
Demo Abstract
DISSEMINATE: A Demonstration of

Device-to-Device Media Dissemination
Venkat Srinivasan, Tomasz Kalbarczyk, and Christine Julien

The Center for Advanced Research in Software Engineering
The University of Texas at Austin

Email: {venkat.s, tkalbar, c.julien}@utexas.edu

Abstract—In this demonstration, we showcase DISSEMINATE, a
protocol and accompanying Android application for supporting
device-to-device dissemination of data that fulfills shared interests
of devices in pervasive computing environments. DISSEMINATE
is a novel publish-subscribe based protocol that breaks large
(likely media heavy) data items into smaller chunks and oppor-
tunistically shares the chunks among co-located mobile devices.
Interested devices issue subscriptions for the chunks they need
and advertisements for the chunks they can share. Our publish
mechanism uses a computation of a chunk’s uniqueness to
determine whether or not to broadcast it to the locally connected
devices. The DISSEMINATE app provides an implementation of the
protocol in an Android application for sharing photographs via
WiFi-Direct broadcast communication.

I. INTRODUCTION

In pervasive computing environments, our demand for in-
formation at our fingertips is rapidly overtaxing our traditional
communication capabilities. Specifically, such information ac-
cess is commonly provided through cellular data connections,
and it has been empirically demonstrated that, especially
during crowded events, our demands on such infrastructure
exceeds the capacity [3]. There are, however, many situations
in which co-located users in these environments seek the same
or similar data. For instance, witnesses to an urban event
such as a festival or parade may wish to share and access
video or other media created by other attendees at the event.
Even when the data is downloaded from the infrastructure, the
data demands may be overlapping. Consider, for example, a
large number of commuters all experiencing the same traffic
jam. These users may all immediately turn to their mapping
application, requesting map information so they can plan a
different route. Cooperating to download the map data by
sharing some of the data among the devices’ device-to-device
connections can alleviate some of the burden on the infras-
tructure of everyone immediately attempting to individually
download the map data.

In this demonstration, we present DISSEMINATE, our ap-
proach to providing device-to-device support for disseminating
data that fulfills shared interests. In our previous work on the
MadApp application [5], [6], we showed an application that
enabled devices in a shared situation to share media (i.e.,
photographs) about their shared situation. However, as the
media shared between the devices grows increasingly large,

sharing entire files over the inherently unreliable device-to-
device medium becomes very difficult and error prone. Further,
when many of the nearby devices share and distribute the same
information, blindly sharing all of the media files a device has
with every other connected device wastes precious network
and system resources (e.g., bandwidth and energy). In this
demonstration, we showcase a protocol called DISSEMINATE
that would run underneath an application like MadApp, en-
abling more efficient and effective dissemination over device-
to-device communication links.

Related Work. Our approach fits in the emerging domain
of mobile data traffic offloading [1], including similar work
in the publish-subscribe domain [4], [7]. Existing approaches,
however, focus on abstracting multicast communication and
situations where information must be routed from a specific
source to a specific destination. Other approaches expect that
the the infrastructure mediates the device-to-device interac-
tions, dictating which peer devices are used to supplement
backend connections [2]. We perform all decision making in
the network, allowing the devices to individually determine
when and how to share data. Further, devices only participate
in the collaborative dissemination of data that is also directly
useful to the device or its user.

exchange(periodic(
interest(beacons(

(adver3se,(subscribe)(

compute(
uniqueness(publish(publish(

Fig. 1: Overview of DISSEMINATE protocol

Protocol Overview. DISSEMINATE splits each data item
into smaller chunks that can be delivered out of order and
reassembled at the receiving end. When the devices exchange
these chunks instead of whole data items, a single lost chunk
is much less catastrophic than losing the entire data item.
Further, a given device can collect chunks from multiple dif-
ferent directly connected devices instead of having to receive
the entire data item from a single device. Our approach to
exchanging chunks is a publish-subscribe style protocol that

uses a combination of advertising, subscribing, and publishing.
Fig. 1 shows an overview of the steps in DISSEMINATE.
We accomplish advertising and subscribing in a single step.
Specifically, devices periodically send beacons with a very
lightweight representation of (1) the data items they are
interested in and (2) the chunks of those data items they
have already collected. The latter is an advertisement: these
chunks represent the content that the device can disseminate.
The two pieces together are a subscription: a device receiving
the beacon can discern which chunks need to be delivered
to the sending device. We derive a scheme for determining
what data to publish based on a metric we term uniqueness:
intuitively, our publish mechanism attempts to balance two
aspects: (1) sending chunks that are not widely available in
the immediate neighborhood and (2) sending chunks that are
likely to be received by the intended subscriber(s). For the
former, we simply measure the degree of redundancy of a
particular chunk and choose chunks that are less redundant.
For the latter, we favor chunks needed by neighbors whose
connections have with high link quality, as measured by RSSI.
In DISSEMINATE, each device operates independently, making
the best apparent decision based on the information it has from
the neighboring devices’ beacons.

Demonstration Overview. The goal of this demonstration
is not to evaluate the performance of DISSEMINATE. Instead,
we showcase the ability of DISSEMINATE to distribute data
related to shared interests of co-located devices. We show that
it is feasible to implement the approach on stock Android
phones, without any need to modify or “root” the phones
or use any device-native features. Our application will run
effectively on any WiFi-Direct enabled Android device.

II. IMPLEMENTATION

The implementation showcased in this demonstration is in
two pieces. First (and most visibly) is the DISSEMINATE app,
which performs device-to-device sharing of the chunks of the
data items as determined by our novel publish-subscribe pro-
tocol and its uniqueness computation. Second (and transparent
to the user) is a significant set of Android support components
necessary for the demonstration to function; these components
are interesting in their own right.

A. The DISSEMINATE App

The DISSEMINATE app embodies the novel publish-
subscribe protocol that we built for the purpose of dissemi-
nating shared interests using device-to-device connections. We
assume situations such as those described in the introduction,
where multiple directly-connected devices share an interest in
retrieving the same “heavyweight” (e.g., media) data items.
We also assume that the data items are already present
in the network, e.g., because one or more of the devices
downloaded the data from the infrastructure or, as was the case
in MadApp [5], because the devices in the network generated
the data themselves.

To make the demonstration simple, the app currently as-
sumes four pieces of heavyweight data shared between all

Fig. 2: Screenshots of the DISSEMINATE App

connected devices. The app also assumes that, by a user
launching the app, the user expresses an interest in all four data
items. This means that the data items are immediately added to
the device’s beacons, and chunks for the data items are started
to be collected if they are being published. On the other hand,
the app does not assume that the data items are immediately
available in the network to be shared. Instead, to share a data
item one, or more of the users must explicitly tap the item and
select “Download” from the menu that appears. This simulates
either downloading the data item from the infrastructure or
sharing a data item that is available on local storage. The app
allows simulating low quality infrastructure connections in this
process; the user can “tune” the data rate for the download,
making the chunks of the data item appear more slowly or
quickly, depending on the desired situation. As soon as at
least one of the devices in the WiFi-Direct network initiates
the download, the received chunks are shared via any available
device-to-device connections available to other devices also
running the DISSEMINATE app.

Fig. 2 shows a pair of screenshots of the DISSEMINATE
app. On the left, the user has not initiated any downloading;
the device is subscribed to receive all four data items, but it has
not yet received any chunks. On the right, two downloads have
completed and one is in progress. Within the app, each data
item is divided into 64 chunks1. To show progress in collecting
the chunks, the app’s user interface shows the chunks as bricks
that make up the eventual footprint of the file’s thumbnail; as
chunks are received, the associated bricks darken.

B. Android Support Layers

To support DISSEMINATE on Android, we built a commu-
nication layer that uses WiFi-Direct to support the device-to-
device connections. This layer broadcasts data that is received

1This is a limiting design decision, taken for simplicity. It has impact on the
performance of the publish-subscribe protocol but not on demonstrating
the feasibility and nature of the approach.

from the DISSEMINATE app to all connected peers. We use
two FIFO queues that communicate with the upper layer; we
use two separate threads to process these queues, which run
concurrently with the application layer’s main thread.

Broadcast. The broadcast thread performs a form of busy-
wait synchronization as it waits for packets to transmit. As
soon as a packet arrives in the outgoing queue, it is broad-
cast using the WiFi-Direct broadcast address2. Packets sent
by the DISSEMINATE app include the beacons that contain
the advertisement and subscription information and also the
published chunks (determined by the uniqueness computation
that is part of the DISSEMINATE protocol). We expect that, in
the future, we will be able to push the lightweight beacons
onto dedicated device discovery approaches that are about
to emerge on today’s smartphones. Such beacon mechanisms
will be made available with programming interfaces that allow
application layers to “set” small amounts of payload data.

Receive. The receive thread waits for broadcasts received
through WiFi-Direct. Once the thread receives new data on
its open socket, it puts it into a second synchronous queue,
which allows the DISSEMINATE app to retrieve received data
as needed. Our implementation does not differentiate between
receiving a chunk or a beacon; all of this logic is implemented
in the DISSEMINATE app. The separation of the broadcast and
receive threads allows for asynchronous broadcasting that frees
up the DISSEMINATE app thread to perform other tasks.

Notable Aspects. Our implementation uses only stock
Android APIs and does not require administrative privileges
or any special device level code or functionality. It will work
“out of the box” on any WiFi-Direct capable Android device.
While the result is easy to use, the implementation was not
straightforward. WiFi-Direct is far from a mature technology,
and official support (including basic documentation) is scarce.
We succeeded largely through trial and error. We have also
overcome some of the major obstacles of working with WiFi-
Direct (from an application’s or user’s perspective). For in-
stance, we have made the WiFi-Direct group within DISSEM-
INATE “sticky,” so the application and user are sheltered from
intermittent connectivity issues, e.g., if the devices disconnect
from the WiFi-Direct group, they automatically reconnect
without user intervention. One major disadvantage to using
WiFi-Direct to support device-to-device communication has to
do with the way that WiFi-Direct groups are structured. Each
group has a “group owner” that effectively serves as a router
for the group members. Every packet (even broadcast packets)
have to be routed through the group owner, so the performance
in our Android prototype is not reflective of “true” device-to-
device communication. However, this functions against us; in
a true device-to-device implementation, we would expect the
performance of DISSEMINATE to improve relative to the result
reported below.

We have made both our application (with our implementa-
tion of DISSEMINATE) and our WiFi-Direct device-to-device

2On Android 4.4, the WiFi-Direct broadcast address is hardcoded at
192.168.49.255.

abstraction layer available publicly, alongside a video showing
the DISSEMINATE app in action3.

III. DEMONSTRATION

The nature of the demonstration follows fairly intuitively
from the descriptions in the previous sections. When the
demonstration application starts, the user will see the screen
depicted to the left of Fig. 2 on each device on which the
app starts. If the user for one of the devices taps one of the
grids of bricks, a “download” of that file from the (simulated)
infrastructure will begin. The participants will be able to tune
the rate at which the download progresses, simulating both
high and low quality cellular data connections. Because all of
the active devices are subscribed to all of the data items, as
the chunks of the data item “download” they will immediately
be shared with any connected devices. The participants will
observe the grids representing the chunks for each data item
fill in as chunks are received. When an entire data item has
been received, the media file will be displayed.

Using the DISSEMINATE app, the participants will be able to
experiment with different settings to observe when cooperating
dissemination is effective and when it is not as effective. For
instance, the participants will be able to test what happens
when multiple devices download the same file from the
infrastructure at very low cellular connection speeds and then
share the chunks as they download (i.e., cooperative download
will benefit all users).

We will have available devices the participants can use
during the demonstration; alternatively, a user can use his or
her own WiFi-Direct capable device, assuming the user loads
the DISSEMINATE APK and joins the WiFi-Direct group.

IV. TECHNICAL REQUIREMENTS

This demonstration has no special technical requirements.
We will supply our own Android devices. Visitors with WiFi-
Direct capable Android devices should also be able to partic-
ipate in the demonstration using their own devices. Access to
power for charging our devices would be preferable.

REFERENCES

[1] B.Han, P. Hui, V.S.A. Kumar, M.V. Maranthe, J. Shao, and A. Srinivasan.
Mobile data offloading through opportunistic communications and social
participation. IEEE Trans. on Mobile Computing, 11(5):821–834, 2011.

[2] L. Keller, A. Le, B. Cici, H. Seferoglu, C. Fragoul, and A. Markopoulou.
MicroCast: Cooperative video streaming on smartphones. In Proc. of
MobiSys, pages 57–70, June 2012.

[3] M.Z. Shafiq, L. Ji, A.X. Liu, J. Pang, S. Venkataraman, and J. Wang.
A first look at cellular network performance during crowded events. In
Proc. of SIGMETRICS, pages 17–28, June 2013.

[4] M. Skjegstad, F.T. Johnson, T.H. Bloenaum, and T. Maseng. Mist:
A reliable and delay-tolerant publish/subscribe solution for dynamic
networks. In Proc. of NTMS, pages 1–8, May 2012.

[5] V. Srinivasan and C. Julien. Demo: MadApp: Dynamic content support
for delay-tolerant web applications. In Proc. of PerCom (Demonstrations),
2014.

[6] V. Srinivasan and C. Julien. MadApp: A middleware for opportunistic
data in mobile applications. In Proc. of MDM, 2014.

[7] J. Su, J. Scott, J. Crowcroft, E. de Lara, C. Diot, A. Goel, M. Lim, and
E. Upton. Haggle: Seamless networking for mobile applications. In Proc.
of Ubicomp, pages 391–408, Sept. 2007.

3http://mpc.ece.utexas.edu/research/disseminate

