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Abstract

We consider DC-biased arrays of overdamped Josephson junctions with different lattice geometries, and demonstrate that,
with suitable choice of bias currents, it is possible for the in-phase state of the array to exhibit so-called “neutral stability”. This
extends the finding of Wiesenfeld et al. (J. Appl. Phys. 76 (1994) 3835) for two-dimensional rectangular lattices to arbitrary
lattice types. 2001 Published by Elsevier Science B.V.

PACS: 74.50.+r; 05.45.Xt; 05.45.-a; 74.60.Ge

1. Introduction

Though the behavior of an individual Josephson
junction is well understood, it has been observed
that large groups of interacting Josephson junctions
can display interesting new collective behaviors (e.g.,
[1–4]). A prime example of this is the phenomenon
of “neutral stability”, an unusual mathematical prop-
erty referring to systems which, in a certain sense, sit
poised on the boundary between stability and instabil-
ity (i.e., they possess some Floquet exponents equal
to zero). In 1994, Wiesenfeld et al. [1], extending key
work by Hadley [5], demonstrated a remarkable re-
sult: in anN ×M RSJ Josephson junction array with
a rectangular lattice geometry, the in-phase state is
(globally) neutrally stable, and possesses an astonish-
ingN − 1 zero Floquet exponents. The significance of
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this result is twofold: First, on the applied math side, it
raises an intriguing issue: The presence of a large num-
ber of zero Floquet exponents in a dynamical system
is a rare occurrence, typically found only in systems
possessing obvious global symmetries; it is not at all
apparent why neutral stability should make an appear-
ance here. Second, on the applied physics side, neu-
tral stability renders a Josephson junction array highly
sensitive to small perturbations which can potentially
disrupt the synchronous functioning of the array. Since
achieving synchronization is of crucial importance for
many device applications, the potentially desynchro-
nizing effect of neutral stability has potentially impor-
tant practical design implications (e.g., [6]).

If this phenomenon were restricted solely to rec-
tangular Josephson junction arrays, then perhaps neu-
tral stability would be of somewhat limited import in
terms of array design. However, as we will demon-
strate in this Letter, the neutral-stability property ob-
served by Wiesenfeld et al. is not limited to 2-D rectan-
gular lattices (including those with periodic boundary
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Fig. 1. (a) A simple triangular lattice. The filled circles show
the location of the superconducting nodes; theΨi ’s denote their
macroscopic phases. A line between two nodes indicates that they
are connected via a Josephson junction. (b) A larger triangular
lattice.

conditions [7]), but in fact arises in Josephson junction
arrays with arbitrary lattice geometries, for suitable
choices of the bias currents. We first demonstrate this
explicitly for the case of a triangular lattice of Joseph-
son junctions, and then describe a criterion for the ex-
istence of neutral stability in arbitrary lattice geome-
tries.

2. A triangular lattice

We begin by considering an array with a triangular
lattice geometry, as depicted in Fig. 1(a). The array
is comprised of identical, overdamped (i.e., RSJ [8])
junctions. DC-bias current is injected uniformly along
the upper boundary of the array, and removed along
the lower boundary. TheΨi ’s denote the so-called
“node variables”, representing the macroscopic phase
at each superconducting site. Lettingψij ≡ Ψi − Ψj
denote the phase differences between the nodes, the
basic circuit equations for the array are

ψ̇21 + Ic sin(ψ21)+ ψ̇31 + Ic sin(ψ31)

+ ψ̇41 + Ic sin(ψ41)= 2I,

−ψ̇21 − Ic sin(ψ21)+ ψ̇42 + Ic sin(ψ42)

+ ψ̇52 + Ic sin(ψ52)= 2I,

−ψ̇31 − Ic sin(ψ31)+ ψ̇43 + Ic sin(ψ43)

+ ψ̇63 + Ic sin(ψ63)= 0,

−ψ̇41 − Ic sin(ψ41)− ψ̇42 − Ic sin(ψ42)

− ψ̇43 − Ic sin(ψ43)+ ψ̇54 + Ic sin(ψ54)

+ ψ̇64 + Ic sin(ψ64)+ ψ̇74 + Ic sin(ψ74)= 0,

−ψ̇52 − Ic sin(ψ52)− ψ̇54 − Ic sin(ψ54)

+ ψ̇75 + Ic sin(ψ75)= 0,

−ψ̇63 − Ic sin(ψ63)− ψ̇64 − Ic sin(ψ64)

+ ψ̇76 + Ic sin(ψ76)= −2I,

−ψ̇74 − Ic sin(ψ74)− ψ̇75 − Ic sin(ψ75)

(1)− ψ̇76 − Ic sin(ψ76)= −2I,

where the overdot on theψij ’s denotes the time
derivative. For convenience,h̄/2er has been set equal
to one in the above equations.

One may readily verify that there exists a so-called
“in-phase” solution to these equations, given by

Ψ1 = Ψ2 = φ(t),

Ψ3 = Ψ4 = Ψ5 = 2φ(t),

Ψ6 = Ψ7 = 3φ(t),

where the functionφ(t) satisfies

(2)φ̇ + Ic sin(φ)= I.

The in-phase state describes a state of perfect syn-
chrony for the array, and represents the ideal configu-
ration for many practical device applications. Our goal
here is to show that, for this triangular lattice, the in-
phase state is neutrally stable with respect to certain
types of perturbations. This proves to be remarkably
straightforward.

There are two basic approaches one can adopt. The
first involves a linear stability analysis of the in-phase
state of (1), from which one can deduce the existence
of several Floquet exponents which are equal to zero
for this array. This method was used in [1,5] for the
case of rectangular lattices. The drawback of this first
approach is that since it relies on a linear analysis of
the equations, it only demonstrates the existence of
linear neutral stability. The second approach is based
on a more general understanding of neutral stability,
as described in [1] (see also [6]). As will be described
below, the basic idea here is to show that the in-phase
solution is really just one element of a multi-parameter
family of solutions. Since these parameters can be
varied continuously and independently, the in-phase
state is not merely linearly neutrally stable, but rather
nonlinearly (i.e., globally) neutrally stable. We will
follow this second approach, which is not only more
powerful, but also significantly easier to implement.
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To do so, we must explicitly construct the multi-
parameter family of solutions to which the in-phase
state of the triangular lattice belongs. We find that the
desired family of solutions takes the form

Ψ1 = Ψ2 = φ(t + δ1),

Ψ3 = Ψ4 = Ψ5 = φ(t + δ1)+ φ(t + δ2),

(3)Ψ6 = Ψ7 = φ(t + δ1)+ φ(t + δ2)+ φ(t + δ3),

whereδ1, δ2, δ3 are three arbitrary parameters, and the
function φ(t) satisfies (2), as before. Note that, for
δ1 = δ2 = δ3 = 0, we recover the in-phase solution.
By direct substitution into (1), one may verify that (3)
is indeed a family of solutions to the array equations.
Now, sinceδ1, δ2, δ3 can be varied continuously (and
independently), it immediately follows from standard
stability theory that there exist three independent
neutrally stable “directions” in the phase space of the
array, thus proving our desired result for a simple
triangular lattice. (We mention here that only two of
these three directions can be considered nontrivial,
since the array equations are autonomous and thereby
possess an overall time-shift symmetry.) We also
note that one can readily extend this result to larger
triangular lattices (Fig. 1(b)), in which case one finds
that there is one neutrally stable direction associated
with each “row” of the triangular lattice (although
again one of these directions is trivial). This is entirely
analogous to what was found previously for the case
of a rectangular lattice.

Hence, we have demonstrated (through a relatively
simple argument) that a very common lattice type
— a triangular lattice — also exhibits global neutral
stability, thereby showing that the previous finding
of [1,5] is not restricted exclusively to rectangular
Josephson junction arrays. We next demonstrate that
this phenomenon actually extends well beyond the
simple cases of triangular and rectangular lattices, and
indeed can occur in arrays with arbitrary geometries.
To do so, we use a generalization of the above method,
as we now describe.

3. A generalized lattice

To begin, consider a general lattice (of overdamped
Josephson junctions) consisting of an arbitrary number

Fig. 2. A Josephson junction array with arbitrary lattice geometry.
The filled circles show the location of the superconducting nodes;
the Ψi ’s denote their macroscopic phases. The encircled numbers
indicate the particular integer (ni ) assigned to each node.

of superconducting nodes (with no restrictions on net-
work connectivity or dimension). As before, we label
the superconducting nodes in the lattice byi, and the
macroscopic phase at theith site byΨi . A representa-
tive example is shown Fig. 2. Now, to demonstrate that
neutral stability is possible in such an array, it is nec-
essary to choose the bias currents appropriately, since
neutral stability will not appear for arbitrary choices
of bias current. Unlike the previous example in which
the triangular array was fed by a uniform bias current,
we must now allow for the possibility that the injected
dc current may vary from one superconducting node to
the next. This is accomplished in the following man-
ner: To each sitei in the lattice we assign an inte-
gerni . The assignment of integers to the nodes is arbi-
trary, save one restriction: if two nodes in the array are
“neighbors” (i.e., if they are connected to one another
via a junction), then their assigned integer values must
either be the same, or differ at most by one. An exam-
ple of a permissible choice of integers is shown (by the
encircled numbers) in Fig. 2. For convenience we will
always assume that the smallest of theni ’s is 1. Two
points are worthy of note here. First, the choice of in-
teger labels{ni} is not unique. Second, forany lattice
geometry there always exists at least one (nontrivial)
allowable integer labeling. (For example, one can ran-
domly assign a 1 or 2 to each site in the lattice; this
choice clearly satisfies the labeling criterion.)

The bias current injected into (or extracted from)
theith node is then chosen according to the following
prescription:

(4)Ii =
∑
{j}i
(nj − ni)I.
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Here, the notation{j }i indicates that the summation is
over all sitesj that are neighbors with (i.e., connected
to) site i, and I may be regarded as the basic unit
of current flowing through the individual Josephson
junctions in the array (i.e., the external bias current
at any superconducting node is taken to be an integer
multiple of I ). Definingψij ≡ Ψi − Ψj as before, we
may write the circuit equations for the array as

(5)
∑
{j}i

ψ̇j i + Ic sin(ψji)=
∑
{j}i
(nj − ni)I.

To show that the in-phase state of this array has
multiple Floquet exponents equal to zero, we will, as
before, explicitly construct a multi-parameter family
of solutions to the circuit equations which contains
the in-phase solution. The existence of this family of
solutions is sufficient to prove the result. (We note that
the precise number of neutrally stable directions for
the generalized array will turn out to be equal to the
largest integer in the set{ni}.)

We claim that this desired family of solutions to
Eqs. (5) is given by

(6)Ψi =
k=ni∑
k=1

φ(t + δk),

where the functionφ(t) again satisfies the relation
φ̇ + Ic sin(φ) = I , and theδk ’s denote the freely
adjustable parameters. We must now show that (6) is
indeed a solution to (5). We start by observing that
the summation in (5) is only over sitesj which are
neighbors to sitei. Hence, by design, the value ofnj
for any of these neighbors can differ fromni by at
most one, i.e.,nj = {ni − 1, ni, ni + 1}. Thus, from
(6) we see that

(7)ψji =


φ(t + δnj ) if nj = ni + 1,

0 if nj = ni,

−φ(t + δni ) if nj = ni − 1.

Substituting theseψji ’s into the left-hand side of (5),
and lettingN+

i denote the total number of neighboring
sites toi that havenj = ni + 1, andN−

i the number of
neighbors withnj = ni − 1, then the left-hand side of
(5) may be re-expressed as

N+
i

[
φ̇(t + δni+1)+ Ic sin

(
φ(t + δni+1)

)]

(8)−N−
i

[
φ̇(t + δni )+ Ic sin

(
φ(t + δni )

)]
.

Observe, however, that the terms in brackets in the
above expression are in fact equal to the basic unit of
currentI (this follows from the defining equation for
φ(t)). Thus, the left-hand side of (5) reduces toN+

i I−
N−
i I . Comparing this to the right-hand side of (5),

we see that the two expressions are identical, which
demonstrates that (6) represents a multi-parameter
family of solutions to the original array equations.
Hence, by means of a relatively simple criterion, we
have proven that the in-phase state of the array exhibits
the neutral-stability property, and have developed
guidelines for recognizing its existence in an array
with arbitrary geometry.

4. Discussion

In summary, we have shown that a Josephson junc-
tion array of any lattice geometry can possess the neu-
tral stability property (for suitably chosen bias cur-
rents), and that this feature is not unique to the par-
ticular two-dimensional rectangular array studied by
[1,5]. Several comments are in order.

First, in analysing the stability of the in-phase so-
lution of a general array, we have found the existence
of multiple neutrally stable ‘directions’ in the phase
space of the array — the exact number being equal to
the largest value in the set of integers{ni}. We em-
phasize, however, that our analysis does not allow us
to say anything about the stability of the in-phase so-
lution in the remaining directions of phase space. (To
do so would require a detailed stability analysis that
would depend on the peculiarities of an array’s geom-
etry; it would seem unlikely that any sort of general
result for arbitrary lattices could be obtained.)

Secondly, to demonstrate neutral stability in an ar-
ray with an arbitrary lattice geometry, we had to rely
on a somewhat nontraditional current-biasing scheme
(i.e., different amounts of current were fed into the in-
dividual junctions). Now, from the point of view of
experiment, this might at first seem unfortunate, since
in many experimental applications one would natu-
rally feed auniform bias current into the array, and
moreover, to apply this current only to those super-
conducting nodes which lie on the array’s boundaries
(not the interior). However, by examining the more
general case as we have, it becomes rather straight-
forward to determine if a traditional biasing scheme in
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an array would produce neutral stability. For instance,
if we now return to our first example — the special
case of a triangular lattice being fed by a uniform bias
current applied along the top boundary and removed
along the lower boundary — it becomes easy to recog-
nize that this system meets all the criteria described in
Section 3, and hence will exhibit neutral stability (i.e.,
for the integers{ni}, one simply assigns a value of 1
to all nodes on the top row, 2 to all nodes in the sec-
ond row, 3 to those in the third row, etc.) Likewise, it
becomes just as straightforward to show, for instance,
that a cubic lattice (fed by a uniform bias current ap-
plied along its top face and removed along its bottom
face), will exhibit neutral stability as well.

Lastly, we note that in an effort to isolate the rela-
tionship between lattice geometry and neutral stabil-
ity, we have focused exclusively on the simplest type
of Josephson junction array, wherein the individual
junctions were assumed to be overdamped and iden-
tical. In particular, we have neglected other potentially
complicating effects such as self and mutual induc-
tances, disorder, external signals, etc. which are some-
times present. While this simplification imposes cer-
tain limitations, it nonetheless offers one significant
virtue; namely, if one determines that neutral stabil-
ity is present in this simplest type of array, then these
other influences — even if they are very small in ab-
solute size — will likely have a severe impact on the
array’s dynamical behavior. In other words, the pres-
ence of neutral stability renders the array highly sensi-
tive to external or internal perturbations, regardless of
how weak these perturbations might be. (For instance,

it has been shown that adding even a small amount of
disorder to a rectangular Josephson junction array re-
sults in a broadening of the array’s linewidth — no
such broadening would be seen had neutral stability
not been present [9].) Hence, the criteria for recog-
nizing the presence of neutral stability which emerges
from our analysis can serve as a cautionary indicator
of when seemingly small collateral influences might
have an unexpectedly pronounced influence on an ar-
ray’s behavior.
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