
Where do actions come from?
Autonomous robot learning of objects and actions

Joseph Modayil and Benjamin Kuipers
Department of Computer Sciences
The University of Texas at Austin

Abstract

Decades of AI research have yielded techniques for learn-
ing, inference, and planning that depend on human-provided
ontologies of self, space, time, objects, actions, and proper-
ties. Since robots are constructed with low-level sensor and
motor interfaces that do not provide these concepts, the hu-
man robotics researcher must create the bindings between the
required high-level concepts and the available low-level in-
terfaces. This raises the developmental learning problem for
robots of how a learning agent can create high-level concepts
from its own low-level experience.
Prior work has shown how objects can be individuated from
low-level sensation, and certain properties can be learned for
individual objects. This work shows how high-level actions
can be learned autonomously by searching for control laws
that reliably change these properties in predictable ways. We
present a robust and efficient algorithm that creates reliable
control laws for perceived objects. We demonstrate on a
physical robot how these high-level actions can be learned
from the robot’s own experiences, and can then applied to a
learned object to achieve a desired goal.

Motivation
This paper proposes a method for a robot to autonomously
learn new high-level actions on objects. The motivation for
this work is to understand how a robot can autonomously
create an ontology of objects that is grounded in the robot’s
sensorimotor experience. This developmental learning ap-
proach is inspired by the observation that infants incremen-
tally acquire capabilities to perceive and to act (Mandler
2004; Spelke 1990).

High-level symbolic AI has many techniques for learn-
ing, inference, and planning that operate on representations
of self, space, time, objects, actions, and properties (Rus-
sell & Norvig 2002). However, robots have low-level sensor
and motor interfaces that do not provide these conceptual
abstractions. This raises the developmental learning ques-
tion of how an agent can automatically generate these ab-
stractions. Prior work has demonstrated methods for build-
ing ontologies of self and space (Pierce & Kuipers 1997;
Philipona, O’Regan, & Nadal 2003). Building on re-
search that demonstrates how objects representations can

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

arise (Modayil & Kuipers 2004; 2006), this work demon-
strates how actions for objects can be acquired.

We propose to create actions by learning control laws that
change individual perceptual features. First, the algorithm
uses an unsupervised learning method to find an effective
threshold of change for the feature. This threshold is used
to find perceptual contexts and motor commands that yield
a reliable change in the perceptual feature. After control
laws are generated, the robot autonomously tests their per-
formance.

The following sections describe the problem formulation,
the algorithm, and the evaluation of the autonomous learning
process.

Actions for Objects
People and robots use a finite set of sensor and actuator ca-
pabilities to interact with the effectively infinite state of the
environment. To manage the inherent complexity, people
generate high-level abstractions to facilitate reasoning about
a problem and planning a solution. Abstraction must also
occur within a developing agent in order to learn models
of the reliable portions of its sensor and motor experience.
As a concrete example, an infant gradually learns to per-
ceive nearby objects and to manipulate them into desired
states. Previous work has demonstrated how a robot can
autonomously learn models of objects. These models intro-
duce new state variables that the robot can compute from its
observations, but it does not yet know how to control. This
work shows how the robot can learn at least partial control
over these new state variables.

This work thus helps to bridge the ontological gap be-
tween the representations of actions used in high-level logi-
cal formulations and those used for low-level motor control.
At the high level, actions can be represented with add-lists
and delete-lists for STRIPS-style world descriptions with
discrete symbolic states. This representation is useful for
creating deep plans with multiple types of actions, but it re-
lies on the existence of hand-crafted control laws to realize
the actions in the continuous world. At the low level, ac-
tions are often represented as control laws or forward mo-
tion models operating on continuous low-dimensional state
spaces. These representations support motion planning, but
do not explain how new state representations can be incor-
porated.

 0

 1

 2

 3

 4

 5

-100 -80 -60 -40 -20 0 20 40 60 80 100

R
a
n
g
e

Angle

Background
Object

Object

Background

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

(a) Scene (b) Background (c) Sensor Image (d) Object Shape

Figure 1: A scene can be explained with a static background and moving objects. The sensor returns from a rigid object can be
used to form a consistent shape model. The robot can infer the object’s pose by using the shape model and the sensor image
and the map.

In summary, people and robots both operate in a continu-
ous world with a fixed set of actuator capabilities. Abstrac-
tions of this continuous experience can facilitate planning.
The abstraction of the environment into objects is particu-
larly useful for robots. For this paper, we demonstrate how
a robot can autonomously acquire high-level object-directed
actions that are grounded in the robot’s sensor and motor
system.

Object control laws for a developing robot
The complexity of the real world presents a daunting chal-
lenge for an autonomous agent attempting intelligent behav-
ior. The agent must reason with finite resources about the
consequences of actions while the results of procedural rou-
tines for perception and action depend implicitly on the ef-
fectively infinite state of the world. One approach to tackling
this problem comes from looking at the origins of natural
intelligence. Infants develop skills and concepts from unsu-
pervised interaction with the environment. Some perceptual
and motor skills are provided by nature (and thus learned on
an evolutionary time-scale), while other skills and concepts
are learned autonomously by the individual (Mandler 2004;
Spelke 1990).

Work along these lines for robots have explored different
aspects of development, including the formation of ontolo-
gies of space for the robot’s body and environment (Pierce
& Kuipers 1997; Philipona, O’Regan, & Nadal 2003). Other
work has shown how the agent is capable of describing its
observations of the dynamic environment in terms of ob-
jects (Biswas et al. 2002; Modayil & Kuipers 2004), but
they do not provide actions that utilize these representations.

We describe the questions that must be addressed by
an object representation system for robots. Since this
work builds on the approach and representations developed
in (Modayil & Kuipers 2004), we describe how these ques-
tions are answered by that work and how the approach is
extended here.

What types of objects can the robot perceive? Non-static
objects are perceived by identifying failures of a static
world model. The robot maintains an occupancy grid
(Figure 1b) that represents portions of space that have
been observed to be vacant. When a sensor reading in-

dicates this space is not vacant at a later time, then some-
thing must have moved into the previously vacant space.
Thus, the presence of non-static objects is indicated by
inconsistencies between the static world model and the
robot’s observations.

What objects are perceived in the scene? People are skilled
at detecting objects (Figure 1a). The task is much harder
for robots. Objects can be perceived (and defined) by
clustering sensations that come from objects. In this ap-
proach, object hypotheses arise as explanations of senso-
rimotor experience, in particular, as explanations of the
portion of experience that is not modeled by allocentric
models of the static environment, but are sufficiently tem-
porally stable to improve the agent’s predictive capabili-
ties.

Where are the objects located? The location of an object
can be represented in multiple ways. In sensor coordi-
nates, the image of the object has a location in the sensor
array (Figure 1c). In world-centered coordinates, the ob-
ject’s center of mass has a location, and it has an extent.
If the object has a rigid shape, then its orientation (hence
pose) may also be represented.

What properties does an object have? A property for an
individual object can be either variable or invariant. The
position and orientation of an object is typically variable,
while an object is classified as rigid if its shape is invari-
ant. When an agent learns to act on objects, the condi-
tions under which the action is successful can become an
additional property of the object, its affordance for that
action (Gibson 1979).

What is the identity of each object? An invariant property
of an object may serve as a characteristic property, help-
ing to determine when two observations are of the same
individual object. A rigid object can be characterized by
its shape (Figure 1d) (Modayil & Kuipers 2006), while
constellations of features can characterize non-rigid ob-
jects such as faces and fingerprints.

Which properties can be controlled and how? What has
not been shown in prior work is how these newly defined
properties can be controlled. A robot may be able to re-
liably change a variable property of an object. We define

Property Dim
Robot pose position(robot,map) 2

heading(robot,map) 2
Object image mean(index(object image))) 1

min(distance(object image)) 1
Object pose position(object shape,map) 2

heading(object shape,map) 2

Figure 2: Perceptual properties learned previously by the
agent. In learning its self model, the agent has already
learned to control the robot pose properties. For the exam-
ple in this paper, the agent learns to control the properties
of the object image on its sensor array (the mean index of
the object image measures the egocentric heading to the ob-
ject). The robot also learns to control the object position in
the environment (Figure 4).

such a property to be controllable. Finding controllable
properties increases the portion of the perceptual space
over which the robot can form plans. A prime example of
a controllable property is the position of a free standing
object which the robot can move. The perceptual prop-
erties that the robot attempts learn to control are listed in
Figure 2.

Representing Features and Controls
At the low level, a robot and its environment can be modeled
as a dynamical system:

xt+1 = F (xt, ut)
zt = G(xt)
ut = Hi(zt)

(1)

where xt represents the robot’s state vector at time t, zt is the
raw sense vector, and ut is the motor vector. The functions
F and G represent relationships among the environment, the
robot’s physical state, and the information returned by its
sensors, but they are not known to the robot itself (Kuipers
2000).

The robot acts by selecting a control law Hi such that the
dynamical system (1) moves the robot’s state x closer to its
goal, in the context of the current local environment. When
this control law terminates, the robot selects a new control
law Hj and continues onward. An action is a symbolic de-
scription of the preconditions, the transfer function Hi, and
the effects of a reliable control law, suitable for planning.

The raw sensorimotor trace is a sequence of raw sense
vectors and motor controls.

〈z0, u0〉, 〈z1, u1〉, · · · 〈zt, ut〉, · · · (2)

Perceptual Features
In a more detailed model of the robot dynamical system,
the control laws Hi depend on perceptual features pj , rather
than the raw sense vector z. Let P = {pj |1 ≤ j ≤ n} be a
set of perceptual features,

pj(zt) = yj
t ∈ <nj ∪ {⊥} (3)

defined over the sense-vector z and returning either a real-
valued vector of dimension nj or failure (⊥). These percep-
tual features are created by the learning process that individ-
uates objects from their background and characterizes their
shapes (Modayil & Kuipers 2004; 2006). The features used
in our examples are listed in Figure 2.

The robot model (1) is updated:

xt+1 = F (xt, ut)
zt = G(xt)
yj

t = pj(zt) for 1 ≤ j ≤ n
ut = Hi(y1

t , · · · yn
t)

(4)

(A control law Hi will typically depend on only a few of the
available perceptual features {y1

t , · · · yn
t }.)

The learning algorithm describes changes in these percep-
tual properties and learns how to control them. We define the
term ∆pj(t) to refer to the change in pj .

∆pj(t) ≡
{

pj(zt)− pj(zt−1) when defined,
⊥ otherwise. (5)

For each perceptual feature pj , we can use the sequence
of values of that feature,

pj(z0), pj(z1), · · · pj(zt), · · · (6)

and the sequence of changes between adjacent values

∆pj(1),∆pj(2), · · ·∆pj(t), · · · (7)

We also define constraints on perceptual features. For a
scalar perceptual feature yj

t ∈ <1, we define an atom to be
an atomic proposition of the form yj

t ≥ θj or yj
t ≤ θj , where

θj is some appropriate threshold value.

Control Laws
Useful control laws are learned by collecting descriptions of
the effects of motor commands on perceptual features, in the
form of tuples,

〈pj , Q,C, R,Hi〉 (8)

• pj is the specific perceptual feature whose controlled be-
havior is the focus of this control law.

• The qualitative description Q is a high-level description
of how the control law affects a particular perceptual fea-
ture pj . For a scalar feature, Q ∈ {up, down}. For a
vector feature, Q ∈ {direction[pk] | pk ∈ P}, which is
used to signify that the feature pj changes in the direction
of feature pk.

• The context C describes the region in which the control
law is applicable, expressed as a conjunction of atoms,
C = ∧j(y

j
t ρjθj), where the relation symbol ρj ∈ {≥,≤

}.
• The result R describes the region of motor space from

which the control law draws its motor signals, also ex-
pressed as a conjunction of atoms, R = ∧i(ui

tρiθi),
where the relation symbol ρi ∈ {≥,≤}.

• The transfer function Hi is a process that takes the val-
ues of one or more perceptual features yj

t defining C and
generates a motor signal ut in R.

Learning Actions
The learning algorithm has the following steps:

1. Collect a trace of sensory and motor data (eqns 2, 6, 7)
from random or exploratory actions in the environment

2. Identify transitions in the trace where particular percep-
tual features pj exhibit a particular qualitative change Q.

3. Using these as positive training examples (and the rest as
negative training examples), apply a classification learner
to the space of sensory and motor signals to learn the re-
gion C × R in which the qualitative direction of change
Q is reliable.

4. Define a transfer function H : C → R, to specify the
motor output for a given perceptual input.

5. Evaluate each of the learned control laws by collecting
new observations while running that law.

Identify Qualitative Changes
For each scalar feature pj , select a threshold εj > 0. Label
some of the ∆pj(t) in (7) with Q ∈ {up, down}.

∆pj > εj → up
−∆pj > εj → down

(9)

For a vector feature pj , Q ∈ {direction[pk]}. For some
thresholds εj , ε

′
j > 0 ,

||∆pj || > εj ∧ 〈∆pj ,pk〉
||∆pj ||·||pk|| > 1− ε′j → direction[pk]

(10)
In order to provide qualitative labels for a sequence of

changes (7), we must determine the relevant values for εj .
For a given feature pj , a histogram of values {∆pj(t)} is
collected and smoothed with a Gaussian kernel. If possible,
εj is chosen corresponding to a significant local minimum in
this distribution, defining a natural division between values
near zero and those above. If this is not possible, then εj

is set to the value about two standard deviations above the
mean of {||∆pj(t)||}. The value of ε′j is set similarly, but
a search for a control only proceeds if a natural minimum
exists for some property pk.

Classification Learning
We train a classifier to predict the occurrence of qualitatively
significant change in ∆pj(t). Using the sensor trace, signifi-
cant changes are labelled as positive examples, and all other
examples are labelled as negative. Then, standard super-
vised classifier learning methods (Mitchell 1997) can learn
to distinguish between portions of the sensorimotor space
where the desired qualitative change is likely, and those por-
tions where it is not.

Because of our focus on foundational learning, the repre-
sentations for C and R are both simple conjunctions of con-
straints, and the constraints are found by a simple greedy
algorithm. The process is similar to splitting a node in
decision-tree learning. For each perceptual feature pk (in-
cluding the feature pj that we are trying to learn to control),
we consider all possible thresholds θ and the two constraints
pk ≥ θ and pk ≤ θ. In the same way, we consider each

CL1: Property: object-position
Description : direction [robot-heading]
Context: min-distance ≤ 0.25

min-distance ≥ 0.21
Result: motor-drive ≥ 0.15

CL2: Property: min-distance
Description : down
Context: min-distance ≥ 0.46

mean-index ≤ 0.93
mean-index ≥ -0.93

Result: motor-drive ≥ 0.15

CL3: Property: mean-index
Description : up
Context: mean-index ≤ 0.73
Result: motor-turn ≥ -0.30

CL4: Property: mean-index
Description : down
Context: mean-index ≥ -0.76

min-distance ≥ 0.27
Result: motor-turn ≥ 0.30

Figure 3: Control laws (CL1-CL4) that are learned from the
initial exploration. Each control law describes the expected
change to a property when a motor command from the re-
sult is executed in a given perceptual context. Spurious con-
straints from over-fitting (min-distance in the min-index
down control) can be removed with additional experience.

component ui
t of the motor vector, and compare it with pos-

sible thresholds θ, considering the constraints ui
t ≥ θ and

ui
t ≤ θ. When a constraint significantly improves the sep-

aration of positive from negative examples, we add it to the
definition of C or R. The greedy algorithm terminates when
improvement stops.

More sophisticated classifier learning algorithms, such as
SVM or boosting, could be used to define C and R, but their
value in a foundational learning setting has yet to be evalu-
ated.

Defining the Transfer Function
Once C and R have been specified, a procedural version of
the transfer function ut = H(zt) can be defined trivially:

if zt ∈ C then return some ut ∈ R (11)
However, given that H : C → R, it is possible to use

standard regression methods to find a specific function H
that optimizes some selected utility measure.

Evaluation
The robot evaluates each learned control law using the F-
measure, which is is the geometric mean of precision and
recall.

precision Pr(Q(∆pj(t)) | C(zt), ut = Hi(zt))
recall Pr(C(zt), ut = Hi(zt) | Q(∆pj(t)))

The applicability of the control law measures how com-
monly the constraints in its context are satisfied. The appli-
cability Pr(C(zt)) is determined not only by the context,

Property dim D ε (ε′) applicability F-measure
mean-index 1 down 0.17 0.36 0.90
mean-index 1 up 0.17 0.44 0.93
min-distance 1 down 0.08 0.29 0.85
min-distance 1 up 0.08 0.00 -
object-position 2 dir[robot-heading] 0.06 (0.14) 0.24 0.85
object-heading 2 - - - -

Figure 4: Perceptual features and their control laws as learned by the robot. The learned control laws were executed, and their
performance was evaluated using the F-measure function. The robot learns to control the location of the object on its sensor
array (mean-index up/down), and to approach the object (min-distance down). The robot does not learn to back away from the
object since the robot was prevented from driving backwards. The robot learns that the object moves in the same direction as
the robot (object-position dir[robot-heading]), but does not find a control law that can reliably change the object’s orientation.

but also by the robot’s ability to fulfill the conditions in the
context. When an overly specific control law is learned and
the conditions in its context can not be readily met, it can be
discarded due to its low observed applicability.

Evaluation: Autonomous Learning
The previous section described how control laws can be
mined from data traces of robot experience. This section
describes an experiment with a physical robot, demonstrat-
ing how these data traces are generated, subsequently mined,
and how the control laws can be individually tested and ap-
plied.

The robot used is a Magellan Pro with a non-holonomic
base. Using the techniques described earlier, the robot per-
ceives and recognizes nearby objects. The laser rangefinder
returns zt, an array of distances to obstacles measured at
one degree intervals. The sensory image in zt of the object
of interest is used to compute perceptual features (Figure
2), including the position and orientation of the object, the
minimum distance to the object and the mean angle to the
object.

The training environment consists of a virtual playpen that
is a circle with a 60cm radius. The small size of the playpen
permits the robot to sense and contact the object frequently
even while engaged in random motor babbling. During the
initial exploration phase, the robot uses its location to select
from two control laws. When the robot is outside of the
playpen, the robot executes a control law that turns the robot
towards the playpen and drives forward. When the robot is
in the playpen, it executes a random motor command, ut,
that consists of a drive and turn velocity selected from:

M = {(0.15, 0.0), (0.0,−0.3), (0.0, 0.3)}(m/s, rad/s)

A new motor command is selected every two seconds. A hu-
man experimenter places one of two objects into the playpen
(a recycling bin and a trash can), and returns them to the
playpen when the robot pushes them outside. During the
initial exploration phase, the robot gathers four episodes of
experience, each of which is five minutes long.

The evaluation process uses the same experimental setup
as is used in training. The robot executes each control law
repeatedly during one five minute episode, in the condition
where the robot would normal execute a random motor com-
mand. If all constraints in the context of the control law are

satisfied by the current sensory experience, then the robot
sends the result of the transfer function to the motors. If
a constraint is not satisfied, then the robot attempts to se-
lect a control law that will reduce the difference between the
feature-value and the threshold. The robot executes the se-
lected control if it exists; otherwise the robot sends a random
motor command to the robot.

The data gathered from the initial exploration is used to
learn control laws. Control laws are generated by applying
the learning algorithm from the previous section to the ex-
ploration data. Both up and down controls are generated
for each scalar property. The performance of each control
law is evaluated by executing it. A generated control law is
discarded if its F-measure performance is less than 0.8, or
the applicability is less than 0.05. A summary of the learned
control laws is listed in Figure 4.

The result of the learning process is a set of control laws
(Figure 3). Each control law can be easily interpreted. For
example CL3 is a control law that causes the mean-index to
increase, meaning that the image of the object on the sen-
sor array moves to the left. The control law achieves this
effect by turning to the right (motor-turn ≥ -0.30). Since
the robot has a limited field of view, this control law is only
reliable when the object is not already on the far left on the
sensor array. Hence, there is an additional constraint in the
context (mean-index ≤ 0.73).

Note that the control laws support back-chaining: if a con-
straint of one control law of the form pj ≤ θ is not satisfied,
then the control law with property pj and description down
may be used to reduce the difference. These chaining condi-
tions can be expressed in terms of a dependency graph (Fig-
ure 5).

Here is an example of how the robot performs the
chaining. Suppose the robot has the goal of moving
an object. When it tries to execute the object-position
direction[robot-heading] control law, the object violates
the constraint min-distance ≤ 0.25. Hence, the object
probably will not move at this time step, and the robot ap-
plies the min-distance down control law. However, the ob-
ject lies to the side of the robot, and violates the mean-index
constraint. Hence, the robot will probably not get closer to
the object at this time step, but can execute the mean-index
up control law to bring the object image closer to the center
of the field of view. On subsequent time steps, the robot goes

mean−index

down

object−position

direction[robot−heading] down

mean−index

up

min−distance

Figure 5: Dependencies between learned control laws arise
as each inequality constraint in a control law’s context may
be fulfilled by an up or down control law.

through the same series of calls until it succeeds in pushing
the object.

Related Work
The above results show that a robot can learn to control ob-
ject percepts. Several other researchers have explored sim-
ilar ideas. Work in locally weighted learning has explored
learning continuous control laws, but with supervised learn-
ing and careful selection of relevant state variables (Atke-
son, Moore, & Schaal 1997). Work in developmental learn-
ing through reinforcement learning techniques have also ex-
plored defining control laws for novel state. (Barto, Singh,
& Chentanez 2004) shows how reusable policies can be
learned, though with significantly more data and in simula-
tion. In (Hart, Grupen, & Jensen 2005), symbolic actions are
provided to the robot and the probability that the actions are
executed successfully is learned. Work by (Oudeyer et al.
2005) shows how curiosity can drive autonomous learning,
again with thousands of training examples but on physical
robots. Previous work also shows how a robot can learn to
push objects around (Stoytchev 2005), but from only a fixed
viewpoint. Work in (Langley & Choi 2006) shows how hi-
erarchical task networks can be autonomously learned in a
manner that is similar in approach to the learning we per-
form here. That work differs in that the task is driven by an
externally specified goal.

Conclusions
We have presented the requirements for an object ontology,
described an algorithm for learning object control laws, and
demonstrated how a robot can autonomously learn these
control laws. The results show how control laws can be
learned autonomously.

This paper makes several contributions towards learning
about objects and actions. One is that a perceptual feature is
more useful if control laws can be found that cause reliable
changes in the feature. A second contribution lies in demon-
strating how backchaining of learned control laws can occur
when each precondition in the context of one control law can
be satisfied by another control law. A third contribution lies
in the algorithm for learning the control law which demon-
strates how an unsupervised learning stage can be used to
generate a training signal for supervised learning.

An important extension on the current work will be to test
this process on robot platforms with a wider range of per-
ceptual properties and actuation.

Acknowledgements
This work has taken place in the Intelligent Robotics Lab
at the Artificial Intelligence Laboratory, The University of
Texas at Austin. Research of the Intelligent Robotics lab is
supported in part by grants from the National Science Foun-
dation (IIS-0413257 and IIS-0538927), from the National
Institutes of Health (EY016089), and by an IBM Faculty Re-
search Award.

References
Atkeson, C. G.; Moore, A. W.; and Schaal, S. 1997. Lo-
cally weighted learning for control. Artificial Intelligence Review
11(1/5):75–113.
Barto, A.; Singh, S.; and Chentanez, N. 2004. Intrinsically mo-
tivated learning of hierarchical collections of skills. In Interna-
tional Conference on Developmental Learning.
Biswas, R.; Limketkai, B.; Sanner, S.; and Thrun, S. 2002. To-
wards object mapping in non-stationary environments with mo-
bile robots. In IEEE/RSJ Int. Conf on Intelligent Robots and Sys-
tems, volume 1, 1014–1019.
Gibson, J. J. 1979. The Ecological Approach to Visual Perception.
Boston: Houghton Mifflin.
Hart, S.; Grupen, R.; and Jensen, D. 2005. A relational repre-
sentation for procedural task knowledge. In Proc. 20th National
Conf. on Artificial Intelligence (AAAI-2005).
Kuipers, B. J. 2000. The Spatial Semantic Hierarchy. Artificial
Intelligence 119:191–233.
Langley, P., and Choi, D. 2006. Learning recursive control pro-
grams from problem solving. Journal of Machine Learning Re-
search.
Mandler, J. 2004. The Foundations of Mind: Origins of Concep-
tual Thought. Oxford University Press.
Mitchell, T. M. 1997. Machine Learning. Boston: McGraw-Hill.
Modayil, J., and Kuipers, B. 2004. Bootstrap learning for ob-
ject discovery. In IEEE/RSJ Int. Conf on Intelligent Robots and
Systems, 742–747.
Modayil, J., and Kuipers, B. 2006. Autonomous shape model
learning for object localization and recognition. In IEEE Interna-
tional Conference on Robotics and Automation, 2991–2996.
Oudeyer, P.-Y.; Kaplan, F.; Hafner, V.; and Whyte, A. 2005. The
playground experiment: Task-independent development of a cu-
rious robot. In AAAI Spring Symposium Workshop on Develop-
mental Robotics.
Philipona, D.; O’Regan, J. K.; and Nadal, J.-P. 2003. Is there
something out there? Inferring space from sensorimotor depen-
dencies. Neural Computation 15:2029–2049.
Pierce, D. M., and Kuipers, B. J. 1997. Map learning with uninter-
preted sensors and effectors. Artificial Intelligence 92:169–227.
Russell, S., and Norvig, P. 2002. Artificial Intelligence: A Modern
Approach. Prentice Hall.
Spelke, E. S. 1990. Principles of object perception. Cognitive
Science 14:29–56.
Stoytchev, A. 2005. Behavior-grounded representation of tool
affordances. In IEEE International Conference on Robotics and
Automation (ICRA).

