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Summary

In this paper we apply a predictive profiling method to genome copy number aberrations
(CNA) in combination with gene expression and clinical data to identify molecular patterns
of cancer pathophysiology. Predictive models and optimal feature lists for the platforms
are developed by a complete validation SVM-based machine learning system. Ranked list
of genome CNA sites (assessed by comparative genomic hybridization arrays – aCGH) and
of differentially expressed genes (assessed by microarray profiling with Affy HG-U133A
chips) are computed and combined on a breast cancer dataset for the discrimination of Lu-
minal/ER+ (Lum/ER+) and Basal-like/ER- classes. Different encodings are developed and
applied to the CNA data, and predictive variable selection is discussed. We analyze the
combination of profiling information between the platforms, also considering the patho-
physiological data. A specific subset of patients is identified that has a different response
to classification by chromosomal gains and losses and by differentially expressed genes,
corroborating the idea that genomic CNA can represent an independent source for tumor
classification.

1 Introduction

Both transcriptome profiling, by gene expression microarray, and genomic copy number aber-
rations (CNA) detection, by comparative genomic hybridization arrays (aCGH), have been used
to produce molecular portraits of breast cancer specimens. These are used to derive signatures
of prognostic value for patients by means of unsupervised hierarchical clustering. Microarray-
derived data allowed the identification of five breast cancer subtypes (basal-like, luminal A,
luminal B, ERBB2, normal breast-like) two of which (basal-like and ERBB2) have been asso-
ciated with strongly reduced survival [14, 15, 18, 19]. aCGH also consistently detected charac-
teristic CNA in breast cancer, which allows the classification of tumor samples on the basis of
their pattern of chromosomal gains and losses [10, 11, 16]. Based on unsupervised clustering on
aCGH data, the breast tumor genomes fall into one of three categories (called 1q/16q or simple,
complex and amplifier) [5]. The emergence of features distinguishing breast cancer subgroups
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on the basis of either their genomic and transcriptomic blueprints raises the possibility combin-
ing them to produce compound signatures potentially endowed with extended predictive power.
A recent extensive study [4] explored the value of the combination of microarray-derived and
aCGH-derived data obtained from the same collection of tumor samples, coming from patients
undergoing aggressive adjuvant chemotherapy and endowed with adequate clinical description
and follow-up. The conclusion was that the classes obtained by expression profiling have dif-
ferent recurrent CNA, and that the parallel use of these data can improve patient stratification
according to the outcome. These results suggest that, for breast cancer, integration of genomic
and transcriptomic abnormalities could provide a potential enrichment in predictive power, jus-
tifying further attempts to unravel the structure of the relationship between these two levels of
observation of cancer genomic instability.

We introduce in this context a set of machine learning methods to investigate common and
different structures within a possible integrative space of high-throughput features. In terms of
machine learning, our main task is the predictive classification and feature ranking of gene ex-
pression and genome copy number with respect to the Luminal/ER+ and Basal/ER- classes. We
first develop predictive models and optimal feature lists for the two platforms separately. Dif-
ferent encodings are applied to the CNA data. Then we filter data and variables and consider the
combination of profiling information between the platforms, also considering the pathophys-
iological data. Finally, we analyze in detail a specific subset of patients in which differences
are found by BAC aCGH and gene expression. We show that SVM-based classification of
microarray-derived and aCGH-derived data on a common subset of 63 samples detects a subset
of 8 cases with specific pathophysiological characteristics.

To our knowledge, this is one of the first studies applying supervised classification in a complete
validation context to aCGH data and combining them with gene expression data with the same
machine learning methodology. The structure of the rest of the paper is as follows: the dataset
and preprocessing methods are discussed in Sec. 2, and Sec. 3 details the machine learning
framework, whose application is described in Sec. 4. Results are finally discussed in Sec. 5.

2 Data description

This paper is based on the aCGH and gene expression data first presented in [4]. In this sec-
tion we summarize the main information on the original data and provide details on different
preprocessing methods we applied for supervised classification tasks.

The array-CGH data were obtained from the Scanning and OncoBAC methodologies as de-
scribed in [4]. The data consists of 2149 BAC describing 149 samples. This dataset includes
missing values (NAs). In this study, we consider the data either as BAC or by different encod-
ings and we impute the missing values through kNN as in [20], we eliminate samples and/or
genes with too many NAs, or we obtain imputation directly from another type of preprocessing
which encodes BAC into segments. The segmented data are obtained by processing the original
aCGH data as in [12, 21]: circular binary segmentation is applied to all samples to obtain, for
each chromosome of each sample, a piecewise constant function with theDNAcopy R/Biocon-
ductor package. By intersecting all those values (Fig. S1 in Supplementary Material), we build
a sparse matrix of BioDCV inputs. Note that NA imputation is automatically performed within
the segmentation algorithm.
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Figure 1: Kaplan-Meyer disease-specific survival stratified by Lum/ER+ vs. Basal/ER- classes.
The graph includes 94 samples (63 Lum/ER+, 31 Basal/ER-) in [4] having complete ER status and
survival information.

Expression data for 118 samples described by 22215 probes were collected by using Affymetrix
HG-U133A arrays and preprocessed as detailed in [4]. Tumor subtype classes can be assigned
on these data by clustering with the 70-genes molecular signature from [19]. The samples were
labelled as belonging to one out of the five classes (basal-like, ERBB2, luminal A, luminal
B and normal-like) according to proximity to the molecular-signature cluster computed both
by the Euclidean distance and by Pearson’s correlation (in case of ambiguity we consider the
latter) [4]. Although an alternative classification in subtypes of biological relevance have been
recently proposed [9], in this study we follow the original five class partition.

Clinical data are available and consist of 136 fields for 174 patients. In particular, the ER status
and the disease-specific survival information are provided. The number of samples that are
available for integrative genomic study (i.e. with both Affy U133A and aCGH, as well as the
clinical information) is 89. Their partition into subtypes, according to Pearson’s correlation, is
the following: 35 luminal A , 11 luminal B, 23 basal-like, 10 ERBB2, and 10 normal-like. From
all the 89 samples we extracted the 42 samples belonging to the luminal subtype (aggregation of
luminal A and luminal B) with positive ER status (discarding 4 luminal samples with negative
ER status) and the 23 samples of the basal-like subtype (all with negative ER status), for a total
of 65 cases. The Kaplan-Meyer disease-specific survival graph for the two classes luminal/ER+
(Lum/ER+) and basal/ER- (94 samples, having complete ER status and disease specific survival
information) is shown in Fig. 1. The resulting p-value is 0.131.

3 Methods

Our approach towards supervised classification relies on a set of algorithms aimed at achieving
predictive classification together with stable molecular profiles, avoiding overfitting risks due
to selection bias effects [1]. This method has been used so far with satisfying results in different
functional genomics and proteomics tasks (e.g. profiling microarrays, time series microarray,
integration with clinical data, and mass spectrometry data) and also by using grid computing
infrastructures [2, 3, 6, 7, 8, 13].

The method’s core is a complete validation procedure [8] realizing repeated training/test splits
of the original dataset. A feature ranking algorithm is applied to the training portion, and clas-
sification models with increasing number of best ranked features are computed on the test part.
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Accuracy performance is assessed by averaging classification errors on all the test splits (ATE,
Average Test Error) both globally over all samples and on a samplewise basis (sample-tracking
analysis). Given the population of ranked lists produced at each training/test split, a global
ranked list is then computed by means of an aggregating algorithm (Borda count method). As a
rule of thumb, the more the splits, the smoother the obtained results. Class label randomization
is also applied to validate the entire method. The whole procedure is implemented in BioDCV,
a Python/C environment freely available athttp://biodcv.itc.it .

In this paper, Support Vector Machines (SVM) are used as the classification algorithm. They
are well-known both in machine learning as well as in bioinformatics literature for their good
performance on high-throughput data, characterized by the huge unbalancep >> n between
the numbern of samples and the numberp of features [17]. Regularization parameter and other
kernel-specific parameters (such as bandwith for Gaussian kernels) are preliminarly tuned by
training error minimization in bootstrap experiments. Finally, each feature in the data matrix is
usually standardized across samples to zero mean and one standard deviation to avoid unwanted
effects due to strong dishomogeneities in the features’ ranges.

Entropy-based Recursive Feature Elimination (E–RFE) is used as the ranking algorithm [7].
RFE-like algorithms are wrapping methods that recursively discard a bunch of the features
which are less contributing to the classifier until all features have been eliminated. Different
choices in the discarding rule lead to variants of the original RFE algorithm, which eliminates
just the least important feature at each loop (stepwise backward selection). The E–RFE al-
gorithm has been shown to achieve performances comparable with the original RFE with a
consistent improvement in terms of computing time. Nevertheless, performing the complete
validation procedure for a large number of splits (e.g. 400 as in the experiments discussed in
this paper) is still computationally heavy: reasonable computing times can thus be obtained by
distributing loads on High Performance facilities such as clusters or grid infrastructures [3].

4 Results

In this study, we initially performed a 10-NN imputation of missing values on the aCGH data.
BAC with more than 10% missing values (≥ 7 cases) across samples were discarded, leaving
a total of 1590 BAC features. We also performed a circular binary segmentation on the same
65 samples, obtaining 1674 features. The BioDCV-based predictive profiling was applied to
these datasets, following the steps detailed in Methods. The experiment on the gene expression
data (BioDCV, linear SVM, E–RFE) reaches near perfect classification with very few genes
(ATE < 1% with 3 genes, on average). Results are summarized in Tab. 1 (see also Fig. S2 and
S3): predictive average test errors (ATE) and their standard deviations are listed for increasing
feature set sizes, globally and separately for the classes. This result, which extends the original
study [4], is however predictable since tumor subtype labeling was set by clustering of the gene
expression data and these two tumor subtypes are considered as well separated also in known
breast cancer signatures [19]. In particular, the most discriminating feature, for all the 400 test
sets, is the probe 205225at (ESR1).

Classification of the aCGH data as BAC (also with BioDCV, linear SVM and E–RFE) gives an
ATE < 12% for all models with less than 300 features, reaching 9.8% as the minimum value
with 900 features. Two samples (s0004 and s0138) are however consistently misclassified in all
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tests according to the BioDCV procedure. Note that the subtype class of s0004 is not univocally
assigned by the Sorlie signature: the label is basal-like by Pearson correlation and ERRB2 by
Euclidean distance.

We thus applied the shaving procedure detailed in [13] and removed the two samples from both
the BAC and the expression data. The shaving lowers the no-information rate from the original

23
23+42

= 35.4% to 21
21+42

= 33.3%. The classification exercise was then repeated on both the
datasets. For the gene expression data, the shaving procedure did not significantly affect the
performances of the experiment (ATE<1% with four features). As above, the best discriminat-
ing gene was ESR1, typically the gene more directly associated with the ER status, introducing
a first order effect that masks other potential descriptors of the underlying pathophysiology. We
thus removed the ESR1 gene from the feature set and repeated the classification. We did not
remove other ER-related probes that are poorly discriminating on this dataset. For gene ex-
pression, performances were only slightly affected (ATE<2% with 3 features and ATE<1%
with 15 features), confirming the effect of other genes in this classification task. Moreover the
ordering of features in the ranked list showed only minor rearrangements (discussed below). In
summary, classification by gene expression is not modified by the removal of the two samples
(problematic for the task on BAC) and the ESR1 probe.

Classification of the aCGH BAC data is instead improved in this setting. As shown in Tab. 2
and displayed in Fig. 2, now ATE is less than 10% for models with at least 15 features, with
a minimum ATE6.9% reached with 50 BAC. The shaving procedure has thus effectively re-
duced noise from the analysis. Note that performance with Gaussian kernel does not improve
with respect to the simpler linear SVM model, also after parameter tuning by bootstrap-based
procedures, while the resulting optimal lists are similar. We then analyzed the problem of
combining genomic and trascriptomic information as derived from profiling. Alignment of
BAC and corresponding HG-U133A probes for the the best features is detailed in Tab. 3
(from probes to BAC) and Tab.4 (from BAC to probes). The correspondances were seeked
by using GenomeMap (NCBI:http://www.ncbi.nlm.nih.gov/mapview ), NetAffix
(https://www.affymetrix.com ), UCSC Genome Browser (http://genome.ucsc.
edu). Given the first 15 probes (ATE< 0.9% on the shaved dataset without ESR1), 11 BAC
were mapped (3 corresponding to one single probe). However, we were able to map only 2 BAC
of the 1590 conserved after imputation. In the other direction (Tab. 4), when we considered
the first 15 ranked BAC, 22 Affy probes were found for 5 different BAC, of which 11 for the
HG-U133A platform used in [4]. The differential expressions for these 11 probes are shown

# feat MLum/ER+ SDLum/ER+ MBasal/ER- SDBasal/ER- M SD
1 2.08 4.69 3.05 9.79 2.42 6.50
2 0.53 2.74 2.15 6.96 1.10 4.23
3 0.18 1.80 1.50 5.64 0.64 3.16
4 0.13 1.11 1.30 5.33 0.54 2.60
5 0.13 1.11 1.15 4.87 0.49 2.44

10 0.03 0.50 1.50 5.82 0.55 2.38
25 0.00 0.00 1.40 5.30 0.50 1.88
50 0.00 0.00 1.15 5.27 0.41 1.86

100 0.00 0.00 0.75 4.53 0.27 1.60
500 0.00 0.00 0.40 2.80 0.14 0.99

1000 0.00 0.00 0.10 1.41 0.04 0.50
22215 0.00 0.00 0.15 1.73 0.05 0.61

Table 1: Average Test Error (M) on the gene expression data for the Lum/ER+ vs. Basal/ER- task
(global and classwise), with standard deviation (SD).
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Figure 2: Average Test Error on the copy number data (BAC) for the Lum/ER+ and Basal/ER-
task, with 95% student’s bootstrap confidence intervals.

in Fig. 3: best separation is shown for probe 201805at, which is the best ranked for gene
expression classifiers. It is worth noting that in both cases the mappings found low ranked fea-
tures, suggesting independence between the optimal lists produced by the two experiments on
the different datasets for the admissible mappings with current information. Note that greater
insights may be gained by using higher resolution arrays such as SNP.

As an alternative way of comparing the best ranked lists from the two platforms, we first ex-
plored a binning technique discussed in [4], in which every chromosome was subdivided into
non-overlapping sections (bins) of length 20Mb. Locations of top-20 probesets and BAC are
listed in Tab. 5. Only 5 common bins were detected, supporting a possible independence be-
tween the feature sets. None of the top 20 BAC and genes lie on chromosomes 7, 8, 9, 11,
17. As an intermediate feature encoding between BAC and coarse binning, we performed the
predictive profiling study on the aCGH data preprocessed by circular binary segmentation (see
Methods). Classification with the segmented data gave poor performances: as shown in Tab.
S5 and Fig. S6, ATE always remains above 13%, and above 20% with less than 70 segments
used as features in the SVM classifiers. In order to enhance possible effects due to CNA high-
amplification, the classification exercise was repeated with both BAC and segments without
standardizing data, after imputation. This variant worsened the performance with BAC (mini-
mum ATE at 7.8% for 90 features), while a negligible higher accuracy (minimum ATE 12.8% at
600 features and 19.4% at 70 features) was obtained for the segmented data. In summary, seg-

# feat MLum/ER+ SDLum/ER+ MBasal/ER- SDBasal/ER- M SD
1 13.75 12.32 50.30 23.61 25.93 16.08
2 15.23 11.48 40.70 22.33 23.72 15.10
3 14.63 12.24 36.65 21.28 21.97 15.25
4 12.78 11.57 34.65 21.94 20.07 15.03
5 11.25 11.08 31.35 21.85 17.95 14.67

10 8.33 8.49 20.85 20.87 12.50 12.62
15 6.60 7.69 16.65 18.94 9.95 11.44
20 5.78 7.11 13.35 17.65 8.30 10.62
25 5.95 7.47 12.10 17.33 8.00 10.75
50 5.58 7.20 9.55 15.70 6.90 10.03

100 5.73 7.49 10.55 16.56 7.33 10.52
500 4.63 6.67 13.80 17.39 7.68 10.24

1000 4.73 6.64 13.75 18.02 7.73 10.43
1590 4.80 6.64 13.85 17.78 7.82 10.35

Table 2: Predictive errors (M) with standard deviation (SD) on the copy number data (BAC) for
the Lum/ER+ and Basal/ER- task (separately on the two classes and for all data), after shaving
two samples.
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# # Probeset Location Gene Mapped BAC BAC
[ER] [no ER] ID symbol BAC cytoband (FISH) ranking

1 (shaved) 205225at 6q25.1 ESR1 (RP1-63IE) 6q25.1-6q26
2 2 204623at 21q22.3 TFF3
3 6 219497s at 2p16.1 BCL11A
4 11 215867x at 16q23 AP1G1
5 (18) 221880s at 15q26.1 LOC400451
6 1 214164x at 16q23 AP1G1
7 14 212692s at 4q31.3 LRBA (RP11-29P18) 4q32-4q33
8 4 203963at 15q22.2 CA12 RP11-100N8 15q21.3 97
8 4 203963at 15q22.2 CA12 (RP11-209D15) 15q22
8 4 203963at 15q22.2 CA12 (RP11-91E13) 15q22
9 9 214404x at 6p21.31 SPDEF (RP11-375E1) 6q21.31

10 15 209623at 5q13.2 MCCC2 (RP11-88J2) 5q13.2
11 12 204667at 14q21.1 FOXA1
12 10 209871s at 15q13.1 APBA2 (RP11-165M18) 15q23.1-15q23.33
13 5 204198s at 1p36.11 RUNX3 (RP3-398I9) 1p34.3-36.13
14 (17) 203929s at 17q21.31 MAPT (RP11-669E14)
15 3 212956at 4q31.21 TBC1D9 (RP11-5K16) 4q31.1

(27) 7 214053at 2q33.3-q34 ERBB4 (RP11-300D24) 2q34
(27) 7 214053at 2q33.3-q34 ERBB4 CTD-2067J6 2q34 619
(27) 7 214053at 2q33.3-q34 ERBB4 (CTD-2204E9) 2q34
(25) 8 212442s at 2q24.3 LASS6
(21) 13 206373at 3q24 ZIC1

Table 3: Mapping of the top-15 ranked probesets on the available BAC. Probeset ranking position
for gene expression classification is listed for ESR1 probeset included (col.# [ER]) or excluded#
[noER]). The BAC clones in parentheses are not present (missing or discarded by imputation).

Gene ExpressionGene Expression

4 5 6 7 8 9 10

220907_at

205169_at

206970_at
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Figure 3: Expression level of the affy probesets mapped from top-ranked BAC.

mentation and non-standardized data gave worse results than standardized BAC on this dataset.
Because differences were found by comparing and mapping the profiling results on the two dif-
ferent platforms, we consider the individual ATE error curves computed for each sample (i.e.
sample-tracking curves, see Methods and [8]). The sample-tracking curves are displayed in
Fig. 4. As shown in the figure, eight aCGH samples (4 Lum/ER+ and 4 Basal/ER-) are mostly
misclassified. As they are altogether perfectly classified by gene expression, it is suggestive
to analyze this subset in some detail. Some of their clinical features (SBR grade and survival
time) are differently distributed w.r.t. to the rest of samples: SBRgrade=3 for 6/8 cases vs SBR-
grade=3 for 22/55; median recurrence 3.3 years vs 6.9 years, suggesting a worse prognosis for
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# BAC Cytoband Mapped Associated Gene
(FISH-mapped) Gene Symbol Affy Probeset Ranking

1 RP11-23B22 1
2 RP11-277N18 5q21 none
3 RP11-25K5 12p12-13 SPATS2 218324s at 9184
3 RP11-25K5 12p12-13 SPATS2 (222593s at)
3 RP11-25K5 12p12-13 SPATS2 (222594s at)
3 RP11-25K5 12p12-13 KCNH3 (223726at)
3 RP11-25K5 12p12-13 MCRS1 202556s at 1762
3 RP11-25K5 12p12-13 C12orf25 (224039at)
4 RP11-176I4 4p15.1 no probe
5 CTD-2048F17 18q23 FLJ25715 no probe
5 CTD-2048F17 18q23 CTDP1 205035at 8110
6 CTD-2271B13 4
7 RP11-40N8 5q13.1-5q12 none
8 RP11-253O10 16q23 LOC645799 no probe
9 CTD-2008N7 12q13 DDN 214788x at 21293
9 CTD-2008N7 12q13 PRKAG1 201805at 252
9 CTD-2008N7 12q13 MLL2 211790s at 21071
9 CTD-2008N7 12q13 RHEBL1 no probe
9 CTD-2008N7 12q13 DHH no probe
9 CTD-2008N7 12q13 STX6 LMBR1L 220036s at 14078
9 CTD-2008N7 12q13 MLL2 (227527at)
9 CTD-2008N7 12q13 MLL2 (227528s at)
9 CTD-2008N7 12q13 MLL2 (231974at)

10 RP11-109L8 12q15 HELB no probe
11 RP11-243M13 1q32.1 NFASC 213438at 8856
11 RP11-243M13 1q32.1 NFASC 214799at 8484
11 RP11-243M13 1q32.1 NFASC (230242at)
11 RP11-243M13 1q32.1 CNTN2 206970at 6392
11 RP11-243M13 1q32.1 TMTM81 (LOC388730) no probe
11 RP11-243M13 1q32.1 CNTN2 (230045at)
12 RMC05P007 5
13 RP11-39C2 6p12 GPR110 220907at 13553
13 RP11-39C2 6p12 GPR110 (235988at)
13 RP11-39C2 6p12 GPR110 (238689at)
14 RP11-22L20 5q11.2 none
15 RP11-141N1 12q21.3-22 none

Table 4: Top-15 ranked BAC with the included genes. The Affy probesets in parentheses belongs
to the Affymetrix U133B platform, and thus they are not present in the Chin06 dataset [4].

Probe Set ID chrom. portion BAC chrom. portion
204198s at 1 2 RP11-219O7 1 2
219497s at 2 4 RP11-243M13 1 11
212442s at 2 9 RP11-176I4 4 2
214053at 2 11 CTD-2271B13 4 3
206373at 3 8 RP11-22L20 5 3
202341s at 4 8 RP11-40N8 5 4
212692s at 4 8 RP11-277N18 5 6
212956at 4 8 RMC05P007 5 7
209623at 5 4 CTD-2118F18 6 2
214404x at 6 2 RP11-39C2 6 3
201984s at 7 3 RP11-72C6 10 1
212771at 10 1 RP11-70B16 10 2
204667at 14 2 CTD-2008N7 12 3
209871s at 15 2 RP11-25K5 12 3
203963at 15 4 RP11-109L8 12 4
221880s at 15 5 RP11-141N1 12 5
214164x at 16 4 RP11-106L3 16 3
215867x at 16 4 RP11-253O10 16 4
203929s at 17 3 CTD-2048F17 18 1
204623at 21 3 RP11-23B22 20 2

Table 5: Chromosome portions of the top-20 affy probesets and top-20 BAC.
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Figure 4: Sample-tracking error analysis of Lum/ER+ and Basal/ER- task on the copy number
data (BAC features). For each sample, the plot indicates percent error for BioDCV runs (indicated
in parenthes) in which the sample is in test, averaged on models of the same feature set size. The
horizontal grey line indicates the no-information error rate for baseline comparison.
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Figure 5: Gains (upper red) and losses (lower green) frequencies of the eight misclassified samples
are compared to the frequencies for the remaining 55 samples (gray dots).
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Figure 6: Comparison of gene expression on optimal gene expression signature of the aCGH mis-
classified samples with the remaining data. All data are perfectly classified by the selected Affy
probes. However, probes such as 212692s at discriminate within the subset better than within the
rest of the data.

those eight samples. By comparing the frequency of gains and losses (as in [4]) of those eight
samples vs. the remaining 55 samples, significant differences emerge for many chromosomes
(see Fig. 5). Further differences can also be dectected by the box plots in Fig. 6 and Fig. S6.

5 Conclusions

In this paper we propose a combined approach to supervised classification of breast cancer spec-
imens based on genomic lesion detection from aCGH and transcriptome analysis by microarray
profiling. The CNA signature we derived discriminates the Lum/ER+ and Basal/ER- subgroups
with a 12.5% predictive error rate (with 10 BAC features); this suggests that aCGH data could
be used in classification tasks where transcriptome profiling data are unavailable or cannot be
obtained for the high degree of sample degradation. Moreover, the absence of co-occurence
between the genes located in the top ranked BAC and the location of the genes detected by
the top ranked Affy probesets suggests a segregation of predictive power at the genome and
the transcriptome level in these samples, further corroborating the idea that genomic CNA can
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represent an independent source for tumor classification. The 8 samples misclassified by the
supervised aCGH-based analysis are characterized by a common overall worse prognosis and
by statistically significant differences in the CNA profile, with substantial changes in the num-
ber of gains and losses in the 5, 6, 7, 10, 12 and 14 chromosomes. Therefore, this tumor subset
could be endowed with other features emerging only on the basis of the CNA profile, and hav-
ing no effect on the discriminating ability of the transcriptome profiles. This finding again
reinforces the interest in aCGH-derived information for breast tumor supervised classification.
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1 aCGH preprocessing

S1 Building the BioDCV matrix from segmented aCGH data: after identifying all the change-
points (the solid dots on the bottom line) across samples, features are labeled by using the
midpoint of each segment (the crosses on the bottom line). For each sample, the log2ratio
value of the associated segment is assigned to each feature.

segmented
sample B

sample A
segmented

genome map
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2 Gene expression classifiers

S2 The Average Test Error is displayed for gene expression data and the Lum/ER+ vs.
Basal/ER- task, with 95% student’s bootstrap confidence intervals.
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S3 Sample-tracking analysis of the Lum/ER+ vs. Basal/ER- task on the expression data. For
each sample, the plot indicates percent error for BioDCV runs (indicated in parenthes) in which
the sample is in test, averaged on models of the same feature set size. The horizontal grey line
indicates the no-information error rate for baseline comparison.
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3 Segmented aCGH classifiers

S4 The Average Test Error is displayed for the segmented copy number data and the Lum/ER+
and Basal/ER- task, with 95% student’s bootstrap confidence intervals.
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S5 Average Test Error (M ) on the segmented copy number data for the Lum/ER+ and Basal/ER-
task (global and classwise), with standard deviations (SD).

# feat MLum/ER+ SDLum/ER+ MBasal/ER- SDBasal/ER- M SD
1 10.15 10.06 55.60 22.76 25.30 14.29
2 12.03 11.68 43.80 21.51 22.62 14.96
3 13.80 12.27 39.25 20.63 22.28 15.05
4 14.35 12.75 36.20 21.88 21.63 15.79
5 14.93 12.38 34.95 22.06 21.60 15.61

10 14.63 11.95 32.95 21.46 20.73 15.12
15 14.93 11.85 32.60 21.08 20.82 14.92
20 14.88 11.97 33.15 20.86 20.97 14.94
25 15.03 12.08 32.95 20.75 21.00 14.97
50 15.58 12.11 30.35 20.42 20.50 14.88

100 15.20 11.67 27.35 20.00 19.25 14.45
200 14.78 11.26 22.65 19.82 17.40 14.11
500 13.98 11.26 17.25 17.73 15.07 13.41

1000 11.95 10.75 17.70 18.48 13.87 13.32
1674 12.38 10.63 18.05 18.60 14.27 13.28
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4 Subclass analysis

S6 Comparison of gene expression on optimal gene expression signature of the 8 aCGH
misclassified samples with the remaining 55 samples.
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