operators, dicing is a
technical solution that a) provides an economic-incentive (a new service) for sharing
information with 1SPs, which can then alow the latter to have vishility across packets
and circuits when creating the common-map; and b) dicing eases the path to gradual-
adoption of our control architecture — a key requirement for the adoption of any new

control technology.



Chapter 4

Network Design & Analysis

In the introductory chapter, we made the claim (in Sec. 1.3) that circuit switching was
here to stay in the core, as it can make the Internet more efficient, if packet and circuit
networks work together.

Accordingly, we proposed packet-and-circuit network convergence (pac.c network);
where packet-switched | P networks and dynamically-circuit-switched transport networks
work together under a common control-plane based on an SDN approach. And we
showed how our control architecture affords smplicity and extensbility in providing
network functions and services, when compared to existing industry-standard solutions
for packet and circuit network control.

The goal of this chapter is to validate the efficiency clam. We investigate the Capex
and Opex implications and savings afforded by convergence with our control-architecture
when compared to current industry practices.

The networks that interest us in this chapter are primarily IP networks. Even though
we mode the transport network in each case (point-to-point WDM, optical bypass and
dynamic-circuit-switching), we do so only in support of the IP network. Another way to
think about this approach is the one shown in Fig. 4.1a (Ch 1 — Fig. 1.6a), where in one
possible future, all servicesare provided on top of the Internet, and the transport network

exigisonly to support one or more IP networks.
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Capex and Opex Evaluation
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Network R 10cs)

Figure 4.1: (a) One possible future (b) Evaluation Procedure

Our approach to Capex and Opex analysisis as follows (Fig. 4.1b):

We firg outline a design methodology for a core IP network that is completely
packet-switched — i.e. al switching is performed by IP routers; and these routers are
connected over the wide-area by point-to-point WDM line systems. In other words,
the transport network does not use any circuit switchesto support the router-links and
is completely static. This is in-fact the IP-over-WDM design scenario presented in
Sec. 1.3, and is a popular way for congtructing core-IP networks today. We will
congder thisasthereference desgn and model it in Sec4.1.1.

Next we consder a small variation of the reference design by adding optical-bypass.
This is a technique by which the number of required core-router ports is reduced by
keeping trangt-traffic in the optical domain (typically at a wavelength granularity).
Optical bypass or express-links are used today in core-1P networks and al so discussed
in literature [ 79, 82, 83]. But it's important to note that while optical-bypass can be
achieved with optical switches, it is nevertheess a static approach — the optical
switches do not switch wave engths dynamically. IP over WDM with optical -bypass
ismodeled in Sec. 4.1.3.

The first two steps cover industry-standard practices. In the final step we consider our
proposed network that uses both packet-switching and dynamic-circuit-switching

(DCS) under a common control plane. While DCS can be used with IP in varying
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degrees, we moddl an IP-and-DCS network with the following three characteristics:
a) we replace Backbone Routers in PoPs with Backbone Packet-Optical Switches; b)
we use a full-mesh of variable-bandwidth circuits between core-PoPs, and c) we
adopt our unified control architecture” for common control of packet and circuit
switching. In Sec. 4.2.2 we discuss these design choices and the motivation behind
them in terms of the benefits they afford when compared to the reference design; and

we outline the design methodol ogy for such a converged network in Sec. 4.2.3.

Analysis of our converged network (in Sec. 4.2.4) shows that we can achieve nearly
60% lower Capex cogts for switching hardware compared to the IP-over-WDM reference
design; and 50% lower Capex compared to |P-over-WDM with datic optical-bypass.
Importantly, we show that while the savings achieved by optical-bypass (10-15%) can get
eliminated if we vary the traffic-matrix, Capex savingsin a pac.c network are insengtive
to varying traffic-matrices. Additionally, our design scales better (at a lower $/Tbps
dope) when we scale the aggregate-traffic-demand from 1X to 5X. In Sec. 4.25, a
limited Opex analysis that considers power-consumption, equipment-rack-rentals and
network-technician man-hours, shows nearly 40% in savings compared to the reference
design.

4.1 Reference Design: IP over WDM

The core-IP network designed with an IP-over-WDM" approach can be modeled as a
collection of routersin different city PoPs (Points-of-Presence). The backbone routersin
these PoPs are interconnected over the wide area by ‘waves (industry parlance) leased
from the transport network. Such waves are manifested by wave engths stitched together
in point-to-point WDM line-systems. There is no circuit-switching (static or dynamic) in
the transport network. In fact, in most cases, circuit-switches are not used at all to
provision these waves (which is what we modd). As mentioned before, our focus is on
* Architectural details were covered in Ch. 1- Sec. 1.4 and Ch 2 — Sec. 2.1 and 2.2.

T Unfortunately, such design is known by many names in the literature — IP over Optical [77], pure IP [79], IP
over DWDM with TXP [83]. Others thankfully call it IP-over-WDM [84]
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the IP network; we do not mode the transport network individually; nor do we model the
entire transport network”; and we do not consider other services or networks the transport
network might support today.

It isworth noting that while our design methodol ogy is detailed and comprehensivein
its steps, it does not involve any optimization. No attempt has been made to optimize the
design for any particular design criteria’, because optimization is not the goal here.
Instead we wish to obtain ball park-numbers for the relative comparison. Asareault the IP
network is designed as a pure | P network sans any use of MPL S based traffic-engineered

tunnés.

4.1.1 Design Methodology

The design methodol ogy for | P-over-WDM design is briefly outlined below:

1. Network Topologies We choose representative topologies for both 1P and WDM
networks for alarge US carrier like AT&T.

2. Traffic-Matrix: We create a unidirectional (IP) traffic matrix from al citiesin the IP
topology to all other cities in the topology. Each eement in this matrix represents the
average-traffic (in Gbps) sourced by one city and destined for the receiving-city.

3. IP Edge-Dimensoning: In this step we account for all the traffic that could traverse
an edge in the IP topology. Such traffic includes a) the average traffic-demand
between cities routed over the edge; b) traffic-rerouted over the edge in the event of
failures, and c) head-room (over-provisioning) for variability in the traffic-volumein
the previous cases.

4. |P PoP-Dimensoning: Once all the edgesin the IP topology have been dimensioned,
we calculate the number of parallel 10G links that make up the edge; and the number
of Backbone and Access Routersrequired in a PoP to switch between those links.

5. WDM-Network Dimensoning: Finally each 10G link in the IP network is trandated
to a wavelength path in the WDM network. The path is determined by routing the

" For example, the transport network may be substantially bigger in terms of the number of switching nodes,
compatred to the IP network it supports (as highlighted in [77]).

T Such design criteria could include the optimal routing of IP links to minimize concurrent failutes, or the use
of diverse-paths for routing, or the minimization of transponders in the transport network, etc.
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(virtual) IP link over the WDM (fiber) topology. Once all IP links have been routed,
we calculate the number of WDM line-systems, optical components and WDM

transponders required to satisfy the demand.

Design Steps: We give more detailsand partial results for each step as follows:

1. Network Topologies:

a We use AT&T's IP network as reported by the Rocketfuel project (Fig. 4.2a)

b.

[78]". The Rocketfuel topology gives us node-locations (cities) and edges (inter-
city connections). On this we layer typical PoP structure of access-routers (AR)
dual-homed to two backbone routers (BR) (Fig. 4.2b). The ARs are ether local
(dtuated in same city PoP as the BRS) or housed in remote-cities [77]. The ARs
aggregate traffic from the local and remote cities into the BRs, which are
responsi ble for switching traffic to other core-PoPs over the backbone edges. This
dructure results in the hub-and-spoke look of Fig.4.2c; where the hubs are the
core city-PoPs (in 16 major cities); the spokes represent remote-sites (89 cities)
that use remote-ARs to connect to the core-city POP's BRs, and 34 backbone
edges that connect the BRs in the PoPs over the wide-area. Our use of the term
edge to represent the wide-area inter-city connections will be resolved in the
dimensioning process, into multiple paralld 10 Gbps IP links.

For the WDM network, we use a topology from [79] shown in Fig.4.3a. Although
[79] does not give detail s of the node-locations, we layer the topology on a map of
all North-American fiber routes [80] (Fig. 4.3b), to get the node locations and
link-distances. The fiber-topology includes 60 nodes and 77 edges, where the
longest edge-length is 1500 km and the average link length is 417km. The
physical-edges of the WDM topology will be resolved in the dimensioning
process into multiple parallel fibers and 40-wavelength C-band WDM line-
sysems.

T Note that network details (topology, number of switches, etc) are closely guarded secrets which carriers never
divulge. The Rocketfuel project uses clever mechanisms to trace out network-topologies for several large ISPs.
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2. Unidirectional Traffic Matrix: We use a gravity-modd as a starting point for a traffic
matrix [81]. For each of the 105 cities in the IP topology, we estimate the traffic

sourced to the other 104 cities, by multiplying their populations and dividing by some
power of the physical-distance between them. Note that the power can be zero as
wdl, in which case distance is no longer a factor. We then scale the traffic-matrix
entries to achieve a cumulative traffic-demand on the IP network of 2 Tbps'. Note
that this traffic matrix only consders the ISP s internal traffic. It does not consider
the traffic to and from other-1SPs with which our | SP peers. Additionally, estimating
or predicting traffic matrices correctly is hard even for ISPs. Thus, later in the
analyss we vary the traffic matrix to study the effects on network Capex. We will
also scale the traffic matrix from 2X to 5X times the original aggregate demand, to
sudy resultant effect on Capex and Opex.

3. 1P Edge-Dimensoning: This step is at the heart of the design process for the IP

network and is actually a combination of several steps.

a Fird the traffic-matrix is dimensioned on the core IP-network. Every demand in
the IP traffic-matrix is routed from source-AR to dedtination-AR over the
backbone IP topology (Fig. 4.2c). The route from source-AR to dest-AR is based
on Dijkgra s shortest-path-first (SPF) algorithm, with the following assumptions:
0 Load-balancing (via ECMP) or traffic-engineering mechanisms (MPLS-TE)

are not used.

0 The metric used in the SPF algorithm is hop-count .

The demand traffic is accounted for on each edge in the resultant shortest-path
route. For example, in Fig. 4.4a, demand-traffic from AR1 to AR2, isrouted via
BR1-BR3-BR2. Note that BR3 ‘sees this traffic as ‘trangit’ traffic. The demand
AR1->AR? is tabulated on the core-edges between BR1->BR3 and BR3->BR2,
and the access edges AR1->BR1 and AR2->BR2, accounting for direction of
traffic flow.

t From our discussion with ISPs, 2Tbps is a reasonable estimate of aggregate traffic demand on a US
continental ISP’s core network, for fairly large carriers at the time of this writing (2011).

* This is realistic — in the absence of any special metrics set by the network-operator for an edge in the IP
topology, routing protocols such as OSPF and IS-IS default to the same number for the routing metric for each
edge, effectively reducing the SPF calculation to a shortest-hop-count calculation. The metric for each edge is
set by the network operator as an optimization, and as mentioned in the introduction we are not interested in
optimizing the design for any special purpose (which is also why we ignore ECMP and MPLS-TE)
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Figure 4.4: Dimensioning the IP network
We als0 keep track of the traffic ‘seen’ by the BRs in each PoP. From Fig. 4.4b,
this includes the traffic switched locally between the ARs by the BRs, the traffic
aggregated and ‘ sourced-out’ by the BRs destined to other PoPs; the incoming-
traffic from other PoPs destined to the ARs serviced by a PoP; and finally, the
traffic that transits through the BRsin a PoP, on their path to a destination PoP.
Next, we account for failures by dimensioning for recovery. We break an edgein
the IP backbone-topology and re-route the entire traffic-matrix over the resultant
topology, which now has one less edge. Again this is precisely what would
happen as a result of individual Dijkstra calculations in every router in the
network. This time we get new values for the aggregate-traffic routed on each
edge of the failure-topology. By breaking each edge of the topology one-at-a-time
and tabulating the re-routed demands, we get different numbers for each edge for
every link-failure scenario. We then repeat this process by breaking each node in
the I P-core topol ogy.
0 Assumption: We only consider single-failure scenarios — i.e if an edge in the
IP topology breaks, no other IP edge or node breaks at the same time. If a
node breaks, then trandgt through the node is not possble, but traffic can ill

be sourced in and out of the node dueto dual-homing of ARsto BRs.



128 CHAPTER 4. NETWORK DESIGN & ANALYSS

o Assumption: We will see shortly that each edge in the I P topology is actually
ingantiated by several parale IP-links. We assume that the breakage of the
edge corresponds to the breakage of al links that make up the edge.

Neither assumption mentioned above is entirely true in practice, and depends on

factors such as the routing of the individual IP links over the underlying fiber

network as well as the location and the cause of the failure. But to keep the
analyss smple and fair, we make the above assumptions and keep it cond stent
across all design scenarios.

c. At the end of the previous step, for each edge in the IP topology, we have the
following set of tabulated traffic in each direction— 1 for the original no-failure
demand-matrix, 34 link-failures and 16 node-failures (the max. of theseis show in

Table 4.1 for a few edgesin the I P topology). For each edge we pick the highest

aggregate out of all these cases for each direction. Then we pick the higher value
from the two directions, and set that as the bi-directional demand for each | P edge
(last columnin Table4.1).

Bidirectional Demand Demand Recovery max Recovery max Edge
IP Edge <-- Dimensioned
Chicago <=> NewYork 125.14 130.36 203.64 220.89 220.89
LosAngeles <=> Chicago 97.39 96.95 118.28 177.82 177.82
WashingtonDC <=> NewYork  97.19 90.53 133.31 124.79 133.31
Orlando <=> Atlanta 91.74 90.72 177.40 167.53 177.40
Atlanta <=> WashingtonDC 82.25 71.16 120.42 108.07 120.42

Table 4.1: Routed traffic for a few IP edges (all values in Gbps)

d. Finally we dimension for traffic variability by over-provisoning the edges. Such
over-provisoning can be performed by dividing the bi-directional traffic demand
from the previous step, by an alowable-link-utilization factor [77]. We chose a
utilization factor of 25%, which trandatesinto 4X over-provisoning.

e. So far we have accounted for all backbone-edges (BR to BR). To account for the

access-edges (AR to BR) we use the max. of the aggregate traffic sourced or sunk
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by the access-city. We account for failures by doubling this demand, as access-
links are dual-homed to backbone routers. Finally we use the same over-
provisioning factor we use in the backbone edges and set the resultant value asthe

bidirectional traffic-demand for the access edge.

|P_PoP-Dimensioning: Now that we have each edge of the IP network dimensioned

for demand, failures and traffic-variability, we can figure out the number of routers

(ARsand BRy) in the PoPs and the number of links (or ports) that make up each edge

(Fig. 4.5).
BRs., ?"-,__.-": parallel links for
' backbone edge
parallel links for ' 3@1 -
access edge z = :
/A’% S,
core
— % . 4 intfs
=55
—_ a access
aggregation ¥— 52 intfs

intfs 1=
AKs

Figure 4.5: Determining the Number of Routers and Links

a The number of parallel access and backbone links (or interfaces) can be

determined by smply dividing the edge demand by the linerate of a single
interface (assumed 10Gbps for all interfaces).

b. The number of access-routersin each access-city can be determined by summing

C.

up the number of access-to-BR interfaces, doubling it to account for aggregation
interfaces (assumed equal to the access-interfaces), multiplying by the line-rate
and dividing by the AR switching-capacity (assumed 640 Gbps).

The number of core-routers in each PoP is determined by summing up all the
access and core interfaces, multiplying by the line-rate, and dividing by the
switching-capacity of a sngle BR (assumed 1.28 Thps).
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City PoP Number of Outgoing Parallel Links to BRs in other City PoPs

Seattle Chicago: 21, LosAngeles: 24, SanFrancisco: 3
SanFrancisco  Chicago: 42, Dallas: 30, Denver: 2, LosAngeles: 34, StLouis: 9, Seattle:3
LosAngeles Atlanta: 51, Chicago: 72, Dallas: 58, StLouis: 57, SanFrancisco: 34, Seattle: 24

Table 4.2: Number of parallel IP Links making up an IP Edge for a few PoPs

5. WDM Network-Dimensoning: In this step we route each IP-edge over the physical-

fiber topology (Fig.4.6) to account for WDM network requirements.

a. AgaintheIP edge is shortest-path routed over the fiber topology, but thistime the
metric used is the phys cal-distance of each edge in the fiber-topology (instead of
hop-count). Assumption: no optimization for routing IP edges on phy topology.

Transport network
topology

Figure 4.6: Routing an IP link on the Physical topology

b. The number of 10G interfaces calculated for the IP edge in the previous step
trandates into the number of 10G waves demanded from the WDM network. This
demand is then tabulated for each edge in the fiber topology over which the IP-
edge isrouted. Assumption: all links that make up the IP edge are routed the same
way in the physical topology.

c. Then on a per-physcal-edge bass, we tabulate the aggregate ‘waves routed.
From this we can figure out the number of parallel 40ch, C-band WDM line
systems required. For example, in Table 4.3, if the demand on a physical-edge is
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for 326 waves, 9 parald line-systems would be required, with 8 of them fully-lit
and 1 partialy lit (6 of the 40 waves will have transponders on either end).

d. We also account for the number of line-systems required in series, by noting the
length of the physical-link and dividing it by the reach of the WDM line system.
We assumed a line-system with 750km optical reach. Beyond 750km, the waves
have to be regenerated el ectronically using back-to-back transponders.

WDM Line

Optical Fiber Transponders

| R ——————
- ' V _E—
= i Wy e W e P s I P e
OLA OLA
, DCF DCF
DGE Li Client
40 Wavelengths channels sli:: s:::
each at 10Gbps (Router)

Figure 4.7: WDM Line System

e. Finally, we account for the optical components used in the fully and partially lit
systems (Fig. 4.7). These include WDM transponders with client and line-sde
transceivers — the client-side connects to the router interfaces with short-reach
optics (< 2km) typically at the 1310nm waveength; whereas the line-sde
contains long-reach optics at ITU grid waveength (100s of km). The line-systems
also contain wavelength multiplexers and de-multiplexers, pre/post and in-line
amplifiers (OLAs with a span of 80km), disperson compensators (DCFs co-
located with each amplifier) and dynamic gain-equalizers (DGEs co-located every

4™ amplifier). Table 4.3 shows results for a few edgesin the fiber-topol ogy.

Bidirectional Wave Link Parallel lit-waves Full-reach  Dist. of

Physical Edge Demand length(km) LineSys inlast Set of LS  last (km)
EIPaso <=> Dallas 326 1027 8 6 1 277
Sacramento <=> SanFrancisco 80 141 2 0 0 141
Nashville <=> Charlotte 8 658 0 8 0 658

Table 4.3: WDM Line Systems satisfying demands for few Edges in Physical Topology



132

CHAPTER 4. NETWORK DESIGN & ANALYSS

4.1.2 Results and Capex Analysis

With the IP-over-WDM design methodology detailed in the previous section, PoP
dimensioning results are shown in Table 4.4. It includes, for each PoP, the number of
BRs, local-ARs and remote ARs, aswdll asthe core-facing interfaces on the BRs, and the
interfaces on the ARs that connect to the BRs. Naturally the access-facing interfaces on

the BRs total to a sum of the accessinterfaces on the local and remote ARS.

city-PoP BRs core_intfs local ARs local AR intfs remote ARs remote AR intfs
Seattle 2 48 1 4 4 6
SanFrancisco 2 120 1 18 16 110
LosAngeles 6 288 6 232 11 76
Phoenix 2 68 2 64 5 24
Denver 2 20 1 6 4 4
Dallas 4 276 2 48 6 20
Houston 2 120 2 44 7 36
Orlando 2 120 1 16 18 120
Atlanta 4 236 1 12 12 28
StLouis 4 256 1 12 16 28
Chicago 4 392 2 74 22 40
Detroit 2 60 1 42 9 30
WashingtonDC 2 152 1 10 19 50
Philadelphia 2 88 1 28 10 24
NewYork 6 248 7 298 32 192
Cambridge 2 72 1 32 10 48
48 2564 31 940 201 836

Table 4.4: IP network Router and Interface counts per PoP

From Table 4.4 we find that our IP network consists of 280 routers, 48 of which are
BRs, and the rest ARs. The BRs collectively have 2564 core-facing interfaces. While
gudies on IP-over-WDM have been published in literature, there remains a lot of
variability in the design process. Some studies ignore network-recovery [82]; others
ignore differences in IP and WDM topologies [79]; and there isn't any use of standard
topologies or traffic-matrices [77, 79, 82-84]. All of these factors can result in fairly

different numbers when tabulated for router /port-counts, making comparisons between

studies hard.
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Additionally most papers do not even report router and interface counts and just state
Capex results. Of the few works that do list port-counts, consider recovery and over-
provisioning, [79] states (in Table 8.7) that a 1.7 Tbps IP network would use 3479 core-
ports, which is in the same ballpark as our tabulation of 2564 ports in a 2 Thps IP
network. The higher count in [79] could possbly be a result of the (curious) use of
identical 1P and WDM topologies. Also from our discussions with | SPs, core networks
with a few hundred routers are typical. If anything, our work is a lower-end estimate of
router and port counts, due to our somewhat simplified PoP structure (compare Fig. 4.2b
to Fig. 3in[99]).

From Fig. 4.8a, we get a rdative idea of the inter-PoP (not inter-AR) traffic-matrix.
The figure shows the traffic collectively-sourced (or originated) by the ARs in the PoPs
to other parts of the network. This figure does not include the traffic that is switched
locally by the BRs between the ARs that connect to them in the PoP; in other words it
only shows backbone traffic. With this particular matrix the backbone traffic was 75% of
the total traffic handled by the core network. Fig. 4.8 shows that the matrix has a couple
of peakswherealot of trafficis sourced by LA and NY PoPsrelativeto the other PoPs. It
also shows that SEA and DEN source very little traffic. This can be attributed to the fact
that this traffic matrix was based on the population of the ARsin each PoP, and it is easy
to notethat NY and LA have high urban and suburban populations.

450
400
350
300

250

200

150

E I I| |
D I
D I

: o & *
;@&Q\@» & ‘:@o \\;b o"‘ (33; d {,Qa
@ \\ ‘F

Traffic Sourced (Gbps)
[=]

oo

@tf (b o \’Ad“
(a)«rv \-9“059‘@ &wa@@ﬁq‘_‘\f@o@

Core PoPs Core PoPs

Number of 10G core—facing Interfaces

N
o
—
~'Zo
d;
6'

Figure 4.8: (a) Traffic Sourced by each PoP (b) Core facing interfaces per PoP



134 CHAPTER 4. NETWORK DESIGN & ANALYSS

However, when we compare the traffic sourced (originated) by a PoP to the number
of core-facing interfaces in the PoP (Fig. 4.8b), we find a discrepancy in the distributions.
While NY and LA have substantial number of interfaces (over 250 each), a sgnificant
number of other PoPs have as much or more interfaces (eg. DAL, STL, CHI and ATL).
We attribute this discrepancy to the trangt traffic being handled at these PoPs, and we

will return to this observation in the next section.

Capex Analysis: We need a price modd for the network elementsin the IP and
WDM networks. Normally these industry-prices are unavailable to anyone not actually
involved in the procurement of network equipment. Such prices are confidential between
carriers and vendors, and can change from customer-to-customer depending on vendor’s
‘discounts based on quantity of equipment sold. And so we find that when similar Capex
sudies are published, the numbers shown are either incomplete [84], or poorly defined
[79], or not defined at all [77, 83]. However, we believe that [82] isan excellent reference
for a highly-detailed and comprehensive price model. We reproduce the numbers from
[82] that are relevant to our sudy in Table 4.5. The usage column details the part and
shows how we use it in the model developed in the previous section. For example, the
BRs have a switching capacity of 1.28Tbps and connect to the WDM transponders (for
transport to other BRs) usng Very-Short-Reach 10G interfaces with PoS framing. The
prices listed are al relative to the price of a WDM transponder (listed with a price 1.0).
Thusif the transponder costs $1000, then a 1.28Thbps router chasss cost $111,670.

IP Router Part Usage Price

router Chassis 640G (16 slots) used for local and remote access routers 16.67

router Chassis 1280G (32 slots) used for backbone routers 111.67

router Slot Card 40G (uses 1 slot) used in all ARs and BRs 9.17

VSR_4XPoS_0C192 (uses entire 40G slot- Very Short Reach (800m), Packet-over- 11.00

card) Sonet, 10G, core facing intfs on BRs

LR_4X10GE (uses entire 40G slot-card) Long Reach (80km), GE, 10G, interface 4.20
connects BR to remote AR

VSR_10X1GE (uses 1/4th of 40G slot- Very Short Reach (500m), GE, 10G, 1.46

card) interface connects BR to local AR
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WDM System Part Usage Price

LH_10G_TPDR Long Haul (750km), 10G Transponder 1.00
(1 per wavelength channel)

LH_40CH_WDM 40ch WDM line terminal (AWG + 4.17
pre/post amplifier), bi-directional

OLA Optical Line Amplifier (used every 80km), 1.92
bidirectional, 40ch system

DCF Dispersion Comensating Fiber (used 0.0072

every 80km), price is given per km,
750km reach, bi-directional

DGE Dynamic Gain Equalizer (used every 4th 2.17
OLA), 40ch system, bidirectional

Table 4.5: IP and WDM network parts Price Model
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Figure 4.9: Capex Analysis IP over WDM reference design

By applying the price model to the results of our modeling we achieve Capex
numbers for the reference IP over WDM design. The results are shown in Fig. 4.9. The
WDM part of the Capex (routing 1268 wave demands) totals $18.138 million (assuming
aprice of 1.0 in Table 4.5 = $1000); 77% of the WDM network cost is attributed to the
WDM transponders, and the rest to all other optical components in the lower half of



136 CHAPTER 4. NETWORK DESIGN & ANALYSS

Table 4.5. The AR related costs are shown for the AR-chassis and the access-ports that
connect the AR to the BR. Since we use the same kind of interface (10GE) on both AR
and BR, to connect them to each other, the cost of the BR’s access-ports is the same.
However the BR’s core-facing ports total nearly half (46%) of the cost of the entire
network (~$34 million out of $74 million)! In retrospect this is not surprising. From
Table 4.4, we see that the number of core-router core-facing ports (2564) is greater than
the access ports (940+836=1776). And the relative cost of the core-ports (11.00 in Table
4.5) is much higher than the access ports (4.2 and 1.46)".

Overall our numbers appear representative — in [84], a 12 PoP backbone with 17
edges, with much-lighter traffic-load (max inter-PoP load was only 8 Gbps — the paper is
from 2003) was found to cost $33 million. Our 16 PoP, 34 edge network, dimensoned
for 2 Thps load, and based on a price-modd from 2008 [82], costs $74 million. We
believe the roughly 2X difference in cost seems reasonable, as it comes from a larger
network that also handles a higher traffic-demand.

4.1.3 Effect of Transit Traffic and Static Optical Bypass

We mentioned in the previous section that the number of core-portsin some PoPsis high
(Fig. 4.8) for reasons other than the traffic that the PoP originates (sources). This
discrepancy can be attributed to trangt traffic processed by the BRs at each PoP.

Table 4.6 clearly illugtrates the distribution of traffic in each PoP, as a result of the
given traffic matrix and our design methodology. The 1% data-column shows the locally
switched traffic; i.e the AR-to-AR traffic that is switched by the BRs in the same PoP,
which in aggregate forms nearly 25% of this traffic-matrix (489.49/2000 Gbps). The next
two columns specify: incoming traffic from other PoPs demultiplexed (switched) to the
ARs by the BRs; and outgoing traffic from the ARs aggregated and switched by the BRs
in the PoP. Note that the two columns total to be the same value (as they should) and

either of them represents the other 75% of the traffic matrix.

t The port-cost difference come from multiple reasons including costlier optics, greater buffering, possible use
of channelized interfaces, and the use PoS framing in the cote ports, versus cheaper GE framing in the access
ports. PoS offers OAM capabilities that routers use to quickly detect failures. GE currently lacks such
capabilities although standardization is underway to add OAM capabilities in packet networks (by using BED
etc.). We currently do not have a price model for such interfaces.



137

city-PoP AR-to-AR  De-muxin Mux-out Transit (tr) Link fail tr node_fail_tr
Seattle 0.10 7.40 10.29 0.00 49.49 0.00
SanFrancisco 40.81 97.23 108.93 4.70 43.09 104.41
LosAngeles 46.72 332.63 321.62 2.72 61.09 21.01
Phoenix 20.74 83.05 83.60 0.00 0.00 0.00
Denver 0.08 7.60 7.26 0.00 19.50 0.00
Dallas 8.35 70.17 69.56 200.03 376.71 345.34
Houston 14.71 74.09 75.35 27.21 208.75 205.87
Orlando 43.62 106.70 115.31 0.92 136.18 113.99
Atlanta 0.67 34.68 37.13 223.55 386.45 356.12
StLouis 1.06 35.84 34.48 162.32 315.92 327.98
Chicago 13.76 108.95 86.18 290.22 461.24 348.02
Detroit 14.34 64.43 69.66 0.00 20.92 0.00
WashingtonDC 1.23 52.64 56.14 126.77 174.67 196.54
Philadelphia 17.23 37.59 34.88 8.55 129.91 103.85
NewYork 243.61 332.78 336.42 3.76 44.03 36.82
Cambridge 22.48 64.72 63.68 0.00 79.06 0.00

489.49 1510.51 1510.51

Table 4.6: Traffic Distribution per city PoP (all traffic numbers are in Gbps)

But the BRs aso deal with transit traffic. The 4™ data column shows transit traffic at
each PoP that arises from SPF routing of the original traffic-matrix. Note that some PoPs
like Denver and Phoenix do not see any transit-traffic, which at first appears strange,
given that the cities are somewhat centrally located between PoPs on the west-coast and
the mid-west. But this is smply a manifestation of a) the IP topology we have chosen;
and b) the use of hop-counts as our SPF metric. Consider this. snce we chose not to
perform any optimization in our design methodology', the edges in the IP topology all
have the same-cogt; reducing the shortest path calculation to the shortest-hop-count. We
also find that from our chosen topology (Fig. 4.1c), the west-coast PoPs (LA, SF and
Sesttle) are well-connected to the Midwest PoPs (Chicago, St. Louis, Dallas) in single-
hops. Thus the SPF algorithm always prefers these sngle-hops over the 2-hop paths
trangting through Denver and Phoenix. The choice to ignore load-balancing, traffic-
engineering or any other form of path-routing optimization, does not change our results

and conclusions as we make the same assumptions across all designs.

T See design methodology step 3a in Sec. 4.1.1.
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According to the design methodol ogy, we al so cal culate the transit traffic at each PoP
that arises from the link and node failure scenarios (we only show the worst case values
in the 5™ and 6™ data columns). Note that even though there may not be any transit traffic
in some PoPs from routing the original traffic-demand, under failure scenarios thisis no
longer true. For example, the Orlando PoP sees trangt traffic grow from 0.92 Gbps in

normal operating conditions, to 136.18 Gbps under link-failure scenarios.
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Figure 4.10: Transit traffic as a % of all traffic handled by BRs in city PoPs

In short, the key insight here is that a large percentage of BR switching capacity, and
correspondingly core-facing interfaces, have to be dimensioned to handle transt traffic.
Therefore if there is a way to reduce transit traffic in BRs, then we could reduce the
number of core-facing portsin the BRsand thus significantly reduce Capex.

Optical Bypass: The industry has proposed the use of optical bypass (sometimes
called express-links) to achieve reduction in transit traffic. In optical bypass, the trangt
traffic remains in the optical-layer (WDM) when passing through a city PoP instead of
reaching the IP layer (i.e. the traffic is not routed by the IP router). Two ways to achieve
optical bypass are shown in Fig. 4.11. One involves the use of manual-patch-cords
between back-to-back transponders in which case the light gets converted to eectrical
domain in the line-gde of the trangponder, gets reconverted to optical in the client-side.

The client sides are patched together”. Another method involves the use of all-optical

T A small optimization (that we do not considet) involves removing the client-interfaces and patching together
the line-sides of the transponders.
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ROADMs to optically patch (switch) the trangt traffic, without requiring the
trangponders for the trangt traffic. This technique requires the use of longer-reach (more
than 750 km, more expensive) optical WDM systems as the signal stays optical for a
longer distance. Neverthdess, it is vital to note that even though an optical switch is
being used, it is set one time to create the bypass and then never changed — i.e. it isa
static optical bypass mechanism.

Transponder.

Opfi:al Bypass:
Wavelength switch +
Long reach Optics

Line Client Optical Bypass:
Side Side Manual Patching

Figure 4.11: Optical Bypass Techniques

Modeling and Capex-Analysis: Irrespective of the method used for bypass,
the net effect is the same — an increase in the number of edges in the backbone IP
topology. With reference to Fig. 4.6, we show in Fig. 4.12 that a new link is introduced in
the 1P topology due the addition of a wavel ength-bypass channel in the transport network.

i

1
IP core,
lopolng‘y
1

% Transport network
topology

Figure 4.12: Optical Bypass increases ‘mesh-iness’ of the IP topology
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We model this effect in our IP over WDM desgn methodology by smply

incrementing the number of edgesin the IP topology from theinitial 34 edges (Fig. 4.1¢).

We iterate over the design process to incrementally add edges (from bypass) from which

we benefit the most —

ie. the new-edges that reduce the transit traffic the most (over all

failure and non-failure scenarios) are chosen firg.
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Figure 4.13: Effect of Optical Bypass on (a) Capex (b) CorePorts (c) Transit Bandwidth

Fig. 4.13a shows Capex results for corresponding increase in the number of edgesin

the IP topology. We find that as we increase the number of edges, thereis areduction in
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Capex; but after the initial benefit of reducing large transit cases, we run into diminishing
returns. For this traffic matrix, beyond 50 edges, we do not benefit anymore in terms of
Capex even if we go up to a fully-meshed IP PoP topology (16 PoPs fully meshed -
n.(n-1)/2 = 120 edges for n=16). We take a closer look into this result. From Fig. 4.13a,
note that every other category, save for the BR’s core-facing ports, does not change
appreciably. The major savings, as expected, are in the core-port costs. This cost
reduction come from the reduction in the total number of core-ports, which shows the
same leveling off beyond the 50-edge case (Fig. 4.13b).

The main reason for thisisthat the aggregate-transt traffic bandwidth can be reduced
ggnificantly, but it cannot be eiminated (Fig. 4.13c). This is because in our desgn
methodology we consider failure cases — consider the fully meshed case' (120 edges) —
without any failures, all BRs are one hop away from all other BRs, and so there is no
trandt traffic. But when failures happen, at a minimum, traffic has to be redirected over a
2-hop path, thereby creating trangt traffic. Also we show in later sections, that bypass-
decisions made for a certain traffic matrix (TM), no longer work as well if the TM varies.
Since the optical network is gatic, it cannot change to varying traffic needs. And so the
IP network hasto plan for such change; thereby potentially reducing savings.

The takeaway point is that static optical bypass can incrementally reduce Capex by
~10-15%, but has limitations in dealing with failures and changing TMs due to its static
nature. Thusin the next section we discuss dynamic transport network design.

4.2 pac.c Network Design

In this section we present a converged network based on common control over packet-
switching and dynamic circuit-switching (DCS). We call such a desgn “1P-and-DCS’ to
diginguish it from IP-over-WDM. We firg discuss the three main eements of |P-and-
DCS design and then explain the benefits of our design-choicesin comparison to | P-over-
WDM. We then detail the design methodology and show results for Capex and Opex.

T As an aside, the fully meshed topology actually results in lesser number of /iks (interfaces) than the original 34
edge case. From Fig. 4.13, 120 edges correspond to ~1800 interfaces, while 34 edges gave ~2600 interfaces.
Lesser interfaces result in fewer routing-adjacencies, thereby (counter-intuitively) reducing the load on the
routing protocol. Our findings are consistent with [84].
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4.2.1 Design Elements

|P-and-DCS design has three main e ements:

1. It replaces Backbone Routers (BRs) in PoPs, with switches that have both packet
switching and circuit switching capabilities in nearly equal measure. We adopt aterm
used by industry to describe such switches: Packet-Optical Switches' [90].

2. Our design features a full-mesh topology between PoPs, created by circuits between
the optical-sde of the Backbone Packet-Optical Switchesin each PoP.

3. And critically, it uses our SDN inspired unified control-architecture to commonly
control both packet switches and circuit switchesin all PoPs.

We discuss each of thesein more detail below.

Backbone Packet-Optical Switches: The replacement of backbone routers
in PoPs with packet-optical switchesisdepictedin Fig. 4.14.

/A / I\ /
\‘. / \\:\ f," \ / \ /
\ | .fj \_1 /
e |
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Access . >
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Figure 4.14: Replacing Backbone Routers with Packet-Optical Switches

These Backbone Packet-Optical Systems (BPOS) have the ability to switch-packets
and circuits in equal measure — for example, we envison a switch with 1.28 Thps of
switching capacity; half of which is used to switch packets based on MPLS labels, and
the other half switchestime-dots based on OTN technology [91]. And while such packet-
optical switches do not exist commercially at the time of this writing, several companies
are indeed working on building such switches [85-88], albeit in a different context [89,
90] (which we shall discussinthe Related Works section in Ch. 6).

T Packet-optical should not be confused with optical-packet-switching. The latter switches packets in the optical
domain; in our case packets are switched electronically. Also, digital-electronics is used to switch circuits based on
time-slots in the ‘optical’ part of the packet-optical switch. Industry terms such switches as ‘optical’ even though
they possess electronic circuit-switching fabrics. In other words, the terms ‘optical’ and ‘circuit’ are used
interchangeably in the text. Such systems ay also include actual optical-fabrics (called photonic by the industry) to
switch wavelengths optically — however we do not consider wavelength switches in this design.
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Figure 4.15: Backbone Packet-Optical Switches (BPOS) Usage

The packet-part of the BPOS switches packets between the ARs;, multiplexes traffic
out to other PoPs, and de-multiplexes incoming traffic from other PoPs (Fig. 4.15) — all
functions previoudy performed by Backbone Routers. However, in our design, we mostly
limit the operation of this switch to tagged packets, such as those packets already tagged
with MPLS labels (by the ARs). We explain the reasoning behind this decison in the
next section, after we have described the other elements of our design.

Full Mesh Topology: The basic idea is that we wish to keep all transt-traffic
circuit-switched. Accordingly we create an inter-PoP topology that is fully meshed. All
PoPs are connected to all other-PoPs directly using dynamic variabl e-bandwidth circuits.

Figure 4.16: Change to Full-Mesh Network Topology
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Fig. 4.16a shows the reference |P over WDM design with an | P core topology linking
BRs in different PoPs with edges (parallel IP links). In our design (Fig. 4.16b), the BRs
have been replaced with BPOSs, and circuits are used to connect all the PoPs, resulting in
an |IP topology that is fully-meshed. Packets are not allowed to transt through an
intermediate PoP by touching the packet-part of the Backbone Packet-Optical Switches
(BPOS). Ingtead they stay in the circuit-layer (see Fig. 4.15), which essentially means
that instead of a packet-switched backbone topology, the backbone is now circuit-
switched, and it is necessarily fully-meshed. The ARs in each PoP are dual-homed to the
BPOSs (as before). However each AR is essentially a single-hop away from every other
AR in the entire network; i.e. the ARs form a fully-meshed | P topol ogy. L et us see how —
in Fig. 4.17, PoPs A and B, and PoPs A and C, are connected by variable-bandwidth
circuits (circuit between PoPs B and C is not shown).
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Figure 4.17: IP-and-DCS Network Design

We assign unique MPLS labels bi-directionally to every AR pair. Assigning MPLS
labels can make the processing required in the packet-part of the Packet-Optical switches
sampler. For example a source AR pushes the corresponding label onto all packets
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destined for another AR (within the same PoP or in a different PoP), and forwards the
packets to the BPOS. The packet part of the BPOS examines the label and forwards the
packet to another interface (for local switching) or to the appropriate circuit to the
destination PoP. The degtination-AR pops off the label and forwards the packet on. It's
smpler because the number of rules required in the flow-table for packet-forwarding (in
the BPOS) is then on the order of the number of ARs in the network (few hundreds). On
the other hand if the rules are on the bass of matching IP addresses then they could
number into hundreds-of-thousands. We will explain this in more detail in the next
section, after we discuss our control strategy.

SDN based Unified Control Plane: Our design requiresthe use of a Smple,
flexible, multi-layer control plane. We use the SDN based common-control plane
described in the previous chapters; where all switches including the ARs and the BPOSs
support a generic packet-switch and circuit-switch data-abstraction manipulated by a
common switch-API like OpenFlow; and a (distributed) Controller creates a common-
map abdraction so that network control functions can be implemented from a single
centralized application viewpoint.

The requirement for SDN based unified control comes from two facts. First, our core
network is as much packet-switched as it is dynamically circuit-switched. Dynamic
circuit-switching is used to vary circuit-bandwidths between PoPs for a variety of reasons
including recovery, varying-traffic loads, and guarantees. It requires close interaction
with packet-traffic and application/service needs, all of which can be provided in smpler
and more extensible ways with our unified control architecture (as shown in Ch. 3).

But just asimportantly, the SDN based common-control plane enables the use of the
full-mesh topology, which isan important e ement of our design. Consider the following:
We are not the first ones to suggest the benefits of an IP topology that is fully meshed. In
fact in the 90s, several 1SPs created | P core-networks that were fully-meshed, where the
router-to-router connections were realized using ATM virtual-circuits (PVCs). However

such construction suffers from a significant drawback, which contributed to the failure of



146 CHAPTER 4. NETWORK DESIGN & ANALYSS

IP-over-ATM [92]. The problem is frequently referred to as the O(N?) issue — when N
routers have a fully meshed topology, the distributed link-state routing protocol creates N
routing-adjacencies for every router. Inthis scenario,

e When alink goes down, the routers on both ends of the link inform all their adjacent-
routers (=N, i.e. every other router in the network). In turn each of these routers tell
all their neighbors (again N), at which point the flooding stops. But it resultsin O(N?)
messages, which can cause a significant load on router CPUs.

e |If the load (in addition to other work the CPU is doing) causes a router to crash, or
the router crashes for some other reason, the situation is worse — it generates O(N®)
messages. Such a cascading situation can, in the worst case, crash an entire network.
But note that the O(N?) issue is not due to drawbacksin ATM itself": instead it is an

artifact of the nature of distributed link-state routing protocols. With the adoption of

SDN, our control-architecture eliminates the use of distributed routing protocols within a

Controllers domain. In SDN, when nodes or links fail, the switchesinform the Controller

of the failure (at worst ~ O(N)). The Controller either re-computes flow-paths or has pre-

computed backup paths for the failure. It can download new flow-entries into the affected
switches (maybe all switches ~ O(N)) or it could have pre-designated fail-over paths in
the switches. In any case the complexity remains O(N). Note that pre-computed backup
paths are also possible in today’s (non-SDN) networks, nevertheless the N? issue
remains, Smply due to the use of digtributed routing protocols. And so the adoption of
SDN based control diminates the O(N?) issue, and enabl es the full-mesh | P topology.

4.2.2 Design Benefits

Now that we have covered the three main eements of our design: Backbone Packet-
Optical Switches, a fully-meshed IP topology; and the use of an SDN based common
control plane; we are in a position to describe the rational e behind the design choices by
highlighting their benefits.

T ATM had other issues including high-costs; a desire to be an end-to-end network technology; inefficient cell
size etc. [93]
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Simpler Data-Plane, Simpler Routing: Consider the process of routing in
regular IP networks. The first step of the process of getting |P packets to their ultimate
destination requires figuring out which router to reach within the IP network for the
incoming-packet’ s destination IP address. Such a destination-router is sometimes called
the BGP next-hop for that destination address within the network; BGP next-hops for IP
prefixes are learnt from |1-BGP advertisements. All E-BGP speaking routers in the
network have I-BGP connections with each other as well as internal non-E-BGP speakers
(Fig. 4.18); this apparently does not scale well in larger networks, so instead, routers
maintain an |-BGP session with a Route-Reflector (not shownin Fig. 4.18).

In Fig. 4.18, assume that within the AS shown, for a particular 1P-prefix, it has been
determined that the BGP-next hop is R4. Then all routers that have incoming packets
destined for that prefix need to figure out the next-hop in the shortest path to the BGP
next-hop. The IGP (like OSPF or 1S-1S) heps determine the topology of the networks,
from which shortest paths are calculated and next-hops and outgoing-interfaces are
determined. For example, R5 determines that the next hop is R6 to reach the BGP next-
hop (R4) for that prefix. All of thisis done in each router in the network (all ARs and
BRs) for all the destination I P prefixesin the Internet (nearly half- million).

S o
sz W E-BGP

EITTRPPRRTLLY I-BGP sessions

Figure 4.18: Routing in IP networks
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In our design, the routers and switches learn about advertized IP prefixes from the
Controller, which for this purpose behaves essentially like the Route-Reflector. The
Controller discovers the topology; figures out paths from a source-AR to the BGP-next-
hop for all 1P destination prefixes; and pre-downl oads them as matching-rules and actions
in the flow-tables of the ARs via the OpenFl ow protocol.

The route calculation istrivial as all ARs are one-hop away from all other ARs. The
controller adds actions to label the packet for the destination AR (which include peer-
routers that peer with other ASes) and forward out of any interface that connects to the
Backbone Packet-Optical switches. In the example shown in Fig. 4.19, packets that match
two different /16 prefixes are sent to different ARs (AR12 and AR24) by pushing
different label s onto them and forwarding to the BPOS (out of interface 17)

1P Prefix/ BGPnext-hop Out  Out
Mask

intf. label
164.68.0.0/16 10.0.7.12 (AR12) 17 10023

173.24.0.0/16 10.0.5.3 (AR24) 17 12521

10023  10.0.7.12
(AR12)

12521 10.0.5.3(AR24) V64 (ckt to Pop €)

V23 (ckt. to pop B)

Figure 4.19: Routing Tables in IP and DCS design

At the BPOS, the label to destination-AR binding is fixed. For example, packets with
label 10023 are always forwarded to a set of virtual-ports (such as V23), which are head-
ends of circuitsto PoP B (and AR12). These labe -to-virtual-port bindings do not change
frequently; behind the scenes, if there is a change in network topology, it is the circuits
and not the virtual-ports that change. In other words the circuits may be reszed or re-
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routed but they remain pinned to the same set of virtual ports. Further, as new IP-prefixes
are learned by the Controller (via E-BGP sessons), the latter downloads the prefix
/degtination-AR/labd information into all ARs without having to do a shortest-path
calculation; as all BGP-next hops are one-hop away in this full-mesh topology. In most
cases, the rulesin the packet-part of the BPOS do not need to be changed.

Therefore the net result is that the data-plane Backbone switches are greatly
samplified. The packet-part of the BPOS caches a small number of rules to switch on;
which are on the order of the number of ARs in the network (hundreds) instead of the
hundreds-of-thousands of rules needed in BRsin aregular IP network.

Note that the gains are not in the speed-of-lookup; | P destination-prefix lookup isjust
as fast today as MPLS-label lookup. Instead the gains are from lowering switch
complexity by requiring fewer forwarding rules and actions. Thisgain isadirect result of
our design choice of using an SDN based control plane in a fully-meshed IP topology. It
in-turn results in highly simplified and inexpensve switch operation in the packet part of
the BPOS; leading to the use of cheaper switches which are reflected in our Capex
analysisin Sec.4.2.4.

Network Recovery: In Sec. 41.3, we saw that transt traffic cannot be
eliminated due to recovery considerations when dimensioning an IP network. For
example, in Fig. 4.12c, even with 50 edges the transit traffic aggregates to 750 Gbps over
the entire network. For a backbone that deals with 1500 Gbps of incoming traffic, an
additional 50% of switching-capacity must still be allocated for trangt-traffic.

In our design we wish to diminate all transt-traffic — we achieve this with the use of
a fully-meshed I P topology. Under normal circumstances, traffic flows directly from one
PoP to another in circuits;, without having to transt through the packet-part of BPOS in
intermediate PoPs. Under failure-conditions, all network-recovery is processed in the
circuit layer. Because the circuit-layer is dynamic, it can be re-configured to re-route the

packet traffic around the failure in the circuit-domain.
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However this decison brings up an important point. Proponents of |P-over-WDM
design point out (correctly) that failuresin the IP-layer cannot be overcome by recovery
methods in the lower (optical/circuit) layer [77]. This subtle point can be better explained
with the help of Fig. 4.20.

& @

(b)

Figure 4.20: Recovery Scenarios

Congder asimple IPlink shown in Fig. 4.20a - hereafter referred to as (a). Thelink is
realized by a circuit over the wide-area as shown in (b). Note that in (b), the interfaces on
the routers (at both ends of the IP link) are connected to WDM line terminals, and the
circuit passesthrough a circuit-switch in between the line-terminal s.

If the optical-link breaks, the circuit-switch can recover fromit, as shown in (c), using
capacity in the circuit-network. But if the failure isin the IP layer — for example a router
interface fails (asin (d)) — then recovery cannot be accomplished in the circuit network.
Additional capacity (another IP interface and link) must be provisoned in the | P layer to
deal with such failures (as shown in (d)). But provisoned capacity in the IP layer is
agnodtic to the type of failure. It can recover from both interface failures and fiber cuts
(as shown in (€)). And o0 there is no need for the circuit switch or the circuit-layer for

recovery (as shown in (€)). Note that (€) is essentially IP-over-WDM, where all recovery
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is handled by the IP layer, but at the cost of more-expensive Backbone Router core-
facing ports.

In our design, BRs are replaced by Packet-Optical switches (as shown in (f)).
Importantly, all core-facing ports are now cheaper circuit-ports. And crucialy, all
recovery can be performed in the circuit/optical layer — thereis no difference between the
loss of an interface or a link — both are provisoned with spare capacity in the circuit
network. Thisfact has significant implicationsin the Capex analysisin later sections.

Instead of | P-rerouting based recovery methods, or complex MPLS FRR techniques,
the circuit network can use edtablished fast and efficient recovery techniques such as
shared mesh-restoration [94, 95]. Fig. 4.21 shows how such recovery is accomplished
with the technology used in our design. Fig. 4.21a shows the circuits between 3 PoPs. For
two of the circuits, it also shows a) the quantization of the circuit into time-dots; b) the
usage of the time-slots to satisfy bi-directional demand traffic; and ¢) the existence of un-

used time-dots for recovery and traffic-uncertainties.
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Figure 4.21: Recovery in IP-and-DCS Design

It isimportant to understand that while the circuit is shown quantized into time-slots

(which it is); from the point-of-view of the IP network (i.e the ARS) the quantization is

not visble — all the ARs seeisa single big circuit (of variable bandwidth). Technologies
like ODUflex [96] and VCAT [5] make this view possible. Fig. 4.21a shows the normal
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non-failure case. When the circuit between PoPs B and C fails, the demand traffic
between the two is diverted via POP A. Essentially the spare-time dotsin Fig. 4.21a are
re-assgned to a newly created circuit between PoPs B and C and circuit-switched at Pop
A (Fig. 4.21b).

So far we have shown that our design choices can lead to the use of cheaper circuit
ports for recovery. What about performance? |P-over-WDM recovery techniques still
require re-convergence of the routing protocol; and while it can be disruptive to traffic
elsewhere in the network, it has been shown that such re-convergence can be achieved in
sub-second time-scales [97]. Our design uses circuit-switching techniques like shared-
mesh regtoration which also have been shown to achieve sub-second recovery (~ 250
msec [94, 95]). Backup paths can be pre-computed in both cases and local-recovery can
also be performed in 50ms time-scales.

Failure cases within-the PoPs are accounted for by dual-homing ARs to backbone
switches in both cases. Again in our desgn it does not require re-convergence of a
distributed routing protocol. Recovery is convergence free due to the absence of an IGP;
and poss bly faster as only the affected traffic isre-routed.

Thus we find that recovery in IP-and-DCS design can potentially lower Capex costs
compared to IP-over-WDM design without sacrificing recovery performance, by usng
circuit-based core-facing portsand circuit-recovery techniques,.

Over-Provisioning for Traffic Variability: In IP-over-WDM, edges are
over-provisoned to deal with traffic-uncertainties. Such uncertainties could involve
aurgesin traffic load at certain times or even a shift in the traffic matrix over time.

Congder Fig. 4.22a: when there is a surge in traffic from the ARs in the PoP going
out of the BRs, there is no other choice than to have the BRs dimensoned with enough
interfaces and switching-capacity to deal with this need. However, if such needs are
short-lived (minutes’hours), the extent of over-provisioning in the IP layer can be
reduced given a dynamic-circuit layer. For example, in Fig. 4.22b, the routers have four

interfaces each, two of which are used to carry the average traffic matrix load, and the
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other two are aresult of over-provisoning. Thus, if we assume that the former are nearly
aways fully utilized, then the latter are used at times of traffic-surge. But if these surges
are temporary and at different times one can benefit from a dynamic circuit layer. Such
dynamic circuit switching can redirect the optical bandwidth to create new links between
packet switches to handle surging traffic [98]. We have shown an example of this with
our control architecture in the previous chapter, where new packet links were created on-
demand between the SF and NY routers. In the smple example of Fig. 4.22c, the same
physical interface on any router can be connected to an interface on ether of the other

routersat different times; thereby saving a core-port per router.
WDM Line

Terminals % o & %{;“
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Backbone/Core Lc\%({{! % \ /
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Figure 4.22: (a) Traffic surge (b) Over-provisioning (c) Reduced with DCS

For more long-lived surges (days) or a shift in the traffic matrix, the opportunity to
redirect bandwidth is reduced, and the need to overprovision the network increases again.
But the advantage of our IP-and-DCS design isthat all core-facing ports are circuit-ports
which are cheaper. We 4ill over-provison, but we do so with circuit-based core-facing
ports. In fact we show (in the next section) that in both designs the amount of over-
provisioning is same — the only difference isthat one uses IP ports (on BRs) and the other
uses cheaper circuit ports (on BPOSs). The quantization of circuit portsinto time-slotsin
the latter case is not visible to IP. To packet-traffic, paths to another PoPs just appear as
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big over-provisoned circuits; in which packet-traffic can grow and diminish seamlessly.
Thus under normal circumstances, bandwidth availability is the samein both designs due
to the same levd of over-provisoning. In fact we can over-provison by a far greater
amount and still achieve lower Capex than in the reference case.

And when congestion does happen (despite over-provisoning); a regular 1P network
has few means for dealing with congestion reactively without the use of complex traffic-
engineering mechanisms like MPL S auto-bandwidth; but in the IP and DCS case, we can
redirect bandwidth between the core-facing circuit ports, from other parts of the mesh.
And the sameistrueif thereislong-lasting change in the traffic-matrix.

In other words, over-provisoning and dynamicity makes the design in-sengtive to
varying traffic patterns, while gill achieving lower costs, with the net result that
bandwidth availability in IP-and-DCS design, is at least the same, or in most cases better
than the reference | P-over-wWDM design.

Delay & Jitter: This performance criterion is a clear-win for the IP-and-DCS
design as all AR to AR communication is a sngle (packet) hop. The circuit network has
propagation delay (which cannot be avoided and exigts in all networks); but typically
removes the switching delay inherent in packet networks. Thus overall latency is reduced,

bounded and guaranteed by the circuit-path, whilejitter is diminated.

4.2.3 Design Methodology

The design methodology for IP-and-Dynamic Circuit Switching (DCS) design is very

smilar to the methodology for I1P-over-WDM design outlined in Sec. 4.1.1. But some of

the steps have to be modified to account for our design choices of replacing BRs with a

fully-meshed DCS network. We overview the steps first and then give details

1. Network Topologies The WDM/fiber topology remains the same; but the IP PoP
gructure changes according to Fig. 4.14; and the IP inter-PoP topology changes to
reflect the full-mesh (Fig. 4.16).
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2. Traffic-Matrix: We use the same traffic-matrix.

. IP Edge-Dimensioning: In this step we account for all the traffic that could traverse
an edge in the IP topology. The difference is that there is a full-mesh of edges. As
before, we route the average traffic-demand between PoPs, account for failures, and
on the edges.

. IP PoP-Dimensioning: Once all the edgesin the IP topology have been dimensioned,

we calculate the number of parallel 10G links that make up the edge; and the number
of Access Routers and Backbone Packet-Optical Switches required in the PoPs to
switch between those links.

. WDM-Network Dimensioning: Finally each 10G link (actually 10G OTN circuit) in
the IP network istranslated to a 10G wavdength path in the WDM network. The path
is determined by routing the circuit over the WDM (fiber) topology. Once al links
have been routed, we calculate the number of WDM line-sysems, optical

components and WDM transpondersrequired to satisfy the demand.

We give detail s of each step in the design-methodol ogy:

. Network-Topologies for the I P network and WDM network:

a. We use the same IP PoP locations that we used in the reference design. The
access-router locations are the same as well. There mgjor differencesare :

i.  BRsin the PoPs have been replaced by BPOSS,

ii.  Theedgetopology from Fig. 4.1 isno longer used. Instead we assume a fully-
meshed |IP PoP topology. Since there are 16 PoPs, the IP topology has 120
edges.

b. The WDM topology remains the same as the one used in the reference design
(Fig. 4.2).

. Traffic-Modd: We use the same traffic-matrix as the one used in the reference design

for fairness in comparison. We also vary the matrix for both designs and scale to 10X

in our comparison.
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3. |IP-Edge Dimensioning: As before we first dimension for the traffic-demand, then we

account for recovery, and finally we over-provison for traffic uncertainties.

a Dimensoning for demand-traffic is ssmple. There is no need to run a routing

b.

algorithm as every AR is 1-hop away from every other AR. We consder each
PoP pair separately, and aggregate the demand from all the ARs in a PoP to ARs
in the other PoP in both directions. We pick the larger of aggregated-demand and
set it as the bidirectional-demand for the PoP pair. This inter-PoP IP edge is
actually realized by a TDM circuit. Thus we calculate the number time-dots
needed on the edge to satisfy the bi-directional demand with TDM technology
based on OTN [91]. We assume a minimum switching granularity of ODUO (1.25
Gbps) and the use of ODUflex [96] to treat all time-dots (even on multiple
waves/interfaces) as part of the same ‘ circuit’.

Dimensioning for Recovery: The advantage of having all core-facing ports be
circuit switched is the circuit-domain can recover from all core- Shared mesh
restoration is basically the use of a backup path for a collection of used paths— the
restoration capacity along links is shared between the used paths. In the single
failure case, the there is no contention for resources in the backup path. We use
thislogic in devel oping a S mple shared-mesh-restoration algorithm.

4 Seattle }‘_h,___ ——# Detriot ﬁ\
Py i w \‘ e ._-—-‘;'"./' # W
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Figure 4.23: Shared Mesh Restoration Example

As in the reference case, we assume only single-failure-scenarios and we also do
not optimize the agorithm for any particular criteria. Our algorithm has the

following steps.
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i. We first separate the PoPs into groups of four based on geographical
proximity. Fig 4.23 shows two such groups. Then we consider the demands
between each pair of groups, and find the PoPs with the maximum demand
traffic between the groups. In Fig. 4.23, the edges between SFO-Chicago and
Phoenix-StLoius have the most demand traffic. We backup these edges up
with each other, both in the inter-group edges and the intra-group edges. For
example, if the SFO-Chicago edge fails, it is backed up by SFO-Phoenix-
StL ouis-Chicago route.

ii.  Next we condgder each PoP’ s links that go out of the group and back those up
with one of the two inter-group paths selected above. For example, we pick
the highest demand on Seattl€’ s external edges to Detroit, Chicago, StLouis,
and Denver and back that up on to Sesattle-SFO or Seattle-Phoenix.

iii.  Finally we consider the edges internal to each group. For each edge we back
up the demand with a path within the group.

iv. It isimportant to note that the recovery capacity does not add up on an edge
for each failure scenario described above. Instead it smply picks the worst
case backup capacity required for any one of the scenarios. This comes from
our sngle failure assumption which was aso used in the IP over WDM
reference design.

c. Finally we dimension for traffic uncertainties by over-provisoning the total traffic
and recovery demands by the same 4X over-provisoning factor we used in the
reference design.

d. Notethat the AR to BPOS edges within the PoP are dimens oned exactly the same
way asthey were for the AR to BR edgesin thereference design.

|P-PoP Dimensioning: Now that we have dimensioned each edge in the full-mesh

PoP topology, we can figure out the number of 10G links that make up the edge.
Further we can calculate the number of Backbone POS' required and the number of
ARs per PoP.
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a. The number of paralel backbone links per edge is found by dividing the
dimensioned time-d ots per edge (demand + recovery) by the number of time-dots
that fit in a 10G interface. Since we assumed that each time-slot isan ODUO (1.25
Gbps) and eight of these fit in an ODU2 (10Gbps), we can cal culate the number
of ODU?2 interfaces (or rather OTU2 interfaces/waves') needed.

b. The access links and access routers are determined by exactly the same procedure
asthe P over WDM reference design.

c. Finally the number of backbone packet-optical switches are determined first
figuring out the number of OTN switches (640 Gbps) required to satisfy the core-
interfaces; and the number of core-packet-switches (640 Gbps) required to satisfy
the access interfaces; and picking the greater of the two as the number of packet-
optical switches with 1.2Tbps of switching capacity (with half for packet and the
other half for OTN).

5. WDM system requirements: The final step of the desgn methodology isto route the

circuits that make-up the full-mesh core topology on the fiber topology (Fig. 4.24).

. R i

WDM/Fiber
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Figure 4.24: Routing Circuits on the Physical Topology

This procedure is exactly the same as the one followed for the reference design, the
only difference being that the waves in the reference design supported 10G interfaces on
the Backbone Routers, and here they support 10G interfaces on the OTN part of the
Backbone Packet-Optical Switches.

T In OTN terminology, ODU is the data unit or payload (ODU2 = 10.037274 Gbps) and OTU is the
transmission unit which includes the payload and the overhead (OTU2 = 10.709335 Gbps)
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4.2.4 Results and Capex Analysis

The overall number of core-portsisreduced in IP-and-DCS (1480) when compared to the
reference design (2564). This has obvious Capex benefits; as the core-facing ports form
thelargest share of the Capex in an |P network.

It is aso worth noting that the distribution of core-facing ports across PoPs (Fig.
4.25) has changed, compared to the reference design (Fig. 4.8). Both figures show (on the
left side) the same distribution of traffic sourced/originated by each PoP. Essentially this
reflects the PoP to PoP traffic-matrix used, which is the same for both designs. However
on the right-side, each figure shows the respective core-facing port distribution. What
gands out is that in the reference design (Fig. 4.8b), the distribution only lightly
resembles the traffic matrix, with PoPs in cities like Chicago and Atlanta using far more
portsthan needed to satisfy the sourced (or sunk) traffic. This of-course isa manifesation
of all the trangt traffic handled by these nodes.
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Figure 4.25: (a) Traffic Sourced by each PoP (b) Number of core-facing Interfaces

In contrast, Fig. 4.25b shows a far greater smilarity to the traffic-matrix distribution.
Note that the largest use of core-ports isin the cities that source the greatest amount of
traffic (LA and NY). There are two reasons for the smilarity: @) the overall amount of
trangt traffic has been greatly reduced by the full-mesh circuit topology (and in-turn the
full mesh AR-to-AR IP topology); and b) transit traffic in the presence of failure
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scenarios has been reduced due a combination of: all trangt traffic being circuit switched,
and the use of shared-mesh-restoration in the circuit network (by definition a traffic-
engineered network).

To quantify the Capex benefit, we assign a cost (actually price) mode to the
component parts of our design. In Table 4.7, we detail the cost model for the IP routers
and Backbone Packet-Optical Switches in the PoPs. The cods for the WDM network are
the same asin the reference network (Table 4.5). The Access Router costs are the same as
those used in the reference design (a subset of the costs shown in Table 4.5). All costs are
derived from the extensive cost-modeling done in [82]. The Access Routers have a
switching bandwidth of 640Gbps with 16 dots each with a dot-capacity of 40 Gbps.
When in locations (cities) remote from the core-city-PoPs, they use long-reach 10GE
ports to connect to the core-switches, when local they use very-short-reach 10GE ports
(emulated as 10 GE ports).

The core-switches are hybrid Packet-Optical switches. They have a packet-switching
part with switching bandwidth of 640 Gbps, and an OTN based TDM switching fabric
with another 640 Gbps of switching bandwidth, to give a resultant 1.28Thps of switching
capacity. We deemed the packet-switching part to be smpler than the ARs, with
switching being limited to MPLS labeds. As such they are similar to the switches being
discussed as Carrier-Ethernet or MPLS-TP switches, and so they are cost-modeled in the
same way asin [82]. The circuit-switching part is modeled with OTN switch-fabric and
10G (ODU2) interfaces from [82].

Access Router Costs Usage Price
router Chassis 640G (16 slots) used for local and remote access routers 16.67
router Slot Card 40G (uses 1 used in all ARs 9.17
slot)

LR_4X10GE (uses entire 40G Long Reach (80km), GE, 10G, connects remote ARto 4.20
slot-card) backbone switch

VSR_10X1GE (uses 1/4th of 40G  Very Short Reach (500m), GE, 10G, connects local 1.46
slot-card) AR to backbone switch
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Costs Usage Price
| PacketPart:
Carrier-Ethernet Switch Chassis  packet part of Backbone Packet-Optical Switch 28.125
640G (16 slots)
Carrier-Ethernet Port Card uses 1 slot 8.330
4X10GE
10GE_XFP_10km_Reach to connect to loca ARs 0.050
10GE_XFP_40km_Reach to connect to remote ARs 0.125
| Optical Part: |
OTN Switch Chassis 640G (16 optical part of Backbone Packet-Optical Switch 13.330

slots)

SR-ODU2 (2km reach, 1310nm)

WDM transponders

Table 4.7: IP and DCS network parts Price Model
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Figure 4.26: Capex Analysis
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The overall results of our Capex analyss can be seen in Fig. 4.26. With design
choices made in |P-and-DCS desgn, we achieve 59% in overall Capex savings when
compared to the reference |P-over-WDM design. Mogt of these savings come in the
backbone switches, which see an 85% reduction in cost (these include the backbone
chassis and access & core-facing ports).

The reduction comes not only from the design choices that lead to requiring fewer
core-facing-ports, but also from these ports being circuit switched and therefore a lot
cheaper. Thislast fact is especially relevant when over-provisioning the core network for
traffic variability. In both the reference desgn and the IP-and-DCS design, we over-
provisioned the network by limiting the utilization to 25% of capacity. But this 4X over-
provisioning was achieved with IP core-ports in the reference design (reative cost =
11.0); whereas in 1P-and-DCS design we used SR-ODU2 OTN core ports which are
much cheaper (relative cost = 0.67).

We also see a 25% reduction in WDM system costs (transponders and optical
components). This reduction can be attributed to the design choices of full mesh topology
with shared-mesh restoration; that ultimately result in fewer 10G “waves’ required from
the WDM network. In the reference design 1268 10G waves are routed in the WDM
network. In our final design only 740 10G waves are needed leading to fewer WDM
systems and corresponding transponders.

It is aso worth pointing out that our design achieves 50% in overall Capex savings
when compared to the IP-over-WDM design with Static-Optical-Bypass (middie column
in Fig. 4.26). Thisisdirectly aresult of the use of a dynamic circuit switched network as
opposed to a static optical network to supplement the IP network. The datic bypass
network achieves savings by reducing trangt-traffic and IP core-ports. But it is still
completely a packet-switched IP network with recovery and over-provisioning achieved
using I P core-ports and packet-switch-fabric bandwidth. Alternatively, these functionsin
our design are achieved with a combination of packet-switching and cheaper OTN based

circuit switching.
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Varying Traffic-Matrices: The benefits of dynamicity in the optical network
can be readily seen when we vary the traffic-matrix (TM). Fig. 4.27 shows the results of
our Capex analysisfor three different TMs (same aggregate traffic-demand of 2 Thps).

In Fig.4.27a, we show the traffic sourced by each PoP for the three TMs.

e TM1 isthe origina traffic-matrix (with peaksin NY and LA) with which we have
referred toin all theanalyss presented thus far.

e TM2 shows a more evened out digtribution of traffic with smaller peaks (NY is
highest but San Francisco, Orlando, Chicago, St Louis etc. are high too).

e TMS3 is less balanced, like TM1, but with peaks in completely different cities

(Chicago and Washington DC) compared to TM 1.
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Figure 4.27: (a) Traffic sourced by each PoP for 3 Traffic-Matrices (b)Capex Analysis
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Fig. 4.27b shows the overall Capex results for each design with the three traffic
matrices. The columns for TM1 are a reproduction of Fig. 4.26 showing 59% and 50%
Capex savings of IP-and-DCS design when compared to |P-over-WDM desgn without
and with Static-Optical-Bypass respectively.

The Capex columns for TM2 and TM3 show different trends for the designs. For
TM2, the traffic matrix is more evenly distributed. It resultsin more IP core-portsin each

PoPs for both sourced traffic and transit traffic, which in turn, results in higher Capex
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($11 million more than for TM1). TM3 which isless-balanced resultsin reference design
costs similar to TM1. But irrespective of the traffic-distribution the IP-and-DCS design
yields nearly the same Capex costs for each matrix; reflective of how the desgn mirrors
the matrix by reducing transit traffic and uses cheaper dynamic-circuit-switched core-
facing ports. Also with the same bypass-choices used for static-optical-bypass from the
TM1 digtribution, TM2 shows lesser savings 10%, while TM3 results in a complete
eroson of savings from bypass — the static bypass case is actually more expensve than
thereference design. Thisisobvioudy aresult of using the bypass-candidates sel ected for
TM1, in the Capex analysisfor TM2 and TM3. Normally we would have chosen different
bypass candidates from which we would have gained the largest benefits for TM2 and
TMS3.

But we did not do so, to highlight a problem with static bypass. With static-bypass
the design decision to create bypass is done offline-and-beforehand and then put into
place. But if the traffic matrix changes significantly (asin going from TM1to TMs 2 and
3), the gatic-bypass decisons cannot be changed — we are stuck with it. And traffic
matrices can change sgnificantly as the Internet traffic digtribution is no longer
population-centric — for example a new data-center in Oregon can significantly increase
the traffic sourced/sunk by the Seattle PoP (see Sesttle traffic for the 3 TMs in Fig.
4.243a). Even in the short term traffic-matrices have been hard to predict. And so if bypass
decisions are made-datically, and the traffic matrix can change, the IP network has to
plan for such change, thereby reducing the savings from bypass. On the other hand, our
IP and dynamic-optical network design is insenstive to the changes in the traffic matrix
irrespective of how great the change may be.

Scaling Traffic-Load: Finally in Fig. 4.28 we show the effect on Capex, of
scaling TM1 to five times the original aggregate bandwidth demand. Scaling the traffic-
matrix is an effective way to plan for increasing traffic-demand. When decisions are
made to upgrade a backbone network with new purchases of equipment (Capex), they are

often done so with future traffic growth in mind. No one upgrades a network every year.
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Thus equipment is put in place such that the network can deal with increasng year-to-
year traffic and upgrades that are disruptive to operation are not required for a few years.
So if we plan for 10Tbps traffic instead of the current 2 Tbps, we see that our design
affords nearly $200 million in savings. Importantly we find that the Capex costs are
diverging with increasng traffic-demand. Our design choices lead to a Capex vs.
Demand dope of $11million/Tbps, which is sgnificantly lower than the dope for I1P-
over-WDM with ($23million/Tbps) and without ($29million/Tbps) static optical -bypass.
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Figure 4.28: Capex Analysis for scaled Traffic Matrix

Control-Plane Costs: The Capex results presented thus far for the IP-and-DCS
design do not show the cost of the control-plane. Since our design is based on SDN, the
control-plane is de-coupled from the switching hardware (for both packet and circuit
switches), and hosted in an external Controller. The Controller itself is distributed over
multiple serversin multiple geographic locations. Neverthel ess, we assume the Controller
costs to be very small compared to the switching-hardware costs for two-reasons — a)
commodity server hardware costs are small (< $5k) compared to switch hardware costs
($100k-$1million); and b) the cost for controller software-development is aready

amortized into the switch-hardware cost in Table 4.7, because our numbers are from [82].
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4.2.5 Opex Analysis

Analysis of Operational Expenditures is inherently difficult as it includes a wide variety
of factorsthat can only be truly understood, and accounted for, by the network operators.
Such costs include labor costs, equipment rack and building rentals, and power
consumption for operation and cooling, among other things. Many of these costs are
subjective and may vary widely from provider to provider, depending on network-size,
geographic location, labor laws, €ectricity costs and other factors.

One factor that probably forms a large part of Opex is the hidden-costs of time and
engineering-labor intensive manual coordination between IP and transport network
teams. With our unified control architecture, we can potentially have the greatest impact
on reducing labor-cogts by running an automated and unified control plane for different
switching technologies. Instead of maintaining two teams of operators trained on
different modes of operation with different management tools, a sngle team can
accomplish such tasks. Furthermore our architecture eases and speeds-up the introduction
of new functionality and services across packet and circuit networks, potentially leading
to lower Opex and faster revenue generation. Unfortunately we have no means to gather
or gauge such proprietary data and hidden costs.

Nevertheless all service providers stress that Opex accounts for nearly 60-80% of
their Total Cost of Operations. And so we attempt a limited-Opex analysis by clearly
gating our assumptions and focusing on a small subset of all that gets accounted for as
Opex. Our goa is to show the potential cost savings that may be realized from our
design when compared to the reference IP-over-WDM desgn. We focus on power
consumption for backbone-equipment, labor costs for maintaining such equipment and
possible rental costs for hosting the equipment in PoPs.

The backbone equipment quantities shown in Table 4.8 are the ones we obtain from
our Capex analysisin the previous sections. Note that quantities are shown for both the

original aggregate-demand of 2Tbps, as well asthe 5X scaled demand of 10Tbps.
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Core

- Router/Switch

WDM Systems  Transponders

IP over WDM
Optical Bypass
IP and DCS
5X Routgl?/rsivitch WDM Systems  Transponders
IP over WDM
Optical Bypass

IP and DCS

Table 4.8: Equipment Quantities for each Design (1X and 5X Traffic Matrices)

The IP-over-WDM network (with and without Optical Bypass) uses 1.28 Tbps
Backbone Routers mode ed on the Cisco CRS-1 routers [99]). The IP-and-DCS network
designed in Sec. 4.2.3 uses Backbone Packet-Optical Switches. As mentioned before,
such switches have not been released commercially, but several vendors have declared
that they are actively creating such products. We model this switch on one such vendor’s
product offering (Ciena 5400 [100]). Both designs use generic WDM equipment and
WDM transponders. We have left out the Access Routers in this analyss, as they are
common to and number the same in both designs. In Table 4.9, we show the power-

consumption (in kW), OAMP hours/week, and rack-space required for the equipment”.

Equipment Power (kW) OAMP hours/week Units/Rack
Backbone Router 28.06 24 0.33 (need 3 racks)
0.07 0.25 36
10 12 1

Table 4.9: Opex Parameters

Power-Consumption: The easest Opex parameter to gauge is power
consumption, as equipment specifications clearly state the DC power consumed in fully-
loaded chassis. Note however that this does not include the power required for cooling
which can be sgnificantly higher; but again is a more subjective number depending on
cooling type, rack alignment, air-circulation etc.

T All the numbers in Table 4.9 have been obtained either from spec-sheets or from private conversations with

industry.
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Backbone routers modeled on state-of-the-art CRS-1s achieve 1.28Tbps switching
bandwidth in multi-chass's configurations. This is reflected in the Capex analysis (Table
4.5) as well as the reference from which we derive the cost-matrix [82]. Each 16-dot
sngle-shef-system houses 640 Gbps of switching capacity and multiple such chasss can
be tied together with a fabric-card-chassis to scale the system [99]. Thus the power
consumption of a 1.28 Thps system is the sum of the power consumptions for two single
shelf systems (9.63kW each) and a fabric-card-system (8.8kW). For the Backbone
Packet-Optical switch, we assume 8.5kW for 640Gbps of packet-switching and 1.5kW
for 640Gbps of OTN based circuit-switching. The switching bandwidth can be attained in
asingle-shelf system such as the 5400 [100] .

Electricity costsin the US can vary widdy from state to state (from 7 centskW-hr in
North Dakota to 26 centskW-hr in Hawaii) [101, 102]. For our calculations we use a
modest 12 centgkW-hr. Table 4.10 shows the annual power-consumption costs for all
three designs for the original traffic matrix (aggregate 2 Thbps traffic).

Router/Switch DWDM system Transponder
power costs power costs power costs Total

IP over WDM $1,415,840.26 $128,456.64 $1,029,440.16 $2,573,737.06
Optical Bypass $1,297,853.57 $119,164.03 $976,459.68 $2,393,477.28
IP and DCS $462,528.00 $100,578.82 $760,417.06 $1,323,523.87

Table 4.10: Annual Costs for Power Consumption

It is worth noting from Table 4.10, that our IP-and-DCS design can nearly halve the
overall annual power-consumption costs, with most of the savings coming from the
replacement of Backbone Routers with Packet-Optical switches. Also worth noting is
that the WDM transponder power cods are very high. In IP-over-WDM it is close to the
BR power consumption, and in IP-and-DCS it exceeds the backbone switch power
consumption. Thisis simply because of the need for thousands of such transponders in
the WDM network (see Table 4.8). Technologies such as wave ength-switches coupled
with ultra-long-haul optics can reduce the need for such transponders [79]; which can
t At the time of this writing, the 5400 system lists in its spec-sheet a power consumption of 2.7kW. However

this is only if the entire 1.2Tbps system was dedicated to circuit-switching. Since we use both packet and circuit
switching capabilities in equal measure, we revised the power consumption number to reflect the hybrid nature.
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further help lower cogtsin al desgns; but especially in IP-and-DCS design as we ask for
very-long circuitsin our full mesh topology (eg. LA to Boston, Sesttle to Orlando).

OAM&P costs: Operations, Adminigtration, Maintenance and Provisoning
(OAM&P) is a broad term used to categorize the day-to-day functions involved in
operating a network [103]. Through our talks with industry [76], we have alocated on
average the number of man-hours per week dedicated to a type of equipment (Table 4.9).
And we have assumed an hourly-rate of $25/hour for a network-operator [104].

Total

Router/Sw OAMP WDM_OAMP  Transponder_ OAMP

P over WDM $1,497,600.00  $305,500.00 $4,546,750.00 $6,349,850.00
S| $1,372,800.00  $283,400.00 $4,312,750.00 $5,968,950.00
IP and DCS $686,400.00  $239,200.00 $3,358,550.00 $4,284,150.00

Table 4.11: Annual Labor Costs for OAMP

Table 4.11 shows the annual-labor-costs for OAMP functions performed on the
equipment in Table 4.8. But it is worth noting that the costs are more reflective of the
work required for maintenance of the equipment, and not all OAMP functions (especially
provisioning). As we mentioned at the start of this section, we cannot access proprietary
labor-costs for all OAMP functions,; especialy the hidden-costs of manual coordination
between IP and transport teams, where we beieve our unified-control architecture
providesthe greatest benefits.

Rack Rentals: Rental spacerequired for racks(in PoPs) is calculated on the basis
of the sze of the equipment (Table 4.9). As discussed earlier, the 1.28Tbps Backbone
Router solution requires 2 racks, one each for the single-shelf-systems, and a third rack
for the fabric-card-chassis. The Packet-Optical switch needs a sngle 19” or 23" rack.
WDM equipment is much smaller and multiple such boxes can fit in rack. The difference
between different rack sizes has been ignored. We were unable to obtain rack-rental rates
for networking-equipment. So we emulate such rates with rental-rates for server-racks.
We have assumed a monthly rental rate of $1500 [105]. Table 4.12 shows annual rental

costs for the 3 designs.
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Router/Switch WDM System Transponder

IP over WDM $2,592,000.00 $705,000.00 $6,995,000.00 $10,292,000.00

Optical Bypass $2,376,000.00 $654,000.00 $6,635,000.00 $9,665,000.00

IP and DCS $792,000.00 $552,000.00 $5,167,000.00 $6,511,000.00
Table 4.12: Annual Rack-Rental Costs

Overal the limited-Opex analyss shows 37% cost savingsin our IP-and-DCS design
compared to the IP-over-WDM reference design for the original traffic matrix. When we
scalethetraffic to 10Tbps, the savingsincrease to nearly 45% (Fig. 4.29).
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Figure 4.29: Opex Analysis for original (1X) & scaled (5X)Traffic Matrix

4.3 Summary

In this chapter, we explored the impact of our unified control architecture on IP core
network design. Our objective was to determine ballpark numbers for the savings
afforded by our architecture on the Total Cost of Operations (TCO — i.e. Capex and
Opex) incurred by a carrier, for a large US continental IP network. We first considered
industry standard practices for 1P network design. These include IP-over-WDM and as a
small-variation, |P-over-WDM with Optical Bypass. Then we proposed our converged
packet-circuit network design and compared it to the other designs. While we mode the

trangport network for each design case, we do so only in support of the I P network.
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We defined a design methodology for IP-over-WDM networks, which includes
dimensioning the IP network for demand, recovery, and traffic-uncertainties; and
performed a Capex analysis for costs associated with all components of such design
(ARs, BRs, WDM systemg/transponders). As prior works of others have shown, the
largest chunk of Capex comes from core-facing BR ports, due in large part to the high
volume of transit traffic handled by BRs. Next we modeed the use of satic-optical-
bypass, as a solution for reducing transt-traffic in BRs. We showed that such methods
reduce Capex by 10-15%, but ultimately run into diminishing returns as more bypass is
introduced. The gatic nature of the bypass does not allow the solution to deal effectively
with failures and varying traffic-matrices.

And so we proposed an | P core network that is as much dynamic-circuit-switched as
it is packet-switched. The main characteristics of our IP-and-DCS network include: @)
replacement of BRs in PoPs with Backbone Packet-Optical Switches (BPOS); b) the use
of a full-mesh of variable-bandwidth circuits between core-PoPs; and c) the adoption of
our unified control architecture for common control of packet and circuit switching.

We showed that such desgn choices help smplify the data plane; ease routing
burden on the control-plane; and eliminate all transit-traffic in normal and recovery
conditions, while maintaining the same level of over-provisoning in the network. We
showed that we can save nearly 60% on Capex costs, such savings are insensitive to
varying traffic-matrices;, and scale better as the overall traffic grows to five times the
original aggregate. Additionally, in a limited Opex analysis that considers power-
consumption, rack-rental costs, and network-technician man-hours for maintenance, we
showed nearly 40% in cost-savings. Additional Opex benefits come from the use of our
unified control plane, which removes the need for manual-coordination between 1P and
transport teams for service provisoning.

In conclusion, we validated our claim that circuit-switching can make the Internet
core more efficient if the two networks work together under common control, as the

former helps the latter scale better to meet growing traffic demands.



Chapter 5

Introducing SDN Control in
MPLS Networks

MPLS networks have evolved over the last 10-15 years and have become critically
important for ISPs. MPLS is primarily used in two ways. to perform traffic engineering
in IP networks, providing greater determinism and more efficient usage of network
resources, and for enabling MPLS based L2 or L3 enterprise Virtual Private Network
(VPN) services, which continues to be one of more profitable services offered by 1SPs.
MPLS is the preferred solution for such services, mainly because plain-vanilla IP
networks are incapabl e of providing the same services; and older ways of providing these
servicesusing ATM or Frame-Relay networks are no longer used.

As carriers deploy MPLS they find that (a) even though the MPLS data plane was
meant to be simple, vendors support MPLS as an additional feature on complex, energy
hogging, expensive core routers; T and (b) the IPPIMPLS control plane has become
exceedingly complex with a wide variety of protocols tightly intertwined with the
associated data-plane mechanisms.

We make the observation that in any MPLS network, there are Smple data-plane
mechani sms of pushing-on, swapping, and popping-off MPLS labelsin a label -switched-

path. These mechanisms are controlled by a number of control-plane protocols that help

T eg. Cisco's CRS-1 and Junipet's T-640
172
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provide the features and services (Fig, 5.1a). However, as we have shown in Chapter 3,
any change to these services or the creation of a new service, in-most-cases, involves
changes to these protocols or the creation of an entirely new protocol, which are lengthy,
time-consuming processes. Y e, the data plane mechani sms remain the same smple push,
swap, and pop operations.

And so in this work, we take a different approach to MPL S networks (Fig. 5.1b). We
use the standard MPLS data-plane together with a smple and extensble control-plane
based on OpenFlow and SDN. We find that the MPL S data-plane has similarities to the
flow-abstraction. But the MPLS control-plane does not make use of the map-abstraction.
Thus we retain the ssandard MPL S data-plane, and introduce the map-abstraction for the
control plane.

There are sgnificant advantages to doing so. The control-plane is greatly smplified
and is de-coupled from a smple data-plane. We can ill provide all the services that
MPLS networks provide today; but more importantly, we can go beyond what MPLS
provides today. We can globally optimize the services, make them more dynamic; or
create new services by simply programming networking applications on top of the map
abstraction. New capabilities are no longer tied to layers of protocols (which are
eliminated). And the switch-API (OpenFlow) doesn’t need to change either for all it gives

iscontrol over the smple push/swap/pop data-plane operations, which remain the same.

Many layers of protocols complexity tightly linked
to a variety of data-plane mechanisms, replicated
in each and every switch in the network
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In this chapter, we first discuss MPLS in relation to the flow and map abstractions.
We show how flowsin MPLS are close to the description of the flow-abstraction in the
SDN context. And we also show how mapsin MPLS networks are not quite the same as
maps in SDN. But more importantly, we discuss how the map-abstraction is missng in
MPLS. Accordingly all the benefits of the map-abstraction in terms of simplicity,
extengbility and global-optimization are also mising in MPLS networks. We give
examples of the benefits of introducing the map abstraction in MPL S networks.

To demonstrate that our approach can replicate services provided by MPLS today, we
discuss a prototype implementation of MPLS based traffic engineering (MPLS-TE).
There are two goals of this prototype: First, we show the smplicity of our approach
compared to the exising MPLS control plane, by implementing nearly all the features
that are part of MPLS-TE in just 4500 lines of code, compared with an estimated
100,000+ lines of code from a more traditional approach; and second, we show how the
implementation of features can be made different from the traditional implementation in
ways that either, greatly simplifies the feature, or provides a feature that MPLS-TE
cannot provide.

Finally, we discuss how introducing the map-abstraction in MPL S networks fits well
with our unified-control architecture for packet and circuit networks, a fact that makes

our control architectureideal for multi-layer networks.

5.1 MPLS Usage Models

There are two basic usage-modes for MPL'S, which correspond to the two services that
MPLS provides — VPNs and TE. VPNs use what can best be described as a datagram
model, smilar to IP datagram forwarding. On the other hand, TE uses a flow-based
mode. Both models can and do exist smultaneoudy in today’ s networks. In this section,

we briefly discuss these models. Note that the terminology used for naming the modelsis
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not indugtry-standard. In fact the industry does not have terminology for the usage

models. We introduce the terminology to best reflect the mechanismsinvol ved.

5.1.1 MPLS Datagram Model

The datagram-like usage of MPL S isvery similar to plain-vanillalP routing. In this case:

e Labd didribution happensin an unsolicited way [106], where every router sends out
label-bindings for IGP-learned prefixes to each of its neighbors without being asked
for it. For example, in Fig. 5.2, once the IGP (like OSPF or 1S-1S) converges, every
router learns of the router-addresses for all other routers in the IGP s domain. Each
router creates label-bindings for these addresses, and then distributes these bindings
to their neighbors (actually to their LDP neighbors). For example, in the figure, R6
receives label-bindings for R3’s router-address from each of its neighbors R2, R4 and
R5. Each binding implies that if R6 wants to reach R3 via a neighbor, it should use
the associated binding advertized by the neighbor. R6 needs to use labd 67 to go
through R2; label 10024 through R4, and so on.

Fig. 5.2 Unsolicited Label Distribution

e The packets that match an FEC' at a router are then forwarded to the next-hop by
inserting the label advertized by the next-hop. But the selection of the next-hop is still
based on an SPF calculation from I P routing at each router. In other words paths for
LSPs through the network are chosen by IP routing and thus are the same as IP
shortest paths.

T FEC stands for Forwarding Equivalence Class — basically all packets that match an FEC (rule) are forwarded the
same way (equivalently). The most common FEC is the IP-destination address.
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And so, just like I P routing, each router makes an independent decision on what to do
with incoming packets. In Fig. 5.3, R1 chooses to have two different flow definitions or
FECs — one considers both IP src and dst addresses; the other defines the FEC to be all
web traffic (TCP port 80) destined to an IP dst address range. Let’s assume that both
flows need to reach R3 to get forwarded to their ultimate destination. In this type of
MPLS network, R1 cannot define different paths (or LSPs) for the two FECs from R1 to
R3. The path that gets selected for the L SP isthe | P-shortest path (say R1-R5-R4-R2-R3).

IPsrc:167.4.0.0 /16
IPdst:200.10.0.0/16

IPdst: 201.23.0.0/16 ‘
TCPdst: 80

Fig. 5.3 MPLS Datagram Model

Thisis because the FEC definitions are not propagated to every router in the network.
So when packets for the two different flows arrive at R5, the latter is unaware of how R1
defined the FECs. It smply consdersthe only FEC that every router considers for every
packet — IP destination prefixes. R5 findsthat both 200.10.0.0/16 and 201.23.0.0/ 16 need
to go through R3; and that R4 is the next-hop (instead of R6) on the shortest IGP path to
R3; finds the label-binding that R4 advertized for R3, swaps it on to the packet and sends
it to R4. This procedure is repeated at R4 and R2. In other words it makes no sense to
have different flow definitionsin R1", because the flows differentiation is lost to the rest
of the network, which treats them as the same. In other words, in this usage-modd, an
LSP is not actually set-up. The label-switched path develops ‘ on-its-own’, and no router
in the network has any control over the path the L SP takes through the network.

T Unless it is used for access-control into the network (accept, deny, rate-control ). Again this is only at the
edge of the network.
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In essence, this usage mode is smply IP-routing-with-labels, and is a holdover from
the days when it was faster to do alookup on a fixed 20-bit label than a variablelength IP
addresses. Today, it has found use in MPLS-VPNs, where the MPLS labd-stack is used
to deliver full mesh connectivity with address-space isolation. The outer label identifies
the destination-router (PE) and the inner labd identifies the VPN VRF instance. The path
to the PE router is determined via IP routing, and forwarding is performed usng the
outer-labdl. We will discuss this MPL S use-case in the SDN context in Sec. 5.4.

5.1.2 MPLS Flow Model

In the flow-based usage-model, LSPs are actually set-up in the network by head-end
routers (also called Label Edge Routers). Packets are classfied into FECs. All packetsin
the same FEC are forwarded equivalently via an LSP whose path can be determined
independent from regular 1P routing (Fig. 5.4). Path calculation is done dynamically by
the head-end router or offline by a management system. And it is typically sgnaled
explicitly from the head-end to all other routers (L SRs) along the path usng a signaling
protocol like RSVP. Labe digribution istherefore typically downstream-on-demand and
ordered [106]. Importantly in this usage model LSRs do not make independent routing/
forwarding decisions on packets. Once an LSP is set-up and the LER has mapped an FEC
to an L SP, packets are forwarded as part of flows (FEC+L SP).

Flow state in Label Switched Path (LSP)
Head-end LER Label Switch Router (LSR)

4 :.- | I—— Label Edge Router Q W/W‘%
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IP network
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The MPLS flow-modé is used to provide MLPS based Traffic Engineering. Carriers
widdy use MPLS-TE today to achieve a) more deterministic behavior in IP networks,
and b) greater efficiency in the utilization of network resources. In MPLS-TE the LSPs
are more commonly known as TE-LSPs or tunnels. Traffic engineering is accomplished
by routing the tunnels over under-utilized linksin the network, and then routing IP traffic
through those tunnels. MPLS-TE provides admission-control for TE-LSPs (tunndls) via
bandwidth-reservation and constrained SPF routing. Additionally, there are a number of
‘features that MPLS-TE provides to ease the management, operation, and utility of
tunnels. Such features include: Auto-Route, Auto-Bandwidth, tunne-priorities, DS-TE,
load-balancing, explicit-routes, re-optimization timers and so on. We will discuss this

use-casein the SDN context in more detail in this chapter.

5.2 MPLS and Abstractions

The primary objective of this section is to show how MPLS compares to our control
architecture. We show that while the MPL S definition of flowsisnot exactly the same as
our definition, it is close enough to be applicable. But while MPLS retains and makes use
of a map, it completely misses out on the map-abstraction. We discuss a few examples of
what the map-abstraction bringsto MPL S networks.

5.2.1 MPLS and the Flow-Abstraction

We mentioned before that MPLS has the concept of flows. In the following discussion
we compare MPLS based-flows to the SDN based flow-abstraction from Sec 2.1.1. We
conclude that MPLS based flows (FEC+L SP) are not as generic and flexible as the SDN
flow-abgtraction in terms of the ‘match’-definitions and forwarding-actions. Neither do
they support vendor-neutral switch-APIs." But nonetheless, flows exist in MPLS based
WANSs.

T For example, the API into the FEC table is called Policy Based Routing (PBR) in Cisco routers, and Filter
Based Forwarding in Juniper routers. Naturally the CLI commands are different.
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e Logical Association:

0 SDN: A packet-flow is alogical association between packets that are part of the
same communication and are given the same treatment in the network (within a
switch and from switch-to-switch)

o MPLS. MPLS has the concept of FECs (Forwarding Equivalence Classes)
whereby packets are classfied into FECs and forwarded equivalently in the
switch and in the network via Labe Switched Paths (LSPs). FECs therefore
embody the logical association between packetsin the same flow.

e Data Abdgraction:

0 SDN: The data-abstraction isthe representation of packet-switches as flow-tables,
ports and queues. The flow is defined in tables which have the ability to identify
the flow generically from multiple parts of the packet header in each switch.

0 MPLS: The data-abstraction differs from switch to switch in MPLS. In a Labdl
Edge Router (LER) where the FEC is established, packets can be generically
classfied from multiple parts of the packet header. Such classfication can be
performed by techniques such as Policy Based Routing (PBR) working on a data-
abstraction of a routing/forwarding table (RIB/FIB)." Once packets have been
classfied, alabel is pushed on to the packet. Thereafter in all other switches along
the flow’s path, the Label Switch Routers (LSRs) have a data-abstraction of a
label-table (LIB/LFIB) i.e. they only match on the MPLS label to identify the
flow.

This distinction between the data-abstractionsin LERs and L SRs can be useful; Using

sampler exact-match forwarding on a label takes less space in forwarding tables than

matching on packets generically. But it is also more regtrictive — only MPLS labels
can be matched with this data-abstraction. If however, a generic table abstraction is
used in every switch along the flow's path, @) nothing prevents us from dividing
things up like MPLS does by inserting an MPL S label; but b) if we wish we could do
the same with other labds like VLAN tags, or ¢) in other cases, continue identifying

T Actually, PBR does not alter the routing tables. ASICs ate implemented such that PBR policies supersede the
forwarding decision in the routing table. Nevertheless, for the sake of comparison, we assume that the data-
abstraction of the routing table in LERs is altered by an API such as PBR.
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flows generically from multiple parts of the packet header, while changing the
definition of the flow as we go along a path [54]. Thus our definition of the switch’'s
data-abstraction is more flexible, which when coupled with the map-abstraction,
makes networks more programmabl e.

e Treatment within a switch:

0 SDN: Packets that match a flow are treated the same way within a switch, where
the flow-tabl e appliesthe same set of actions on the packets.

0 MPLS: All packets that are part of the same FEC are certainly treated the same
way within a switch. But again the set of actions that can be applied are more
restrictive — pushing, swapping and popping off an MPL S label.

e Treatment from switch to switch:

0 SDN: Each switch through which the flow traverses does not make an
independent isolated decision on the treatment to the same flow.
0 MPLS: Thisholdstrue when L SPs are established by head-end LERSs.

Accounting & Resource Management:

0 SDN: The flow-definition serves as a common-handle with which accounting and
resource management can be performed at the flow-level in the network.

0 MPLS: Thisholdstrue for MPLS when using LSPs for traffic engineering.

Layer-independent Switch-API:

0 SDN: The data-abstractions in al switches are manipulated by a layer-
independent switch-API (like OpenFlow).

o MPLS: Manipulation of the FEC in LERs may be exposed through the CLI by
features like Policy Based Routing (PBR). Or it may be restrictive and hidden by
features like MPLS AutoRoute [92]. In LSRs, the API is completely hidden and
only operated on by label-distribution protocolslike LDP and RSVP.

It isalso worth pointing out that we compared the SDN flow-abstraction to the flow-

based usage of MPL S (Sec. 5.1.2) where: multiple FEC definitions are poss ble; head-end
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routers make decisons on LSP paths; label-digribution is downstream on-demand and
ordered; and resource management can be performed on the bass of LSPs [92]. MPLS
based flows are more redrictive than the SDN flow-abstraction; but it is fair to say that
flow-abstraction existsin some formin MPLS networks.

We do not compare the SDN flow-abstraction to the MPL S datagram-based usage-
moded (Sec. 5.1.1) for the following reasons. In the datagram-modd, the only logical
association (or FEC or flow-definition) that matters network-wide is the IP-destination
address;, forwarding decisions are sill made independently router to router; and one
cannot perform resource management at the flow level. However, even though the SDN
flow-abgtraction cannot (and should not) be compared to the MPLS datagram usage-
model; the former can ill provide the service the latter enables — VPNs. We discuss this

point in more detail in Sec. 5.4.

5.2.2 MPLS and the Map-Abstraction

When comparing MPLS network control with our control-architecture, it is important to

distingui sh between the map and the map-abstraction. We discuss them individually.

IP routing TE-LSP Routing || TE VPN || QoS || Acl
(SPF) routing /
(CSPF) =
/ Link-state: cost, up/down
) TE-Link-state: weight,
Link-state: cost, up/down Link-state: cost, up/down attributes, reservations
TE-Link-state: weight, Node — ports, tables, queues
attributes, reservations Flow and Tunnel state

Fig. 5.5 Network Maps in a) IP networks b) MPLS-TE networks c) SDN

Maps: A map by our definition is an annotated graph of the network topology. First
let's see how the maps themselves differ in different networks. In plain-vanilla 1P
networks, distributed routing protocols like OSPF and 1SS digtribute link state to each
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router in the network. This allows each router in the network to build a map (Fig. 5.54) of
thelr own that is consstent with maps built by other routers. The map includes topol ogy
information like nodes and links, as well as the ‘cost’ of each link for use in an SPF
calculation. The only other link-‘state’ that is distributed by the routing protocol is
whether the link is up-or-down. This is a very limited map, which alows the basic
network-functions of SPF routing and re-routing around failures, and not much more.

In MPLS-TE networks, the same distributed routing protocols are used, but this time
with TE extensons that enable it to carry more link-state. Such state includes maximum
reservable bandwidth on a link, un-reserved bandwidth per priority level, link attributes
and adminigtrative weights [92]. And so, the map that gets constructed in each router
(Fig. 5.5b) has node and link information as before, but now with additional link-state.
This allows a router to perform more sophisticated path calculations that take into
account bandwidth and other constraints on links when cal culating TE-L SP paths.

An SDN map has all the information about the topology and link-state discussed so
far. But in addition, it has a lot more information about the network-node internals like
switch flow-tables, queues, ports and their dstate and datistics. It also has global
information on not just link-state but also switch-state, and if needed TE-tunnel and
packet-flow state (Fig. 5.5¢, Fig. 1.10 & Sec. 2.2.1). The net result isthat the map can be
used to support not just traffic-engineering based features, but a host of other network-
applications. Such applications may include access-control, mobility management, VPN,
bandwi dth-on-demand, QoS, datacenter backup/migration, and more. In short, the map in
SDNs, together with the flexible flow abstraction, makes networks more programmabl e.

Map-Abstraction: So far we have compared and discussed the differencesin the
maps themselves. Now let's consder the map abstraction. The map-abstraction helps
centralize decis on-making. It allows control-programs to be written in a centralized way
with full, global visibility into the network, without worrying about how that global
vighility (the map) is created, supported (perhaps with multiple physical controllers) and
kept up to date. MPLS networks lack such a map-abstraction. We have discussed the
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benefits of the map-abstraction before (Sec. 1.4.2). Here we focus on the benefits in the
context of MPL S networks.

Simplicity: The map abdraction helps simplify the implementation of control
programs for the simple reason that they are no longer implemented as distributed
applications. When control programs are centralized and decoupled from the process of
gate collection and dissemination, they do not have to contend with subtle interactions
with the state distribution mechanisms; which can be complex and is often the source of
many errors.

Take the smple case of a network-function like I P based traffic-engineering on top of
plain-vanilla IP routing. Each router is a decison-maker and shortest-path decisons are
made on the bass of costs assigned to links. In most cases routing-protocols assign link
costs taking the bandwidth of a link into account. But network operators have the ability
to configure and change the cost of any link, and often do so, to avail of some
rudimentary |P traffic-engineering benefits (without invoking MPLS-TE and its complex
control plane).

While changing link costs is simple, the effect it can have is far from trivial.
Changing the cost of a link in one part of the network, potentially changes a lot of
shortest-paths that can in-turn affect traffic in a completdy different part of the network.
In principle it can be disruptive to many (or all) traffic flows. Worse, while the routing-
protocol converges, loops may get formed and packets may be logt. Thus changing link-
costs is consdered just as disruptive as link-failures. But when decison making is
centralized and decoupled from the sate-distribution mechanism, such a network-
function can be a lot simpler. When link-costs change, the controller can smply be
programmed to not re-route existing flows in the network, and use new shortest-paths
only for new flows. Or it could selectively re-route existing flows. The choice lies with
the application-programmer (network-operator).

As a more concrete example, in Sec. 5.3, we will show that centralization of control-

functions resultsin smpler code. We have implemented nearly all the features of MPLS



184 CHAPTERS. INTRODUCING SDN CONTROL IN MPLSNETWORKS

traffic engineering in fewer than 5000 lines of code [107], which is at least a couple of
orders of magnitude smaller than distributed implementations of the same.

Reducing Protocol Load: The current IPPIMPLS control plane uses a number of

digtributed-protocols that result in consderable computational load in router CPUs.
Routers need to have all the intelligence necessary for aggregating and disseminating
routing information, using distributed IP routing protocols like OSPF or IS-1S. In MPLS-
TE networks, these routing protocols are extended to advertize extra information about
links, and TE gives more reasons to generate control traffic as link-state changes more
often’. Furthermore, another layer of complexity is added with the need for distributed
sgnaling /label distribution mechanismslike RSVP-TE and LDP. And within a domain,
an IPPMPLS network may additionally support a host of other protocols such as I-BGP,
RIP, SNMP and MP-BGP, together with many more protocols for multicast and 1Pv6. All
of these protocol s contribute to control planeload, increased fragility and increased cost.
Some of these protocols are exceedingly complex due to multiple rounds of
extensgons over the years. RSVP is a good example. It was originally intended as an
IntServ mechanism for hosts to request QoS from the network [112]. Intserv and RSVP
were never used. But RSVP got extended to RSVP-TE to serve as a LSP signaling
protocal. It isa poor choice for TE signaling; classc RSVP has many features (baggage)
not intended for TE. For example, soft-state and frequent state-refresh messages were
mechanisms for multicast-group support in classc-RSVP. But TE-LSPs don’'t involve
hosts and are not one-to-many in practice. Further, RSVP runs directly over IP (instead of
TCP); and so it needs its own reliable delivery mechanism. And it maintains multiple
sessons per LSP. All of these ‘features result in lots of control plane messages and
corresponding CPU load. Additionally, RSVP has been overburdened with many more
features such as hierarchical LSP setup, point-to-multipoint L SP setup, LSP itching,
FRR setup, and GMPL S extensions, making an already complex protocol more bloated.
State-of-the-art routers come equipped with high-performance CPUs that can handle
the computational load created by all these protocols. However carrier networks are not

T In our talks with Orange Telecom, we found that concem for “too many control messages” led them to turn
off TE extensions on protocols like OSPF and IS-IS. They still use MPLS-TE but in a very static way.
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all upgraded at the same time. Most often thereis a mix of older and newer equipment.
And from our talks with carriers', it is a real concern that the older ones cannot keep up.
Consgder this cycle —the carrier would have a need for new network functionality; they
would approach router vendors to come-up with a solution; router-vendors would
upgrade router-software (and sometimes change the protocols); upgraded software would
in-turn increase CPU load; older routers/CPU cards would find it difficult to keep up;
ultimately requiring an upgrade in router hardware.

SDN reduces switch CPU load by eliminating the need for many of these protocols.
All current-distributed-protocol functionally can be replaced by a combination of
network-applications, global-view and switch-APlI (OpenFlow). Furthermore, a
Controller built on multiple-commodity servers can have much more CPU computational
power that any one router. And in an SDN based network, when a carrier has a need for
new network functionality, it need not result in upgrading switch-software or changing
the switch-API. Our implementation of traffic-engineering functionality (in Sec. 5.3) is
the perfect example of introducing new network functionality, smply by changing/
creating network-applications on top of the map-abstraction.

Extensbility: The map-abstraction not only makes writing control-applications
sampler, it also makesit easier to introduce new functionality into the network. Such new
functionality could mean new applications or changes to exising applications.
Importantly, it does not involve changes to the state-distribution mechanisms. The latter
is solved once, and abstracted away from the control programs.

Thisisobvioudy not the casein today’ sIPPMPL S networks, where network functions
are implemented as distributed applications, and each-function ends up using its own
date-digtribution mechanism (Fig. 5.6). Consder the path for introducing new
functionality in the network today: First the carrier would have a need; then it would have
to ask vendors to implement a solution; vendors would take considerabl e time to come up
with pre-standard solutions that don’'t interoperate; then they would debate in the
standards bodies to come up with an interoperabl e solution; the vendors then may or may

T Google and Global-Crossing.
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not implement the entire standard; then there are carrier lab trials, limited field trials and
finally, if all goes well, deployment. Thisis a 5-10 year process. At any time during this
innovation cycle, the original needs of the carrier may change, and thus extensions are

born and outdated baggage is carried cycle after cycle.

’ Y o Y v v
Distributed PE/P Label learned V:No::‘l TE Label 'G:t',:::;m
Network Functions Distribution ::“‘et Advert Distribution | .\ State
\ A"Vt A O O
{ N
State
Distribution Mechanisms|  OF I-BGP+RR | MP-BGP RSVP-TE OSPFv2

Fig. 5.6 Network Functions in Today’s IP/MPLS Networks

SDN helps shorten the innovation cycle by making the network more extensible. It
does s0 by un-chaining network functions/features/services from a) the creation of a new
protocoal; or b) the extension of an existing one; and c) requiring its implementation and
deployment in each switch in the network

Global-View: One of the greatest benefits of the map-abstraction isthe global-view it
affords of all network-state. Such views allow the implementation of network-functions
that globally-optimize network performance according to design or service needs.
Without global-view, MPL S routers today can at best perform local-optimizations, which
when coupled with the distribution-mechanisms, can lead to undesirable churn in the
network. Consider an example from MPLS-TE.

Better utilization of network resources is one of the primary goals of traffic-
engineering. MPLS performs traffic-engineering by forcing traffic through tunnes which
are themselves routed over under-utilized parts of the network. The route that a tunne
takes depends on the bandwidth-reservation of the tunnd and the available un-reserved
bandwidth on network links. As more tunnels get routed over a link (and therefore
reserve bandwidth on it), the un-reserved bandwidth on the link diminishes, forcing

newer tunne s to find routes over other links.
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However the tunnel’ s reserved bandwidth is usually an estimate of the potential usage
of the tunndl, made by the network-operator. The estimate is based on the source and
destination routers and the average traffic between them. But traffic-matrices vary over
time in un-predictable ways. And so a given tunnel’ s reservation could be very different
from its actual usage at a given time, leading to an un-opti mized network. Router vendors
get around this problem by performing alocal-optimization called Auto-Bandwidth.

With Auto-Bandwidth, a router at the head-end of a tunnel periodically checks the
bandwidth usage of the tunnel, and alters that bandwidth-reservation to match the usage.
But changes in reservation result in changes of link-state, as the links over which the
tunnel is routed see a change in un-reserved bandwidth. Naturally such link-state has to
be propagated to all routers in the network (depending on flooding-thresholds). But to
further complicate matters, un-reserved bandwidth can be accounted for at eight priority
levels, and tunnels can be assigned priorities whereby a higher-priority tunne can
preempt a lower-priority one by forcing the latter to re-route over a different path. This
means that, as Auto-Bandwidth changes a tunnd’ s bandwidth reservation, the tunnel may
force lower-priority tunnes to re-route, or the tunnel itself may get re-routed. In turn, re-
routed tunnels further change link-state; causing greater flooding of link-state-update
messages, and possibly even-more preemption of lower-priority tunnels. This cumulative
effect is known as network-churn, as router CPUs have to deal with a lot of change in
network state, especialy in large carrier networks with tens of thousands of LSPs'. It is
easy to seethat churnis disruptive and undesirable from a network operator’ s view-point.

But churn is a direct result of local optimizations (like Auto-Bandwidth) performed
by multiple decision makers (tunnel head-ends). Each router is only aware of the tunnds
that it originates, and to some extent, the tunnels that pass-through it. For all other tunnels
the router is only aware of the aggregate bandwidth reserved by these tunnels on links. In
other words, even thought the router builds a map giving global TE-link state, it only has
alocal-view of tunnel-gate (or TE-LSP gate). In SDN, the map-abstraction gives global -
view of network-state, including all tunnel-routes and their current-reservations and

T Talks with Tier-1 ISPs suggest the use of 50k to 100k LSPs .
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usages. And so an application can perform global-optimization of the tunnels while
minimizing (even diminating) network-churn.

Thus we find that IPIMPLS networks can benefit from the introduction of the map-
abstraction in its control-plane. Existing control-functions and services can be simpler to
implement and global ly-optimize, while new functionality can be added more easily to
the network. In the next section we show how traffic-engineering functionality can be
added to a network supporting the standard MPL S data-plane and an SDN based control
plane, without using any of the existing IPPMPLS control plane protocols.

5.3 MPLS-TE Features & Prototype

In this section we show how we can reproduce services existing in IPPIMPLS networks
today, and improve upon them in meaningful ways. We use the example of MPLS Traffic
Engineering (MPLS-TE) and the wide-variety of TE ‘features that come with it.

For each feature that we have implemented in our prototype, we describe the way it is
implemented in today’ s networks,; how that differs from the way we have implemented it
our SDN-based network; and finally how our approach enables some capabilities (within
TE) that are not possible with the traditional approach. Importantly, our prototype serves
asavalidation of our architectural claims of smplicity and extensbility.

It also exemplifies the benefits of implementing networking-applications in a
centralized way with a global-view, which comes from the introduction of the map-
abstraction in MPLS networks.

5.3.1 MPLS-TE Features

We describe the following features LSP Admisson-Control; Auto-Route; Load-
Balancing; DiffServ-Aware-TE; Auto-Bandwidth and LSP Priorities,
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Admission-Control: The MPLS control-plane performs traffic-engineering

primarily via an admission-control mechanism for LSPs. It isin principle similar to call-

admission-control in telephony networks. The basic processis as follows:

In the control plane, al IP links are assigned a maximum reservable bandwidth. TE-
L SPs (tunnels) reserve part of the bandwidth on the links over which they are routed.
Theroute (or path) that an L SP takes can be determined dynamically by the head-end
router by running a Congrained-SPF algorithm. For example, given the source and
destination routers for a tunnel (TE-LSP), together with its bandwidth-reservation
(and priority, affinity etc.), CSPF can determine a path through the network that
satisfies all the congtraints — for example, a path over links that can meet the desired
bandwidth reservation. If multiple such paths exist, the shortest oneis selected.

If a path that meets all the constraints cannot be found, the tunne is reected
(admission-control). More importantly, tunnels tend to get routed (engineered) over
links that are less used. If few pre-existing tunnels are routed over a link; the greater
the chance that the link can satisfy bandwidth congtraints for a new tunnel. And so
network-resources are better utilized, and traffic in the tunnels may encounter less
congested links (both TE goals).

Once a path has been determined by a head-end router, it issignaled to all LSRs along
the chosen route. Because there are multiple decison-makers (multiple head-ends)
contention for resources may happen. For example, a head-end could setup a tunnd,
but information on the resources used up by that tunnel may not propagate in-time to
al other head-ends in the network (due to flooding-thresholds). In the mean time,
another head-end tries to reserve a tunnel that contends for the same resources along
links that overlap with the first tunnd. Because the path-decison for the second
tunnel may have been made with stale information, every router along the way checks
to seeif the bandwidth-reservation is possible on the adjacent downstream link. If it is

not, then the second L SP isrg ected (agai n admiss on-control), and the (second) head-
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end router is forced to re-route the tunnel, hopefully by this time with updated link-
date (disseminated by the routing protocol). Ultimately it is a tradeoff — contention
for resources can be reduced, if TE link information is always rapidly disseminated
and head-ends calculate paths with up-to-date state; but it also ends up causing a lot
more control-plane messages and CPU |oad.

e It is important to note that bandwidth reservations and LSP admission-control are
purdly control plane concepts. MPLS-TE does not require enforcement of tunnel
bandwidths in the data plane [92], because the primary objective isto steer traffic, not
to police or shape it in the data-plane. The latter techniques can be used in addition to
MPLS-TE if desired.

SDN based Admission Control: Our SDN based implementation takes advantage of
the fact that admission-control of LSPs are handled purely in the control plane. The TE

application written above the map-abstraction: allocates reservable-bandwidth to each IP
link; performs CSPF routing of tunnels, sets-up the tunnels in the data-plane by using
OpenFlow to digribute labels to switches along the LSP path; and updates the map with
L SP-path information and un-reserved bandwidth information for each link along the
path. Importantly, since the Controller (more correctly the TE application) is the only
decision-maker, contention for resources does not happen in this scenario. The Controller
mai ntai ns the network-map and keeps it up-to-date with all tunnels and link reservations.
So when a new tunnél isrequested by the network-operator or by another application, the
Controller is completely aware of all network-state, and can perform admisson-control
and L SP-setup without any contention. The data-plane switches are blissfully unaware of
any bandwidth reservations for the LSPs. As a result, the data-plane switches themsel ves
do not perform any admission-checks.

Auto-Route: Once tunnels are up in the data-plane, traffic needs to be redirected
from IP links into the tunnels by LERs. Auto-Route is an effective way to do this without

incurring the scaling problems of exposing tunnelsto distributed-routing-protocols.
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Thislatter point can best be explained with Fig. 5.7. Assume packet-flows from R1 to
R3 are routed via R5->R6>R2. When the TE tunnd is created between R5 and R2, the
flows need to be re-directed through the tunnel, as the tunnd is now a single-hop path
between R5 and R2 (as opposed to a minimum of 2 hops for every other path). Note that
Fig. 5.7a shows the tunnd ‘conceptually’ as a single-hop between R5 and R2. But
physically the tunnd is routed over the IP links in the network. For example, Fig. 5.9b
shows one poss ble path the L SP takes in the IP network. Despite the number of hopsin
the physical tunnd path, from the perspective of routing packets in the IP network, the

tunnel is il a sngle hop.

(b)

Fig. 5.7 Auto-Route: re-routing packets into a TE-LSP (tunnel). Tunnel is shown:
(a) conceptually (b) physically routed over the IP links.

However this perspective does not materialize directly in the map over which packets
are routed. The tunnels are not exposed to the distributed routing protocol i.e. routing
adjacencies are not created across the tunnels. And so the map that the routing protocol
creates in each router does not include the tunnels. The primary reason for not exposing
tunnels to OSPF or 1S-1S is the same O(N?) scaling issue discussed in the |P-over-ATM
context in the previous chapter”. If the routing-protocol were exposed to the tunnels, then
they would have to treat them as links and carry sate for them, which is a scaling
problem — as the number of links increases, more state needs to be disseminated; and
when failures happen lots of control messages are generated, which in-turn increases

router-CPU process ng loads and could cause routing protocol instability.

T Assuming all links have the same IGP cost and the tunnel cost is that of a single-hop.
* See Sec. 4.2.1 under SDN based Unified Control Plane
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But if tunnels are not allowed to show up in the IP-routing map, then how can packets
be routed into them? This is where mechanisms like static-routes, PBR/FBF and Auto-
Route play a role. Consder Fig. 5.8(a). MPLS-TE networks maintain two maps, one is
used for regular SPF routing of 1P packets; the other for CSPF routing of TE tunnels. All

the mechani sms mentioned above can change the routing-decis on made by SPF.

| Next-Hop | Total-Cost |
TR - - { -~ — |
Static-routes, R4, Outintf 12 10
PBR/FBF,
. Autoroute | TE-LSP RG RE, Outintf9 10
IProuting | ~——r——- routing R4, Outintf 12 20
ISPF] 1 {CSPF] RB, Outintf9 20
) b Destination Router m Total-Cost
! i R4, Outintf 12 10
Link-state: cost, up/down Link-state: cost, up/down (e G e
TE-Link-state: weight, R2 Tunnel-T1 20
(a) attributes, reservations (b)

Fig. 5.8 (a) Need for Auto-Route (b) Effect of Auto-Route on Routing tables

Auto-Route, as the name suggests, re-routes packets into tunnels automatically [92].
It works by replacing routing decisons during SPF calculations. Consider the partial
routing table shown in Fig. 5.10b calculated by R5 for the network shown in the upper
part of Fig. 5.8b. It shows two equal-cost routes to R2 that have different next hops, R4
and R6; which R5 reaches via out-going interfaces 12 and 9 respectively. But invisble to
SPF, R5 also has a tunnel to R2. Here is where Auto-Route kicks in (shown in the lower
table in Fig. 5.8b) to reflect the effect of the tunnel. Both entries in the upper table are
replaced with an entry where the next hop to R2 isthe tunnel T1. Thetunnd-interfaceisa
logical (virtual) interface which is manifested behind-the-scenes by the physical interface
(and label) on which the tunnel sarts.

While Auto-Route is automated, it is also inflexible. It works very well for SPF
routing based just on the destination-IP prefix. But it makes it hard to take a different

(automated) approach to routing. For example, routing different types of traffic or
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different customer’s traffic differently is not possble with Auto-Route. If a different
approach isrequired, then the network-operator hasto fall back on satic-routes and PBR,
to supersede the decisons taken by SPF and Auto-Route. But while such mechanisms are
flexible, they are not automated. They require human-intervention typically through the
CLI in multiple routers along a path for each packet-flow that the operator may wish to
route differently.

SDN approach to Auto-Route: SDN allows both flexibility and automation in its

approach to routing. Together these attributes present a programmatic solution.

In contragt to Fig. 5.8a, with SDN we take the approach shown in Fig. 5.9. The
network-map allows full vighility to node and link state. To this state (which comes from
the switches), we add the link-gstate attributes we need for traffic engineering such as
max-reservable-bandwidth, unreserved-bandwidth, priorities and other operator-defined
attributes. TE routing of LSPs (tunnels) can be performed by an application on this map,

and the resulting tunnelsare introduced as unidirectional links in another map.

SPF traffic traffic
Routing Routing Routing

" % IP network
i N with TE
tunnels

TE-LSP Routing
(CSPF)

Default VolP Customer
(Y

IP network

Fig. 5.9 Auto-Route in SDN

This latter map is used for routing packet-flows. We can smultaneoudy route
different kinds of packet-flows differently — for example, traffic can be routed on the
basis of the type of end-user application it supports (voip, web, video etc.); or it can be

routed differently for different customers or services; all other traffic can use default IP
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SPF routing. And the usage for each routing mechanism is programmeatic, automated and
dynamic.

We can take this approach because SDN does not use distributed link-state routing
protocols to disseminate state; and so it is not limited by scalability issues of the same. In
our implementation of Auto-Route (presented in the next section) the maps are updated
by the Network-OS and switch-API (OpenFlow) which replace all the functionality of
digtributed routing protocols.

Load-Sharing: One of the direct consequences of Auto-Route is that it becomes
harder to perform load-balancing in IPPMPLS networks. Especially for flows destined to
the tail-end of a tunnd. Consider Fig. 5.7a. There are essentially three equal-cost routes
from R5 to R2 - two that go via IP links and transt through R4 and R6, and the third is
the tunnd from R5 to R2. Even assuming that the tunnel is routed on one of those paths
(say R5>R6>R2), it «ill leaves us with two paths for load-balancing — the tunnd and
the other path (R5->R4->R2). But due to Auto-Route (see lower table in 5.8b), only one
of the paths — the tunnel — is used. In fact, due to the nature of Auto-Route, it is smply
not possible to load-share traffic to a TE tunnel-tail between an IGP path (from SPF) and
a TE tunnel-path [92]. The general solution to this problem isto create multiple tunnelsto
the same tunnel-tail and then |oad-share traffic between them. But the obvious drawback
isthat there are more TE-tunnelsto create and manage.

SDN based L oad-Sharing: Since we have more control over routing, and we represent

tunnels as unidirectional links in the topology map, our approach to load-balancing is
sample. In the above example, we simply route (and therefore |oad-share) traffic-flows
over two paths — one that goes over the virtual-link that represents the tunnel, and the
other over the IP links R5—> R4->R2. In our implementation we perform |oad-balancing
on aflow-levd (for example by matching on the TCF/IP 5-tuple) in the control plane. But
this can eadly be performed in the data-plane with the ‘ select’ group-construct, which is
part of version 1.1 of the OpenFlow specification. Here the controller can add the
physical port on R5 that leadsto R4, as well asthe physical port and label that represents
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the gtart of the tunndl, to the same sdl ect-group to ensure load-sharing. | mportantly we do
not need two tunnels for load-sharing, and it does not matter if the two paths have the
same cost or not.

DiffServ-Aware Traffic Engineering (DS-TE): DSTE is a complicated
marriage of two mechanisms: a) QoS based on the Differentiated Services architecture
[115] that controls the per-hop behavior (PHB) of various traffic classes defined by the
DiffServ Code Points (DSCP) bits, and b) MPSL-TE that controls the hop-to-hop (or
path-level) behavior for IP traffic.

It is worth noting that on-their-own neither can guarantee QoS [92] on an end-to-end
basis (within a network domain). For example, while DiffServ mechanisms can prioritize,
shape and police traffic in class-based queues within a switch; it has no control over the
path the traffic takes in the network domain. And so, congestion in a downstream node
can cause traffic in some classes to suffer even with PHB control, as the congestion
information is localized and not propagated back to upstream nodes. In this case, TE can
help by trying to avoid congestion a-priori by steering traffic away via tunnels that
reserve link-bandwidth and are admisson-controlled.

However tunnel admission control is agnostic to the type (or class) of traffic that is
being carried in the tunnd. And so traffic for a certain class of traffic cannot be steered
away with regular TE. Therefore the purpose of DS-TE is to enable tunnel admission-
control on a per-QoSclass basis.

Congder Fig. 5.10a. It shows the queues that feed an outgoing port on which two
(regular) MPLS-TE tunnels are routed. The TE tunnes reserve bandwidth on the link
without taking into consideration the data-rates supported by the queues. Since the
tunnels are unaware of the queues, they carry traffic for all class-types. Note that the
highest-priority traffic in both tunnels comes out of the same queue. During times of
congestion, it is possble that the min-rate guaranteed by the high-priority queue may not
by enough to sustain all the high-priority traffic arriving at the queue.
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(a) 2. Carry traffic for all traffic-classes (b) 2. Carry traffic only for that class

Fig. 5.10 (a) DiffServ with regular MPLS-TE (b) DS-TE

DS-TE tries to solve this problem by trying to steer away traffic for such a traffic-
class (Fig. 5.10b). It does so by allowing tunnels to reserve bandwidth only for a certain
class-of-traffic; out of a sub-pool of link-bandwidth that matches the queue-bandwidth
for that class. For example, if the queue for the highest-priority traffic supports 100
Mbps, then tunnds for that class can only reserve link-bandwidth from the sub-pool of
100 Mbps, even if the max-reservable bandwidth may be 1 Gbps. This way if one tunnel
for this classreserves 100 Mbps from the sub-pool, then other tunnelsare not admitted on
thislink and thus forced to steer away fromit.

SDN-based DS-TE: Diffserv-aware TE uses the same mechanisms as regular MPLS-

TE; the subset of link-bandwidth advertized per-class, as well as per-class tunnel

reservation and admission-control are all till purely control plane concepts. And so with

SDN we can peform al of these tasks in the Controller. But the SDN based

implementation has two distinct advantages.

e The process of forwarding class-specific traffic down a DS-TE tunnel is not trivial
and hard to automate in networks that use DS-TE today. Auto-Route cannot help as
the mechanism does not distinguish between traffic-classes. The only choice is the
use of Policy Based Routing (PBR) [92], which requires configuration via manual-
intervention and is not very programmatic. This is essentialy the same issue as
pointed out in the section on Auto-Route. With SDN and the use of OpenFow,
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forwarding traffic-type (or class) specific packet-flows down a tunnd is flexible,
automated and therefore programmatic.

e DSTE currently allows the advertisement of only one subset (called sub-pool) of
link-bandwidth, and so can be used for only one traffic-class [116]. Herein lies the
power of SDN. If operators tomorrow wanted the ability to create traffic-type specific
tunnels for not one but two or more classes of traffic, it would require a change to the
distributed routing protocol to carry the advertisement of more bandwidth sub-pools
(plus the associated upgrades to router-software). In SDN, no protocols would
change. Only the CSPF and related applicationsin the controller need to be changed.

Auto-Bandwidth: In the previous section we discussed the Auto-Bandwidth
feature and associated problems with local-optimizations and network-churn. Here we
would like to focus on itsimplementation. Auto-Bandwidth isimplemented in the routers
at the head-end of TE tunnels on a per-tunnel bass. Periodically the router collects
information on the actual bandwidth-usage of the tunndl (eg. every 5 mins). At a different
periodicity, it aters the bandwidth-reservation for the tunne based on the observed
usage. The change in the reservation for the tunnel is signaled to all other routersin the
LSP; it aso changes link-state which is then disseminated to all other routers in the
network by the routing-protocol.

SDN-based Auto-Bandwidth: In our implementation, snce all tunnel reservations,

link-state and admission-control is maintained and performed in the Controller; Auto-
Bandwidth is performed as an application in the Controller as well. The only thing we
need from the switches is information on the usage of the tunnd. OpenFlow defines an
LSP smply as another flow (instead of a virtual-port). Thus we can obtain flow-datistics
(like transmitted-bytes) from the switch via OpenFlow, to guage LSP usage. The
application-programmer can set intervals for polling switches and adjusting the
bandwidth-reservation. Changes in bandwidth-reservation are not signaled to the data-

plane as the latter is unaware of any bandwidth reservations for the L SPs. Furthermore,
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changes to link-gtate that come about from the change in the tunnel reservation, requires
only updating the annotated topology-map and not the switches. The only time that Auto-
Bandwidth induced change needs to be propagated down to the data plane is when it
causes one or more tunnelsto re-route. In such cases, the Controller processes the change
by removing flow-gate for the old tunnel route and replacing it with the new tunnel-route
in the affected L SRs. As we have mentioned before, this can cause sgnificant churnin a
large network with many tens-of-thousands of L SPs. But with SDN, the effect-of-churn is
minimized as routers no longer have to deal with RSV P or OSPF state-update messages.
They only need to process/generate OpenFlow messages that change flow (LSP) routes.
In Sec. 5.4, we'll discuss a way in which Auto-Bandwidth can be eliminated altogether
with SDN.

LSP-Priorities: One final MPLS-TE feature we cover is LSP priorities. TE-LSPs
can reserve bandwidth at eight different priority levels (with O being the highest priority
and 7 the lowest). Accordingly links advertize un-reserved bandwidth at each of the
priority leves, for both the global pool and the solitary DS-TE sub-pool. LSP priorities
are used for preemption — a higher priority LSP can force a lower priority L SP to re-route
if thereisn't enough un-reserved bandwidth available for both of them on alink they both
share. For example, if alink has maximum reservable bandwidth of 900 Mbps; of which
500 Mbps has been reserved by a Priority-0 tunnel; and 300 Mbps by a Priority-1 tunnd;
then 400Mbps of unreserved bandwidth is available at Priority-0, and only 100Mbps is
available at Priorities 1-7. But if a new Priority-0 tunnel comes along reserving 200Mbps,
then all three tunnd's cannot co-exist on the link as their cumulative reservations exceed
the maximum reservable bandwidth on the link. The lower priority-1 tunnel is forced to
re-route — the head-end for this tunnel periodically triesto find a new path which satisfies
al its congraints.

SDN based L SP-Priorities: As with all other L SP attributes, the LSP-priority isjust a
number maintained in the annotated topology map within the Controller. The data-plane

switches have no information on LSP priorities. We maintain tunnel priorities in the
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controller, as well as link-state for reservable bandwidth at eight priority levels. CSPF is
performed in the Controller; tunnd-priorities are taken into consderation; and any
resultant pre-emption is achieved usng OpenFlow messages to add, delete or modify

flow-entriesin L SRs corresponding to TE tunnels.

5.3.2 MPLS-TE Prototype

In this section we discuss a prototype implementation of MPL S Traffic-Engineering in an
SDN based network (MPLS-TE). There are two goals of this implementation: First, we
demondrate that our approach is capable of reproducing existing services offered by
MPLS network today, while validating the simplicity of our approach compared to the
exiging IPPMPLS control plane; and second, as described in the previous section, we
show how the implementation of the features can be made different from the traditional
implementation in ways that either, greatly smplifies the feature or provides a feature
that MPLS-TE cannot provide.

Data-Plane: At thetimethiswork was done (late 2010), handling of MPLS labels
was just being introduced into the OpenFlow protocol (version 1.1[117]). As a result,
there weren't any OpenFlow enabled switches (or controllers) that supported MPL S data-
plane capabilities via OpenFlow.

We added MPLS data-plane capabilities to a software switch called Open vSwitch
(OVH118]) that fully supported verson 1.0 of the OpenFlow protocol. We aso had to
change the OpenFlow protocol (v1.0) to add the capability of controlling an MPLS data-
plane. To accomplish the latter, we borrowed the MPL S related features from v1.1 of the
protocol and added it to v1.0".

T We chose not to implement the entire v1.1 spec as it includes a number of other features like groups and
multiple-tables, which were not essential to this experiment.
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Fig. 5.11 (a) Open vSwitch Software Architecture [119] (b) OFTest Framework [120]

Fig. 5.11a shows the OV'S software architecture. Details can be found in [119]. Here
we focus on the parts we changed to add MPL S data-plane capabilities. OV S can be used
purely as an OpenFlow switch, or it can be used with added functionality that is part of
OVS. We chose to use it as an OpenFlow switch using the ovs-openflowd program
ingead of the ovs-vswitchd program. The former does not require communication with
an ovsdb-server. Next in the stack shown in Fig. 5.11a, the of proto module communi cates
with an external Controller. We changed this module to work with our additions to
verson 1.0 of the OpenFlow protocol borrowed from verson 1.1 (for MPLS support).
The ofproto modul e communi cates with the switch using the ofpproto-dpif interface.

The OVS switch datapath can be in kernd space (as shown in the figure) or in
userspace. We chose the userspace datapath implemented in the dpif-netdev module,
which also instantiates the datapath-interface (dpif) provider class. We added support for
the MPL S data plane in the dpif-netdev module [120]. This included the ability to match
on the outermost MPLS labd (id and traffic-class bits) and perform the actions of
pushing, changing and popping off multiple labels from packets together with TTL

manipulations. Since our software switch was hosted in Linux, we used the built-in
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netdev-linux module that abstracts interaction between ofproto and Linux network-
devices (like Ethernet ports).

We tested our implementation of the MPL S data-plane usng the OFTest framework
[121,122] shown in Fig.5.11b. OFTes includes a data-plane interface that allows sending
and receiving packets to a switch-under-test (OVSin this case). It aso includes a control-
plane interface that implements a light-weight OpenFlow controller that can be used to
interact with the switch-under-test usng the OpenFlow protocol. In our case this
controller communicates with the ofproto module in OVS. We used OFTest to write test-
scriptsthat verified the correct functionality of the MPLS data plane.

Control-Plane: The control-plane was hosted in a server running NOX [15]. NOX
was modified to include our changes to version 1.0 of the OpenFlow protocol, thereby
enabling control of an MPL S data-plane [123].

Controller

Traffic-t A Packet-flow Routing
Ll i Default SPF Routing Load Sharing } Applications

Routing

Network API
TE-LSP Configuration TE-LSP Routing TE-LSP Statistics &

Bw. Res. &Priorities (CSPF) Auto-Bandwidth TE Applications
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é ---------------------------------- | T Network API
GuI ) IP Topology Label DB
: API Sv:;clh- TE tunnel DB
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H H Map
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Abstraction
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(Connection Handler, Event engine)
To switches.. OpenFlow
protocol

Fig. 5.12 MPLS-TE NOX Software Architecture

The software architecture is shown in Fig. 5.12. We use NOX’s basic event engine
and connection-handlers to the switches that are collectively referred to as nox-core. We
also use NOX’s link discovery module to discover IP links and construct the annotated

topology-map. And we include several data-bases for packet-flows, tunnels and MPLS-



202 CHAPTERS. INTRODUCING SDN CONTROL IN MPLSNETWORKS

label information. Together with the switch and network-APIs, these modules present
applications with a map-abstraction.

The first set of network-applications involves TE functionality. The TE-LSP
configuration module is responsble for reading tunnel configuration files or alternately
responding to config-messages from a GUI. Tunnels are configured by specifying the
head-end and tail-end routers, the desred bandwidth and tunnd priority; the type of
traffic the tunnel is designated for; and whether Auto-Bandwidth is enabled on the tunnel
or not. With thisinformation the config modul e usesthe TE-L SP routing module to find a
path between head-end and tail-end routers that satisfy all the constraints (bandwidth,
priority, traffic-class). Once a path is found, the config module uses the network-API to
establish the tunnel in the data-plane by inserting flow-entries for the LSP which includes
label information. If Auto-Bandwidth has been configured on the tunnd, it also activates
the polling process for LSP usage information in the TE-LSP datistics module. This
information is used by the Auto-Bandwidth module to periodically change the tunne
reservation and update the TE-LSP database. But before such an update happens, the
Auto-Bandwidth module checks the CSPF module to make sure that the new-bandwidth
reservation is possble along the existing tunnel path. If it is possble but requires re-
routing lower priority tunnels or re-routing the tunnd itsdf, it processes such change by
invoking methodsin the network-AP!.

Together the TE applications create, manage, re-route, and tear-down TE-LSPs
(tunnels) in the data-plane. As explained in the previous section, our map-abstraction
allows us to create another map above the TE applications (see Fig. 5.9). This latter map
represents the TE tunnds as unidirectional links, on which packet-flow routing can be
performed in an automated and programmatic way. We create three routing-modul es for
packet-flow routing. The default SPF routing-module uses NOX’s built-in all pairs
shortest-path routing module. The only difference is that instead of usng this module
directly on the I P topology, we use it on the topology that includesthe IP links as well as
the tunnels represented as unidirectional links. The default routing module is used for all
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packet-flow routing. The other two modules are plugins into the default routing modul es.
The traffic-type aware routing module ensures that only those flows of a certain traffic-
type (voice, video, web) are alowed into tunnes meant for the traffic-type (DS-TE).
Essentially we use traffic-type to emulate traffi c-classes (without actually setting or using
the DSCP hits). And the load-balancing module ensures that traffic-flows can be |oad-
shared between regular | P-links and links representing tunnds, to the tunnel -tail.

Experimental Setup: Our network of software switches is created in the
Mininet environment [124]. Mininet is an open-source tool that creates a network of
interconnected software switches on a single PC for emulating networks. It uses Linux
process-based virtualization to run many hosts and switches on a single Linux kernel
[125]. We use Mininet to emulate a wide-area IPIMPLS network. Our prototype system
runs 15 instances of OV S (modified) to form the IPIMPLS network (F| g.5.13).
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Fig. 5.13 MPLS-TE (a) Prototype (b) GUI view showing Emulated IP/MPLS WAN

Fig. 5.13b shows the GUI view for our emulated-WAN. The GUI shows network-
date re-created in real-time via communications with the Controller. The emulated-
network has nodes in 15 cities spanning the continental US. In the San Francisco (SFO)
and New York (NYC) clouds, San Jose and New Jersey connect to the wide-area via the
routers in SFO and NY C respectivey. In Fig. 5.13b the GUI shows wide-area IP links

between the cities. Unidirectional TE-tunnels are routed on these bi-directional IP links
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by reserving bandwidth on the links in the direction of the tunnel (from head-end to tail-
end). The GUI displays reserved-bandwidth information for each link in both directions.
Each link is assumed to be a GE link, with a maximum reservable bandwidth of 90% of
the link-bandwidth (i.e 900 Mbps). Finally, Fig. 5.13 also shows traffic-flows for three
different traffic types (voice, video and web traffic) originating from traffic-generators
(not shown) in San Jose and New Jersey.

Experiments: In the previous section we discussed several features related to
MPLS-TE. The primary goal of this experiment is to achieve the basic functionality of
traffic-engineering itsaf. Secondary goals include the ability to show TE related features
such as Auto-Bandwidth and DS-TE.

Tunnd -Routing and Packet-Flow Routing: Traffic Engineering in MPLS is atwo-step

process. @) admisson-control of bandwidth-reserved TE-LSPs (or tunnels) performed
during a CSPF routing process for the TE-LSP; and b) (Re-) Routing packet-flows
through a newly created TE-LSP. In Fig. 5.13b, we see the operation of a network
without traffic-engineering. Traffic flows from the SFO and NY areas, destined to
Kansas, Phoenix, Houston and N, all follow the shortest path in the network; potentially
congesting the SFO <> DEN <> KAN<->NY links.

- Tunnel Id: 0x7e00
Route: SFO-DEN-KAN-NYC
ResBw: 123 Mbps Priority: 0

Usage: 11 Mbps Auto Bw: OFF - ~
Traffic: VOIP | VIDEO | %

. Tunnel Id: 0x7e01
Route: SFO-DEN-KAN-HOU
ResBw: 700 Mbps Priority: 0
Usage: 19 Mbps Auto Bw: OFF
Traffic: ALL HOU

Fig. 5.14 Tunnel Routes, Bandwidth-Reservations & Auto-Route
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In Fig. 5.14 we show two tunnels that were configured by the network-operator,
routed by the CSPF module, and established in the data-path usng OpenFlow, to enter
flow-entries in the OVS flow-tables. The tunnds originate in SFO (head-end) and
terminatein Houston and NY C (tail-ends).

The panels show information for each tunnel. It is worth noting here that Fig. 5.14
shows the tunnels from a conceptual standpoint (similar to Fig. 5.7a). But the tunnels are
actually routed over the IP links. For example, the SFO->NY C tunnd is routed along the
SFO>DEN->KAN->NYC links, reserving 123 Mbps of bandwidth on each link in the
eagward direction. Similarly, the SFO->HOU tunnel is routed via
SFO>DEN->KAN->HOU links reserving 700Mbps of bandwidth along the path. But
another way to think about thisis that thisis also the annotated-topol ogy-view presented
to the packet-flow routing applications in Fig. 5.9 or Fig. 5.12. The tunnels are, from a
packet-flow routing standpoint, uni-directional links which form the shortest (1-hop) path
between routers. And so the routing-modules perform Auto-Route, as described in the
previous section, by re-routing packet-flowsinto the tunnds.

For example, flows from SFO->NYC which previoudy traveled over the IP links
now get re-routed (or Auto-Routed) via the 1-hop tunnd. It so happens that the tunnel is
also routed along those same links. But this does not matter — the packets get imposed
with labelsin SFO and get labd -switched in the DEN and KAN routers, which no longer
have visibility into the IP packet. The flow-entries in DEN and KAN which previoudy
matched on the | P-information in the packet-header, subsequently idletimeout, asthey no
longer match on the labeled-packets. We also use penultimate hop popping (PHP) of the
label at the KAN LSR =0 that the NYC LSR recelves the unlabeled IP packet; and so it
only hasto do a single lookup to forward the packet.

Another aspect of our desgn worth pointing out is that for the packet-routing
applications to treat the tunnels as unidirectional links, they need to have the concept of a
virtual-port. For example, the SFO>NYC tunnél is represented as a unidirectional link
connecting a virtual-port of the SFO router to a virtual-port on the NY C router. But the
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packet-flow routing modules are un-aware that the ports are virtual-ports. They simply
decide to forward traffic out of these ports (eg. in SFO) and match on traffic incoming
from these ports (eg. in NY C). But these virtual ports do-not-exist in the switches, as an
OpenFlow switch treats LSPs like any other flow, instead of treating it as virtual ports
(tunnd-interfaces). And so the TE- applications trandate decisions made by the packet-
routing applications from a virtual-port to the corresponding phys cal-port and labdl.
Admisson-Control: We mentioned that tunneds SFO->NYC and SFO->HOU
reserved 123 Mbps and 700 Mbps of bandwidth on all links that are part of their route.
Note that in Fig. 5.14 we show these reservations circled in the eastward direction — for
example, the KAN->NY C link shows a reservation of 123 Mbps (due to the SFo>NYC
tunnel) and the DEN->KAN link shows a reservation of 823 Mbps (due to both tunnels

being routed over the SFO>DEN->KAN links).

SEA CHI
235 Mbps ~

—_—

. Tunnel Id: 0x7e02
Route: SFO-SEA-CHI-KAN
ResBw: 235 Mbps Priority: 0
Usage: 5 Mbps Auto Bw: OFF
Traffic: VIDEO |

HOU

Fig. 5.15 MPLS-TE Admission-Control

Also note that the maximum reservable bandwidth on any link is 900 Mbps. Thus
only 77 Mbps of bandwidth is un-reserved on the SFO>DEN->KAN links. Thus when
the SFO>KAN tunnel highlighted in Fig. 5.15, requests 235 Mbps of bandwidth, it
exceeds the unreserved bandwidth on the shortest path; and so the SFO>KAN tunnel is
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forced to route along a less-utilized path of the network — the SFO->SEA->CHI>KAN
links. Thisis an example of admisson-control. Without it, the SFO>KAN tunnel would
be routed along the same SFO>DEN->KAN links as the other two tunnels, and if the
tunnels actually used the all the bandwidth they reserved (123+700+235 = 1058 Mbps) it
would have congested the links.

Auto-Bandwidth and Priorities. Our next experiment involved the TE features of

Auto-Bandwidth and tunnel-priorities and their interaction. Fig. 5.16 highlights two
tunnels that originate from NYC: one with a tail-end in Houston (HOU) and the other
with atail-end in Phoenix (PHX).

Note from the pand for the NY C->HOU tunnel, Auto-Bw isturned on (unlike any of
the other tunnds in Figs.5.14-15). Accordingly the bandwidth reservation for this tunnel
tracks the actual usage of the tunnel. Although the tunnel was created (configured) with a
bandwidth-reservation of 10 Mbps, the reservation increases as we channel more traffic
through the tunnd (by turning on more traffic-generators); first up to 19 Mbps and then
to 39 Mbps (the latter shown in Fig. 5.16).

b
PHX HOU MIA PHX HOU MIA
. Tunnel Id: 0x7e05 Tunnel Id: 0x7203
Route: NYC-ATL-MIA-HOU-PHX Route: NYC-KAN-HOU
ResBw: 177 Mbps Priority: 1 ResBw: 39 Mbps Priority: 0
Usage: 19 Mbps Auto Bw: OFF Usage: 39 Mbps Auto Bw: ON
(a) (Baﬁic: ALL Traffic: ALL

Fig. 5.16 Interaction of Auto-Bandwidth and Tunnel Priorities

But another effect happens along the way. Note that the route taken by the
NYC->HOU tunnd includes the KAN->HOU link and reserves (first 10Mbps and then)
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19 Mbps on it. Additionally the SFO>HOU tunne also reserves 700 Mbps on the same
link. The initial route taken by the NYC->PHX tunnel goes via the NYC->KAN
—->HOU-> PHX linksasit is the shortest path (in hop-counts) that satisfies the bandwidth
required by the tunnel. Accordingly it too reserves 177 Mbps on the KAN->HOU link (as
shown in Fig. 5.16a). This adds up to a total of 896 Mbps reserved on the KAN->HOU
link which is very close to the maximum reservable amount of 900 Mbps. And so if we
further increase the traffic going through the NYC—>HOU tunnel to 39Mbps, then since
Auto-Bandwidth is configured ON for thistunnel, it changes the reservation to 39 Mbps
(as shown in Fig. 5.16b; which in-turn tries to increase the total reservation on the
KAN->HOU link to 916 Mbps, which is not allowed. At this point some tunne has to
find another path.

Note that the NYC—>HOU tunnd has priority-O (highest priority) while the
NY C->PHX tunnd has priority-1. Thusit is the lower priority tunnel that isforced to re-
route and find another path that can meet its congraints. In Fig. 5.16b, we show that the
tunnel has re-routed via the longer NYC2>ATL->MIA->HOU->PHX path. Thisis an
example of the dynamic interaction between Auto-Bandwidth and tunnel Priorities,
which in alarger network with lots of tunnels, can cause significant network churn.

Class-Based Routing and Load-Balancing: Finally in Fig. 5.17 we show two

examples of routing where we deviate from shortest-path routing. Note that Fig. 5.17 isa
GUI snapshot that shows all five tunnels we have instantiated so far.

In the first example we implement routing based on traffic-classes. As discussed in
the section on DS-TE, tunnels can be created for a traffic-class (identified by the DSCP
bits in the IP header) by reserving bandwidth from a sub-pool of link-bandwidth
resources. This way per-class admission control can be performed for tunnels designated
for a class. The second part of DS-TE is to actually route traffic for that class into the
gpecific tunnd, which today uses cumbersome, non-programmatic techniques. With
OpenFlow, routing a traffic-class becomes easy and programmatic. In Fig. 5.17, we show
the SFO>KAN tunnd designated to carry only video traffic, while the SFO>NYC
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tunnel carries both video and Vol P traffic. In the SFO router, we simply use OpenFlow to
enter rules that match on both dedtination IP address and the L4 transport-ports to
indentify the tunnel and the traffic-type respectivey; and then insert the appropriate label
(as an ‘action’ on matching packets) for the tunnel the packets needs to enter. We can
also usethe IPv4 DSCP bits to match on atraffic-class (if for example the San Jose router
marks the bits).

B unnel id: 0x7e02

Route: SFO-SEA-CHI-KAN

ResBw: 235 Mbps Priority: 0
ge: 5 Mbps Auto Bw: OFF

- Tunnel Id: 0x7e00
Route: SFO-DEN-KAN-NYC

Flow-Based Load
Balancing to the
Tunnel-Tail

Fig. 5.17 GUI Snapshot: Routing of Traffic-Classes and Load Sharing

In this experiment, we do not perform per-class admisson control as we did not
reserve bandwidth from class specific sub-pools of link bandwidth. But thisisa smple
change to our CSPF algorithm (and nothing else). More importantly we can create
multiple sub-pools each for a different traffic-class, to match with tunnels created for
multiple traffic-classes (as shown); which is something that MPLS-TE cannot provide
today without changing the routing protocol.

The second exampl e of deviation from shortest-path routing shows load-balancing. In
Fig. 5.17, traffic between SFO and KAN takes two routes: Video flows go through a
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tunnel from SFO->KAN, which is actually routed via the Seattle and Chicago routers,
and all other flows take the IP links between SFO->DEN—->KAN. Thisis an example of
load-sharing to a tunnel-tail, between a tunnel-path and an IP-link-path; a feature that
MPLS-TE cannot provide today due to the nature of Auto-Route in MPLS-TE (as
discussed in the previous section).

Conclusions: To summarize, we draw the following conclusons from our SDN

based MPLS network prototype:

We achieved the initial goal of verifying our architectural ideas of introducing the
map-abstraction in MPLS networks. We showed that we can not only perform the
basic operations of creating and maintaining LSPs in an OpenFlow enabled MPLS
data-plane; but we can also provide higher-level services such as MPLS-TE by

writing applications above a map-abstraction purely in the control -plane.

e We validated the smplicity of our approach when compared to more traditional

approaches seen today. Our implementation of the traffic-engineering application
together with all the features described in Sec. 5.2.1, took only 4500 lines-of-code. To
accomplish the same in today’ s network would require implementations of OSPF-TE
and RSVP-TE (together ~ 80k LOC) and implementations of all the features. At the
time of this writing we could not find an open-source implementation of MPLS-TE
features, and so we can only estimate, based on experience that each feature could
take at a minimum 5-10k lines-of-code, pushing the total LOC well above 100k. It is
easy to see that our SDN based implementation is much smpler given the two-orders
of magnitude difference in the lines-of-code required. While our implementations is
not production-ready, two orders of magnitude difference gives plenty of room to
grow; giving us confidence that even production-ready code will be simpler to
implement with the map-abstraction.

Finally, we achieved our second goal of demonstrating that usng SDN and the map-
abstraction, we can implement the TE featuresin waysthat a) either greatly smplify
the feature; or b) provide a feature that MPLS-TE cannot provide. Examples of the
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former include (i) our implementation of Auto-Route in a more flexible and
programmatic way; and (ii) contention-free L SP establishment; while examples of the
latter include (i) load-sharing traffic to a tunnel-tail, on a tunnel and an IGP path; and

(i) performing per-class admission control for more than one class of traffic.

5.4 Other Applications of SDN based MPLS

The map-abstraction brings the benefits of a smpler, more-extensble control plane to
IPPIMPLS networks, and provides network-applications with a global-view of network
date. Together with the flow-abstraction in the MPLS data-plane and a switch-API like
OpenFlow, MPLS networks based on SDN could potentially solve problems seen in
today’ s networks. In our talks with Tier-1 1SPs, we are beginning to understand issues
that carriers face in MPLS networks and how the SDN approach could help meet those
challenges. Briefly, we cover afew of these issuesin this section.

MPLS-VPNs: VPNsin MPLS come in two main flavors — L3VPNs and L2VPNs
(there are variations of the latter). While both services use an MPLS backbone, LSPsin
the former carry IP packets, and in the latter, Ethernet frames. Nevertheless, in ether
case, the primary objective of the MPLS backbone is to provide routing/switching
information dissemination and isolation.

Building on our TE work, we recently demonstrated MPLS L3-VPNs [109]. We
interactively created multiple isolated L3-VPNs, with overlapping client private-IP
address spaces (customer-routes). The controller maintains VRFs for each VPN that a
Provider-Edge router is part of. The VPNSs also have cusomer specified topologies, and
are supported by TE tunnelsin the backbone.

We are beginning to understand the scaling implications of L3-VPNs. Today one of
the main problemsin L3-VPNsisthat the service provider has to carry/propagate

millions of cusomer IP addresses using protocols like MP-BGP. The SDN approach can
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provide reief in this regard as it can reduce routing burden, by eiminating the need for
protocols such asLDP, IS-1Sand MP-BGP in the backbone.

Eliminating Auto-Bandwidth: In the previous section we explained how
Auto-Bandwidth is a local-optimization technique [110], which together with L SP-
priorities, can produce significant network churn. But operators have other options —
notably the use of ‘offline’ (not on the routers) modeling tools, that have global-view of
the network and can optimally route LSP paths. However the use of offline-tools
introduces a different problem. Once the tools calculate L SP paths for tens-of-thousands
of LSPs, the L SPs themselves have to be established or re-routed in a live-network. This
process involves ‘locking’ head-end routers one-by-one and feeding it configuration files
for LSPsthat it needs to originate (via signaling between routers). The compilation of the
configuration takes time, and the order in which tunnels are ‘brought-up’ has to be
carefully coordinated. And all of this has to be done in a network carrying live-traffic.

But with SDN, operators have the ability to take an ‘offline€ optimization tool
‘online’. The map-abgraction offers the full-visibility required by optimization-tools
(which can run as applications). But more importantly, the Controller can access the
results of the optimization tool and use OpenFlow to directly manipulate the forwarding
tables of all LSRs. In other words, OpenFlow acts as a switch-API that dynamically
updates flow-table sate, and therefore L SP state. And it can do so in parallel, for multiple
L SPs, originating from multiple head-ends, while minimizing network-churn.

Improving Fast Re-Route Performance: From our talks with network-
engineers at Tier-1 1SPs, we find the MPLS Fast Re-Route (FRRs) techniques perform
poorly in operation. In FRR, backup LSPs are created to ‘locally-repair’ primary-LSPs
[111]. The backup L SPs are pre-computed and signaled prior to any failure. Local-repair
refers to re-directing traffic as close as possble to the failure. Two techniques exist for
performing FRR: oneto-one backup and facility backup. But irrespective of the
technique used, the problem with FRR is that, in a large ISP network, a) there are far too

many nodes and links to backup; and b) because the number of backup tunnelsis high,
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these backup tunnels usually do not reserve-bandwidth on the links. And so it is an
intractable problem to have any intelligent way for optimally routing backup-paths while
backing up everything in the network. Although FRR is fast (< 50ms recovery), it is
effectively a blunt protection mechanism. It is entirely possible that the result of an FRR
re-route can cause congestion over a backup-path.

The key with SDN and OpenFlow is that it is dynamic - so when a failure happens,
one can use FRR asit istoday to do what it doestoday (as meta-stable sate), just to give
the Controller enough time to optimize around the specific failure. Note that this
optimization is no longer an intractable problem, as the Controller knows exactly what
falled. And so it does not have to plan for every possible failure, and then it can use
OpenFlow to update the L SP-state dynamically once it has optimized around the failure.
The net effect is that FRR can perform better by maintaining the speed that comes from
local-protection, but availing of optimally routed backup paths that are dynamically
updated in LSR flow-table state.

MPLS-TP/Multi-layer Control: Finally we consder applications of MPLS
beyond the IP network. MPLS has been favored for establishing a packet-based data-
plane technology for the transport network; Hence the name MPLS-Transport Profile
(MPLS-TP) [113]. The badic idea is that there is a need for transport networks that are
packet-switched', but such packet-networks should retain/reproduce the capabilities of
traditional circuit-based transport networking, especially in providing equivaent OAM
capabilities. OAM is provided usng Generic Associated Channed packetsin MPLS LSPs,
or pseudowires [114]. Importantly, [113] points out that MPLS-TP should not depend on
I P networks nor require dynamic control -planes for operation.

However, in our talks with industry, we find that a Smple, dynamic control plane like
an SDN based control-plane can offer value to an MPLS-TP network. Transport network
operators, traditionally againg the use of complex control-planes like those in IPPMPLS
networks , may find simpler OpenFlow based control more to their liking. And its value
increases when considered in multi-layer scenarios. Transport network operators

T The Related Works section in Ch. 6 discusses MPLS-TP in more detail.
* See Challenge #2 in Sec. 3.4



214 CHAPTERS. INTRODUCING SDN CONTROL IN MPLSNETWORKS

frequently run multiple networks based on different technology layers simultaneoudy—
ROADMSs (Layer 0), SONET/SDH (Layer 1), OTN (Layer 1), to which they seek to add
MPLS-TP (Layer2). And so ingtead of doing everything manually, or requiring separate
control planes for each layer, a sngle OpenFow/SDN based control plane for all layers
can be an attractive option.

We bedlieve that we have only started to scratch the surface for SDN applications in

MPLS networks. I n the next section, we show how we implement one such application.

5.5 Synergies with Packet-Circuit Control

In this section we take a brief look at the synergies between SDN based control of IP
networks with MPLS in the data-plane and control of IP networks with Dynamic Circuit

Switching. In Fig. 5.18 we show the use of the map-abstraction for control in both cases.

Default VolP Customer Default VolP Customer

SPF traffic jeee| traffic SPF traffic oo | traffic
Routing Routing Routing Routing Routing Routing

) - IP network = 8 IP network
e with TE i S with
tunnels circuits
TE-LSP Routing Circuit Routing
(CSPF) (CSPF)

/

In an IPMPLS network (Fig. 5.18a), the map-abstraction presents an annotated-

MPLS \— L Circuit
network 4 network

Fig. 5.18 Control of (a) IP and MPLS (b) IP and Dynamic Circuits

(2)

topology map of the IP network, on top of which we perform TE-LSP routing based on
TE-link attributes (like reservabl e-bandwidth, weight etc.) that we assign to the IP links.
The routing uses a CSPF agorithm to determine tunnel routes. When IP is used with

dynamic-circuits, in one congruction (Fig. 5.18b), the map-abstraction presents an
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annotated fiber topology, on which circuits are routed usng CSPF and attributes we
assgn to the fiber/WDM-link. The net result of usng CSPF in both casesisan MPLS-
tunnel or a TDM/wavel ength-circuit.

But in both casesthey are represented as unidirectional or bidirectional linksin the IP
network, which is just another annotated-topology map in the SDN controller (the upper
onesin Fig. 5.18). In other words circuits and TE-tunnels are represented in smilar ways,
and both can be dynamic with varying bandwidths and routes. And mapping packet-flows
to circuit-flows is really the same as mapping packet-flows to TE tunnels, both of which
we have demongrated in similar ways with voice/video/web packet-flows in Chapters 3
and 5. In both cases, the mapping in the control-plane happens via a virtual-port
abstraction’. The only differenceisthat the virtual-port isa purely control plane construct
in the MPLS case; while in the circuit-case it represents the data-plane trandation from
packet-frames (like Ethernet) to framing used in circuit networks.

It is important to note that neither scenario shown in Fig. 5.18 is used today. TE
tunnels are not represented as links in the IP network; the 1P network does not treat
packets as flows; and dynamic-circuits are not used in concert with IP network to
dynamically create/modify/delete IP links. Yet the use of the map-abstraction together
with the treatment of packets, tunnels and circuits as flows, enables a network-operator or

service-provider to have a simple cong stent view of their network.

5.6 Summary

The goal of this chapter was to introduce the map-abstraction in MPL S networks, argue
for its benefits, and validate our architectural constructs and claims. Our motivation for
doing so comes from discussons with service-providers who run large IPIMPLS
backbones. In general they fed that while MPLS has delivered on new services like TE

and VPNs, it has failed to live up to its promise of a smpler, cost-effective data-plane,

t See the sub-section titled “Tunnel Routing and Packet-Flow Routing’ in Section 5.2.2; and the sub-section
titled ‘Mapping Packet-flows to Circuit-flows” in Sec. 2.1.2.
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dueinlarge part to the burden of bearing atightly-intertwined distributed control plane of
ever-increas ng complexity.

We showed that the MPL S data-plane is smple and useful in its label-stacking and
push/swap/pop operations. And while it is less-flexible than the full flow-abstraction that
is inherent in the definition of the OpenFlow protocol, the MPLS use of FECstL SPs
gualifies as ‘flows'. But it is the absence of the map-abstraction in the IPPMPLS control
plane that makes it complex. So much so that in most cases the only flow-definition (or
FEC) actually used isthe ‘degtination- | P address .

We discussed the benefits of the map-abstraction in the context of MPLS networks.
The benefits include smplifying the IPIMPLS control-plane which in-turn reduces
protocol load in router CPUs (areal concern in carrier networks where not all hardwareis
upgraded at the same time). Another benefit of the map-abstraction is that it makes the
control-plane more extensible, by not only providing the services that MPLS provides
today (TE/VPNS); but also by making it easer to change or introduce new functionality
into the network — a fact that can lead to its use as a control plane for MPLS-TP and
multi-layer networks. And finally, a key-benefit of the map-abstraction is that it presents
a global-view to network-applications which can then globally optimize the network-
function or service (as opposed to the local-optimizations possible today). Such global
optimizations can help reduce churn (due to Auto-bandwidth) or hep MPLS based
recovery (FRR) function more efficiently.

We built a network-prototype to verify our architectural constructs and validate our
samplicity and extensbility clams. The data-plane switches used the standard MPLS
data-plane mechanisms, and the control-plane was based on OpenFlow; on map-
abstractions created by a network OS; and network-applications we implemented to
replace the functionality of the distributed IPPMPLS control plane. We implemented
nearly all the features of MPLS traffic-engineering including TE-L SP admission control,
bandwidth reservations, tunnd-priorities, Auto-Route, Auto-Bandwidth, class-based TE,
and load-sharing. And we did so in lessthan 5k lines-of-code, which is nearly two orders
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of magnitude fewer than implementations usng a traditional distributed approach
(thereby validating our smplicity claim). Furthermore, we showed that implementing TE
features with our design choices can ether greatly smplify the feature or provide a
capability that the current MPLS-TE control plane cannot provide (thereby validating our
extensbility claim). Finally, we discussed how introducing the map-abstraction in MPLS
networks fits well with the discussion in the previous chapters on packet-circuit unified
network control, in that treating packets, tunnels and circuits as flows, enables a network-

operator to benefit from a smple consistent view of their network.
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Conclusions

This thes's described a new approach towards common control, design and operation of
converged packet and circuit networks. In WANS today, packet-switched IP networks
and circuit-switched Transport networks are separate networks, typically planned,
designed and operated by separate divisions, even within the same organi zation.

Such dructure has many shortcomings. First and foremog, it serves to increase the
Total Cost of Operations for a carrier — operating two networks separately results in
functionality and resource duplication across layers; increased management overhead;
and time/labor intensve manual coordination between different teams; al of which
contribute towards higher Capex and Opex. Second, such sructure means that IP
networks today are completely based on packet switching. Which in turn results in a
dependence on expensve, power-hungry and sometimes fragile backbone routers,
together with massively over-provisoned links, neither of which appear to be scalablein
the long run. The Internet core today smply cannot benefit from more scalable circuit
switches, nor take advantage of dynamic circuit switching'. Finally, lack of interaction
with the IP network, means that the trangport network has no vishility into IP traffic
patterns and application requirements. Without interaction with a higher layer, there is
often no need to support dynamic services, and therefore little use for an automated

control plane. As a result the Transport network provider today is essentially a seller of

T As we show in Appendix A, circuit-switches cost less than a 1/10% the price, and can consume less than 1/10h
the power and volume of an equivalent packet-switch of the same capacity. Furthermore, there are certain
functions dynamic circuits perform exceedingly well in the core — recovery, BoD, guarantees — that IP networks
cannot take advantage of today.



219

dumb-pipes that remain largely satic and under the provider’s manual control, where
bringing up a new circuit to support a service can take weeks or months.

Our proposal addresses these issues by offering a new unified-control -architecture
for carrier networks. Our solution was designed around two control -abstractions based on
an emerging idea called Software Defined Networking (SDN). The first abstraction we
proposed is a common-flow abstraction that fits well with both types of networks and
provides a common paradigm for control. It isbased on a data-abstraction of switch flow-
tables, manipulated by a common switch-API. The flow-tables take the form of lookup-
tables in packet switches and cross-connect tables in circuit switches. Together with the
switch-API, it abstracts away layer and vendor specific hardware and interfaces, while
providing a flexible forwarding plane for manipulation by a common control plane. The
second abdraction we proposed is a common-map abstraction, based on a data-
abstraction of a centralized network-wide common-map, manipulated by a network-API.
The common-map has full vighility into both packet and circuit switches networks,
allowing creation of network applications that work across packets and circuits. Full
vighility alows applications to jointly and globally optimize network-functions and
services across multiple layers. And implementing network-functions as centralized-
applications is ample and extens ble, as the common-map abstraction hides the detail s of
gate-distribution from the applications.

We implemented these guiding principles in three network-prototypes we built to
help us progressvely verify our architectural congtructs and ultimately validate our
architectural claims. Two early prototypes focused on the common-flow abstraction for
packet-switches working in concert with different kinds of circuit switches. The third,
more complete prototype helped us understand the intricacies of building a converged
network with a common-map and network-API. With this prototype we built a testbed
that emulated WAN structure; and then implemented a new and fairly involved network
capability which benefits from both packet and circuit switching.
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With this new network capability implemented on our prototype, we validated our
samplicity and extenshility claims, by comparing our implementation to our-best-guess
on what it would take to implement the same functions using industry-standard solutions
for packet-circuit control. We found our solution to be two-orders-of-magnitude simpler
(in terms of line-of-code) compared to the industry solution, thereby validating our
smplicity argument. More importantly, we presented qualitative architectural insghts
into why our solution is more extensible than current industry-solutions. We believe there
are two main reasons why current packet-circuit control solutions are hard to use and
extend: a) the use of the UNI interface which resultsin loss of vighbility at the intersection
of packet and circuit networks, and b) the implementation of services'network-functions
as digributed systems which are tied to the state-distribution mechanisms. We argued
that since our solution does not suffer from these limitations, it makesit easy to introduce
new functionality into the network, or change existing functionality just as easly; thereby
verifying our extensibility claim.

This latter fact bodes well for service providers who find it hard to differentiate their
service-offerings from other carriers. Their networkstoday are built usng closed-systems
(routers and switches) from the same set of vendors with the same set of features. But
with the use of our control-architecture, carriers can innovate in their networks across
packets and circuits, and find ways to provide new revenue generating services without
having to implement the features and services in the routers themselves. Put simply, our
control architecture can lead to a faster pace of innovation and service differentiation.

At the same time carriers that own both kinds of networks, can benefit from reduced
TCO by operating one converged network instead of two separate ones. Our control
solution aready helps converge the operation of the different switching technologies,
while allowing the network-operator the flexibility to choose the right-mix of
technologies for the services they provide. It aso paves the path for developing common
management tools, planning and designing network upgrades by a single team, and

reducing functionality and resource duplication acrosslayers.
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As an example of the potential savings possible in a converged packet-circuit network
with our unified control architecture, we performed a Capex and Opex analysis on a
nationwide US backbone IP network. We considered industry standard practices for IP
network design as reference design (IP-over-WDM). We then proposed a converged
network we call IP-and-DCS, based of the following: a) replacing all backbone routersin
PoPs with packet-optical switches, b) usng a full-mesh of variable bandwidth circuits
between PoPs, and c) adopting our unified control architecture for common control of
packet and circuit switching. The latter feature is especially important in realizing the
full-mesh topol ogy, and for enabling close interaction between packets, dynamic circuits,
and application/service needs. Interestingly we found that such construction can save us
as much as 60% in Capex costs and nearly 40% in Opex costs when compared to the
reference design. Importantly, such savings are insendtive to varying traffic matrices,
and scale better (at alower $/Thps slope) as the network is upgraded to accommodate 5X
or greater traffic-growth. We expect even greater Opex savings, as the use of a unified
control plane diminates time and labor intensve manual coordination and provisoning
between | P and transport teams.

Even if carriers prefer a less integrated approach than the one described above, IP
networks can still benefit from dynamic circuit-switching in transport networks, by
leveraging a key aspect of our unified-control architecture: slicing. A network-slice
according to our definition is a combination of bandwidth resources and control over
switching resources. With slicing, a transport service provider can carve up dices of their
networks and sell them as a new service to | SP. It gives transport-SPs incentive to share
information with 1SPs which is critical towards the creation of the common-map. 1SPs
can then create common-maps of their packet network and their dice of the transport
network, to jointly optimize services across them and enable network-applications such
as those we have described: dynamic-links, variable-bandwidth links, application-aware
traffic-engineering, unified-recovery and others. Furthermore offering slices presents a

new revenue opportunity for transport service providers, making them more than dumb-
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pipe sellers — a crucial fact given that all services are moving to IP. Importantly dicing
also helps the gradual adoption of our unified control architecture into today’ s networks.
Without gradual adoption the successful implementation of any new-control technology
would only belimited to green-field deployments, which are a rarity in core networks.

We have also applied the SDN based control architecture to MPLS networks. While
MPLS has delivered on services (TE, VPNS), operators feel that it hasfailed to deiver on
the promise of cheaper, inexpensve switching; due in large part to the burden of bearing
a tightly coupled, distributed IPPIMPLS control plane of ever-increasing complexity. We
showed that by retaining the MPLS data-plane (flow-abstraction) and introducing a
smpler and extensible control-plane (map-abstraction), we can provide the services that
MPLS provides, without the complexity of the IPPMPLS control plane. The implications
are many-fold — smpler switching hardware based solely on MPLS (and supporting just
OpenFlow) can be realized; all existing MPLS services can be supported, made smpler,
more-dynamic and optimized; or new servicedfunctionality can be created on MPLS
rapidly without requiring extensions to existing protocols. To demonstrate our approach,
we showed nearly every major feature of MPLS-TE that we implemented in just a few
thousand lines of code; compared to nearly two orders-of-magnitude greater code-lines
required in traditional distributed approaches.

Our work isin the early stages. Many challenges remain, the most important of which
is the development of the common-map-abstraction by a network-operating system that is
designed to operate on multiple-servers in multiple geographic locations, to ease
scalability and performance concerns. Work is underway in industry and academia to
realize such a control plane and meet the related challenges.

We are convinced that (with further development) if the ideas in this thess are
adopted by service providers, the greatest impact would be that they can remain
profitable as the Internet grows. As a result, they would have greater incentive to invest

in their networks, which in-turn would benefit society immensely.
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6.1 Related Work

Our unified control architecture for packet and circuit networks is based on Software
Defined Networking (SDN) principles[17]. Thereisarich history of related ideas bothin
academia and industry. The 4D project [138], RCP [139] and the SANE and ETHANE
[18] works are part of a related line of research that advocate the separation of control
and data planes in packet networks.

In the industry, Ipslon’s General Switch Management Protocol (GSMP [140]) also
allowed an external controller to control one or more ATM switches. GSMP was later
extended to control other kinds of labe-switches such as MPLS and Frame-Reay
switches [141]. GSMP was not used widely; mainly because ATM and Frame Reay
networks fell out of favor, and dominant vendors chose to implement the IPPMPLS
control plane for packet-networks.

The IETF ForCES framework [142] defines a set of standard mechanisms and
guidelines for control and forwarding separation, which is similar in spirit to OpenFlow;
but it does not define a specific protocol like OpenFlow does to control a forwarding
plane abstraction. The ForCES framework does not advocate the SDN map-abstraction or
the flow-absraction. It only seeks to define a framework for standardizing the exchange
of information between third-party router-control plane software and off-the-shelf
forwarding hardware.

We are the firg to propose the use of SDN ideas to develop a unified control
architecture for packets and circuits. None of the works mentioned above are related to
circuit networks. The only prior work for unified packet and circuit control is
MPLSGMPLS. And so we take a closer look at MPLS/GMPLS in the Section 6.1.1 and
contrast it with our SDN based ideas for packet-circuit control. We also take a closer ook
at a related data-plane technology called MPLS-TP that is being introduced in transport
networks. In Sec. 6.1.2 we discuss IP and MPLS-TP networks in keeping with the

original premise of thisthess— finding a way to run one network instead of two.
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6.1.1 MPLS/GMPLS and ASON

Generalized Multi-Protocol Label Switching (GMPLS) was designed as a superset of
MPLS, and intended to offer an intelligent and automated unified control plane (UCP) for
avariety of networking technol ogies— both packet and circuit (see Fig. 1 from [24]).

Conceptually, Generalized Multi-protocol Labe Switching (GMPLYS) in the data-
plane, uses the core idea of treating packets as flows'LSPs, and extends it to the circuit-
domain where circuits were recognized as L SPs as well ' [58]. Thus in the data-plane both
packets and circuits could be treated as LSPs (Smilar to our common-flow abstraction).
But in the control-plane, GMPLS ended up adopting the MPLS control plane protocols
(OSPF-TE, RSVP-TE) as well. Since MPLS aready had a well developed control plane
(derived from a well-developed IP control plane), GMPLS smply extended the same
digtributed routing and signaling protocols (OSPF-TE, RSVP-TE) to control circuit
switches [20, 23-25]. The reasoning given for adopting the MPL S control-protocol s was
to “avoid re-inventing the wheel”, by using existing protocols and merely extending them
for the unique characterigtics of the circuit-world. It was thought that the use of the same
protocols could lead to an automated, unified control plane for a variety of technologies—
packet, time-dots, wavdengths, and fibers.

But at the end of the day, GMPLS was ill just a collection of control protocols.
There was a need to fit GMPLS to an architectural-model (better understood as a usage
model) for the interaction between |P and Transport networks. The IETF defined three
such models — peer, overlay and augmented. They differed by the amount of state that
was shared between the | P and transport network: all, none and some, respectively [19].

In principle you could use a single instance of GMPLS protocols across packet and
circuit domains, treating it as a unified-control-plane with full information sharing
between routers and transport switches, as proposed by the IETF peer modd [19]. But the
peer modd has never found favor for mostly two reasons it ignores organizational

boundaries where information sharing is prohibited; and it increases load on (fragile)

T with ‘implicit’ labels — like the color of a wavelength
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routing protocols, which now have to distribute not just packet-switch and link
information, but transport-switch and link information as well.

What did find favor (at least in other standards bodies) is the IETF overlay model
[19], which was formalized by the ITU into its own architectural description for
Automatically Switched Optical Networks (ASON) [21]. It took into account existing
transport architecture and organizational boundaries. The overlay model separates the
control of IP and transport networks, by treating the IP network as an overlay network,
which shares no information with the transport network and crucially, runs a completely
separate ingtance of the control plane — i.e. the IPPIMPLS network runs the IPPMPLS
control plane and the transport network runs the GMPLS control plane, and no
information about the networks is shared across any boundary/interface between the
networks in either direction. Such an interface between the IP and transport network is
known as a User-Network-I nterface (UNI) .

UNI: User-Network
Interface between client and
trangport network

IP/MPLS Network

TN E-NNI: Exterior-Network
. Network Interface between
vendor-islands

I-NNI: Interior-Network

Network Interface within
GMPLS based

interfaces
Figure 6.1: ITU ASON model [21], similar to GMPLS overlay-model [19]

But the ITU went further. It not only required the UNI, but also defined other
interfaces that maintained existing transport network structure — ie. vendor-idands and
proprietary interfaces (Fig. 6.1). The transport switches in the vendor-idands would
continue to be controlled by vendor-proprietary solutions, but those solutions would be
made to inter-work by layering GMPLS protocols on top of those solutions, viainterfaces

knows an E-NNI. The IP network can make a request for services from the transport

T The IP network is the User and the transport network is the Network. The OIF UNI is an example of this
interface [22]. Not surprisingly IETF has proposed its own UNI as well (RFC 4208).



226 CONCLUSONS

network using what the UNI provides. Such a request is then relayed (and satisfied)
across vendor domains in the transport network via the E-NNI interface.

We make a few observations here on MPLS and GMPLS. While MPL S has been very
successful in wide-area IP networks, GMPLS has been a failure in terms of actual
deployment. It has undergone a lengthy standardization process at the ITU, IETF and
OIF; al the transport equipment vendors have implemented it in their network eements,
there have been many interoperability demonstrations by vendors, and yet after a decade,
there hasn't been even one sgnificant commercial deployment of GMPLS as a unified
control plane.

GMPLS may have found use in a limited way as a tool to hep the NMSEMS
provision a circuit after being triggered manually by the management system. But we are
not interested in such use of GMPLS. Such use has @) nothing to do with the I P network;
and b) nothing to do even with the ASON view of usng GMPLS as an interoperable
transport control plane. Rather this use of GMPLS is merely a proprietary vendor
implementation of a control plane just for their switching nodes (in other words as a
vendor-idand I-NNI).

We are not interested in creating a control plane for Trangport networks. On their
own, transport networks do not need dynamic automated control, as they do not provide
services that require dynamic circuit switching. We have discussed this in the
Introduction, but it worth repeating — all services are moving to IP; and it is only the IP
network that supports services diverse enough to benefit from dynamic circuit switching.
And so we are soldly focused on creating a simple unified control architecture across both
packets and circuits, where the benefits of both switching technologies can be taken
advantage of from a common network-application standpoint.

It is in this context that GMPLS is an utter failure. We do believe that the initial
choice to use the concept of a flow in the data plane as the common abstraction was the
right one. However, the subsequent choices made or overlooked have contributed to its

failure. We offer our perspective on why GMPL S failsasa UCP:
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e Control Plane Complexity: Using the MPLS control plane as the starting point, results

in protocols overly complex and fragile to make sense asa UCP. For example:

o Dynamic Link-State Routing Protocols. Distributed link-state routing protocols
like OSPF or 1S-1S have convergence and stability issuesif network state changes
too fast or too often. Thisisthe fundamental reason why I P networks today do not
support dynamic links or dynamic link weights. To extend OSPF and use it in a
dynamic circuit network with its effect being felt by the same or another instance
of OSPF in the packet network is dangerous and unwarranted. We discussed this
in more detail in Sec. 3.4 (Challenge #3).

0 Protocol Re-Use: Furthermore, the reasoning given for starting with the MPLS
auite of protocols to was to “avoid re-inventing the wheel”, by using existing
protocols and merdly extending them. However, with the amount of extens on that
has gone into the protocols, thisis smply not true anymore. Consder RSVP — it
was originally intended for hosts to signal for resources from networks in the
IntServ architecture; but then extended to serve as an L SP sgnaling mechanismin
MPLS-TE; extended again to include signaling for transport network LSPs, and
modified a third time to support the UNI interface. Every extension carried
baggage from the previous extens on increasing code-bloat and compl exity.

o Inflexible network architecture: To further increase the complexity of the control
plane, GMPLS in the overlay modd (Fig. 6.2) indsts on retaining transport
network vendor-idands, layered architecture within the transport network; and
new interfaces (UNI/E-NNI) to glue them all together. While retaining vendor
idands and proprietary interfaces (and adding GMPLS on top) may help with
backward compatibility to deployed hardware; in reality it makes the overal
solution so complex that no onetriesit in production.

In our unified control architecture, we eliminate protocols like OSPF and RSVP,

interfaces like the UNI, vendor-idands and vendor-proprietary interfaces. We replace

them with a common switch-API (OpenFlow), a dicing-plane, a common-map and a
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network-API. In the process we dragtically reduce the control-plane complexity, as
evidenced by our analyssin Sec. 3.2.

Lack of the common map-abstraction: In Chapter 3, we pointed out that the common-

map abstraction and network-API (supported by the dicing plane) gives full vishility
across packets and circuits, and isolates the implementation of network-functions
from the date digtribution mechanisms (Sec. 3.3.1). We argued that this is the right
abstraction: as full-visibility allows joint and global optimization of services and
networking functions across packets and circuits, and abstracting away the state-
dissemination mechanisms results in functions that can be written in a centralized
way, making the control plane simple and extensble. GMPLS lacks the map-
abstraction — it limits the services available to the IP network to the exact service-
level definitions defined (and pre-baked into the infrastructure) by the UNI interface;
and distributed implementation of applications across packets and circuits require lots
of glue-code, patchwork to exigting protocols, or new protocols. In short both features
hamper smplicity, extensibility and kill programmability; ultimately limiting its use.

Lack of a gradual adoption path: Finally GMPLS provides no means for flexible and

gradual adoption of a new control plane. Network operators are conservative.
Transport network operators would like to respond faster and provide more dynamic
services to meet their client needs, but loathe giving up precise manual control over
the way traffic isrouted over their network to a software control plane, irrespective of
how inteligent that control plane may be. Additionally any new control technology
has to compete with decades of established operational procedures. So the real key is
to offer a way in which a network operator could gradually try out a new technol ogy
in a dice of the network to gain confidence in its abilities, while at the same time
being able to flexibly choose the correct mix of technologies for a service. In our
control architecture we provide a gradual adoption path via incremental deployment
using a dicing-plane (see Sec. 3.4, Challenge #2).
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Thus we find that GMPLS is completely un-usable when it comesto easng the inter-
working of packet and circuit switching. It is too complex; too buttoned-down, too
inflexible to be of any use from a common network-function or service standpoint across
packets and circuits. IP networks will not touch it. Transport networks find little use for
it. And so, it comes as no surprise that it has never been used commercially across
packets and circuits.

This is unfortunate, as the benefits of dynamic-circuit-switching to packet networks
are real and tangible (as we have shown in Chs. 3 and 4); and should not be shrouded by
the deficiencies of the control-mechanism. We hope that the adoption of our unified-
control-architecture can help service providers benefit from the advantages of both

switching technol ogies.

6.1.2 MPLS-TP and Packet-Optical Transport Evolution

The last few years have seen an emerging trend in transport networks to move away from
older TDM circuit-switched technologies like SONET/SDH; and include in its stead,
packet-transport technology like MPLS-Transport Profile (MPLS-TP). MPLS-TP adds
OAM functionality, which is missing in regular MPLS. It does so by defining a new
reserved label-id, and new payloads such as the generic-associated-channel (G-ACh)
which carry OAM information in an LSP [126]. The need to add OAM comes from the
fact that while transport SPs wish to move away from SONET, they want to retain the
rich OAM capabilities provided by SONET. Unfortunately, they also want to run MPLS-
TP networks like they run SONET networks — manually, without a control plane[127].

At the same time some service-providers such as Verizon, believe that packet-
transport like MPLS-TP is needed in addition to newer circuit technologies like OTN and
multi-degree ROADMSs [89, 90]. And so many vendors have planned product rel eases for
such Packet-Optical Transport Switches[85-88].
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While it is still murky as to which direction future transport systems will go, this
much is clear — the idea to build packetized-transport is clearly a reflection of the
extremely high costs involved in supporting all services on an IP core-network [128].
Since all services are moving to packet-networks, by building a packet-network in
parallel to the Internet core, the hopeis that some packet-services can be sphoned away
from the costly IP network and provided by a packetized-transport network. In this way
reduced load in the IP network could result in requiring lesser | P router-ports and thereby
reducing Capex.

We believe that the idea of supporting services by introducing cheaper MPLS-TP
portsis a sound one. But doing so in a network paralle to the IP network, neglects the
fact that two separate networks will «ill need to be operated. Even if both are
predominantly packet networks, their operational modes will be quite different, given that
the MPLS-TP network is intended to be run with centralized control and supported/
supplemented with OTN and ROADMs. Instead, we have proposed an integrated
IPIMPLS(-TP)/OTN network in Chapter 4, which not only achieves the desred Capex
benefits, but also the Opex benefits of operating a sngle network with a multi-layer

control plane.

6.2 Future Work

6.2.1 Challenges in the Control Plane

In this section, we discuss the challenges our architectural choices face, and highlight the
work being done by others to overcome them.

Scale: A common perception of centralized decision making is that it cannot scale
when compared to distributed solutions. However, with the common-map abstraction in
the SDN approach, we note that only the control programs are implemented in a
centralized way with a global view of the network. The common-map abstraction itself is

T At the time of this writing, MPLS-TP seems to be the technology of choice, winning out over older ‘Carrier
Ethernet’ offerings like T-MPLS and PBB-TE.
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created by a Network Operating-System, which is meant to be distributed and built to

scale.

A question that is often asked regarding scaleis: How many flows per second can the
Controller handle? Thisis essentially a question regarding Controller throughput which
can bearaw indicator of scale. [143] offers a Sde-by-sde comparison of raw throughput
for several open-source controllers. We note that a single server (4 cores, 8 threads) can
process several millions of flows/'sec from a group of 32 (emulated) switches, irrespective
of thetype of controller used. However thisresult needsto be put in perspective:

a) This reault is essentialy an indicator of the speed of response of the Network-OS
software stack, which includes the TCP/IP and OpenFlow message-handling stack
and a basic-network application like an Ethernet learning-switch. In general, when it
comes to throughput, the controller’ s compute and memory resources are not limiting
performance factors [130]. Trivially it is possble that a controller realized by a
cluster of servers can replicate all the compute/memory resources found in routersin
a fully digtributed solution today. Such a cluster could run the same distributed
algorithms as routers do today. But more importantly, such a compute cluster can far
outperform a collection of routers in terms of compute and memory resources'.
However in most cases the actual flows/sec handled will vary widely and depend on
i) the network-application; ii) the dsate-distribution mechanism; and iii) the
consstency overhead one must pay for maintaining (reading/writing) network state.
However, the authors in [130] argue that such consstency need only be maintained
on a per network event timescale (hundreds or thousands/sec), instead of a per-flow
(millions/sec) or per-packet (billions/sec) timescale. And so maintaining (eventual)
consstency for a (relatively) small number of events per sec is what allows the
Controller to scale.

b) Another fact worth noting about the resultsin [143] is that they are produced from a
Controller running on a single server. In our prototypes we used NOX which is also

designed to run on a single server. However more advanced (commercial) network-

T For example, routet/switch CPUs are typically several generations behind server CPUs.
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OSes [129] are designed to run on multiple servers to account for performance scale
and redliency, which are key requirements in production networks. In [129] the
authors also argue for the use of well-known, general-purpose techniques from the
distributed-systems community, for the problem of state distribution and maintaining
consstency and resiliency, in lieu of more specialized distributed routing protocols.

In most cases today we find that what limits throughput is not the Controller
performance, but the switch CPU performance. The rate at which the switches
generate events for the controller (like packet-ins), as well as the rate at which flow-
messages from the Controller take effect in the data-plane, are both limiting factors.
The primary cause is poor switch-ASIC to CPU bandwidth. We believe that as SDN
popularity increases, systems will be built which will optimize for this mode of

operation thereby bringing down the timescales involved.

d) The other issue in controller scaling is that of geographical scale. In wide-area

networks, not only isit necessary to have the network-OS be supported over multiple
servers at one geographic location, but it is likely that controllers will be located in
multiple geographic locations, both within an AS and across multiple ASes. Naturally
some Controller-to-Controller communication mechanism will be required. While
gill early days for SDN use in the wide-area, potential solutions have been discussed

in[131]. We anticipate thisto be arich area of networking research in the near future.

Latency: Another sgnificant objection to centralized decison making is the

round-trip-time (RTT) it takesto go ‘ outside-the-box’ to a controller for decisons. While

it istrue that thereisa cogt, the actual effect on network performance can vary depending

on the way SDN is deployed.

If deployed in a way that every new flow must be routed ‘reactively’ by sending the

first packet of the flow to the controller, then the RTT cost must be paid. The RTT is

composed of the following times:

1.

Time to generate an event (and its corresponding message) in a switch

* Examples are Zookeeper, Dynamo, Cassandra etc.
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Time to propagate the event message to the controller
Time for the controller to act on the event and make a decision

Time for the decison to be propagated back to the switch

a b~ 0N

Time for the decison to actually take effect in the switch

Time intervals for #2, 3 and 4 collectively have been measured in the 100's of
microseconds for local controllers that perform basc routing of flows [130]. This
corresponds to controller throughputs of hundreds of thousands of flows per sec. In the
wide-area the propagation times (#2 and #4) would increase, implying the need for
placing controllers optimally. And as we have mentioned before, while today’ s switches
exhibit longer times for #1 and #5, we expect that optimized switching systems will
reduce this time component. Nevertheless an RTT cost must ill be paid for the first
packet of a new flow in this mode of operation.

But there is another mode of operation that can keep latencies low. For example,
wide-area networks are often pre-planned (both MPLS and circuit) where primary paths
for flows have backup paths and secondary backup paths that the switches are already
aware of and can switch to for fast-failover. Such ‘proactive mechanisms are possible in
SDN as well. The Controller can pre-compute and download primary and backup
information in the switches beforehand, so that packets stay in the data plane when
failures happen.

Another mechanism involves the use of default paths for all new flows. Such paths
are aready pre-ingalled (with lowest priority of match) in the switches chosen to be
along the default path (possibly the shortest path). This way, data packets never leave the
data-plane. Occasionally the controller samples the packets matching the default flow (by
using something like sFlow [144]), and figures out what to do with them — again in this
scheme new flows do not suffer the RTT cost [132].

Application Isolation: One of the defining characteristics of the common-flow
abstraction is the ability to determine and resolve conflicts between decisions made by

different network applications running on the same network OS. The basic idea isto help
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extensbility by not requiring new network applications to take into account other
applications aready in play.

Our implementation of the abdraction does not provide this isolation
comprehensvely. For example, prioritizing (how event-handlersin different applications
are called for the same event) helps - one could write an application for a specific case of
amore generic event, prioritize its event handler higher than the generic handler and then
stop execution of the event after the special handler deals with it. But it does not provide
isolation generically. Even with event prioritization, an application writer has to take into
account all other applications that have subscribed to that event, which in-turn sometimes
requires knowledge of how that application handlesthe event.

Some early and interesting work that takes a different approach to application-
isolation can be found in [133].

OpenFlow: The OpenFlow protocol serves as a switch-interface that instantiates of
the common-flow abstraction. However the protocol has some limitations in terms of its
dructure (c-structs instead of TLVsor protobufs), and in the recent past it did not model
real switch hardware well enough. The latest verson of the protocol overcomes some of
the limitations (multiple-tables in v1.1) and a new industry organization (the Open
Networking Foundation) has been formed to further the development of the protocol
[134]. The other factor involving hardware abstraction is that OpenFlow requires the
ability to perform very flexible packet matching (combination of L2-L4), something that
can be performed with TCAMSs, but current hardware has small TCAM space. Instead
they have large tables that can perform specific matches (just for L2 or just for L3). We
expect that as more switches come to market optimized for OpenFlow this may change as
well. Similarly our extensons to the protocol for circuit-switching are experimental and
not comprehensve — for example, OTN switching is not supported and waveength
switching has only rudimentary support. But with the formation of the ONF, it is
expected that the ability to control all kinds of circuit switches will eventually be
included in the OpenF ow specification as well.
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6.2.2 Applying pac.c to Other Network Domains

Recently there has been discussion of introducing optical switching in non-traditional
networking domains such as datacenters [135, 136]. The advantages of optical circuit
switching (guaranteed bandwidth, low-latency, creating new packet-links etc.) working in
paralld with traditional packet switching has been recognized. Furthermore, in all
proposals, OpenFow and SDN ideas have been used or proposed in the control plane for
control of packet and circuit switches[137].

We have smilar views. While in this thes's, we have focused on traditional use of
circuit switching in WANS, a lot of our ideas and conclusions can be transferred to other
networking domains. The references mentioned above largdly treat packet and circuit
switching as parallel networks accessble to Top-of-Rack (ToR) switches. In addition, we
believe that optical switching can be integrated into a packet-network as well in limited

or extensgve ways.

EoR Fiber links o

~ Optical

Copperor
0P Switch |
Fiber Links e
Ed \
. ,'t Y

@) (b)
Fig. 6.2 Integrated Approaches for Packet and Circuit Switching in Datacenters

Under one congruction (Fig. 6.2a), we can introduce small optical cross-connectsin-
between the levels of packet-switching hierarchy, with the specific purpose of creating

new links between the switches they interconnect at different levels. These links are
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created when needed, to augment the bandwidth available between switches and routers.
With this congruction, we can temporarily change the over-subscription ratio by
redirecting bandwidth when needed for as long as it is needed. For example, if the link
between ToR1 and EOR1 is congested, we create a new link by cross-connecting their
spare interfaces inside the optical fiber-switch. At alater time, if necessary, EOR1s spare
interface can be connected to a different ToR switch.

In another congruction (Fig. 6.2b), our IP-and-DCS design choices in Chapter 4
could trandate to the datacenter as well. For example, a cluster of servers can be created
with high bisection-bandwidth and low latency by using one-hop paths between all ToR
switches. These ToR switches essentially take the place of the Access Routersin the | P-
and-DCS WAN design. The one-hop paths between all ToR switches are supported by a
full-mesh of dynamic-circuits between Packet-Optical switches. As before our unified
control architecture is adopted to make the full mesh realizable; and to control the
dynamic interaction between packets, circuitsand services.

We expect that there will continue to be interest in applying packet and circuit
switching together in datacenters and possbly even enterprise campus-networks. We
believe that such constructions can avail of the benefits of both switching technologies

only if used from a common application viewpoint that our control architecture provides.
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Packet & Circuit Switches

In Chapter 1 we briefly touched on the internal structure of a typical circuit switch (Fig.
1.8), including input /output ports or linecards and a switching fabric. Depending on
whether this fabric is digital or optical, there may be “Phy” chips on the linec-ards; and
depending on whether it’s a wavelength, time-slot or fiber switch, there may be another
chip doing time-glot interchange or wave ength mux/demux. On the other hand, there are

many more functions that are performed by packet switches. Table A.1 lists most of these

functions.
Fiber Switch | WDM Switch TDM Packet Switch
Switch
Fabric Mux/Demux Phy Phy
Fabric TSI Parsing
Fabric Lookup

Modifications
Fabric
ACLs
Queuing
Policing
Policy Routing
Congestion Avoidance
QoS
Sampling & Mirroring
Hashing

Table A.1: Comparison of Packet and Circuit switching functions
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PACKET & CIRCUIT SWMTCHES

Comparing the switches sde by side, it is reasonable to expect that since packet

switches do much more, and they do it at a much smaller granularity and in much faster

time scales than a circuit, it would come at the cost of power, sze and price. When we

compare real-world values, it matches our expectation quite well. Table A.2 ligs four

high capacity high-end switches— 3 circuit switches and 1 packet switch. It also lists their

power consumption, volume and price. The price numbers are relative numbers derived

from [82] - a good rule of thumb would be to multiply the numbers with $1000 to get

absolute values.

Fiber Switch | WDM Switch | TDM Switch Packet Switch
Glimmerglass Fujitsu Flashwave Ciena Cisco
105600 7500 CoreDirector CRS-1
B/w 1.92 Tbps 1.6 Thps 640 Gbps 640 Gbps
Power 85W 360 W 1440 W 9630 W
Volume 7" x17" x 28" 23" x 22" % 22" 84" x 26" x 21" 84" x 24" x 36"
Price <50 110.38 83.73 884.35

Table A.2: Power consumption, Size and Price Comparison

Price Calculations:

IProuter: 1 chassis(16.67) + 16 dot cards (9.17 x 16) + 32 10GELR port cards
(4.20 x 32) + 32 OC192P0S (18.33 x 32) = 884.35; Normalized Price: 884.35/640
= 1.38/Gbps

TDM switch: 1 chasss (13.33) + 32 OC192 (1.67 x 32) + 32 10GE (
(0.7+2x0.18) x (32/2) ) = 83.73; Normalized Price: 83.73/640 = 0.13 /Gbps
WDM switch: 1 chassis (2.5) + 12 degree, 40 channd ( 8.99 x 12 ) = 110.38;
Normalized Price: 110.38/1600 = 0.069 / Gbps

Fiber switch: 50/1920 = 0.026 / Gbps
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It is more ingtructive to normalize each of these numbers with their switching
bandwidth and then compare to the fiber switch (Table A.3). Clearly we see that thereisa
sgnificant jump in going from optical to electrical switching fabrics. But even comparing
the CRS-1 to a TDM switch which has a digital switching fabric, the former consumes 7
times the power and costs 10 times more.

As mentioned in Chapter 1, the objective of this exercise is not to say that the
switches are equivalent because clearly they are not. They perform functions very
differently. The objective is to say that there are some functions that circuits are
exceedingly good at — like recovery, guarantees and on-demand-bandwidth; such that if
we diminate circuits and replace those functions with packets, we end up paying with

higher operational and capital costs (as showed in Chapter 4).

Fiber Switch | WDM Switch | TDM Switch Packet Switch
Glimmerglass Fujitsu Flashwave Ciena Cisco
105600 7500 CoreDirector CRS-1
B/w 1 1 1 1
Power 1 W/Ghps 5 51 332
Volume 1 in*/Gbps 4 41 65
Price 1 S$/Ghps 3 5 53

Table A.3: Normalized Values




Appendix B

Switch API

Our switch-API is modeled on version 1.0 of the OpenFlow protocol for packet switches.
It coversthe components and basic functions of circuit switches based on switching time-
dots, wavelengths and fibers. It also covers hybrid-switches with both packet and circuit
interfaces and/or switching fabrics, and includes provisions for mapping packet-flows to
circuit-flows. The entire API is presented in [36] — here we cover the main features.

Describing a Physical Circuit Port

struct of p_phy_cport {
uint16_t port_no;
uint8_t hw addr[ OFP_ETH_ALEN] ;
char name[ OFP_MAX_PORT_NAME_LEN]; /* Null-term nated */

uint32_t config; /* Bitmap of OFPPC * flags. */
uint32_t state; /* Bitmap of OFPPS_* flags. */

/* Bitmaps of OFPPF_* that describe features. Al bits zeroed if
* unsupported or unavail able. */

uint32_t curr; /* Current features. */

uint32_t advertised; /* Features being advertised by the port. */
ui nt 32_t support ed; /* Features supported by the port. */
uint32_t peer; /* Features advertised by peer. */

/* Extensions for circuit switch ports */
uint32_t supp_sw tdmagran; /* TDM switching granularity OFPTSG * flags */

uintl6_t supp_swype; /* Bitmap of switching type OFPST_* flags */
uintl6_t peer_port_no; /* Discovered peer's swi tchport nunber */
uint64_t peer_datapath_id; /* Discovered peer's datapath id */

uint16_t num bandwi dt h; [* ldentifies nunber of bandwi dth array elens */
uint8_t pad[6]; /[* Align to 64 bits */

uint 64_t bandwi dt h[0]; /* Bitmap of OFPCBL_* or OFPCBT_* flags */
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/* following capabilities are defined for circuit switches */

OFPC_CTG_CONCAT
OFPC_VI R_CONCAT
OFPC_LCAS
OFPC_POS
OFPC_GFP
OFPC_10G_WAN

PR RRRR

<<
<<
<<
<<
<<
<<

31,
30,
29,
28,
27,
26

/* The following have been added for WAN interfaces */

OFPPF_X
OFPPF_OC1
OFPPF_0C3
OFPPF_OC12
OFPPF_0C48
OFPPF_0C192
OFPPF_OC768
OFPPF_100GB
OFPPF_10GB_WAN
OFPPF_OTUL
OFPPF_OTW2
OFPPF_OTU3

RPRRPRRRPRRPRRERREER

1

<<20,
<<21,
<<22,
<<23,
<<24,
<<25,
<<26,
<<27,
<<28,
<<29,
<<30,
<<31

Specifying a Cross-Connection

struct of p_connect {
uint16_t wildcards;

uint16_t num conponents;

uint8_t pad[4];

uintl6_t in_port[0];
uint16_t out_port[0]

struct
struct

of p_tdm port
of p_tdm port

struct
struct

}s

of p_wave_port

Specifying a TDM port
struct of p_tdmport {

uintl6_t tport;

uintlé t tstart;

uint32_t tsignal;
s

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

in_tport[0];
out _tport[0];

i n_wport[O0];
of p_wave_port out_wport[0];

[* port numbers in OFPP_* ports

/* Contiguous concat on all TDM ports. */
/* Virtual concat on all TDM ports. */
/* Link Capacity Adjustnent Schene */
/* Packet over Sonet adaptation */
/* CGeneric Fram ng Procedure */
/* native transport of 10G WAN_PHY
on OC-192 */
Dont care applicable to fiber ports */
51.84 Mops OC- 1/ STMO0 */
155.52 Mips OC-3/STM 1 */
622.08 Mps OC- 12/ STM 4 */
2.48832 Gops OC 48/ STM 16 */
9. 95328 Gops OC- 192/ STM 64 */
39. 81312 CGbhps OC- 768/ STM 256 */
100 Ghps */
10 Gbps Ethernet WAN PHY (9.95328 Ghps) */

OTN OTU-1 2.666 Gops */
OTN OTU-2 10. 709 Gbps */
OTN OTU-3 42. 836 Gbps */

/*
/*

identifies ports to use bel ow */
identifies nunber of cross-connects
to be made - numarray elens */

/[* Align to 64 bits */

*/
*/

or virtual
or virtual

r eal
r eal

/*
/*

OFPP_* ports -
OFPP_* ports -

/* Description of a TDM channel */

/* Description of a Lanbda channel */

*/

[* starting time slot */
/* one of OFPTSG * flags */

/* Minimum switching granularity of TDM physical ports available in a datapath. */

enum of p_tdm gran {
OFPTSG_STS 1,

/*

STS-1

/ STMO */
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*/

*/

OFPTSG_STS_3, /[* STS-3 [ STM1 */
OFPTSG_STS_3c, /* STS-3c [ STM1 */
OFPTSG_STS 12, [* STS-12 | STM4 */
OFPTSG_STS 12c, [* STS-12c | STM4c */
OFPTSG_STS 48, /[* STS-48 | STM 16  */
OFPTSG_STS_48c, [* STS-48c [ STM 16¢c */
OFPTSG_STS 192, [* STS-192 | STM 64  */
OFPTSG_STS_192c, [* STS-192c /| STM 64c */
OFPTSG_STS 768, /* STS-768 | STM 256 */
OFPTSG_STS _768c /* STS-768c /| STM 256¢ */
s
Specifying a lambda channel
struct of p_wave_port {
uintl16_t wport; /* restricted to real port nunbers in OFPP_* ports
uint8_t pad[6]; /[* align to 64 bits */
uint64_t wavel ength; /* use of the OFPCBL_* flags */
s
enum of p_port _| am bw {
OFPCBL_X =1<<0,/*1if fiber switch, 0 if wavelength switch */
OFPCBL_100_50 =1 << 1,/* 1 if 100GH channel spacing, 0 if 50GHz */
OFPCBL_C L =1<<2,/* 1 if using Cband frequencies, 0 if L-band
OFPCBL_0sC =1<<3,/* 1if supporting OSC at 1510nm O if not */
OFPCBL_TLS =1<<4,/* 1if using a TLS, 0 if not */
OFPCBL_FLAG =1 << 5 /* 1 if reporting wave-support, O if reporting used
waves
s

Circuit flow setup, modification and teardown (controller-> datapath)

struct ofp_cfl ow nmod {

struct of p_header header;
uint1l6_t command; /* one of OFPFC * commands */
uintl6_t hard_tineout; /* max time to connection tear down,

if O then explicit tear-down required
uint8_t pad[4];
struct of p_connect connect; /* 8B foll owed by variable |l ength arrays
struct of p_action_header actions[0]; /* variable nunber of actions */

}s

Action structure for OFPAT_CKT_OUTPUT, which sends packets out of a
port

struct of p_action_ckt_output {

*/

*/

circuit

uintl6_t type; /* OFPAT_CKT_CQUTPUT */

uintl6_t len; /* Length is 24 */

uint16_t adaptation; /* Adaptation type - one of OFPCAT_* */
uintl6_t cport; /* Real or virtual OFPP_* ports */

/* Define the circuit port characteristics if necessary */
uint64_t wavel engt h; /* use of the OFPCBL_* flags */

uint32_t tsignal; /* one of the OFPTSG * flags. Not valid if



used with of p_connect for TDM signal s

uintl6é_t tstart; /* starting tine slot. Not valid if used
with of _connect for TDM signals */

uintlé_ t tlcas_enable; /* enabl e/ di sabl e LCAS */
s

Port Status: physical circuit port has changed in the datapath

struct of p_cport_status {
struct of p_header header;
uint8 t reason; /* One of OFPPR *. */
uint8_t pad[7]; /[* Align to 64-bits. */
struct of p_phy_cport desc;

s
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Appendix C

Network API

We present a sampling of the network-APlI we used in the prototypes discussed in
Chapters 2, 3 and 5.

/!l Create a virtual port as an interface between packet and circuit
/1 switching donains
void createVirtual Port(uint64_t switchld, uintl6_t vportld);

/1 Update virtual port with circuit-flows defined by ofp_tdm port.
/1l @nsert true adds circuits to the vport, false del etes them
/1 @flomd caller-defined IDto identify circuits
voi d updat eVcgWthCfl ow(uint64_t switchld, uintl1l6_t vportld,
struct of p_tdmport& tpt, bool insert, uint32_t cflowmd );

/1 Update virtual port with packet-flows defined by of p_match
/1 Currently bidirectional packet flows are created such that:

/1l -- vlan tags are added to packet that match before being forwarded

/1 out of the virtual port

/1 -- van tags are matched in the reverse direction along with virtual -ports as
/1 in_port

/1l @nsert true adds pernmanent packet-flows to the vport, false deletes them

/1 @flowmd caller-defined cookie to identify pernmanent fl ows

voi d updat eVcgWthPfl ow(uint64_t switchld, uintl6_t vportld, ofp_natch pflow,
uint16_t vl anid, bool insert, uint64_t cookie );

/1 Poll port stats for virtual port
voi d poll PortStatsReq(uint64_t switchld, uintl6_t vportld);

/'l Increase bandwi dth al ong the path defined in Route.

/1 @addBw bandwi dth to add in Mps. |If bandwi dth is quantized (eg. tinme-slots)
/1 t he cl osest val ue not greater than addBw will be used

voi d i ncreaseBandwi dt h(ui nt 32_t addBw, Route& path);

/'l Increase bandwi dth al ong the path defined in Route.
voi d decreaseBandwi dt h(ui nt 32_t del Bw, Route& path);
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/1l Create a bidirectional cross-connection defined in tptl and tpt2
/1l as part of the circuit flowidentified by cflowd
voi d addXconn(uint64_t switchld, struct of p_tdmport& tpt1l,

struct ofp_tdmport& tpt, uint32_t cflowmd );

/1 Delete the bidirectional cross-connection identified by cflowd
voi d del eteXconn(uint64_t switchld, uint32_t cflowd );

/1 Setup a 'flow along a non-MPLS tunnel 'route' - thus the definition
/1 of aflowis the sane at each switch along the route. The only action
/1 applied is OFPAT_OUTPUT. Everything in Flow should be in network byte order.
/1 @w_inport and @w_ outport refer to the ports where packet enters and exits
/1 the network, and shoul d be specified in host byte order
bool setupFl ow nl PRout e(const Fl ow& fl ow, const Routi ng_nodul e: : Rout e& rout e,
uint16_t nw_.inport, uintl6_t nw outport,
uint16_t flow tinmeout );

/1 Setup a 'flow along a 'route' which includes an MPLS tunnel.
/1 Instead of the informati on passed in @route', we use

/1 -- @rcBr (tunnel-head) label information @rcQutlLabel is pushed and outport
/1 @rcOp is used

/1 -- @stBr (tunnel-tail) the flow definition changes to the physical in-port
1/ @ist | nPort

/1 Everything in Flow should be in network byte order.
/1 nw_inport and nw outport refer to the ports where packet enters and exits the
/1 network, and shoul d be specified in host byte order
bool setupFl ow nTunnel Route(const Fl ow& fl ow, const Routi ng_nodul e: : Rout e& route,
uint16_t nw_.inport, uintl6_t nw outport,
uint16_t flow_ timeout, datapathid srcBr,
uint16_t srcQ, uint32_t srcCutlLabel,
datapathid dstBr, uintl1l6_t dstlnPort);

/1 Setup an LSP - we do not support LSP paths with size < 2 - ie LSP nust

/1 traverse at |east 3 nodes including headend and tailend switch. W always do

/1 Penultimte Hop Popping due to lack of nultiple tables in switch. Associate

/1 tunnelld tide with TE tunnel

bool setuplLsp(Cspf::RoutePtr& route, tunn_elen& te, uintl6_t payl oad_et htype,
tunnel I d tid);

// LSP flow entries are renpved in swtches between the head and tail ends.

/1 flowentries in the head and tail ends will idle-timeout when the

/1 Isp is no longer used - we assume this is true when this function is called
bool teardownLsp(tunnelld tid, uintl6_t payl oad_ethtype);

/!l To re-route flow over tunnel, sends a flow _nod nessage

/1 to head-end and possibly tail-end routers

voi d rerout eFl ows(tunnel Id newid, datapathid srcBr, datapathid dstBr,
tunnel I d ol dtid);

/1 Route flow only over IP links (no tunnel-Ilinks)
voi d rout eFl om Fl ow& flow, datapathid br);

/1 Asks for flow stats fromswitch for the correspondi ng tunnel
/1 Does not request fromtunnel head-end as we do not know what is matching
/1 and going into the tunnel. Thus it asks the switch that is the next-hop
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/1 fromthe tunnel head-end.
voi d sendTunnel StatsReq(tunnelld tid);

/1 Gven an explicit route in 'route', verifies that a route can be found

/1 along the explicit path which neets the bandwi dth and priority constraints.

/1 Note that the caller nmay only specify the datapathids in 'route' and not the

/1 ports. In that case, the function popul ates the outport and inport for each

/1 1ink in the 'route'. If this route were to be installed, the caller MJST

/1 then submt a call to get_route. If this route could potentially eject

/1 sone lower priority tunnels, then the tunnel _ids of those tunnels are reported

/1 in "eject'. This function does NOT assune that the 'route' is eventually

/1 installed, nor does it assune the 'eject's are actually ejected.

/1 Finally, like get_route, this function is applicable only to routes for

/1 new tunnel s, NOT existing ones. After checking, if the caller w shes to

/1 enable this new tunnel route, they can use get_route

bool check_explicit_route(RoutePtr& route, uint32_t resBw, uint8_t priority,
std::vector<uint1l6_t>& eject);

/1 Gven a tunnel-id for an existing tunnel together with it's existing route

/1 (including port numbers), current reserved bandwdith and priority, this

/1 function checks if a new_reserved bandwi dth is possible along the sane route.

/1 If it is possible, the function returns true.

/1 If it is possible, but requires ejecting other |ower priority tunnels, the

/1 function returns true and popul ates the woul d-be-ejected tunnel _ids

/1l in 'eject'.

/1 If it is possible, but requires using a new route, the function returns true,

/1 clears the 'route', popul ates the new 'route', and sets 'newroute' to true.

/1 If additionally the new 'route', bunps off |ower priority tunnels, their

/1 tunnel _ids are returned in 'eject’

/1 This is a check - the function does not assune that the bandw dth reservation

/1 changes or new routes are installed or any tunnels are actually ejected.

bool check_existing_route(RoutePtr& route, uint32_t currResBw, uint8_t priority,
tunnelld tid, uint32_t newResBw, bool & newoute,
std::vector<uint1l6_t>& eject);

/1l I'n response to check_existing_route, the caller may decide to alter the
/1 existing route. The caller inforns Cspf of the changes using
/1 set_existing_route. 'route is the existing route (when check_exi sting_route

/1 was called). if the route has since changed, then newoute is true and the new

[/l route is in 'newroute'. If the caller

/'l ejected routes to establish either the 'newResBw , or the 'new route', it

/1 informs GCspf of the ejected tunnels in 'ejected

void set_existing_route(uintl6_t tid, uint8_t priority, uint32_t currResBw,
uint32_t newResBw, RoutePtré& route, bool newoute,
Rout ePtr& new route, std::vector<uintl6_t>& ejected);

/'l rerouteEjectedTunnels is called whenever a call to GCspf::get_route returns
/1 tunnel ids of LSPs ejected due to CSPF routing with priorities. Tunnels may
/1 also be ejected as a result of auto-bandw dth. This function performs the
/1 foll ow ng sequence of steps:

/1 1) It asks Cspf::get_route for a new route for the ejected tunnel

/1 2) It creates a new LSP over the new route and gives it a new tunnel-id and
/1 updates the R b and tunnel _db with characteristics of the old ejected tunnel
/1 3) nmoves flows fromthe ejceted-LSP to the newy created one

/1 4) renmoves (un-installs) the ejected LSP fromthe data-pl ane

voi d rerout eEj ect edTunnel s(tunnld etid);



Appendix D

Lines of Code Comparison

In this Appendix, we present the details of the Lines-of-Code analyss, the results of
which were discussed in Chapter 3.

Table D.1 presents the output of CLOC for two open-source projects that have
implemented OSPF-TE and RSV P-TE. The former is from the Quagga project [63]. Note
that we have only accounted for the ospfd implementation, not any of the other routing
protocols that are part of Quagga. Also the Quagga suite does not include RSVP-TE. We
use the IST-Tequila project implementation for RSVP-TE [64, 65].

quagga-0.99.18/ospfd

Language files blank comment code
C 26 6650 4276 32046
C/C++ Header 24 559 923 2198
make 1 12 1 25
SUM: 51 7221 5200 34269

rsvpd.0.70-rc2/rsvpd

Language files blank comment code
C 78 7875 9866 45740
C/C++ Header 55 1297 2043 4243
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make 7 125 71 302
Bourne 1 19 20 151
SUM: 141 9316 12000 50436

Table D.1: IP/MPLS Control Plane Implementation
The UNI is typically ingtantiated usng a sgnaling protocol like RSVP-TE with
auitable extensions [22]. Table D.2 shows an implementation of the OIF UNI from the
IST-MUPBED project [66, 67].

rsvp-agent

Language files blank comment code
Bourne 8 3045 4334 23500
C++ 21 1080 858 8006
m4 1 770 20 6206
Java 30 626 748 1499
C/C++

Header 20 257 501 1177
Python 2 153 380 683
make 3 5 6 13
Bourne 1 1 0 2
SUM: 86 5937 6847 41086

Table D.2: UNI Implementation

Finally the GMPLS protocols for the transport network control plane include further
extensons of the MPLS control plane protocols — OSPF-TE and RSVP-TE. Such
extensons have been standardized [20] and Table D.3 shows implementations of the
GMPLS protocols by the DRAGON project [68, 69]. Note that in accounting for the
latter, we are ignoring the code required for the proprietary interfaces in the transport

network vendor idands.
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Language files  blank comment code

C 30 7113 4102 35514

C/C++ Header 26 618 1014 2522

make 1 9 1 36

SUM: 57 7740 5117 38072
dragon-sw/kom-rsvp
Language files  blank comment code
C++ 85 4384 3745 31004
C/C++ Header 106 2395 2733 11851
Bourne 10 1299 1313 11146
C 2 128 128 821
Tcl/Tk 5 123 146 644
yacc 2 119 48 642
m4 1 20 57 476
make 12 92 3 344
Java 9 37 66 227
lex 2 37 46 109
ASP.Net 1 5 0 41
Perl 1 1 0 18
SUM: 236 8640 8285 57323

Table D.3: GMPLS Control Plane Implementation
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In Table D.4, to implement the network function using our control solution requires
only 4726 lines-of-code — two orders of magnitude lesser than the industry solution.

nox/src/nox/coreapps/aggregation

Language files blank comment code
Python 4 808 549 2634
C++ 3 56 10 253
C/C++ Header 4 65 88 137
XML 1 5 6 54
make 1 19 0 46
SUM: 13 953 653 3124

nox/src/nox/coreapps/circsw

Language files  blank comment code
C++ 1 198 208 1243
C/C++ Header 2 138 88 459
make 1 9 0 19
XML 1 8 0 14
SUM: 5 353 296 1735

Table D.4: Control-Function Implementation with Unified Control Architecture

The base code of NOX isroughly 67,700 lines of code (Table D.5 and [51]) to which
we have added 1100 lines to support circuit-switching - OpenFlow extensions for
circuits, a discovery module and a circuit-API. The Quagga software suite is based on the
zebra-daemon and related libraries. A lines-of-code estimate for this base code is shown
in Table D.6, where we have not included the protocol implementations for all the
protocols found in the software suite (OSPF, OSPFV6, 1SS, RIP, RIPnG, and BGP as

well as vtysh, ospfclient, tools directories are not included).



Language files blank comment code
C++ 161 6129 5647 37161
C/C++ Header 217 4806 11106 16190
Python 125 3623 5140 13516
make 60 522 63 2004
m4 26 117 14 1542
Bourne 40 180 231 1262
C 3 138 142 901
CSS 1 25 10 462
Bourne Again Shell 3 34 77 360
sQL 1 37 104 203
Perl 2 18 0 178
HTML 4 24 1 145
XSD 2 6 0 50
SUM: 645 15659 22535 73974
Table D.5: NOX Base Lines of Code
Language files blank comment code
C 95 9137 7098 48255
Bourne 10 4151 6911 25102
m4 7 1044 313 9275
C/C++ Header 52 1159 2164 3573
Bourne 8 67 85 351
make 10 75 55 241
awk 2 37 89 129
SUM: 184 15670 16715 86926

Table D.6: Quagga Base Lines of Code
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