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Abstract

Entering and incumbent firms can create new products and displace
other firms’ products. Incumbents can also improve their existing prod-
ucts. How much of aggregate growth occurs through each of these chan-
nels? The answer matters for optimal innovation policy because knowledge
spillovers and business stealing differ depending on the source of growth.
Using U.S. Census data on manufacturing firms from 1963 through 2002,
we arrive at three main conclusions: First, most growth comes from incum-
bents’ innovation rather than innovation by entrants. This follows from the
modest market share of entering firms. Second, most growth comes from
improvements of existing varieties rather than creation of brand new vari-
eties. Third, own-product improvement by incumbents is roughly as im-
portant as quality improvements through creative destruction.
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1. Introduction

Innovating firms can improve on existing products made by other firms, thereby

gaining market share and profits at the expense of those competitors. Such cre-

ative destruction plays a central role in many theories of growth. This goes

back to at least Schumpeter (1939), carries through Stokey (1988), Grossman

and Helpman (1991), and Aghion and Howitt (1992), and continues with more

recent models such as Klette and Kortum (2004). Aghion et al. (2014) provide a

recent survey.

Other growth theories emphasize the importance of firms improving their

own products, rather than displacing other firms’ products. See chapter 14 in

Acemoglu (2011) for examples.1 See also Akcigit and Kerr (2013), who provide

evidence that firms are more likely to cite their own patents and hence build on

them. Still other theories, such as Romer (1990), emphasize the contribution of

brand new varieties to growth.

These theories have different implications for optimal policy toward inno-

vation. Business stealing is a force pushing up the private return to innovation

relative to the social return. To the extent firms build on each other’s inno-

vations, in contrast, there are positive knowledge externalities that boost the

social return relative to the private return. When incumbents successively im-

prove their own products, business stealing effects and knowledge externalities

can be mitigated. Models with expanding varieties, meanwhile, tend to have

smaller business-stealing effects but retain knowledge spillovers. See the sur-

vey by Jones (2005).

Ideally, one could directly observe the extent to which new products sub-

stitute for or improve upon existing products. Broda and Weinstein (2010) is

a recent effort along these lines for consumer nondurable goods. Such high

quality scanner data has not been available or analyzed in the same way for

consumer durables, producer intermediates, or producer capital goods – all of

1Although Lucas (1988) highlights individual worker human capital accumulation, his sem-
inal model can be re-interpreted in terms of firms.
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which figure prominently in theories of growth.2

We pursue another approach. We try to infer the sources of growth indi-

rectly from empirical patterns of firm and plant dynamics. This is related to, but

not the same as, growth decompositions by Baily et al. (1992) and Foster et al.

(2001). These influential papers document the contributions of entry, exit, re-

allocation, and within-plant productivity growth to overall growth in a general

fashion with minimal model assumptions. We consider a specific exogenous

growth model with a few parameters, and try to pin down realistic parameter

values using moments from the data. Lentz and Mortensen (2008) and Ace-

moglu et al. (2013) conduct indirect inference with manufacturing data (from

the U.S. and Denmark, respectively) with full-blown endogenous growth mod-

els. Their models focus on creative destruction, whereas we further incorporate

new varieties and own-variety improvements by incumbents.

We use data on plants from U.S. manufacturing censuses as far back as 1963

and as recently as 2002. We calculate aggregate TFP growth, the fraction of

plants by age, the employment share of plants by age, the exit rate of plants by

size (employment), the distribution of employment, the distribution of employ-

ment growth, and growth in the total number of plants. To best fit these mo-

ments, we arrive at parameter values that lead to three tentative conclusions.

First, most growth – about three-quarters – seems to come from incumbents

rather than entrants. This is because the employment share of entrants is mod-

est. Second, most growth – about four-fifths – appears to arise through quality

improvements rather than brand new varieties. Third, creative destruction (by

entrants and incumbents) and own-variety improvements by incumbents are

roughly equal in importance.

The rest of the paper proceeds as follows. Section 2 lays out the parsimo-

nious exogenous growth model we use. Section 3 briefly describes the U.S.

manufacturing census datasets we exploit. Section 4 presents the parameter

2Gordon (2007) and Greenwood et al. (1997) emphasize the importance of growth embodied
in durable goods based on the declining relative price of durables.
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values of the model in Section 2 that best fit the moments from the Section 3

data. Section 5 concludes.

2. An Exogenous Growth Model

We adapt the Klette and Kortum (2004) model of quality ladder growth through

creative destruction. In this KK model firms produce multiple varieties and try

to capture each other’s varieties by improving on them. Entrants try to improve

on existing varieties and take them over in the process. Unlike KK we treat the

arrival rates of creative destruction from entrants and incumbents as exoge-

nously fixed parameters, rather than being endogenously determined by un-

derlying preferences, technology, and market structure. This allows us to keep

the model parsimonious while adding exogenous arrival rates of new varieties

from entrants, new varieties from incumbents, and own-variety quality innova-

tions by incumbents.

More exactly, our set-up is as in KK with the following differences:

• Time is discrete (rather than continuous)

• There are a finite number of varieties (rather than a continuum)

• Innovation is exogenous (rather than endogenous)

• Demand for varieties is CES with elasticity σ > 1 (rather that σ = 1)

• There are brand new varieties (rather than a fixed set of varieties)

• Incumbents can improve the quality of their own varieties (rather than

quality improvements only coming from other incumbents or entrants)

• Creative destruction may be directed toward quality levels similar to each

firm’s existing average quality (rather than being undirected)
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Aggregate output

Total output Y in the economy is given by:

Yt =

[
Mt∑
j=1

y
1−1/σ
j,t

] σ
σ−1

where M is the total number of varieties yj is the output of variety j. The pro-

duction function for each variety j is linear in labor yj = qjlj , where qj is the

quality or “process efficency” of variety j and lj is labor employed producing

variety j.

Static problem of the firm

Firms control multiple varieties, but we assume they are still monopolistic com-

petitors for each variety. We assume further that there is an arbitrarily small

overhead cost of production, so that there is no need limit pricing with respect

to potential producers of a lower quality version of the same product. Each firm

can charge the monopoly markup on each of its varieties even if the innova-

tion step size is small. This avoids the markup heterogeneity that is the focus of

Peters (2013) for example.

With a competitive labor market, revenue generated by variety j is

pjyj =

(
σ − 1

σ

)σ−1

P σYW 1−σqσ−1
j ∝ qσ−1

j

where P is the aggregate price level, Y is aggregate output, and W is the wage.

Labor employed in producing variety j is also proportional to qσ−1
j :

lj =

(
σ − 1

σ

)σ (
P

W

)σ
Y qσ−1

j ∝ qσ−1
j

Thus both the market share and the employment of a firm are proportional to

the sum of power qualities qσ−1
j of the varieties operated by the firm.3 Note that

3There is no misallocation of labor whatsoever in this model.
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in the special case of σ = 1 assumed by KK, all varieties have equal market

shares (because price is inverse proportional to quality) and employment, and

a firm’s size is proportional to the number of varieties it controls. We will find it

important to allow σ > 1, so that firms can be larger because they have higher

quality products rather than just a wider array of products.

Aggregate productivity

Labor productivity in the economy is given by

Yt/Lt =M
1

σ−1

t

[
Mt∑
j=1

qσ−1
j,t

Mt

] 1
σ−1

.

where L is total labor across all varieties (which is exogenously fixed in supply).

The first term captures the benefit of having more varieties, and the second

term is the power mean of quality across varieties.

Exogenous innovation

There is an exogenous arrival rate for each type of innovation. The notation

for each type is given in Table 1. The probabilities shown are per each of the

current varieties a firm produces. The probability of a firm improving any given

variety it produces is λi. If a firm fails to improve on a given variety it produces,

then that variety is vulnerable to creative destruction by other incumbent firms

(with conditional probability δi) or by entrants (with conditional probability δe).

Creative destruction, like own-variety improvements, comes with a step size

sq ≥ 1.

Brand new varieties arrive at rate κe from entrants and at rate κi from incum-

bents – again per existing variety produced by an incumbent. These arrivals are

independent of other innovation types. The quality of each new variety from

entrants is drawn at random from the current distribution of qualities (undi-

rected innovation), but a multiplicative step sκ is added to each quality. The
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Table 1: Channels of Innovation

channel probability step size

own-variety improvements by incumbents λi sq ≥ 1

creative destruction by entrants δe sq ≥ 1

creative destruction by incumbents δi sq ≥ 1

new varieties from entrants κe sκ

new varieties from incumbents κi sκ

arrival rate of brand new varieties affects growth in the number of firms (tied

to κe), while the arrival rate and step size for new varieties (both κe and sκ) will

affect the employment share of new firms.

On top of the seven parameters listed in Table 1, we add one more parame-

ter. KK assumed creative destruction was undirected. We find that, when com-

bined with σ > 1, undirected creative destruction leads to a thick-tailed dis-

tribution of employment growth rates. Firms can capture much better varieties

than their own, growing rapidly in the process. Incumbents on the losing side of

creative destruction can lose their best varieties, leaving them with low quality

varieties and steeply negative growth.4 To allow some control over the distribu-

tion of tail growth rates in the model, we allow for the possibility that creative

destruction occurs within quality quantiles. If there are 100 such quantiles, then

creative destruction is random within a quality percentile. If there are 10 quan-

tiles of quality, then an incumbent creatively destroys an existing variety in its

decile. If there is only a single quantile then creative destruction is undirected.

It seems plausible that firms would be able to improve upon products of similar

quality to their existing portfolio.5

Note that, in our model, each innovation is proportional to an existing qual-

4Of course, there are always entrants and exiters, which are at the extremes in the employ-
ment growth distribution.

5As all arrival rates are per existing variety, the quantiles are defined for each individual va-
riety. We also allow brand new varieties created by incumbents to be directed in this way.
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ity level. Thus, if innovative effort was endogenous, there would be a positive

knowledge externality to research unless all research was done by firms on their

own products. Such knowledge externalities are routinely assumed in the qual-

ity ladder literature, such as Grossman and Helpman (1991), Kortum (1997),

Klette and Kortum (2004), and Acemoglu et al. (2013).

Output growth

Total output grows at rate

1 + gY = [(1 + κe + κi) (1 + gq)]
1

σ−1

The κ components correspond to the creation of new varieties. The (1 + gq)

component reflects growth in average quality per variety. The growth rate of

the power mean of quality levels across varieties is:

1 + gq =
sσ−1
κ κe + sσ−1

κ κi + 1 +
(
sσ−1
q − 1

)
λi +

(
sσ−1
q − 1

)
(1− λi) (δe + δi)

1 + κe + κi

3. U.S. Manufacturing Census Data

We use data from U.S. manufacturing Censuses to quantify dynamics of entry,

exit, and survivor growth. We focus on plants rather than firms, because merg-

ers and acquisitions can wreak havoc with our strategy to infer innovation from

growth dynamics.

We use data as far back as 1963, but often from 1972 onward because there

is no capital stock data before 1972. We use data through at most 2002, because

the NAICS definitions were changed from 2002 to 2007.

We are ultimately interested in decomposing the sources of TFP growth into

contributions from different types of innovation. We therefore start by calcu-

lating manufacturing-wide TFP growth. We take this from the U.S. Bureau of

Labor Statistics Multifactor Productivity Growth. Converting their gross output
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measure to value added, TFP growth averages 2.51 percent per year from 1987–

2011 (the timespan of their data, which is not admittedly not ideal for us). The

number of manufacturing plants in the U.S. Census of Manufacturing, mean-

while, rose 0.49 percent per year from 1972 to 2002.

Since the Census does not ask about a plant’s age directly, we infer it from

the first year a plant shows up in Census going back to 1963. We therefore have

more complete data on the age of plants in more recent years. We use this data

to calculate exit by age from 1992 to 1997. We then combine it with the assump-

tion of 0.5 percent per year growth in the number of entering plants to calculate

the share of plants by age brackets of less than 5 years old, 5 to 9 years old, 10

to 14 years old, and so on until age 30 years and above. See the first column of

Table 2 for the resulting density. About one-third of plants are less than 5 years

old, and about one-eighth of plants are 30 years or older.

Table 2: Plants by Age

Age Fraction Employment Share

< 5 .358 .124

5-9 .189 .115

10-14 .128 .102

15-19 .091 .088

20-24 .068 .081

25-29 .046 .073

≥ 30 .120 .418

Note: Author calculations from U.S. Census of Manufacturing plants in 1992 and 1997.

We similarly calculate the share of employment by age in U.S. manufactur-

ing. The second column of Table 2 shows that young plants are much smaller

on average, as their employment share (12 percent) is much lower than their

fraction of plants (36 percent). Older surviving plants are much larger, com-
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Figure 1: Empirical Exit by Size in the U.S. Census of Manufacturing

prising only 12 percent of plants but employing almost 42 percent of all workers

in U.S. manufacturing. Hsieh and Klenow (2014) document that rapid growth

of surviving plants is a robust phenomenon across years in the U.S. Census of

Manufacturing.

We plot how a plant’s exit rate varies with its size in Figure 1. The exit rate

is annualized based on successive years of the Census. The dots labeled “1992”

are based on exit from 1992 to 1997, those labeled “1982” are based on exit from

1982 to 1987, and so on back to “1963”. As shown, the annual exit rate is about

10 percent for plants with a single employee, declines to about 6 percent for

plants with several hundred employees, then falls further to about 1 percent for

plants with thousands of workers.
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Figure 2: Size Distribution of Plants in the 1997 U.S. Census of Manufacturing

Figure 2 provides the size distribution of plants in the 1997 U.S. Census of

Manufacturing. This includes data on administrative plants. The vertical axis is

the percent of plants, and the horizontal axis is the level of plant employment

(on a natural log scale).

Finally, we will also use statistics from Davis et al. (1998) on the distribution

of job creation and destruction rates in U.S. manufacturing from 1973–1988.

Figure 3 plots these annual rates, which are bounded between -2 (exit) and +2

(entry) because they represent the change in employment divided by the aver-

age of last year’s employment and current year’s employment. The distribution

on the vertical axis is the percent of all creation or destruction contributed by

plants in each creation or destruction bin.
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Figure 3: Job Creation and Destruction Rates in U.S. Manufacturing
(via Davis, Haltiwanger and Schuh, 1998)
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4. Indirect Inference

We now proceed to compare moments from model simulations to the man-

ufacturing moments we calculated in the previous section. Our aim is to in-

directly infer the sources of innovation. Our logic is that plant entry and exit

rates, market share, size distribution, and growth distribution are byproducts

of innovation. Entrants reflect a combination of new varieties and creative de-

struction of existing varieties. The better the new varieties, the bigger the mar-

ket share of entrants. When a plant expands, it does so because it has innovated

on its own varieties, created new varieties, or captured varieties previously pro-

duced by other incumbents. When a plant contracts it is because it has failed

to improve its products or add products to keep up with aggregate growth (and

hence real wage growth), or because it lost some of its varieties to creative de-

struction from entrants or other incumbents. Outright exit occurs, as in Klette

and Kortum (2004), when a plant loses all of its varieties to creative destruc-

tion. Because creative destruction is independent across a plant’s varieties (by

assumption), plants with more varieties have much lower exit rates. Plants with

more varieties also have less dispersed growth rates. Plants with higher qualities

are larger but not necessarily more protected against creative destruction (e.g.,

Apple has a few, high-quality product lines that are vulnerable to innovation

by Samsung and others). The innovation and arrival rates for the parameters

in Table 1 should therefore be linked to the moments we observed in the U.S.

manufacturing data.

Simulation algorithm

Though each firm’s static maximization problem (specifically, its market share

in terms of revenue or labor) can be solved analytically, we have to numerically

compute the firm-level quality distribution. Compared to the Klette and Kor-

tum (2004) environment, our additional channels of innovation, as well as the

size heterogeneity in varieties we allow (due to σ > 1), preclude us from ob-
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taining analytical results. Our numerical simulation algorithm consists of the

following steps:

1. Specify the distribution of quality across varieties.

2. Simulate life paths for entering plants such that the total number of plants

observed, including incumbents, is the same as in U.S. manufacturing

plants from 1992, 1997, and 2002 (321,000 on average, including admin-

istrative record plants).

3. Each entrant has one initial variety, captured or newly created. In each

year of its lifetime, it faces a probability of each type of innovation occur-

ring per variety it owns, as in Table 1. New varieties by entrants draw a

random quality from the distribution in the population. For incumbents,

newly created varieties and creatively destroyed varieties are either draws

at random (undirected) or from the quality quantile of its own variety (di-

rected). A firm’s life ends when it loses all of its varieties or when it reaches

age 100, whichever comes first.

4. Based on an entire population of simulated firms of all ages, compute the

joint distribution of quality and variety across firms. Calculate moments

of interest (e.g. exit by size).

5. Repeat steps 1. to 4. until all moments converge. In each iteration, update

the guess for the distribution of qualities in the economy by combining

elements from the previous iteration’s guess.

6. Repeat steps 1. to 5., searching for parameter values to minimize the abso-

lute distance between the simulated moments in step 5. and the empirical

moments.
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Table 3: Inferred Parameter Values

Channel Probability Step Size

Own-variety improvements by incumbents 71.0% 1.023

Creative destruction by entrants 6.7% 1.023

Creative destruction by incumbents 93.3% 1.023

New varieties from entrants 0.5% 0.90

New varieties from incumbents 0.05% 0.90

Sources of growth

We present our inferred parameter values in Table 3. As we will describe, these

parameter values produce simulated moments closer to the empirical moments

than the alternatives we consider with no own-variety improvements by incum-

bents, no new varieties, and/or symmetric market shares for all varieties.

We infer a 71 percent arrival rate for own-variety quality improvements by

incumbents. Quality improvements through creative destruction occur the other

29 percent of the time – mostly by other incumbents (93 percent conditional

probability) rather than by entrants (7 percent conditional probability). Thus

every variety is improved in every year – a corner solution for which we will

provide intuition shortly. Quality improvements occur in 2.3 percent jumps.

Average quality does not rise by 2.3 percent per year, however, because new va-

rieties average only 90 percent of the average quality of existing varieties. These

new varieties arrive at a slow rate, boosting total variety by 0.55 percent per

year, and come mostly from entrants (0.50 percent) rather than from incum-

bents (0.05 percent).

Table 4 presents the implied sources of growth. About 35 percent of growth

comes from creative destruction. Own-variety improvements by incumbents

seem just as important, at 44 percent. New varieties a la Romer (1990) are the
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Table 4: Inferred Sources of Growth

Entrants Incumbents

Creative destruction of existing varieties 7.3% 27.2% 34.5%

Creation of new varieties 16.3% 5.2% 21.5%

Own-variety improvements - 44.1% 44.1%

23.6% 76.4%

remainder at about 21 percent. All three sources matter, but no single channel

dominates under the Table 3 parameter values. Incumbents contribute more

to growth (76 percent) than do entrants (24 percent). Aghion et al. (2014) pro-

vide complementary evidence for the importance of incumbents based on their

share of R&D spending.

At this point, a few key questions arise: What empirical moments suggest the

presence of own-variety improvements? And how well does a model with only

creative destruction fit the data? To help answer these questions, we examine a

sequence of models as listed in 5. We start with the baseline KK model, which

features σ = 1 and only creative destruction. Then we generalize the KK model

to σ > 1, which allows high quality varieties to have higher market shares. We

next add the creation of brand new varieties by entrants and incumbents. Fi-

nally, we add own-variety improvements by incumbents.

Table 6 reports the parameter values we infer for each model. The step size of

innovation is bigger in the models without own-variety improvements (at 5 or 6

percent) than it is in the model with own-variety improvements (closer to 2 per-

cent). The arrival rates are correspondingly lower. About 43 percent of varieties

are subject to creative destruction annually. In contrast, quality improvements

occur on all varieties in each year in the model with own-quality improvements.

Fitting the share of plants by age requires fitting the average exit rate, which is

tied to the rate of creative destruction and the share of firms with few varieties.
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Table 5: Simulated Models

KK KK 3 New var. General

σ 1 3 3 3

creative destruction by entr.
√ √ √ √

creative destruction by inc.
√ √ √ √

new varieties from entr.s
√ √

new varieties from inc.
√ √

own-variety improvements by inc.
√

Survivor growth, meanwhile, is tied to the step size. To maintain a realistic exit

rate, the rate of creative destruction cannot be too high. To explain aggregate

growth conditional on that pace of creative destruction, the step size must be

larger.

Figure 4 plots the empirical fraction of plants by age against the density of

firms by age in each model. The fit is similar for all of the models; all of the

models overstate the fraction of firms 30 years and older. Figure 5 shows that

the fit is better, and equally good for all of the models, for the employment share

of plants by age. Thus the models cannot be easily distinguished based on entry,

exit, and survivor growth rates alone.

Figure 6 contrasts the exit rates by size in the KK models with that in the

data. In the original KK model, bigger firms are firms with more varieties. Firms

with many varieties are unlikely to lose them all at once, as creative destruction

is independent across varieties. Thus exit falls sharply with size. We can soften

this prediction by generalizing the KK model to σ > 1, so that big firms are also

ones with higher quality rather than more varieties. But Figure 6 shows that very

big firms still have low exit rates. This is because, with undirected innovation,

the way to get very big is still by accumulating many varieties. We need quality
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Table 6: Parameter Values in the Simulated Models

Parameters KK KK 3 New varieties General

λi sq - - - - - - 71.0% 1.023

δe sq 2.4% 1.058 2.3% 1.057 1.9% 1.051 6.7% 1.023

δi sq 41% 1.058 41% 1.057 41% 1.051 93.3% 1.023

κe sκ - - - - 0.5% 1.051 0.5% 0.90

κi sκ - - - - 0.05% 1.051 0.05% 0.90

Figure 4: Model Fit, Fraction of Firms by Age
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Figure 5: Model Fit, Employment Share of Firms by Age
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Figure 6: Model Fit, Exit by Size with Undirected Innovation

variation to be the dominant source of size variation to (realistically) weaken

the impact of size on exit.6

Figure 7 plots exit by size for the two models with new varieties and directed

innovation.7 Directed innovation is a powerful force generating quality varia-

tion, so it succeeds in flattening the relationship between exit and size. When

large firms have high quality varieties more than a diverse array of varieties,

they are only partially insulated from the threat of creative destruction. The fit

6This is why we inferred little creation of new varieties by incumbents in Table 3. If they grow
by creating more varieties, then their exit rate will fall too quickly.

7To facilitate comparison with Klette and Kortum (2004), we stick with undirected innova-
tion in the KK models. When we add new varieties, however, we optimize the number of quan-
tiles at 100. When we add own-variety improvements, we infer less directed innovation with 12
quantiles.
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Figure 7: Model Fit, Exit by Size with Directed Innovation

is better for the model with own-variety improvements by incumbents. As we

shall see, this is because quality dispersion is excessive in the models without

own-variety improvements.

As mentioned above, models with undirected innovation generate thick tails

of job creation and destruction. We illustrate this in Figure 8 for the KK model

with σ = 3. The models with directed innovation do much better in matching

the empirical distribution of job creation and destruction – see Figures 9 and

10.8

The new varieties model and the general model do not do equally well in

8The reliance of the new varieties model on creative destruction can be seen in the artificial
spike in job creation around 2/3, which corresponds to a firm going from 1 to 2 varieties.
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terms of the size distribution. Figure 11 compares the percent of plants by em-

ployment in the two models to that in the data. Both models match the data’s

mean workers per plant of 45 by construction. But the dispersion of firm size

is too great in both models relative to the data. This is more acute for the new

varieties model – which lacks own-variety improvements. As described earlier,

when growth is driven by creative destruction, the arrival rate of innovations is

lower and the step size is bigger. The combination of an arrival rate closer to 0.5

(43 percent vs. 100 percent with own innovations) and a bigger step size (6 per-

cent vs. 2 percent) generates more size dispersion in the creative destruction

model. So does finer quantiles (firms creatively destroy qualities closer to their

own) in the new varieties model, which is required to match the distribution of

job creation and destruction.

We could change parameter values to reduce the size dispersion problem

with the creative destruction models, but it would compromise the model’s fit

on the exit rate and the distribution of job creation and destruction. For exam-

ple, with a higher arrival rate and smaller step size the exit rate of young firms

would be too high in the creative destruction models. By decoupling innova-

tion from creative destruction and exit, the model with own-variety improve-

ments can entertain a higher arrival rate and smaller steps. To recap, a model

in which there are frequent small quality improvements – just as much through

own-improvements as through creative destruction – comes closest to the data.

5. Conclusion

How much of innovation takes the form of creative destruction? Versus firms

improving their own products? New varieties? How much of innovation occurs

through entrants vs. incumbents? We try to infer the sources of innovation by

matching up models with manufacturing plant dynamics in the U.S. We ten-

tatively conclude that creative destruction is important but not the sole source

of innovation. Own-product quality improvements by incumbents seem just as
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Figure 8: Model Fit, Job Creation and Destruction
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Figure 9: Model Fit, Job Creation and Destruction
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Figure 10: Model Fit, Job Creation and Destruction
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Figure 11: Model Fit, Firm Size Distribution
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important. Of lesser but nontrivial importance are new varieties and the con-

tribution of entrants overall.

Our findings could be relevant for optimal innovation policy. The sources

of growth we identify have implications for business stealing effects vs. knowl-

edge spillovers, and hence the social vs. private return to innovation. The im-

portance of creative destruction ties into political economy theories in which

incumbents block entry and hinder growth and development, such as Krusell

and Rios-Rull (1996), Parente and Prescott (2002), and Acemoglu and Robinson

(2012).

It would be interesting to extend our analysis to other sectors, time peri-

ods, and countries. Retail trade experienced a big-box revolution in the U.S.

led by Wal-Mart’s expansion. Online retailing has made inroads at the expense

of brick-and-mortar stores. Chinese manufacturing has seen entry and expan-

sion of private enterprises at the expense of state-owned enterprises (Hsieh and

Klenow (2009)). In India, manufacturing incumbents may be less important for

innovation and growth given that surviving incumbents do not expand as much

in India as in the U.S. (Hsieh and Klenow (2014)).

Our conclusions are tentative in part because they are model-dependent.

We followed the literature in several ways that might not be innocuous for our

inference. For example, we assumed that creative destruction was independent

across varieties, even within a firm. We plan to explore the possibility that cre-

ative destruction is correlated across a family of products (e.g. Apple vs. Sam-

sung smartphones and tablets).

We assumed that spillovers are just as strong for incumbent innovation as

for entrant innovation. Young firms might instead generate more knowledge

spillovers than old firms do – Akcigit and Kerr (2013) provide evidence for this

hypothesis in terms of patent citations by other firms.

We assumed no frictions in employment growth or misallocation of labor

across firms. In reality, the market share of young plants could be suppressed

by adjustment costs, financing frictions, and uncertainty. In addition to ad-
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justment costs for capital and labor, it may take plants awhile to build up a cus-

tomer base, as in work by Foster et al. (2013) and Gourio and Rudanko (2014). Ir-

reversibilities could combine with uncertainty about the plant’s quality to keep

young plants small, as in Jovanovic (1982) model. Markups could vary across

varieties and firms. All of these would create a more complicated mapping from

plant employment growth to plant innovation.
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