
Transforming Provenance using Redaction

Tyrone Cadenhead, Vaibhav Khadilkar, Murat Kantarcioglu and
Bhavani Thuraisingham

The University of Texas at Dallas
800 W. Campbell Road, Richardson, TX 75080

{thc071000, vvk072000, muratk, bxt043000}@utdallas.edu

ABSTRACT
Ongoing mutual relationships among entities rely on shar-
ing quality information while preventing release of sensitive
content. Provenance records the history of a document for
ensuring both, the quality and trustworthiness; while redac-
tion identifies and removes sensitive information from a doc-
ument. Traditional redaction techniques do not extend to
the directed graph representation of provenance. In this
paper, we propose a graph grammar approach for rewriting
redaction policies over provenance. Our rewriting procedure
converts a high level specification of a redaction policy into
a graph grammar rule that transforms a provenance graph
into a redacted provenance graph. Our prototype shows that
this approach can be effectively implemented using Semantic
Web technologies.

Categories and Subject Descriptors
F.4.2 [Mathematical Logic and Formal Languages]:
Grammars and Other Rewriting Systems; D.4.6 [Operating
Systems]: Security and Protection—Access Control

General Terms
Security

Keywords
Redaction, Provenance, RDF, Graph Grammar

1. INTRODUCTION
Provenance is the lineage, pedigree and filiation of a re-

source (or data item) and is essential for various domains
including healthcare, intelligence, legal and industry. The
utility of the information shared in these domains relies on
(i) quality of the information and (ii) mechanisms that verify
the correctness of the data and thereby determine the trust-
worthiness of the shared information. These domains rely on
information sharing as a way of conducting their day-to-day

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’11, June 15–17, 2011, Innsbruck, Austria.
Copyright 2011 ACM 978-1-4503-0688-1/11/06 ...$10.00.

activities; but with this ease of information sharing comes
a risk of information misuse. An electronic patient record
(EPR) is a log of all activities including, patient visits to
a hospital, diagnoses and treatments for diseases, and pro-
cesses performed by healthcare professionals on a patient.
This EPR is often shared among several stakeholders (for
example researchers, insurance and pharmaceutical compa-
nies). Before this information can be made available to these
third parties the sensitive information in an EPR must be
circumvented from the released information. This can be
addressed by applying redaction policies that completely or
partially remove sensitive attributes of the information be-
ing shared. Such policies have been traditionally applied to
text, pdfs and images using tools such as Redact-It1. Redac-
tion is often required by regulations which are mandated by
a company or by laws such as HIPAA. The risks of unin-
tentional disclosure of sensitive contents of an EPR docu-
ment can be severe and costly [15]. Such risks may include
litigation proceedings related to non-compliance of HIPAA
regulations [15].

Traditionally, we protect documents using access control
policies. However, these policies do not operate over prove-
nance which takes the form of a directed graph [4]. Our
idea of executing an access control policy over a provenance
graph is to identify those resources of the graph that a user
is permitted/denied to view. The policy is used to deter-
mine whether a user is allowed access to a subset (a single
node, a path or a sub-graph) of the provenance graph. Such
a subset is found by queries that operate over graph pat-
terns. A generalized XML-based access control language for
protecting provenance was proposed in [21]. This language
was further extended to show how to effectively apply ac-
cess control over provenance graphs by extending SPARQL
queries with regular expressions [6]. The work in [6], how-
ever, did not address graph operations suitable for executing
redaction policies over a provenance graph. Commercially
available redaction tools have been so far applied over single
resources but not to provenance graphs. Therefore, we now
explore new mechanisms for supporting redaction policies
over a provenance graph.

The current commercially available redaction tools block
out (or delete) the sensitive parts of documents which are
available as text and images. These tools are not applicable
to provenance since provenance is a directed acyclic graph
(DAG) that contains information in the form of nodes and
relationships between nodes. Therefore, new approaches are
needed for redacting provenance graphs. In this paper, we

1http://www.redact-it.com/

93

apply a graph transformation technique (generally called
graph grammar [24]) which is flexible enough to perform
fine-grained redaction over data items and their associated
provenance graphs. A graph is best described in a graphical
data model, such as RDF [16], which is equipped with fea-
tures for handling both, representation and storage of data
items, and provenance. Our approach utilizes this graph
data model for applying a set of redaction policies, which
involves a series of graph transformation steps until all the
policies are applied. At each step, a policy specifies how to
replace a sensitive subset of the graph (such as a data item
or a relationship between data items such as edge, path or
subgraph) with another graph in order to redact the sen-
sitive content. The final graph is then shared among the
various stakeholders.

We implement a prototype that performs redaction over
the information resources in a graph. This prototype uses
an interface which mediates between our graph transforma-
tion rules and a high-level user policy specification language.
This interface allows us to separate the business rules (or
ways of doing business) from a specific software implemen-
tation, thus promoting easier maintenance and reusability.
Further, we keep the policy specification closer to the do-
main rather than the software implementation, therefore al-
lowing the business rules to be defined by domain experts.

Our main contribution in this paper is the application
of a graph grammar technique to perform redaction over
provenance. In addition, we provide an architectural design
that allows a high level specification of policies, thus sepa-
rating the business layer from a specific software implemen-
tation. We also implement a prototype of the architecture
based on open source Semantic Web technologies.

Section 2 presents the graph grammar used to express
redaction policies. Section 3 presents our architecture. Sec-
tion 4 reviews previous work on securing information using
graph transformation approaches. In closing, in Section 5
we provide our conclusions and future work.

2. GRAPH GRAMMAR
There are two steps to apply redaction policies over gen-

eral directed labeled graphs: (i) Identify a resource in the
graph that we want to protect. This can be done with a
graph query (i.e. a query equipped with regular expres-
sions). (ii) Apply a redaction policy to this identified re-
source in the form of a graph transformation rule. For the
rest of this section, we will focus on a graph grammar (or a
graph rewriting system) which transforms an original graph
to one that meets the requirements of a set of redaction poli-
cies. We first describe two graph data models that are used
to store provenance. Next, we present the graph rewriting
procedure, which is at the heart of transforming a graph, by
describing the underlying graph operations. We motivate
the general descriptions of our graph rewriting system with
use cases taken from a medical domain.

2.1 Graph Data Models
Graphs are a very natural representation of data in many

application domains, for example, precedence networks, path
hierarchy, family tree and concept hierarchy. In particular,
we emphasize on applying graph theory to redaction by us-
ing two existing data models, namely a RDF data model [16]
and the OPM provenance model [20]. In addition directed
graphs are a natural representation of provenance [4, 6, 20,

27]. We begin by giving a general definition of a labeled
graph suitable for any graph grammar system, and then we
introduce a specific labeled graph representation for our pro-
totype. This specific representation is referred to as RDF,
which we will use to support the redaction procedure over a
provenance graph.

Definition 1. (Labeled Graph) A labeled graph is a 5-
tuple, G� = (V,E, μ, ν, �) where, V is a set of nodes, E =
V ×V is a set of edges, � = 〈�V , �E〉 is a set of labels, μ : V →
�V is a function assigning labels to nodes, and ν : E → �E
is a function assigning labels to edges. In addition, the sets
�V and �E are disjoint.

2.1.1 Resource Description Framework (RDF)
RDF is a W3C Recommendation for representing data on

the web [16]. This data model has been successfully applied
for provenance capture and representation [28, 11, 6]. The
RDF data model is composed of three disjoint sets: a set U
of URI references, a set L of literals (partitioned into two
sets, the set Lp of plain literals and the set Lt of typed
literals), and a set B of blank nodes. The set U ∪L of names
is called the vocabulary.

Definition 2. (RDF Triple) A RDF triple is defined as
(s, p, o) where s ∈ (U ∪ B), p ∈ U, and o ∈ (U ∪ B ∪ L).

Definition 3. (RDF Graph) A RDF graph is a finite col-
lection of RDF triples. A RDF graph used in this paper
restricts Definition 1 as follows:

1. �V ⊂ (U ∪ B ∪ L)
2. �E ⊂ U
3. A RDF triple (s, p, o) is a directed labeled edge p in

G� with endpoints s and o.

2.1.2 Open Provenance Model (OPM)
The open provenance model (OPM) [20] describes prove-

nance as a directed acyclic graph that captures causal re-
lationships between entities. This graph can be further en-
riched with annotations about time, location and other rel-
evant contextual information. The OPM model identifies
three categories of entities, which are artifacts, processes
and agents. A restricted vocabulary is also used to label the
relationships between these entities. In RDF representation,
the vocabulary is used to label predicates as follows,

<opm:Process> <opm:WasControlledBy> <opm:Agent>
<opm:Process> <opm:Used> <opm:Artifact>
<opm:Artifact> <opm:WasDerivedFrom> <opm:Artifact>
<opm:Artifact> <opm:WasGeneratedBy> <opm:Process>
<opm:Process> <opm:WasTriggeredBy> <opm:Process>

Our provenance graph is a restricted RDF graph with the
following properties:

1. Causality. For any RDF triple (s, p, o) (represented

graphically as s
p→ o), s is causally dependent on o.

We refer to s as the effect and o as the cause of s.

2. Acyclic. For any cause o and effect s there exists no
path from o to s.

Definition 4. (Provenance Graph) Let H = (V,E) be a
RDF graph where V is a set of nodes with |V | = n, and E ⊆
(V ×V) is a set of ordered pairs called edges. A provenance
graph G = (VG, EG) with n entities is defined as G ⊆ H,
VG = V and EG ⊆ E such that G is a directed graph with
no directed cycles.

94

Figure 1: Provenance Graph

2.1.3 Use Case: Medical Example
Figure 1 shows a medical example as a provenance graph

using a RDF representation that outlines a patient’s visit
to a hospital. This provenance graph is divided into three
stages, namely a checkup procedure, a follow up visit and a
heart surgery procedure. Note that at the point of undergo-
ing the heart surgery procedure, the surgeon has access to
the entire history of the patient’s record. We assume that
a hospital has a standard set of procedures that govern ev-
ery healthcare service that the hospital provides. Therefore,
each patient that needs to use a healthcare service will need
to go through this set of procedures. We use a fixed set of
notations in Figure 1 to represent an entity in the prove-
nance graph, for example

<med:Checkup_n_1> .

The “n” denotes a particular patient who is undergoing
a procedure at the hospital. Therefore, n = 1 identifies a
patient with id = 1, n = 2 identifies a patient with id = 2,
and so on. A larger number in the suffix of each process,
agent and artifact signifies that the particular provenance
entity is used at a later stage in a medical procedure. In
practice, “n” would be instantiated with an actual patient
id; this leads to the following set of RDF triples for a patient
with id = 1 at stage 1,

<med:Checkup_1_1> <opm:WasControlledBy> <med:Physician_1_1>
<med:Checkup_1_1> <opm:Used> <med:Doc_1_1>
<med:Doc_1_2> <opm:WasDerivedFrom> <med:Doc_1_1>
<med:Doc_1_2> <opm:WasGeneratedBy> <med:Notes_1_1>
<med:Notes_1_1> <opm:WasControlledBy> <med:Physician_1_1>

This is not a complete picture of the provenance graph, it
would be further annotated with RDF triples to indicate
for example, location, time and other contextual informa-
tion. Each entity in the graph would have a unique set of
RDF annotations based on its type. Table 1 shows a set of
compatible annotations for each type of provenance entity.
A usage of these annotations in RDF representation for a
physician associated with a patient with id = 1 would be,

Table 1: RDF Annotations

Entity RDF Annotation

Process PerformedOn

Agent Name, Sex, Age and Zip Code

Artifact UpdatedOn

<med:Physician_1_1> <med:Name> "John Smith"
<med:Physician_1_1> <med:Sex> "M"
<med:Physician_1_1> <med:Age> "35"
<med:Physician_1_1> <med:Zip> "76543"

2.2 Graph Rewriting
A graph rewriting system is well suited for performing

transformations over a graph. Further, provenance is well
represented in a graphical format. Thus, a graph rewriting
system is well suited for specifying policy transformations
over provenance. Graph rewriting is a transformation tech-
nique that takes as input an original graph and replaces a
part of that graph with another graph. This technique, also
called graph transformation, creates a new graph from the
original graph by using a set of production rules. Popular
graph rewriting approaches include the single-pushout ap-
proach and the double-pushout approach [24, 9]. For the
purpose of this paper we define graph rewriting as follows,

Definition 5. (Graph Rewriting System) A graph rewrit-
ing system is a three tuple, (G�, q, P) where,

G� is a labeled directed graph as given by Definition 1;

q is a request on G� that returns a subgraph Gq;

P is a policy set. For every policy p = (r, e) in P , r =

95

(se, re) is a production rule, where se is a starting entity
and re is a regular expression string; and e is an embedding
instruction;

• Production Rule, r: A production rule, r : L −→ R
where L is a subgraph of Gq and R is a graph. We
also refer to L as the left hand side (LHS) of the rule
and R as the right hand side (RHS) of the rule. During
a rule manipulation, L is replaced by R and we embed
R into Gq − L.

• Embedding Information, e: This specifies how to con-
nect R to Gq−L and also gives special post-processing
instructions for graph nodes and edges on the RHS of
a graph production rule. This embedding information
can be textual or graphical.

This general graph rewriting system can be used to per-
form redaction over a directed labeled graph, in particular
a provenance graph. A graph query is used to determine
the resources in the provenance graph that are to be shared
with other parties. These resources take the form of a sin-
gle node, a relationship between two nodes or a sequence
of nodes along a path in the provenance graph. A set of
redaction policies is used to protect any sensitive informa-
tion that is contained within these resources. Such policies
are a formal specification of the information that must not be
shared. We formulate these policies in our graph grammar
system as production rules in order to identify and remove
any sensitive (e.g. proprietary, legal, competitive) content
in these resources. These production rules are applied on
the provenance graph as one of the following graph opera-
tions: a vertex contraction, or an edge contraction, or a path
contraction or a node relabeling operation.

In order for our graph rewriting system to manipulate the
provenance graph, we use a graph manipulation language
over RDF called SPARQL [23]. In addition, we use one of
the features in the latest extension of SPARQL [14], namely
regular expressions, to identify paths of arbitrary length in
a provenance graph. We give a brief overview of SPARQL
followed by details of the various graph operations.

2.2.1 SPARQL
SPARQL is a query language for RDF that uses graph

pattern matching to match a subgraph of a RDF graph [23].

Definition 6. (Graph pattern) A SPARQL graph pat-
tern expression is defined recursively as follows:

1. A triple pattern is a graph pattern.

2. If P1 and P2 are graph patterns, then expressions (P1
AND P2), (P1 OPT P2), and (P1 UNION P2) are
graph patterns.

3. If P is a graph pattern and R is a built-in SPARQL
condition, then the expression (P FILTER R) is a
graph pattern.

4. If P is a graph pattern, V is a set of variables and
X ∈ U ∪ V then (X GRAPH P) is a graph pattern.

The current W3C recommendation for SPARQL lacks nec-
essary constructs for supporting paths of arbitrary length
[10]. Recent work has focused on extending the SPARQL
language with support for paths of arbitrary length as given

in [10, 1, 19]. In addition, a W3C working draft for incor-
porating this feature into SPARQL can be found in [14].

We formulate our SPARQL queries around regular expres-
sion patterns in order to identify both, the resources being
shared, and the LHS and RHS of the production rules of a
policy set. The regular expressions are used to qualify the
edges of a triple pattern so that a triple pattern is matched
as an edge or a path in the provenance graph.

Definition 7. (Regular Expressions) Let Σ be an alpha-
bet. The set RE(Σ) of regular expressions is inductively de-
fined by:

• ∀x ∈ Σ, x ∈ RE(Σ);

• Σ ∈ RE(Σ);

• ε ∈ RE(Σ);

• If A ∈ RE(Σ) and B ∈ RE(Σ) then:
A|B,A/B,A∗, A+, A? ∈ RE(Σ).

The symbols | and / are interpreted as logical OR and com-
position respectively.

2.2.2 Graph Operations
We now define the graph operations that manipulate a

provenance graph in order to effectively apply a set of redac-
tion policies. These graph operations remove or circumvent
parts of the graph identified by a query. In addition, a graph
rewriting system can be constructed so that the rules and
embedding instructions ensure that specific relationships are
preserved [3]. Therefore, we specify embedding information
which will ensure that our graph rewriting system returns
a modified but valid provenance graph. These graph oper-
ations are implemented as an edge contraction or a vertex
contraction or a path contraction or a node relabeling.

Edge Contraction. Let G = (V,E) be a directed graph
containing an edge e = (u, v) with v
= u. Let f be a function
which maps every vertex in V \{u, v} to itself, and otherwise
maps it to a new vertex w. The contraction of e results in
a new graph G′ = (V ′, E′), where V ′ = (V \{u, v}) ∪ {w},
E′ = (E\{e}), and for every x ∈ V , x′ = f(x) ∈ V is in-
cident to an edge e′ ∈ E′ if and only if the corresponding
edge, e ∈ E is incident to x in G. Edge contraction may
be performed on a set of edges in any order. Contractions
may result in a graph with loops or multiple edges. In order
to maintain the definition of a provenance graph given in
Definition 4 we delete these edges. Figure 2 is an example
of an edge contraction for our use case (see Figure 1). In
this example, our objective is to prevent a third party from
determining a specific procedure (i.e., a heart surgery) as
well as the agent who performed that procedure (i.e., a sur-
geon). The triangle refers to a merge of the heart surgery
process and the surgeon who performed the said process.
The cloud represents predecessors, which could be the re-
maining provenance graph or a redacted graph.

We would like to make clear that an edge contraction will
serve as the basis for defining both vertex contraction and
path contraction: A vertex contraction can be implemented
as an edge contraction by replacing two arbitrary vertices
u, v and an edge drawn between them with a new vertex w.
Similarly, a path contraction can be implemented as a series
of edge contractions, where each edge is processed in turn

96

Figure 2: Edge Contraction

until we reach the last edge on the path. We will therefore
exploit these two implementation details to make clear that
both our vertex and path contractions are in fact edge con-
tractions; therefore, they are both consistent with our graph
rewriting system.

Vertex Contraction. This removes the restriction that
contraction must occur over vertices sharing an incident
edge. This operation may occur on any pair (or subset) of
vertices in a graph. Edges between two contracting vertices
are sometimes removed, in order to maintain the definition
of a provenance graph given in Definition 4. A vertex con-
traction of the left hand side of Figure 2 would therefore
replace Physician1 1 and Surgeon1 1 with a triangle that
denotes a merge of these two nodes. This vertex contraction
could show for example how a third party is prevented from
knowing the identities of agents (i.e., both, a patient pri-
mary physician and surgeon) who controlled the processes
(i.e., a heart surgery and a logging of results of a surgery
into a patient’s record).

Path Contraction. This occurs upon a set of edges in a
path that contract to form a single edge between the end-
points of the path. Edges incident to vertices along the path
are either eliminated, or arbitrarily connected to one of the
endpoints. A path contraction over the provenance graph
given in Figure 1 for a patient with id = 1 would involve
circumventing the entire ancestry chain of Doc 1 4 as well
as the entities affected by Doc 1 4. A path contraction is
necessary when we want to prevent the release of the his-
tory of patient 1 prior to surgery as well as the details of
the surgery procedure. We show the resulting triples after
conducting path contraction on Figure 1.
<med:Doc_1_4> <opm:WasDerivedFrom> <_:A1>
<med:Doc_1_4> <opm:WasGeneratedBy> <_:A2>

Node Relabeling. A node relabeling operation replaces a
label in a node with another label. This is generally a pro-
duction rule whose LHS is a node in Gq and whose RHS is
also a node normally with a new label. The entities shown
in Figure 1 have generic labels but in practice each entity
would be annotated with contextual information. This infor-
mation serves as identifiers for the respective entity. Before

sharing information about these entities it is imperative that
we remove sensitive identifiers from them. For example, a
physician’s cell phone number and social security number are
considered unique identifiers and these should be redacted
whenever this physician’s identity is sensitive. Other at-
tributes such as date of birth, sex and zip code, when taken
together, may also uniquely identify a physician (see further
details in work by Sweeney [25]). We motivate this idea of
node relabeling with the following RDF triples taken from
our use case.

<med:Physician_1_1> <med:Sex> "M"
<med:Physician_1_1> <med:Age> "35"
<med:Physician_1_1> <med:Zip> "76543"

After performing a node relabeling on the above set of
RDF triples we would then share the following triples.

<med:Physician_1_1> <med:Sex> "X"
<med:Physician_1_1> <med:Age> "30-40"
<med:Physician_1_1> <med:Zip> "765XX"

2.3 An Example Graph Transformation Step
We show the general steps of the medical procedure only

for one patient in Figure 1 for clarity. However, in reality
Figure 1 would be a subgraph of a much larger graph that
describes provenance for n patients. We now motivate the
transformation step over Figure 1 with an example.

Example 1. After Bob underwent a heart surgery oper-
ation, the hospital must submit a claim to Bob’s insurance
company. In order to completely process the claim, the in-
surance company requests more information about the heart
surgery procedure.

In this example, the entity representing patient 1 in the
provenance graph would be annotated with an attribute
name and a value Bob. The hospital may wish to share this
information in order to receive payment from Bob’s insur-
ance company. However, based on guidelines related to this
sharing of medical records with third parties, the hospital
may not wish to share Bob’s entire medical history, as doing
so could adversely affect Bob’s continued coverage from his
insurance company. So in this case, the hospital shares the
relevant information related to the surgery operation but
not Bob’s entire medical history.

97

Figure 3: Graph Transformation Step

From Figure 1, the provenance of Doc1 4 involves all the
entities which can be reached from Doc1 4 by following the
paths which start at Doc1 4. The hospital’s first step is
to identify the resources in the provenance graph related to
patient 1. For this we would evaluate a regular expression
SPARQL query over the provenance graph G, by using the
following graph patterns with Doc1 4 as the starting entity
for the first graph pattern and HeartSurgery1 1 as the start-
ing entity of the second graph pattern.

{ { med:Doc1_4 gleen:OnPath("([opm:WasDerivedFrom]+/
([opm:WasGeneratedBy]/[opm:WasControlledBy]))") }
UNION { med:HeartSurgery1_1 gleen:OnPath("([opm:Used]|
[opm:WasControlledBy])*") } }

This would return Gq as the following RDF triples:

<med:Doc_1_4> <opm:WasDerivedFrom> <med:Doc_1_3>
<med:Doc_1_3> <opm:WasDerivedFrom> <med:Doc_1_2>
<med:Doc_1_2> <opm:WasDerivedFrom> <med:Doc_1_1>
<med:Doc_1_3> <opm:WasGeneratedBy> <med:Test_1_1>
<med:Test_1_1> <opm:WasControlledBy> <med:Physician_1_2>
<med:Doc_1_2> <opm:WasGeneratedBy> <med:Notes_1_1>
<med:Notes_1_1> <opm:WasControlledBy> <med:Physician_1_1>
<med:Doc_1_4> <opm:WasGeneratedBy> <med:Results_1_1>
<med:Results_1_1> <opm:WasControlledBy> <med:Surgeon_1_1>
<med:HeartSurgery1_1> <opm:WasControlledBy> <med:Physician_1_3>
<med:HeartSurgery1_1> <opm:WasControlledBy> <med:Surgeon_1_1>
<med:HeartSurgery1_1> <opm:Used> <med:Doc_1_3>

We would then evaluate a set of production rules against
these RDF triples, where each production rule has a start-
ing entity in Gq . This set of rules governs the particulars
relating to how information is shared based on the hospital
procedures (or an even bigger set of regulatory guidelines
eg., HIPAA). Figure 3(a) is the first production rule applied
to Gq and Figure 3(b) and Figure 3(c) respectively show the
transformation before and after applying the rule. This rule
reveals some information about the heart surgery procedure
which was done for patient 1, but not the entire history of the
record, which may contain sensitive information. The graph

pattern for the regular expression SPARQL query used to
generate the LHS of the rule in Figure 3(a) is:

{ { med:Doc1_4 gleen:OnPath("([opm:WasDerivedFrom]+/
([opm:WasGeneratedBy]/[opm:WasControlledBy])")
UNION { med:RepeatVisit1_1 gleen:OnPath("([opm:Used]|
[opm:WasControlledBy])") }
UNION { med:Checkup1_1 gleen:OnPath("([opm:Used]|
[opm:WasControlledBy])") } }

The graph representing theRHS would be given by :A1 and
the embedding instruction for gluing the RHS to Gq−LHS
is given by,

<med:HeartSurgery_1_1> <opm:Used> <:_A1>.

The transformed Gq would now be:

<med:Doc_1_4> <opm:WasDerivedFrom> <_:A1>
<med:Doc_1_4> <opm:WasGeneratedBy> <med:Results_1_1>
<med:Results_1_1> <opm:WasControlledBy> <med:Surgeon_1_1> .
<med:HeartSurgery1_1> <opm:WasControlledBy> <med:Physician_1_3>
<med:HeartSurgery1_1> <opm:WasControlledBy> <med:Surgeon_1_1>
<med:HeartSurgery1_1> <opm:Used> <_:A1>

2.4 Discussion
We acknowledge the impact of an adversarial model when

doing an analysis of our approach. Asking who is the adver-
sary violating privacy safeguards, in what ways they would
do it, and what their capabilities are, is an art in itself and
may not be something a community is capable of doing cor-
rectly. Also, with so many regulations restricting an insti-
tution’s sharing ability and with a high demand for quality
and trustworthy information, there is a need for very flexi-
ble redaction policies. However, redaction policies alone may
not anticipate various potential threats which may occur af-
ter the information is released from our prototype system.

We identify a unit of provenance that is to be protected
as a resource. We could describe this resource as a concept,
where modifying the resource produces a description of a
possibly new concept that may no longer be sensitive. This

98

modification could be performed by an operation, such as
deletion, insertion or relabeling. We could also describe a
resource as a unit of proof; this means that the evidence for
the starting entity (or some entity) exists in the rest of the
resource. Tampering with this evidence would then reduce
the utility of the resource. We attempt to strike the right
balance between these two descriptions.

We note that for the standard procedures in our use case,
a set of similar procedures give provenance graphs with sim-
ilar topologies. This allows us to define the resources in
the provenance graph by regular expressions, which match
a specific pattern. These patterns are our concepts. An ad-
vantage of regular expressions in queries is that we do not
need the contents of the provenance graph to determine the
resource we are protecting, we only need the structure of
the graph since all graphs generated in accordance with the
same procedure have similar topologies.

One drawback with our prototype is that if we change (or
sanitize) only the content of a single resource node before
releasing it to a third party, other identifying characteristics
still remain in the released resource. For example, if we hide
the physician in stage 2 of Figure 1, the contextual informa-
tion associated with that physician (such as age, zip code
and sex) could reidentify the physician. Another drawback
in releasing information is that the querying user, in the real
world, usually has knowledge of the application domain. Let
us assume a resource having the following regular expression
pattern: opm:WasGeneratedBy/opm:WasControlledBy was
released. Then, a user could infer the sequence of entities
along the path identified by this regular expression pattern.
In addition, if we apply this regular expression pattern to
stage 2 of Figure 1, we could determine that only a physician
could have performed/ordered the particular test.

In order to minimize the above drawbacks, we apply our
graph grammar approach, which transforms a provenance
graph to a new graph and at each stage of the transfor-
mation determines if a policy is violated before performing
further transformations. When this transformation process
is completed, we hope to successfully redact the piece of
provenance information we share as well as maximize its
utility.

3. ARCHITECTURE
Our system architecture is composed of three tiers, the

interface layer, the graph transformation layer and the data
storage layer. This design allows a user to seamlessly inter-
act with the data storage layer through our graph rewriting
system. We first describe the layers in our architecture fol-
lowed by a prototype that implements the architecture using
Semantic Web technologies.

3.1 Modules in our Architecture
The User Interface Layer hides the actual internal rep-

resentation of a query and a redaction policy from a user.
This allows a user to submit a high-level specification of a
policy without any knowledge of grammar rules and SPARQL
regular expression queries. This layer also allows a user to
retrieve any information irrespective of the underlying data
representation. The High Level Specification Language
Layer allows the user to write the redaction policies in a
language suitable for their application needs. This layer is
not tied to any particular policy specification language. Any
high level policy language can be used to write the redac-

tion policies as long as there is a compatible parser that
translates these policies to the graph grammar specification.

We provide a simple default policy language for writing
redaction policies. The syntax uses XML [5], which is an
open and extensible language, and is both customizable and
readily supports integration of other domain descriptions.
The following is a high level specification of the rule in Fig-
ure 3(a) using our default policy language for patient 1.

<policy ID="1" >
<lhs>

start=Doc1_4
chain=[WasDerivedFrom]+ artifact AND
artifact [WasGeneratedBy] process AND
process [WasControlledBy] physician|surgeon.
start=RepeatVisit1_1
chain=[Used][WasControlledBy].
start=Checkup1_1
chain=[Used][WasControlledBy].

</lhs>
<rhs>_:A1</rhs>
<condition>
<application>null</application>
<attribute>null</attribute>

</condition>
<embedding>
<pre>null</pre>
<post>(HeartSurgery_1_1,Used, _:A1)</post>

</embedding>
</policy>

The description of each element is as follows: The lhs ele-
ment describes the left hand side of a rule. The rhs element
describes the right hand side of a rule. Each path in the
lhs and rhs begins at a starting entity. The condition
element has two optional sub elements, the application de-
fines the conditions that must hold for rule application to
proceed, and the attribute element describes the annota-
tions in LHS. Similarly, the embedding element has two
optional sub elements, pre describes how LHS is connected
to the provenance graph and the post describes how RHS
is connected to the provenance graph.

The Policy Parser Layer is a program that takes as in-
put a high-level policy set and parses each policy into the
appropriate graph grammar production rule. In the case of
our default policy, the parser would verify that the struc-
ture of the policy conforms to a predefined XML schema.
The Redaction Policy Layer enforces the redaction poli-
cies against the information retrieved to make sure that no
sensitive or proprietary information is released for unautho-
rized uses. This layer also resolves any conflicts that resulted
from executing the policies over the data stores. The Reg-
ular Expression-Query Translator takes a valid regular
expression string and builds a corresponding graph pattern
from these strings. The Data Controller stores and man-
ages access to data, which could be stored in any format such
as in a relational database, in XML files or in a RDF store.
The Provenance Controller is used to store and manage
provenance information that is associated with data items
that are present in the data controller. The provenance con-
troller stores information in the form of logical graph struc-
tures in any appropriate data representation format. This
controller also records the on-going activities associated with
the data items stored in the data controller. This controller
takes as input a regular expression query and evaluates it
over the provenance information. This query evaluation re-
turns a subgraph back to the redaction policy layer where it
is re-examined using the redaction policies.

To implement the layers in our architecture we use vari-
ous open-source tools. We implement the High Level Spec-
ification Language Layer using our default XML-based pol-

99

Figure 4: Architecture

icy language. To implement the Policy Parser Layer, we
use Java 1.6 and the XML schema specification. The XML
schema allows us to verify the structure of our policy file.
This layer is also programmed to produce the production
rules. We implement the Regular Expression-Query Trans-
lator layer using the Gleen2 regular expression library, that
extends SPARQL to support property path queries over a
RDF graph [10]. We create our provenance graph using the
OPM toolbox3 instead of other available tools such as Tav-
erna [22] which is not as easy to use as the OPM toolbox.
Our experiments are conducted over in-memory models cre-
ated using the Jena API4[7].

3.2 Experiments
Our experiments were conducted on an IBM workstation

with 8 X 2.5GHz processors and 32GB RAM. Our prototype
is efficient for both, finding the shared resource over an orig-
inal provenance graph and evaluating the production rules
over the shared resource. We choose three conventions for
pre-ordering the production rules: (1) the original ordering
(OO); (2) lowest to highest utility (LHO); and (3) highest
to lowest utility (HLO). We believe that provenance is more
useful when it is least altered. Therefore, we define utility

as (1− altered triples
original triples in Gq

)× 100 which captures this no-

tion. For implementing the second and third conventions we
use a sorting mechanism based on our definition of utility.
This sorting mechanism is used in Algorithm 1 which is an
overview of the redaction procedure discussed in Section 2.2.

Table 2 shows a comparison of the average redaction time
for two graphs given to Algorithm 1 with the same rule pat-
terns. Both graphs are constructed from the original prove-
nance graph such that each of them start at the beginning of
the longest path in the provenance graph. Further, the first

2Available at http://sig.biostr.washington.edu/
projects/ontviews/gleen/index.html
3Available at http://openprovenance.org/
4http://jena.sourceforge.net/

Algorithm 1 Redact(Gq, RS)

1: LI ← SORT(Gq, RS); {Initial sort of Rule Set (RS)}
2: while diff > 0 do
3: G

′
q = Gq

4: p = LI.top

5: Gq ← p.e(p.r(G
′
q)) {TRedact+ = TRule + TEmb}

6: LI = SORT(Gq, RS − p) {TRedact+ = TSort}
7: diff = difference(Gq, G

′
q) {TRedact+ = TDiff}

8: end while
9: return G

′
q

Algorithm 2 Sort(Gq, RS)

1: SL = new List()
2: for all r ∈ RS do
3: if r.se ∈ Gq then
4: if Gq |= r then
5: SL.add(r)
6: end if
7: end if
8: end for
9: return SL

Table 2: Query Comparison in milliseconds
Gq Order TRedact TRule TEmb TSort TDiff

1
HLO 17304 19 3 17241 41
LHO 41012 1853 7 39137 15

2
HLO 35270 28 2 35187 53
LHO 9044 2904 7 6106 27

graph retrieves all the ancestry chains for that starting entity
while the second graph determines the agents that are two
hops away from every artifact at least one hop away from
the said starting entity. Algorithm 1 updates the redaction
time at each graph transformation step. Our first observa-

100

Figure 5: Comparison of Redaction Time and Utility vs. Graph Size

Figure 6: Experimental Comparison of Complexity

tion from Table 2 is that the major component of the redac-
tion time is the time spent in sorting the rule set when using
our notion of utility. We further explore the performance of
Algorithm 1 using different graph sizes and rule patterns.

Figure 5 shows a comparison of the redaction time and
utility vs. graph size while keeping the rule set size constant
(RS = 200 rules). The labels on every point in Figure 5
show the actual provenance graph size. Figure 5(a) com-
pares the redaction time for our three utility conventions as
the input graph to Algorithm 1 increases in size. The in-
set to Figure 5(a) shows that OO takes the least redaction
time because this strategy does not execute lines 1, 4 and 6
of Algorithm 1 for each rule in the rule set. The difference
in times between the different strategies is compensated by
the higher utility gained from applying the HLO as shown
in Figure 5(b).

Figure 6 shows a comparison of the redaction time and
utility as the size of the rule set increases while keeping the
size of Gq constant (Gq = 87 triples). At each transfor-
mation step, Algorithm 1 picks a rule that alters the least
triples in Gq for HLO while it picks a rule that alters the
most triples in Gq for LHO. Algorithm 1 picks any rule for
OO.

At each transformation step, Algorithm 1 transforms Gq

by using rule p at line 5. Rule p is determined by applying
either LHO or HLO to a sorted rule set returned by Algo-
rithm 2. Line 4 of Algorithm 2 performs graph matching to

determine if Gq |= p.r. This operation tests if Gq |= s
ρ→ o

where ρ ∈ RE(Σ). This further evaluates whether Gq |= t

for each triple t along s
ρ→ o. In conclusion, the time and

utility of the entire redaction process is dependent on (1)

the current Gq ; (2) the current rule set, RS; (3) a given rule
r ∈ RS which transforms Gq; and (4) the given RHS of r
and the embedding instruction, p.e.

4. RELATED WORK
Previous work on using graph transformation approaches

to model security aspects of a system include references [17,
18]. In [8], an extension of the double pushout(DPO) rewrit-
ing, called Sesqui-pushout (SqPO) was used to represent the
subjects and objects in an access control system as nodes and
the rights of a subject on an object as edges. In [17], the
authors used the formal properties of graph transformation
to detect and resolve inconsistencies within the specification
of access control policies. References [4, 26, 21] focus on the
unique features of provenance with respect to the security
of provenance itself. While [21] prescribes a generalized ac-
cess control model, the flow of information between various
sources and the causal relationships among entities are not
immediately obvious in this work. Our work is also moti-
vated by [4, 6, 20, 27] where the focus is on representing
provenance as a directed graph structure. We also found
previous work related to the efficiency of a graph rewrit-
ing system in [12, 13, 2]. In the general case, graph pattern
matching, which finds a homomorphic (or isomorphic) image
of a given graph in another graph is a NP-complete prob-
lem. However, various factors make it tractable in a graph
rewriting system [2]. In summary and to the best of our
knowledge, our work, therefore, extends these previous ap-
proaches so that graph transformation, security and prove-
nance can be combined to address redaction of provenance
information before sharing it.

101

5. CONCLUSIONS
In this paper we propose a graph rewriting approach for

redacting a provenance graph. We use a simple utility-based
strategy to preserve as much of the provenance information
as possible. This ensures a high quality in the information
shared. We also implement a prototype based on our archi-
tecture and on Semantic Web technologies (RDF, SPARQL)
in order to evaluate the effectiveness of our graph rewriting
system. We plan to explore the following directions in the
future: (i) This work focuses on using in-memory models
to store provenance graphs. We propose to test our proto-
type with disk-based storage mechanisms. (ii) The order in
which we apply rules is based on our definition of utility. We
plan to investigate other techniques for ordering the policies
such as policy subsumption based on least and most restric-
tiveness, as well as using the priority of policies, which also
resolves the problem of conflicting policies.

6. REFERENCES
[1] F. Alkhateeb, J. Baget, and J. Euzenat. Extending

SPARQL with regular expression patterns (for
querying RDF). Web Semantics: Science, Services
and Agents on the World Wide Web, 7(2):57–73, 2009.

[2] D. Blostein, H. Fahmy, and A. Grbavec. Issues in the
practical use of graph rewriting. In Graph Grammars
and Their Application to Computer Science, pages
38–55. Springer, 1996.

[3] D. Blostein and A. Schürr. Computing with graphs
and graph rewriting. In FACHGRUPPE
INFORMATIK, RWTH. Citeseer, 1997.

[4] U. Braun, A. Shinnar, and M. Seltzer. Securing
provenance. In Proceedings of the 3rd conference on
Hot topics in security, pages 1–5. USENIX
Association, 2008.

[5] T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler,
and F. Yergeau. Extensible markup language (XML)
1.0. W3C recommendation, 6, 2000.

[6] T. Cadenhead, V. Khadilkar, M. Kantarcioglu, and
B. Thuraisingham. A Language for Provenance Access
Control, 2011.

[7] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds,
A. Seaborne, and K. Wilkinson. Jena: implementing
the semantic web recommendations. In S. I. Feldman,
M. Uretsky, M. Najork, and C. E. Wills, editors,
WWW (Alternate Track Papers & Posters), pages
74–83. ACM, 2004.

[8] A. Corradini, T. Heindel, F. Hermann, and B. König.
Sesqui-pushout rewriting. Graph Transformations,
pages 30–45, 2006.

[9] A. Corradini, U. Montanari, F. Rossi, H. Ehrig,
R. Heckel, and M. Löwe. Algebraic approaches to
graph transformation. Part I: Basic concepts and
double pushout approach. In Handbook of graph
grammars and computing by graph transformation.

[10] L. Detwiler, D. Suciu, and J. Brinkley. Regular paths
in SparQL: querying the NCI thesaurus. In AMIA
Annual Symposium Proceedings, volume 2008, page
161. American Medical Informatics Association, 2008.

[11] L. Ding, T. Finin, Y. Peng, P. Da Silva, and
D. McGuinness. Tracking RDF graph provenance
using RDF molecules. In Proc. of the 4th International
Semantic Web Conference (Poster), 2005.

[12] M. Dodds and D. Plump. Graph transformation in
constant time. Graph Transformations, pages 367–382,
2006.

[13] H. Dörr. Efficient graph rewriting and its
implementation. Springer, 1995.

[14] S. Harris and A. Seaborne. SPARQL 1.1 Query
Language. W3C Working Draft, 2010.

[15] G. Heath. Redaction Defined: Meeting Information
Disclosure Requests with Secure Content Delivery.
1997.

[16] G. Klyne, J. Carroll, and B. McBride. Resource
description framework (RDF): Concepts and abstract
syntax. W3C recommendation.
http://www.w3.org/TR/rdf-concepts/, 2004.

[17] M. Koch, L. Mancini, and F. Parisi-Presicce.
Graph-based specification of access control policies.
Journal of Computer and System Sciences, 71(1):1–33,
2005.

[18] M. Koch and F. Parisi-Presicce. UML specification of
access control policies and their formal verification.
Software and Systems Modeling, 5(4):429–447, 2006.

[19] K. Kochut and M. Janik. SPARQLeR: Extended
SPARQL for semantic association discovery. The
Semantic Web: Research and Applications, pages
145–159, 2007.

[20] L. Moreau, B. Clifford, J. Freire, Y. Gil, P. Groth,
J. Futrelle, N. Kwasnikowska, S. Miles, P. Missier,
J. Myers, et al. The Open Provenance Model—Core
Specification (v1. 1). Future Generation Computer
Systems, 2009.

[21] Q. Ni, S. Xu, E. Bertino, R. Sandhu, and W. Han. An
Access Control Language for a General Provenance
Model. Secure Data Management, pages 68–88, 2009.

[22] T. Oinn, M. Addis, J. Ferris, D. Marvin,
M. Greenwood, T. Carver, M. Pocock, A. Wipat, and
P. Li. Taverna: A Tool for the Composition and
Enactment of Bioinformatics Workflows.
Bioinformatics, 2004.

[23] E. Prud’hommeaux and A. Seaborne. SPARQL query
language for RDF. W3C Recommendation, 2008.

[24] G. Rozenberg and H. Ehrig. Handbook of graph
grammars and computing by graph transformation,
volume 1. World Scientific, 1997.

[25] L. Sweeney. K-anonymity: A model for protecting
privacy. International Journal on Uncertainty,
Fuzziness, and Knowledge-based Systems,
10(5):557–570, 2002.

[26] V. Tan, P. Groth, S. Miles, S. Jiang, S. Munroe,
S. Tsasakou, and L. Moreau. Security issues in a
SOA-based provenance system. Provenance and
Annotation of Data, pages 203–211, 2006.

[27] J. Zhao. Open Provenance Model Vocabulary
Specification. Latest version:
http://purl.org/net/opmv/ns-20100827, 2010.

[28] J. Zhao, C. Goble, R. Stevens, and D. Turi. Mining
Taverna’s semantic web of provenance. Concurrency
and Computation: Practice and Experience,
20(5):463–472, 2008.

102

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

