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Abstract

Image segmentation is a fundamental task in image
processing and multimedia. We propose a general
method for image segmentation based upon the
relationship between mathematical morphology and
the local monotonicity of signals. In this paper, we
introduce a two-dimensional generalization of the
concep? of local monotonicity based on mathematical
morphology. A multiscale representation of an image
is morphologically generated, wherein the degree of
local monotonicity  determines scale. Then, a
morphological edge detection operator exploits the
monotonicity property in performing segmentation.
The segmentation allows specification of object scale,
edge detail, and contrast and is applicable to object-
based video coding.

1. Introduction

‘Image scgmentation is the partitioning of an image
into semantically meaningful spatial regions. It is an
esseptial task for many applications including object
recognition, tracking, and recently coding and
compression with the introduction of the MPEG-4
standard for video. With such an extensive and rapidly
increasing variety of applications using a wide range of
imagery, it is of fundamental interest to the signal
processing community to develop tobust image
segmentation algorithms.

Here, we present a segmentation technique for two-
dimensional graylevel imagery. By employing scale-
space  techniques and self-dual morphological
operators, our algorithm is unbiased towards a priori
knowledge of specific image content, foreground vs.
background intensity, and spatial orientation. Results

This work was supported by the National Acronautics and Space
Administration under EPSCOR grant NCC5-171.

0-7803-5700-0/99/$10.00©1999 IEEE

53

arc shown for the case of two-dimensional graylevel
images, but the method is applicable to three-
dimensional imagery such as CAT and MRI medical
data.

The segmentation is performed in three steps. First,
a scale-space representation of the original image is
generated by recursive morphological filtering. Next, a
morphological edge detection algorithm is used to
segment each scale. Finally, the segments at each scale
are linked together in a coarse-to-fine manner.

2. Local monotonicity
2.1 One-dimensional case

The scale-space includes a series of images with
varying degrees of local monotonicity. In one-
dimension (1-D), a signal is locally monotonic of
degree n (lomo-n) if and only if it is cither non-
increasing or non-decreasing within each windowed
interval of length n. This definition ensures a number
of specific scale properties, which are discussed in
further detail in [1). For example, such a signal

possesses  constant-valued  plateaus  separating
successive  non-increasing  and  non-decreasing

intervals. Also, level-set components, defined by a
threshold decomposition of the image, have a
minimum size or scale. An example of a 1-D discrete
lomo-6 signal is shown in Figurc 1, along with a
corresponding level-set example.

There is presently no accepted generalization of this
definition of local monotonicity to higher dimensions.
We desire such a generalization for use in image
segmentation. Though 1-D local monotonicity is
related to the root signals of median filter, we avoid a
2-D generalization based on median filtering becausc
of problems with oscillations and artifacts [2]. Instead,
we propose a generalization based on mathematical
morphology.
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Figure 1. A discrete 1-D lomo-6 signal f{x) and a
level-set (binary threshold) for {x)> 5.

It is known that a discrete locally monotonic 1-D
signal (of degree n) is a root signal of the filters open
and close, using symmetric zero-valued (flat)
structuring elements of length n-1 [1]. Additionally,
the filters open-close (open followed by close) and
close-open each produce 1-D locally monotonic
signals. These arc idempotent filters, so further
application of the filters effects no further change; a
root signal is achieved in one pass.

2.1 Two-dimensional generalization

~In two-dimensions (2-D), a natural extension of the
definition of local monotonicity would be to require
that such a signal be a root signal of both the open and
close filters of the appropriate structuring element.
Such a structuring element would be a spatially
symmetric (circular) flat disc of diameter n. This
definition would properly correspond to the one-
dimensional case, but no known filtering procedure
would generate such two-dimensional signals. In 2-D,
the open-close and close-open filters do not produce
signals that are simultaneously roots of both open and
close filters. In addition, these filters are dual filters of
one another and are inherently biased in intensity
direction due to the order of the application of open
and close filters. We seek a self-dual filter that
generates locally monotonic signals.

The filter given by the mean of open and close
filters provides a solution to these problems. We define
the lomo filter by the iterate:

Fx)ok(x)+ f(x) o k(x)
f(x) 5 ,

where the open and close filters of structuring element
k(x) as described above are applied to the signal f(x)
and their outputs averaged. Our first observation is that
a 1-D locally monotonic signal is indeed a root signal
of this filter, because it is a root of both open and close.
In fact, being a root of this filter serves an equivalent
definition of 1-D local monotonicity. This filter is self-
dual but not idempotent. However, iterative application
of the filter does converge to a root signal. Thus, the
fomo filter serves both to define and to generate locally
monotonic signals in 1-D.
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It is natural to extend this viewpoint to 2-D, by
defining a 2-D locally monotonic signal to be a root
signal of this lomo filter. Again, the structuring
element is spatially symmetric (circular) of diameter n-
1. As in the 1-D case, the filter also provides a method
for the generation of lomo signals of a given degree.
Iterative application of the lomo filter again converges
to a root signal.

In 2-D, however, this root signal is not everywhere
a root of both the open and close filters simultaneously.
While most points in the root signal are regular lomo
points, i.e. unaffected by open or close filtering, there
exist saddlepoint regions, where the signal possesses
points that are local minima in one direction and local
maxima in another dircction. In these regions, the lomo
filter converges to a root signal that is neither a root of
the open nor of the close filters individually, but rather
a compromise between the two. A simple example of
such a situation is shown in Figures 2 and 3.
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Figure 2. A simple 2-D example of a saddlepoint
situation. From left to right: (a) original test image,
(b) after the open (or close-open) filter of
structuring element equal in size to the circular
object, (c) after the close (or open-close) filter.
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Figure 3. 2-D signal of Fig. 2(a) after lomo filtering
(root signal reached after a single pass). The gray
region is a saddlepoint region. All other points are
regular lomo points.

While the possibility of saddlepoints complicates
the 2-D generalization of local monotonicity, it should
be noted that no morphological filtering could produce
a root signal of both the open and close filters without
altering regular fomo points in the region surrounding
the saddlepoint. By generalizing local monotonicity to
2-D via the lomo filter rathcr than by the open and
close filters individually, we avoid both the alteration
of regular lomo points and the introduction of intensity
bias. Also, as we shall see, thc most significant 1-D
scale properties of locally monotonic signals are
generalized to 2-D.



Important scale properties for 2-D lomo signals are
similar to those mentioned in Section 2.1 for the 1-D
case. The 2-D root signal possesses plateau regions at
each local extremum, and disallows level-set
components smaller than the structuring element.
These well-defined scale properties are advantageous
for use in multiscale image processing applications
such as segmentation.

A lomo scale-space can be generated by creating a
series of lomo-n signals of increasing n. Starting with
the original signal each scale is generated from the
previous scale, rather than directly from the original
image. This filtering order is similar to that of
alternating sequential filters [4] and effectively
removes noise and smaller features as scale is
increased.

As shown in [1], faster convergence to a root signal
may be obtained by the use of the alternative lomo

filter:
(fok)ek+(fok)ok
e« .
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For a given original image, this filter generally
produces a slightly different root signal from that of the
original lomo filter. However, root signals of this
alternative lomo filter are also root signals of the
original lomo filter, and differences are subtle.
Therefore, due to the improved convergence rate, we
~ generally employ this alternative filter in practical
applications. An example of a scale-space generated in
this manner is shown in Figure 4.

3. Morphological edge detection

Edge detection is performed on each scale-space
layer independently. The detection scheme is similar to
a second derivative or Laplacian edge detector. For the
lomo-n layer of the scale-space, a self-dual filter
defined by the mean of the dilate and erode filters is
used to over-smooth sharp changes or edges in the
signal:

f@ ek +f(x)e k)
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This filter is called the midrange filter [3] and here
uses the same structuring element as that used to create
the lomo-n signal. Then, zero-crossings are detected on
the difference between the lomo-n signal f{x) and this
over-smoothed signal s(x).

This formulation, where zero-crossings are detected
in the difference image s(x)-f(x), may be interpreted as
a morphological analogy to the Difference of
Gaussians (DoG) or the more general difference-of-
lowpass filters methods. Alternatively, it may be
viewed as a morphological analogy to the relate
Laplacian of Gaussian (LoG) edge detection. The
relationship is explained in further detail as follows.

In 1-D, the morphological edge detection may be

s(x) =

written as:

. XYok(xX)=2f()+ f(x)e k(x
¥ (X)Ef() (x) f2() J(x) ()’
which is referred to in the literature as the

morphological Laplacian [6]. In fact, for lomo-n this
reduces to the familiar discrete approximation to the
second derivative given by:

Fr) = f(x+A)—2f2(x)+f(x—A)y

<

for any sampling interval A n/2. Note that this
equivalence between the morphological Laplacian and
simple  second-derivative  approximation  relies
explicitly on the property of local monotonicity.

In 2-D, the morphological formulation remains
unchanged, sampling only three values of the signal. It
is therefore more akin to a second directional
derivative (in the direction of the gradient), than to a
discrete approximation to the linear Laplacian [7]. For
convenience and consistency with the literature,

however, we will refer to the operation as the the
morphological Laplacian.

As does the linear Laplacian, the morphological
Laplacian requires a threshold on edge-stregth or
gradient magnidude in order to alleviate the detection

Figure 4. Selected levels of a locally monotonic scale-space derived from the original cameraman image

of Figure 5. From left, original 256-graylevel image (256 x 256 pixels), scale-space levels corresponding
to structuring element diameters of 3, 7, and 11 pixels.
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of spurious edges. Here, we apply a threshold to the
difference image s(x)-fx) prior to zero-crossing. An
cxample of this thresholding process is shown in
Figure 5. Note that this threshold value is scale-
invariant, whereas thresholds applied in the linear LoG
edge-detection are highly scale-dependent. For
example a large-scale step edge retains its magnitude
throughout the lomo scale-space, while the same edge
decreases in gradient magnitude within the Gaussian
scale-space.
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Figure 5. Zero-crossings of morphological
Laplacian applied to the scale-space level
corresponding to diameter 7 pixels. The top image
is without an edge threshold, while the bottom
image uses a threshold at graylevel 3.

4. Multiscale segmentation

The zero-crossing procedure with thresholding is
used for edge detection. For segmentation, however,
the edges detected in this manner should be modified
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in order to guarantee closed boundary contours
between regions. Two additional steps are used to
alleviate problems in zero-crossing detection and
contour closing.

Even without thresholding, the detected zero-
crossings can fail to form closed contours. At junctions
between three or more regions, a gap the diameter of
the structuring element may occur. This difficulty
occurs at edges where the difference image s(x)-f(x) is
identically zero. To overcome this problem at
junctions, and similar gaps caused by thresholding, a
scale-determined edge dilation is employed. Edges are
dilated by a structuring element of half the diameter
used for the scale-space level, then re-eroded to single-
pixel width using a small structuring element while
avoiding the merger of separate regions. This process
is illustrated in Figure 6. Additionally, the difference
image s(x)-f(x) is slightly blurred prior to zero-crossing
detection in order to avoid identically zero intensities.
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Figure 6. lllustration of single-scale contour
closing. From left: zero-crossings of morphological
Laplacian at a given scale-space level, scale-
determined edge dilation, and final thinning.

Once each scale-space layer is independently
segmented, a scale-space linking procedure is used.
First, an initial scale-space level is selected where the
segmentation represents the desired object scale. Then,
a final scale-space level is selected where the desired
fine-scale edge detail of segmented regions occurs.
Between these scales, regions are linked based on the
greatest spatial overlap of segments between
consecutive scales, as illustrated in Figure 7. Fine-scale
segments linked to the same coarse-scale segment are
effectively merged. Thus, the object scale and edge
detail can be independently adjusted in the final
segmentation. Sample results of this multiscale
segmentation procedure are shown in Figure 8.
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Figure 7. lllustration of multiscale segment
linking. From left: a coarse-scale segment, a finer-
scale segment, and spatial overlap through scale.



5. Conclusion

By employing scale-space techniques and self-dual
filters, the entire segmentation method is very general
and requires a minimum of parameters: object scale,
edge detail, and contrast threshold. Also, by use of
morphological filtering, noise resilience, edge
localization, and efficient implementation are achieved.
The segmentation method is especially appropriate for
object-based coding applications, where control over
scale and edge detail are critical. In many object-based
coding algorithms, contour information is transmitted
separately from intra-segment information. Because of
the cost of coding contour detail, it is desirable to
allow the selection of edge detail independently from
object scale. Our segmentation process allows just this
sort of control. Additionally, the method may be
directly generalized to 3-D imagery, and we are
presently pursuing research into its generalization into
color and multi-spectral segmentation.
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Figure 8. Examples of multiscale segmentation resuits. All original images are 256 graylevel, 256 x 256
pixel images. Initial scales (structuring element radii in pixels), final scales, and edge thresholds are as
follows: ‘brain’ image: (2, 2, 11), ‘library’ image: (3, 2, 4), and ‘swan’ image: (4, 2, 3).



