
Fast Reroute and Multipath Routing Extensions to
the NetFPGA Reference Router

Hongyi Zeng, Mario Flajslik, Nikhil Handigol

Department of Electrical Engineering and Department of Computer Science
Stanford University
Stanford, CA, USA

{hyzeng, mariof, nikhilh}@stanford.edu

Abstract— In this paper we describe the design and implemen-
tation of two feature extensions to the NetFPGA reference router -
fast reroute and multipath routing. We also share our insight into
the inherent similarities of these two seemingly disparatefeatures
that enable us to implement and run them simultaneously. Both
features are designed to work at line-rate.

I. I NTRODUCTION

The NetFPGA [1] is a line-rate, flexible, and open platform
for research, and classroom experimentation. One of the many
systems built using NetFPGA is an IPv4 reference router [2].
The router runs the Pee-Wee OSPF [3] routing protocol, and
does address lookup and packet forwarding at line-rate.

In this paper, we present two feature extensions to the
NetFPGA reference router:

• Fast reroute- Detection of link failure or topology change
in the reference router is generally based on the OSPF
messages timing out. However, this causes packets to
be dropped in the interval between the actual failure
and failure detection. These intervals are as large as 90
seconds in PW-OSPF. Fast reroute [4] is a technique
that detects link failures at the hardware level and routes
packets over alternative routes to minimize packet drops.
These alternative routes are pre-computed by the router
software.

• Multipath routing - Multipath routing [5] is a routing
strategy where next-hop packet forwarding to a single
destination can occur over multiple “best paths”. This
enables load-balancing and better utilization of available
network capacity. Our implementation of multipath rout-
ing is similar to ECMP; packets are forwarded over only
those paths that tie for top place in routing metric calcu-
lations. This has the two-fold advantage of keeping the
routing protocol simple and robust as well as minimizing
packet reordering.

This work was originally intended as an advanced feature
project for the NetFPGA class, CS344, at Stanford University.

II. D ESIGN

The main goal of CS344 class is to design an output port
lookup module for the NetFPGA. This module takes incoming
packets, parses header information, queries the routing table
and ARP cache, labels the packet with output port information,

and finally puts it in output queues. Along with other modules
in NetFPGA gateware, a functional Internet router can be built.

Through careful design of table lookup mechanism, we can
enable the router with fast reroute and multipath routing.

A. Architecture

The overall architecture of output port lookup module is
shown in Figure 1.

Fig. 1. Block Diagram of Output Port Lookup

The scheduler provides ”position” information to other
modules. This simplifies the design of header parser and
TTL/Checksum. The header parser parses the header of pack-
ets, and TTL/Checksum module manipulates TTL/Checksum
information of IP packets.

There are three table lookup modules for ARP table, IP filter
table, and routing table. The first two have similar lookup
mechanism, while routing table lookup should be Longest
Prefix Matching (LPM lookup). In general, these modules
accept a search key and a REQ signal, feed back an ACK
signal with the results (data or ”NO entries matched”). On
the other side, these modules connect to the Block RAM
(BRAM) interface provided by Xilinx. Table entries are stored
in BRAM.

The main state machine reads in the entire header to a FIFO.
At the same time headerparser and ttlchecksum prepares the



necessary information to the state machine. If the packet isa
regular IP packet, the state machine issues a IP filter search
request. If the address is found in the IP filter table, the packet
will be kicked up to software. Otherwise, the state machine
does a routing table search, and a ARP search. In the last
stage, the state machine modifies the MAC header, TTL, and
checksum, and sends the packet to the destination port.

The extension code to support fast reroute and multipath
routing is mainly in the routing table and lpmlookup module.
We will describe the two new features in the following
subsections. Before that, the routing table structure and LPM
lookup process will be presented.

B. Routing Table and LPM Lookup

1) Routing Table:Each entry of the routing table consists
four parts: IP address as search key, the mask, next-hop IP,
and port. The port information is stored as a one-hot-encoded
number. This number has a one for every port the packet
should go out on where bit 0 is MAC0, bit 1 is CPU0, bit
2 is MAC1, ... The structure of the entry is depicted in Table
I.

Search IP (32bit) Mask (32bit) Nexthop IP (32bit) Port (8bit)
192.168.100.0 255.255.255.0 192.168.101.2 0000 0001

TABLE I

ENTRY STRUCTURE OF THEROUTING TABLE

2) LPM Lookup: As the course requirement, we cannot
use the Xilinx Ternary Content Addressable Memory (TCAM)
cores. Instead, we need to implement our own routing table
with BRAM. Linear search is employed in LPM lookup as
the size of the routing table is relatively small (32 entries).
The entries with longer prefix are stored in front of those with
shorter prefix. By doing this, entries with longest prefix will
naturally come out first in a linear search.

C. Fast Reroute

In order to realize fast reroute feature, the router software
needs to store a backup path for those ”fast reroute protected”
entry. In our router, the backup path information is in the
form of duplicate entries only withdifferent port information.
In the normal case, the lpmlookup module will return the
first matched entry to the main state machine, making the
port in this entry having the highest priority. When the port
in the primary entry fails, the second entry with backup port
information will be used and the flow will be rerouted. Table
II is an example.

Index Search IP Mask Nexthop IP Port
1 192.168.100.0 255.255.255.0 192.168.101.2 0000 0001
2 192.168.100.0 255.255.255.0 192.168.101.2 0000 0100

TABLE II

FAST REROUTE ENTRIES. THE PRIMARY PORT ISMAC0. THE BACKUP

PORT ISMAC1

The reroute procedure is very fast because it is purely based
on hardware. We make use of inband link status information
from Broadcom PHY chips as feedback. Once a link is down,
lpm lookup module will notice this immediately. The next
coming packet will not follow the entry with invalid output
port.

Besides link status feedback, the router hardware needs
no modification under a linear search scheme. However, the
duplicate entries will take up extra space in the routing table.
At the same time, it is not applicable to TCAM based lookup
mechanism, in which entries are not stored in order. Our
solution is to extend port information section in the entry
from 8bit to 16bit. The first 8bit is the primary port while
the following 8bit is the backup. The primary port will be
used first unless the associated link is down.

D. Multipath Routing

In the NetFPGA reference router, a routing table entry with
multiple 1’s in port section indicates itself as a multicast
entry. Packets match this entry are sent to those ports at
the same time. Based on the fact that in the current OSPF
routing protocol, a packet is never sent to more than one port,
we decided to take advantage of this section to implement
multipath routing.

The goal of multipath routing is to allow packets destined
to the same end-host making use of more than one route. In
our multipath routing implementation, each entry in the routing
table may have more than one output port, with multiple 1’s in
port section. Packets matching this entry could go to any port
indicated in the entry. Currently we use a simple round-robin
fashion to choose the actual output port. A register keeps track
of which port was last used and instructs lpmlookup module
to find the next available port. A multipath entry example is
shown in Table III.

Search IP Mask Nexthop IP Port
192.168.100.0 255.255.255.0 192.168.101.2 0101 0001

TABLE III

MULTIPATH ENTRY. PACKETS USEMAC0, MAC2, MAC3 IN TURNS.

We do not specify the priority of ports in the same entry.
Each port, if available, will be used with equal probability.
However, priority can still be realized by ordered duplicate
entries described in the last section. One may optimize band-
width, delay, quality of service, etc. by choosing the output
port cleverly.

It is worth to point out that, unlike fast reroute, the multipath
routing implementation is independent of how entries are
stored. The same code applies to TCAM based router.

E. Limitation

As a course project, we understand that there are a number
of limitation in the design.

First, for fast reroute feature, the only feedback information
is the link status. However, when the neighbor router goes
down or freezes, sometimes the link status may remain active.



In this case, it will not trigger the fast rerouting mechanism,
and the application is subject to interruption. However, our
implementation is a hardware based improvement to the
current OSPF protocol. With the software, the topology are
still recalculated regularly to overcome the router failures not
resulting an inactive link state.

Another limitation of the design is packet reordering. We
split a single flow into multiple paths without packet reorder-
ing protection. Packets could arrive at the destination in differ-
ent order as they are sent. As the hardware router providing an
interface to handle multipath routing, the software (multipath
routing protocol, transport layer protocol such as TCP, or
applications) may develop some methods to ensure the quality
of service.

III. I MPLEMENTATION

A. Hardware

Fast reroute and multipath routing features have already
been implemented in the hardware with linear search based
implementation. The corresponding Verilog code is less than
100 lines. Due to the time limit, we have not transplanted the
design to the NetFPGA’s standard TCAM based output port
lookup module. The router should be able to run at line-rate
with TCAM lookup table.

In general, the two advanced features consume little logics
in FPGA. However, duplicate entries for fast reroute may
need more BRAMs to store. Table IV describes the device
utilization of out project. It uses 31% of the available flip-
flops on the Xilinx Virtex II Pro 50 FPGA, which is almost
equal to the reference router. 50% of the BRAMs available
are used. The main use of BRAMs occurs in 3 tables.

XC2VP50 Utilization
Resources Utilization Percentage

Occupied Slices 14,781 out of 23,616 62%
4-input LUTS 17,469 out of 47,232 36%

Flip Flops 14,918 out of 47,232 31%
Block RAMs 118 out of 232 50%
External IOBs 356 out of 692 51%

TABLE IV

DEVICE UTILIZATION FOR FAST REROUTE AND MULTIPATH ROUTING

ENABLED ROUTER

B. Software

Software is responsible for providing correct tables to the
hardware. Those tables include the IP Filter, the ARP Cache
and the Routing Table. Multipath and Fast Reroute features
require changes only to the Routing Table. In the basic router
implementation (without advanced features) the Routing Table
is generated using Dijkstra’s algorithm to find shortest (min-
imum hop) path to all known destinations. This calculation
is done whenever the topology changes, as perceived by the
router in question.

To support multipath and fast reroute, it is not sufficient to
find shortest paths to all destinations, but also second shortest

(and possibly third shortest and more) paths are also necessary.
This is calculated by running Dijkstra’s algorithm the same
number of times as there are interfaces. For each run of the
algorithm, all interfaces on the router are disabled, except for
one interface (a different interface is enabled in each run).
Resulting hop count distances (i.e. the distance vectors) for
each of the algorithm runs are then compared to provide the
Routing Table.

Since our multipath implementation isequal cost multipath,
we search if each of the destinations can be reached over
multiple interfaces (as calculated by different algorithmruns)
in the same minimum hop count. If this is so, all such
interfaces are added to the routing table entry, if not, only
the shortest path interface is added to the routing table.

If fast reroute feature is enabled, two entries for each
destination will be added to the routing table, if the destination
can be reached over at least two interfaces. The first entry
corresponds to the shortest path route and is preferred, andthe
second entry is the backup path if the primary path is disabled.
The router will be in the mode where it uses a backup path
only for the short time that it will take OSPF to update all
routers. After that, the backup path will become the primary
path, and a new backup path will be calculated (if available).
Because of this, adding a second backup path, while possible,
is deemed unnecessary.

In order to measure performance and demonstrate how
multipath and fast reroute work, a demo application has been
developed. This application consists of a GUI and a backend.
The backend communicates with all routers and collects sta-
tistical information, such as packet count for each interface of
each router. It is also aware of the network topology, which
it then feeds to the GUI for visual presentation, together with
the statistical data.

IV. CONCLUSION

In this paper we described the design and implementation
of the fast reroute and multipath routing extensions to the
NetFPGA reference router. Implemented with very little mod-
ification to the hardware pipeline, these features enhance the
robustness and efficiency of the network. In addition, the GUI
frontend can be used to visualize and validate the performance
of the system.

REFERENCES

[1] G. Gibb, J. W. Lockwood, J. Naous, P. Hartke, and N. McKeown,
“NetFPGA: an open platform for teaching how to build gigabit-rate
network switches and routers,”IEEE Transactions on Education, vol. 51,
no. 3, pp. 364–369, Aug. 2008.

[2] Stanford University, “NetFPGA reference router,”
http://netfpga.org/wordpress/netfpga-ipv4-reference-router/.

[3] ——, “Pee-Wee OSPF Protocol Details,” Can be found at
yuba.stanford.edu/cs344public/docs/pwospfref.txt.

[4] P. Pan, G. Swallow, and A. Atlas, “Fast Reroute Extensions
to RSVP-TE for LSP Tunnels,” RFC 4090 (Proposed Standard),
Internet Engineering Task Force, May 2005. [Online]. Available:
http://www.ietf.org/rfc/rfc4090.txt

[5] D. Thaler and C. Hopps, “Multipath Issues in Unicast and Multicast Next-
Hop Selection,” RFC 2991 (Informational), Internet Engineering Task
Force, Nov. 2000. [Online]. Available: http://www.ietf.org/rfc/rfc2991.txt


