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Abstract  The paper presents a methodology for modeling and optimal decision-making in the design of the 
technical systems. The model is formed as a vector problem of mathematical programming. The model is intended 
to define the parameters of the technical system, in which the technical characteristics (criteria) are optimal. 
Mathematical model of the technical system is carried out in conditions of certainty (functional dependence of each 
characteristic and restrictions on parameters is known) and under conditions of uncertainty (there is not sufficient 
information on the characteristics of each of the functional dependence of the parameters). Conditions of uncertainty 
will be transformed to definiteness conditions, using methods of the regression analysis. The received to problems 
vector is solved on the basis of normalization of criteria and the principle of the guaranteed result. As a result of the 
decision received the optimum decision (the guaranteed result). The modeling methodology in the conditions of 
definiteness and uncertainty is illustrated on a numerical example of model of technical system, in the form of a 
vector problem of nonlinear programming with four criteria. 
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1. Introduction 
The creation of new technical systems stimulated the 

development of mathematical models in their design. Such 
models adequately describe the functioning of technical 
systems. Therefore to a problem of mathematical 
modeling of technical systems as much attention is paid to 
a component of system of the automated design as in 
Russia [1-13], and abroad in theoretical [15,17,18] and 
applied aspects [16,19,20,21]. 

Functioning of technical object, system is defined by 
some set of the characteristics which are functionally 
dependent on parameters of system. Improvement of one 
of these characteristics leads another to deterioration. 
There is a problem of determination of such parameters 
which would improve all functional characteristics of 
technical system at the same time. These problems are 
solved now, both at technological (experimental) level, 
and at the mathematical (model) level. The model in this 
case can be created in the form of a vector problem of 
mathematical programming in which the vector criterion 
defines characteristics of technical system [5,7,9-13]. 

For the solution of a vector task we use the methods 
based on normalization of criteria and the principle of the 
guaranteed result which are for the first time presented [4]. 
Further we used these methods when modeling technical 
systems [5,7,9]. We use methods at the solution of vector 
tasks with equivalent criteria [9] and to the set priority of 

criterion [10]. If functional dependence of each 
characteristic and restrictions on parameters is known, we 
formulate mathematical model of technical system in the 
conditions of definiteness [5,8]. If functional dependence 
of each characteristic and restrictions on parameters isn't 
known, we formulate mathematical model of technical 
system in the conditions of uncertainty [7]. This work is in 
total directed on the solution of these problems. 

The purpose of this work consists in creation of 
methodology of creation of mathematical model of 
technical system in the form of a vector problem of 
mathematical programming. Solutions of a vector task in 
the conditions of definiteness and uncertainty in total. We 
modeled processes of functioning of technical system. The 
method of optimum decision-making under the set 
conditions is presented. 

For realization of a goal in work it is presented: creation 
of model of technical system in the form of a vector 
problem of mathematical programming; the methodology 
of creation of mathematical model of technical system 
conditions of definiteness and uncertainty in total is 
shown; decision-making realization (i.e. a choice of 
optimum parameters of engineering system), on the basis 
of the developed software. The methodology of modeling 
is illustrated on a numerical example of model of the 
technical system, in the form of a vector problem of 
nonlinear programming realized in Matlab [14] system. 
The methodology has system character and can be used as 
for technical, and economic tasks, [11,12]. 
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2. Statement of a Problem. Methodology 
of Modeling of Technical Systems in the 
Conditions of Definiteness and 
Uncertainty 

The problem of a choice of optimum parameters of 
technical systems according to functional characteristics 
arises during the studying, the analysis and design of 
technical systems and is connected with quality 
production. The problem includes the solution of the 
following tasks: 

Creation of mathematical model which defines 
interrelation of each functional characteristic from 
parameters of technical system i.e. is formed of the vector 
problem of mathematical programming;  

Methods of the solution of a vector task get out. In 
work it is offered to use the methods based on 
normalization of criteria and the principle of the 
guaranteed result. The software which realizes these 
methods is developed. 

2.1. Creation of Mathematical Model of 
Technical System 

The technical system which functioning depends on N - 
a set of design data is considered1: Х={х1 х2 … хN}, N - 
number of parameters, each of which lies in the set limits 

 
min max

min max

, 1,j j jx x x j N

or X X X

≤ ≤ =

≤ ≤
 (1) 

где х min
j , х max

j , ∀j∈N - lower and top limits of change of 
a vector of parameters of technical system. 

The result of functioning of technical system is defined 
by a set К to technical characteristics of fk(X), k=

K,1

K,1  
which functionally depend on design data Х={хj, j= N,1 }, 
in total they represent a vector function: 

 ( ) ( ) ( ) ( )( )1 2 ... .T
KF X f X f X f X=  (2) 

The set of characteristics (criteria) to is subdivided into 
two subsets K1 and K2: К=K1 K2 

K1 is a subset of technical characteristics which 
numerical sizes it is desirable to receive as it is possible 
above: fk(X) →max, k= 1,1 K .  

K2 - it subsets of technical characteristics which 
numerical sizes it is desirable to receive as it is possible 
below: fk(X)→min, k= KK ,11 + , K2≡ KK ,11 + . 

Mathematical model of technical system which solves 
in general a problem of a choice of the optimum design 
decision (a choice of optimum parameters), we will 
present in the form of a vector problem of mathematical 
programming.  

 ( ) ( ) ( )1 1 { { , 1, }kOpt F X F X f X k K= = =max max  (3) 

 ( ) ( )2 2{ , 1, }},kF X f X k K= =min min  (4) 

                                                           
1 Another way to write the vector Х={хj, j= N,1

N,1

}  

 ( ) 0,G X ≤  (5) 

 min max , 1, ,j j jx x x j N≤ ≤ =  (6) 

where X - a vector of operated variable (design data) from 
(1);  

F(X)={fk(X), k= K,1 } - criterion which everyone a 
component submits the characteristic of technical system 
(2) which is functionally depending on a vector of 
variables X;  

in (5) G(X)=(g1(X)  g2(X) … gM(X))T – vector function 
of the restrictions imposed on functioning of technical 
system, M – a set of restrictions.  

Restrictions are defined proceeding in them 
technological, physical and to that similar processes and 
can be presented by functional restrictions, for example, 
f min

k ≤ fk(X)≤ f max
k , k= K,1 . 

It is supposed that the fk(X), k= K,1  functions are 
differentiated and convex, gi(X), i= M,1 are continuous, 
and (5)-(6) set of admissible points of S set by restrictions 
isn't empty and represents a compact: 

 ( ) .{ | 0,  }N min maxS X R G X X X X= ∈ ≤ ≤ ≠ ∅≤  

Criteria and restrictions (3)-(6) form mathematical 
model of technical system. It is required to find such 
vector of the Хo∈S parameters at which everyone a 
component the vector - functions F1(X)={fk(X), k= 1,1 K } 
accepts the greatest possible value, and a vector - 
functions F2(X)={fk(X), k= 2,1 K } are accepted by the 
minimum value. 

To a substantial class of technical systems which can be 
presented by a vector task (3)-(6), it is possible to refer 
their rather large number of tasks from various branches 
of economy of the state: electrotechnical, aerospace, 
metallurgical (choice of optimal structure of material), 
etc2. In this article for technical system are considered in a 
statics. But technical systems can be considered in 
dynamics, using differential-difference methods of 
transformation [5], conducting research for a small 
discrete period Δt ∈ T. 

2.2. Conditions of Creation of Mathematical 
Model of Technical System 

At creation of mathematical model of technical system 
(3)-(6) conditions are possible: definiteness and 
uncertainty. 
                                                           
2 We mention the work of V.L. Levitskii “Simulation and Optimization 
of Parameters of Magnetoelectric Linear Inductor Electric Direct Current 
Motor” [[5], p. 50-120]. It deals with designing an augmented electric 
motor (AEM) with its model reduced to vector mathematical 
programming problem (3)–(6). The vector of design parameters X = 
(X1, …, X5) consisted of X1 for the air clearance δ, X2 for the tooth pitch, 
X3 for the number of teeth, X4 for the height of the concentrator, and X5 
for the pole overlap coefficient. The vector of design criteria F(X) = (f(X), 
p(X), η(X), …) included f(X) for the nominal towing force, p(X) for the 
nominal power, η(X) for the nominal efficiency and so on, ten indices in 
total. The central orthogonal plan of the second order was used to 
construct the dependencies of f on the listed design parameters X [5, p. 
96]. The work “…Multiobjective Optimization of Static Modes of Mass-
Exchange Processes by the Example of Absorption in Gas Separation” 
[13] is an example from another industry. Thus, experimental data both 
from the AEM problem and from similar ES of other industries can be 
represented as theoretical (system) problem (3)-(6). 
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2.2.1. Creation of Mathematical Model of Technical 
System in the Conditions of Definiteness 

Conditions of definiteness are characterized by that 
functional dependence of each characteristic and 
restrictions on parameters of technical system [5,8] is 
known. 

For creation of functional dependence we perform the 
following works.  

1. We form a set of all functional characteristics of 
technical systems K. The size of the characteristic we will 
designate fk, ∀k∈K. We determine a set of all parameters 
N on which these characteristics depend. Sizes of 
parameters we will present in the form of a vector of X 
={xj, j= N,1 }. We give the verbal description of 
characteristics of technical systems.  

2. We conduct research of the physical processes 
proceeding in technical system. For this purpose we use 
fundamental laws of physics: modeling of magnetic, 
temperature fields; conservation laws of energy, 
movement etc. We establish information and functional 
relation of characteristics of technical systems and her 
parameters: fk(X), k= K,1 . The set of characteristics of K is 
subdivided into two subsets of K1⊂K, K2⊂K, К=K1 K2. 
K1 is a subset of technical characteristics by which it is 
desirable to receive numerical sizes as it is possible above: 
F1(X)={fk(X) → max, k= 1,1 K }. K2 – is a subset of 
technical characteristics by which it is desirable to receive 
numerical sizes as it is possible below: F2(X) ={fk(X) 
→min, k= 1 1,K K+ }, K2≡ 1 1,K K+ . 

3. We define functional restrictions: f min
k  ≤ fk(X)≤ f max

k , 
k= K,1  and parametrical restrictions:  

 min max min max, 1, , .j j jx x x j N or X X X≤ ≤ = ≤ ≤  

4. As a result we will construct mathematical model of 
technical system in the form of a vector problem of 
mathematical programming:  

 

( )
( ) ( )
( ) ( )

( )

1 1

2 2
min max

min max

{ , 1, },
 

{ , 1, }

at restrictions , 1, ,

, 1, .

k

k

k k k

j j j

F X f X k K
Opt F X

F X f X k K

f f X f k K

x x x j N

 = = =  
= =  

≤ ≤ =

≤ ≤ =

max max

min min

 (7) 

The task (7) is adequate tasks (3)-(6). 

2.2.2. Creation of Mathematical Model of Technical 
System in the Conditions of Uncertainty 

Conditions of uncertainty are characterized by that 
there is no sufficient information on functional 
dependence of each characteristic and restrictions from 
parameters [7]. 

Conceptual Decision Making Problem Statement. 
Initially, in a general form it is given in [15]. We 
introduce the respective designations - аi, i = M,1 , for the 
admissible decision making alternatives and A=( a1 a2 … 
aM) for the vector of the set of admissible alternatives.  

We match each alternative a ∈ A to K numerical indices 
(criteria) f1(a), …, fK(a) that characterize the system. We 
can assume that this set of indices maps each alternative 
into the point of the K-dimensional space of outcomes 

(consequences) of decisions made - F(a) = (f1(a)f2(a) … 
fK(a))T. We use the same symbol fk(a) both for the criterion 
and for the function that performs estimating with respect 
to this criterion. Note that we cannot directly compare the 
variables fv(a) and fk(a), v ≠ k  at any point F(a) of the K-
dimensional space of consequences since it would mostly 
have no sense since these criteria are generally measured 
in different units. Using these data, we can state the 
decision making problem. 

The decision maker is to choose the alternative а ∈ A so 
that to obtain the most suitable result, i.e., F(a) →min. 

This definition means that the required estimating 
function should reduce the vector F(a) to a scalar 
preference or “value” criterion. In other statement, it is 
equivalent to setting a scalar function V given in the space 
of consequences and possessing the following property 

 ( )( ) ( )( ) ( ) ( )'V F a V F a F a F a′≥ ⇔   

where the symbol >> means “no less preferable than” 
[2,15]. We call the function V(F(a)) the value function. 
The name of this function in publications may vary from 
an order value function to a preference function to a value 
function. Thus, the decision maker is to choose а ∈ A such 
that V(F(a)) is maximum. The value function serves for 
indirect comparison of how important certain values of 
various criteria of the system are. That said, the matrix F(a) 
of admissible outcomes of alternatives takes the form 

 
1...1 1 1

... .
1 ...

Ka f f

Ka f fM M M

F
 
 =
 
 

 (8) 

where fi 
j = fi (ai) and all alternatives in it are represented 

by the vector of indices F(a). For the sake of definiteness 
and without loss of generality, we assume that the first 
criterion (any criterion can be the first) is arranged in the 
increasing (decreasing) order, with the alternatives re-
numbered i= M,1 .  

The problem implies that the decision maker is to 
choose the alternative ao∈ A such that it will yield the 
“most suitable (optimal) result” [15]. 

For the engineering system, we can represent each 
alternative ai by the N-dimensional vector Xi ={xij, j= N,1 }, 
i= M,1 } of its parameters and its outcomes by the K-
dimensional vector criterion {f1(Xi), …, fK(Xi), i= M,1 }. 
Taking this into account, matrix of outcomes (8) takes the 
form 

 
( ) ... ( )1 1 1 1

... ,
( )... ( )1

X f X f XK
I

X f X f XM M K M
=
 
 
 

 (9) 

where multiple criteria (characteristics) K is subdivided 
into two subsets K1⊂K, K2⊂K, К=K1 K2. K1 is a subset of 
the technical characteristics which numerical sizes it is 
desirable to receive as it is possible above:  

 ( )1 1{{ ( , 1, } , 1, }.T
k iI X f X i M k K≡ = =max  

K2 are subsets of technical characteristics which numerical 
sizes it is desirable to receive as it is possible below:  

 ( )2 2

2 1

{{ ( , 1, } , k 1, },

1, .

T
k iI X f X i M K

K K K

≡ = → =

≡ +

min
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The task (9) decision-makers consists in a choice of 
such set of design data of Xo system which would allow to 
receive optimum result [15]. 

Discussion. At present, problems (8) and (9) are solved 
by a number of “simple” methods based on forming 
special criteria such as Wald, Savage, Hurwitz, and 
Bayes-Laplace criteria, which are the basis for decision 
making. 

The Wald criterion of maximizing the minimal 
component helps make the optimal decision that ensures 
the maximal gain among minimal ones -

1,1,
max min k

i
i Mk K

f
==

. 

The Savage minimal risk criterion chooses the optimal 
strategy so that the value of the risk k

ir is minimal among 

maximal values of risks over the columns - 
1, 1,

min max k
i

i M k K
r

= =
. 

The value of the risk k
ir is chosen from the minimal 

difference between the decision that yields maximal profit 

1,
max k

i
i M

f
=

, k= 1, K , and the current value k
if , 

k
ir =(

1,
max k

i
i M

f
=

) - k
if , with their set being the matrix of 

risks 
1,

1,

k Kk
i i M

R r
=

=
= . 

The Hurwitz criterion helps choose the strategy that lies 
somewhere between absolutely pessimistic and optimistic 
(i.e., the most considerable risk) 

 
1,1, 1,

max min (1 ) max ,k k
i i

i Mk K i M
f fα α

== =

 
+ − 

 
 

where α is the pessimistic coefficient chosen in the 
interval  0 ≤ α ≤ 1.  

The Bayes-Laplace criterion takes into account each 
possible consequence of all decision options, given their 

probabilities 
1, 1

max
K

k
i i

i M k
f p

= =
∑ . 

All these and other methods are sufficiently widely 
described in publications on decision making [2,15-21]. 
All of them have certain drawbacks. For instance, if we 
analyze the Wald maximin criterion, we can see that by 
the problem’s hypothesis all criteria are in different units. 
Hence, the first step, which is to choose the minimal 
component min

kf =
1,

min k
i

i M
f

=
, is quite reasonable, and all 

min
kf , k=1, K , are measured in different units, therefore 

the second step, which is to maximize the minimal 
component min

1,
max k
k K

f
=

, is pointless. Although it brings us 

slightly closer to the solution, the criteria measurement 
scale fails to solve the problem since the chosen criteria 
scales are judgmental. 

We believe that to solve problem (8), (9), we need to 
form a measure that would allow evaluating any decision 
to be made, including the optimal one. In other words, we 
need to construct axiomatics that shows, based on the set 
of K criteria, what makes one alternative better than the 
other. In its turn, axiomatics can help derive a principle 
that helps find whether the chosen alternative is optimal. 
The optimality principle should become the basis for the 

constructive methods of choosing optimal decisions. We 
propose such approach for the vector mathematical 
programming problem that is essentially close to decision 
making problem (8), (9).  

The vector task in the conditions of uncertainty (9) will 
assume in the form 

 
( )

( )1 1

 

{ { { ( , 1, )} , 1, },T
k i

Opt F X

I X f X i M k K= ≡ = =max max
(10) 

 ( )2 2{ { ( , 1, )} , 1, }},T
k iI X f X i M k K≡ = =min min  (11) 

at restrictions 

 
( )min max

min max

, 1, ,

, 1, .
k k k

j j j

f f X f k K

x x x j N

≤ ≤ =

≤ ≤ =
 (12) 

where X - a vector of operated variable (design data) 
equivalent (1);  

F(X)={I1(X), I2(X)}  - vector criterion which everyone a 
component submits the characteristic of technical system 
(2) which is functionally depending on the size of discrete 
value of a vector of variables X; M – set of discrete values 
of a vector of variables X; in (12) f min

k ≤ fk(X)≤ f max
k , 

k= K,1  – a vector function of the restrictions imposed on 

functioning of technical system, x min
j ≤ xj ≤ x max

j , j = N,1  – 
parametrical restrictions. 

Discussion. Using designations (10), (11), it is possible 
to give some assessment to dimension of uncertainty. If N 
- a set a component of a vector of variables X is equal to M 
– a set of discrete values of a vector of variables X, 
uncertainty linear (for example, N = M =2, or N = M =3 
etc.). (As in two measured RN=2 space it is possible to draw 
a line, in three measured R3 - the plane, etc.). If N < M, 
uncertainty is nonlinear. If N > M, uncertainty is full. (For 
example, in three-dimensional space of R3 through two 
points it is possible to carry out an infinite set of the 
planes). Generally, than there are more than measurements 
of M, that definiteness is more. Full definiteness comes 
when functional dependence of f (X) is known. In this case 
the set of points of X is infinite. 

Accuracy of measurements represents the second party 
of uncertainty. In this work accuracy isn't investigated. 

2.3. Creation of Mathematical Model of 
Technical System in the Conditions of 
Definiteness and Uncertainty in Total 

In real life of a condition of definiteness and 
uncertainty are combined. The model of technical system 
also has to reflect these conditions. We will unite models 
(7) and (10) - (13). As a result we will receive model of 
technical system in the conditions of definiteness and 
uncertainty in total: 

 

( )

( ) ( )
( )

1 1

1

1

 

{ , 1, },

{ { ( , 1, )} , ,

1,

def
k

T
k i

unc

Opt F X

F X f X k K

I X f X i M

k K

 = = 
 = ≡ = 
 
 =
 

max max

max max
 (13) 
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( ) ( )

( ) { }
2 2

2 2

{ , 1, },

{ ( , 1, ), 1, } ,

def
k

unc
k i

F X f X k K

I X f X i M k K

= =

≡ = =

min min

min min
 (14) 

at restrictions 

 ( )min max , 1, ,k k kf f X f k K≤ ≤ =  (15) 

 min max , 1, ,j j jx x x j N≤ ≤ =  (16) 

where X - a vector of operated variable (design data) 
equivalent (1); F(X)={ F1(X) F2(X) I1(X), I2(X)} - vector 
criterion which everyone a component represents a vector 
of criteria (characteristics) of technical system (2) which 
functionally depend on discrete values of a vector of 
variables X where K def

1 , K def
2  (definiteness), K unc

1 , K unc
2  

(uncertainty) the set of criteria of max and min created in 
the conditions of definiteness and definiteness; in (12) 

f min
k ≤ fk(X)≤ f max

k , k= K,1  – a vector function of the 
restrictions imposed on functioning of technical system 

x min
j ≤ xj ≤ x max

j , j = N,1 – parametrical restrictions. 

2.4. Transformation of a Problem of Decision-
Making in the Conditions of Uncertainty into 
a Problem of Vector Optimization in the 
Conditions of Definiteness 

Elimination of uncertainty consists in use of qualitative 
and quantitative descriptions of technical system which 
can be received, for example, by the principle "entrance 
exit". Transformation of basic data "entrance exit" to 
functional dependence is carried out by use of 
mathematical methods (the regression analysis). 

The technical system in which experimental data are 
presented in the form of a matrix (9), is considered in the 
following designations: 

 [ ]
( ) ... ( )1 1 1 1

... , ,
( )... ( )1

X y X y XK
or I X Y

X y X y XM M K M
I =

 
=  
 

 (17) 

where is considered: X={Xi ={xij, j= N,1 }, i= M,1 } - 
design data of technical system, N – a set of parameters of 
system, M - a set of alternatives (experiments); Y={yik, 
k= K,1 , i= M,1 }, K – a set of criteria (characteristics) by 
which each alternative is estimated, [4]. 

Construction a vector - function (criteria) is carried out 
on a method of the smallest squares 

∑
=

−
M

i
ii yy

1

2)(min , where by yi, i= M,1   - really observed 

sizes, and iy , i= M,1  their estimates received for one-

factorial model by means of function iy = f(Xi,А), Xi ={x i}. 
As f(Xi, А) we use a polynom. In applied part of work the 
polynom of the second degree is used: 

 

22
0 1 1 2 1

2
3 2 4 2

1
5 1 2

min ( , ) ,
*

i iM

j i i
A i

i i

a a x a x

f A X y a x a x
a x x=

  + +  
  ≡ − + +
  

+  
  

∑  

Result: Basic data {{fk(Xi, i= M,1 }T, k= uncK1,1 }, {fk(Xi, 

i= M,1 }T, k= uncK 2,1 }} in problems of decision-making in 
the conditions of uncertainty (10), (11) and (13), (14) the 
functions - fk(X), k= uncK1,1 , fk(X), k= uncK 2,1  are 
transformed. 

As a result the vector problem (13)-(16) will be 
transformed into a vector problem in the conditions of 
definiteness: 

( )
( ) ( )
( ) ( )

1 1

2 2

{ , 1, },
 ,

{ , 1, }
k

k

F X f X k K
Opt F X

F X f X k K

 = = =  
= =  

max max

min min
(18) 

at restrictions 

 
( )min max

min max

, 1, ,

, 1, ,
k k k

j j j

f f X f k K

x x x j N

≤ ≤ =

≤ ≤ =
 (19) 

where F(X)={fk(X), k= 1, K } - vector criterion which 
everyone a component submits the characteristic of 
technical system which is functionally depending on a 
vector of variables X; subset of criteria K1= K 1

def UK 1
unc , 

K2= K 2
def UK 2

unc . 

3. Vector Optimization – Mathematical 
Apparatus of Modeling of Technical 
Systems 

3.1. Axiomatics of Vector Optimization 
At present, theoretical studies and methods of solving 

vector optimization problems are held in the following 
directions - methods of solving vector problems based on 
criteria convolution; methods using restrictions on criteria; 
goal programming methods; methods based on searching 
for compromise decision and on human-machine decision 
making procedures. To analyze the listed methods, we 
compare the results of solving the test example by these 
methods with the method based on criteria normalization 
and the principle of guaranteed result [[4], pp. 9-15]. 

Conceptual difficulty of the solution of vector tasks 
consists in the formulation of axiomatics of vector optimization. 
Such axiomatics defines in what one solution of a vector 
task is better than other solution of a vector task. The 
principle of an optimality is output from such axiomatics. 

Axiom 1. (About equality and equivalence of criteria in 
an admissible point of vector problems of mathematical 
programming) 

In of vector problems of mathematical programming 
two criteria with the indexes k∈K, q∈K shall be 
considered as equal in Х∈S point if relative estimates on 
k-th and q-th to criterion are equal among themselves in 
this point, i.e. λk(X) = λq(X), k, q ∈ K. 

We will consider criteria equivalent in vector problems 
of mathematical programming if in X∈S point when 
comparing in the numerical size of relative estimates of 
λk(X), k= 1, K , among themselves, on each criterion of 
fk(X), k= 1, K , and, respectively, relative estimates of 
λk(X), isn't imposed conditions about priorities of criteria. 
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Definition 1. The relative  level λ in a vector problem 
represents the lower assessment of a point of  X∈S among 
all relative estimates of λk(X), k = K,1 : 

 ( )  , 1, ,kX S X k Kλ λ∀ ∈ ≤ =  (20) 

the lower level for performance of a condition (20) in 
an admissible point of X∈S is defined by a formula 

 ( )min .k
k K

X S Xλ λ
∈

∀ ∈ =  (21) 

Ratios (20) and (21) are interconnected. They serve as 
transition from operation (21) of definition of min to 
restrictions (20) and vice versa. 

The level λ allows to unite all criteria in a vector 
problem one numerical characteristic of  λ and to make 
over her certain operations, thereby, carrying out these 
operations over all criteria measured in relative units. The 
level λ functionally depends on the X∈S  variable, changing 
X, we can change the lower level - λ. From here we will 
formulate the rule of search of the optimum decision. 

Definition 2. (Principle of an optimality). 
The vector problem of mathematical programming at 

equivalent criteria is solved, if the point of Xo∈S and a 
maximum level of λo (the top index o - optimum) among 
all relative estimates such that is found 

 ( )maxmin .k
k KX S

Xλ λ
∈∈

=  (22) 

Using interrelation of expressions (20) and (21), we 
will transform a maximine problem (22) to an extreme 
problem 

 max ,
X S

λ λ
∈

=  (23) 

 ( ) , 1, .k X k Kλ λ≤ =  (24) 

The resulting problem (23)-(24) let's call the λ-problem. 
λ-problem (23)-(24) has (N+1) dimension, as a 

consequence of the result of the solution of λ-problem 
(23)-(24) represents an optimum vector of Xо∈RN+1, (N+1) 
which component an essence of the value of the λo, i.e. 
Xo={x o

1 , x o
2 ,..., x o

N , x o
N 1+ },  thus x o

N 1+ = λo, and (N+1) a 
component of a vector of Xo selected in view of its 
specificity. 

The received a pair of  {λo, Xo}=Xо characterizes the 
optimum solution of λ-problem (23)-(24) and according to 
vector problem of mathematical programming (3)-(6) with 
the equivalent criteria, solved on the basis of normalization 
of criteria and the principle of the guaranteed result. We 
will call in the optimum solution of Xо={Xo, λo}, Xo - an 
optimal point, and λo - a maximum level. 

An important result of the algorithm for solving vector 
problems (3)-(6) with equivalent criteria is the following 
theorem. 

Theorem 1. (The theorem of two most contradictory 
criteria in a vector problem of mathematical programming 
with equivalent criteria). 

In convex vector problems of mathematical programming 
at the equivalent criteria which is solved on the basis of 
normalization of criteria and the principle of the 
guaranteed result, in an optimum point of Xo={λo, Xo} two 
criteria are always - denote their indexes q∈K, p∈K 

(which in a sense are the most contradiction of the criteria 
k = K,1 ), for which equality is carried out: 

 ( ) ( ) , , , ,q pX X q p X Sλ λ λ= = ∈ ∈   K  (25) 

and other criteria are defined by inequalities: 

 ( ) , .q X k q p kλ λ= ∀ ∈ ≠ =  K  (26) 

3.2. Mathematical Algorithm of the Solution 
of a Vector Task  

For the solution of vector problems of mathematical 
programming (3)-(6) the methods based on axiomatics of 
normalization of criteria and the principle of the 
guaranteed result [4,8] are offered. Methods follow from 
an axiom 1 and the principle of an optimality 1. We will 
present in the form of a number of steps:  

Algorithm of the solution of a vector task (3)-(6) at 
equivalent criteria. 

Step 1. The problem (3)-(6) by each criterion separately 
is solved, i.e. for ∀k ∈ K1 is solved at the maximum, and 
for ∀k ∈ K2 is solved at a minimum. As a result of the 
decision we will receive: 

X *
k  - an optimum point by the corresponding criterion, 

k= K,1 ; 

f *
k =fk(X

*
k ) – the criterion size k-th in this point, k= K,1 . 

Step 2. We define the worst value of each criterion on S: 
f 0

k , k= K,1 . For what the problem (3), (5)-(6) for each 
criterion of k= K,1 1 on a minimum is solved:  

f 0
k =min fk(X), G(X) ≤ B, X ≥ 0, k= K,1 1. 

The problem (4)-(6) for each criterion on a maximum is 
solved:  

f 0
k  = max fk(X), G(X) ≤ B, X ≥ 0, k= K,1 2. 

As a result of the decision we will receive: X 0
k ={xj, 

j= N,1 } - an optimum point by the corresponding criterion, 

k= K,1 ; f 0
k =fk(X

0
k ) – the criterion size k-th a point, X 0

k , 
k= K,1 . 

Step 3.  The analysis of a set of points, optimum across 
Pareto, for this purpose in optimum points of X * ={X *

k , 

k= K,1 } are defined sizes of criterion functions of 

F(X*)={fq(X
*
k ), q= K,1 , k= K,1 } and relative estimates  

 
( )

* *

,

( ) { ( ), , , , },�

:

q k
of (X) - f  k k kk * of fk k

X X q K k K

X

λ λ

λ ∀ ∈
−

= = =

=

1 1

K
 

 

1 1 1

1

1 1 1

1

,

.

* *
k

*

* *
k k k
* *

k
*

* *
k k k

f (X ),..., f (X ),
F(X ) ...

f (X ),..., f (X )

λ (X ),..., λ (X ),
(X ) ...

λ (X ),..., λ (X )

λ

=

=

 (27) 
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As a whole on a problem of accordance with (9) ∀k∈К  
the relative assessment of λk(X), k= K,1  lies within 0 ≤ 
λk(X) ≤ 1, ∀k ∈ К. 

Step 4. Creation of the λ-problem. 
Creation of λ-problem is carried out in two stages: 

initially built the maximine problem of optimization with 
the normalized criteria which at the second stage will be 
transformed to the standard problem of mathematical 
programming called λ-problem. 

For construction maximine a problem of optimization 
we use definition - relative level ∀X∈S   λ=

Kk∈
min λk(X). 

The bottom λ level is maximized on X∈S, as a result we 
will receive a maximine problem of optimization with the 
normalized criteria. 

 ( ) ( )max min , , 0.k
kx

X G X B Xλ λ= ≤ ≥  (28) 

At the second stage we will transform a problem (28) to 
a standard problem of mathematical programming: 

 =max , =max ,λ λ λ λ   (29) 

 ( ) 0, 1, , 0, 1, ,
o

k k
k * o

k k

f (X) - f  
X k K k K

f f
λ λ λ− ≤ = → − ≤ =

−
(30) 

 ( ) ( ), 0, , 0,G X B X G X B X≤ ≥ ≤ ≥ (31) 

where the vector of unknown of X has dimension of N+1: 
X={λ, x1, …, xN}. 

Step 5. Solution of λ-problem. 
λ-problem (29)-(31) is a standard problem of convex 

programming and for its decision standard methods are used. 
As a result of the solution of λ-problem it is received: 
Xo={λo, Xo} - an optimum point; 
fk(Xo), k= K,1  - values of the criteria in this point; 

λk(Xo) =
o

k
*
k

o
k

o
k

ff
 ) - f(Xf

−
, k= K,1  - sizes of relative 

estimates; 
λo - the maximum relative estimates which is the 

maximum bottom level for all relative estimates of λk(Xo),  
or the guaranteed result in relative units, λo guarantees that all 
relative estimates of λk(Xo) more or are equal λo in Xo point to  

 
( )

( )
, , 1,

, 1, , ,

k

k

X k K

or X k K X S

λ λ λ

λ λ

≥ =

≤ = ∈

  

  

 (32) 

and according to the theorem the 2 point of Xo={λo, x1, …, 
xN} is optimum across Pareto. 

In total we presented "Methodology of modeling of 
technical systems in the conditions of definiteness and 
uncertainty" in sections 2.1, 2.2, 2.3, 2.4 and 3.2 and 
adoptions of the optimum decision at equivalent criteria. 
Numerical realization of methodology is presented in the 
following section. 

4. Results. Numerical Problem of 
Modeling of Technical System 

We will consider a task "Numerical modeling of 
technical system" in which data on some set of functional 

characteristics (definiteness conditions), discrete values of 
characteristics (an uncertainty condition) and the 
restrictions imposed on functioning of technical system 
are known. 

It is given. The technical system, which functioning is 
defined by two parameters X={x1, x2} – a vector (operated) 
variables. Basic data for the solution of a task are four 
characteristics (criterion) of F(X)={f1(X), f2(X), f3(X), f4(X)} 
which size of an assessment depends on a vector of X. For 
characteristics of f1(X), f2(X) functional dependence on 
parameters X (a definiteness condition) is known: 

 

( )

( )

2
1 1 1

2
2 2 1 2

2
2 1 1

2
2 2 1 2

67.425 0.02225* 0.00239*

0.05625* 0.00029* 0.0021232* * ,

4456.3 2.315* 0.239*

2.805*  0.037* 0.22192* *

f X x x

x x x x

f X x x

x x x x

= + +

− + +

= − +

+ − −

(35) 

Functional restrictions: 

 
( ) 2

2 1 1
2

2 2 1 2

3800 4456.3 2.315* 0.239*

2.805* 0.037* 0.22192* * 5500

f X x x

x x x x

≤ ≡ − +

+ − − ≤
 (36) 

Parametrical restrictions: 

 1 225 100,  25 100.x x≤ ≤ ≤ ≤  (37) 

Table 1. Numerical values of parameters and characteristics of 
technical system 

x1 x2 y3(X)→max y4(X)→min 
25 25 1148 490.9 
25 50 1473 483.1 
25 75 1798 557.3 
25 100 2122 521.5 
50 25 725 498.1 
50 50 968 521.5 
50 75 1212 549.9 
50 100 1456 578.3 
75 25 440 507.3 
75 50 572 549.9 
75 75 734 592.5 
75 100 897 635.1 
100 25 202 521.5 
100 50 284 578.3 
100 75 385 635.1 
100 100 446 691.9 

For the third and fourth characteristic results of 
experimental data are known: sizes of parameters and 
corresponding characteristics (uncertainty condition). 
Numerical values of parameters X and characteristics of 
y3(X), y4(X) are presented in Table 1. 

In the made decision, assessment size of the first, 
second and the third characteristic (criterion) is possible to 
receive above (max), for the fourth characteristic is 
possible below (min). Parameters X={x1, x2} change in the 
following limits: x1, x2 ∈ [25. 50. 75. 100.]. 

It is required. To make the best decision (optimum). 
Methodology of modeling of technical system in the 

conditions of definiteness and uncertainty. 
1. Creation of mathematical model of technical system. 

1.1. Construction in the conditions of definiteness is 
defined by functional dependence of each characteristic 
and restrictions on parameters of technical system. In our 
example two characteristics (35) and restrictions (36)-(37) 
are known: 
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( )

( )

2
1 1 1

2
2 2 1 2

2
2 1 1

2
2 2 1 2

67.425 0.02225* 0.00239*

0.05625* 0.00029* 0.0021232* * ,

4456.3 2.315* 0.239*

2.805* 0.037* 0.22192* * ,

f X x x

x x x x

f X x x

x x x x

= + +

− + +

= − +

+ − −

(38) 

Functional restrictions: 

 

( )2 1
2

1 2
2

2 1 2

4456.3 2.315*

3800 0.239* 2.805* 5500

  0.037* 0.22192* *

f X x

x x

x x x

≡ − 
 
 ≤ + + ≤
 
 − − 

 (39) 

Parametrical restrictions: 

 1 225 100, 25 100.x x≤ ≤ ≤ ≤  (40) 

These data are used further at creation of mathematical 
model of technical system. 

1.2. Construction in the conditions of uncertainty 
consists in use of the qualitative and quantitative 
descriptions of technical system received by the principle 
"entrance exit" in Table 1. Transformation of information 
(basic data of y3(X), y4(X)) to a functional type of f3(X), 
f4(X) is carried out by use of mathematical methods (the 
regression analysis). 

Basic data of Table 1 are created in Matlab system in 
the form of a matrix 

 1 2 3 4, { , 1, }.i i i iI X Y x x y y i M= = =  (41) 

For each set experimental these yk, k= 4,3  function of 
regression on a method of the smallest squares in Matlab 
system is formed. Ak,- polynom defining interrelation of 
factors of Xi ={x1i, x2i} (41) and functions 

kiy = f(Xi,Аk), 
k= 4,3  is constructed.  

As a result of calculations we received system of 
coefficients of Ak={A0k, A1k, A2k, Ak3, A4k, A5k} which 
define coefficients of a polynom (function): 

 
2

0 1 1 2 1
2

3 2 4 2 5 1 2

( , )

* , 3, 4
k k k k

k k k

f X A A A x A x

A x A x A x x k

= + +

+ + + =
 (42) 

As a result of calculations of coefficients of Ak, k=3, we 
received the f3(X) function: 

 
( ) 2

3 1 1
2

2 2 1 2

1273.5 19.919* 0.0854*

16.071* 0.001* 0.13034* * ,

f X x x

x x x x

= − +

+ + −
 (43) 

The graphical representation of the f3(X) (X) function is 
shown in Figure 1. 

We showed in Figure 1 X3
*, X3

0 the best (maximum) 
and worst (minimum) decision, according to f3(X3

*), f3(X3
0) 

– sizes of functions. 
As a result of calculations of coefficients of Ak, k =4, 

we received the f4(X) function: 

 
( ) 2

4 1
2

2

. 0. * 0.00 *

0. * 0.00 * 0.0 0 * * ,
1

2 1 2

f X 481 7 6915 x 47 x

3535 x 23 x 218 8 x x

= − + +

− +
 (44) 

The graphical representation of the f4(X) function is 
shown in Figure 2. 
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Figure 1. The function f3(X) in two-dimensional system of coordinates of 
X ={x1, x2} 
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Figure 2. The function f4(X) in two-dimensional system of coordinates of 
X ={x1, x2} 

We showed in Figure 2 X4
*, X4

0 the best (minimum) and 
worst (maximum) decision, according to f4(X4

*), f4(X4
0) – 

sizes of functions.  
Parametrical restrictions are similar (40): 25≤x1≤100, 

25≤x2≤100. 
1.3. Creation of mathematical model of technical 

system (The general part for conditions of definiteness and 
uncertainty). 

For creation of mathematical model of technical system 
we used: 

the functions received conditions of definiteness (38) 
and uncertainty (43), (44); 

functional restrictions (39); 
parametrical restrictions (40). 
We considered functions (38) and (43), (44) as the 

criteria defining focus of functioning of technical system. 
A set of criteria K=4 included three criteria of f1(X), f2(X), 
f3(X) →max and f4(X) →min. As a result model of 
functioning of technical system was presented a vector 
problem of mathematical programming: 

 

( ) 1

1
2

1 1 2
2

2 1 2

 {  ( )
{  ( ) 67.425

0.02225* 0.00239* 0.05625*

0.00029* 0.0021232* *

opt F X max F X
max f X

x x x

x x x

=

= ≡

+ + −

+ +

 (45) 
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( ) 2

2 1 1
2

2 2 1 2

 4456.3 2.315* 0.239*

2.805* 0.037* 0.22192* * ,

max f X x x

x x x x

≡ − +

+ − −
 (46) 

 
( ) 2

3 1 1
2

2 2 1 2

 1273.5 19.919* 0.0854*

16.071* 0.001* 0.13034* * },

max f X x x

x x x x

≡ − +

+ + −
 (47) 

 

( ) ( )2 4 1
2

1 2
2

2 1 2

 {  481.7 0.6915*

0.0047* 0.3535*

0.0023* 0.021808* * }}

min F X min f X x

x x

x x x

= ≡ −

+ +

− +

 (48) 

at restrictions  

 

( )2 1
2

1 2
2

2 1 2

4456.3 2.315*

3800 0.239* 2.805* 5500

0.037* 0.22192* *

f X x

x x

x x x

≡ − 
 
 ≤ + + ≤
 
 − − 

 (49) 

 1 225 100,  25 100.x x≤ ≤ ≤ ≤  (50) 

The vector problem of mathematical programming 
represents model of adoption of the optimum decision in 
the conditions of definiteness and uncertainty in total. 

2. The solution of a vector problem of mathematical 
programming - model of technical system. 

The solution of a vector task (45)-(50) with equivalent 
criteria was submitted as sequence of steps. 

Step 1. Problems (45)-(50) were solved by each 
criterion separately, thus used the function fmincon (…) of 
Matlab system [14], the appeal to the function fmincon 
(…) is considered in [8]. 

As a result of calculation for each criterion we received 
optimum points: X *

k  and f *
k =fk(X *

k ), k= K,1  – sizes of 
criteria in this point, i.e. the best decision on each criterion: 

 
{ }
{ }

* * *
1 1 2 1 1 1
* * *
2 1 2 2 2 2

100, 100 , ( ) 112.06;

97.16, 48.09 , ( ) 5500.0;

X x x f f X

X x x f f X

= = = = = −

= = = = = −
 

{ }
{ }

* * *
3 1 2 3 3 3
* *
4 1 2 4 4

25.0, 100.0 , ( ) 2120.15;�

25.0, 25.0 , ( ) 488.38.

X x x f f X

X x x f f X

= = = = = −

= = = = =
 

Restrictions (50) and points of an optimum in 
coordinates {x1, x2} are presented on Figure 3. 
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Figure 3. Pareto's great number, So⊂S in two-dimensional system of 
coordinates 

Step 2. We defined the worst unchangeable part of each 
criterion (anti-optimum): 

 
{ }
{ }

0 0 0
1 1 2 1 1 1
0 0 0
2 1 2 2 2 2

25.0, =25.0 , ( )=69.57;
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X x x f f X

X x x f f X= =

= = =
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( )

0 0 0
3 1 2 3 3 3
0
4 1 2
0 0
4 2 4

 83.1, 25.0 , ( ) 339.7;

100, 100 ,

( ) 689.9. Top index zero .

X x x f f X

X x x

f f X

= = = = =

= = =

= = −

 

Step 3. We made the analysis of a set of points, 
optimum across Pareto. In points of an optimum of X 
*={X1

*, X2
*, X3

*, X4
*} sizes of criterion functions of 

F(X*)= Kk

Kqkq Xf
,1

,1

* )(
=

=
 determined.  Calculated a vector of 

D=(d1  d2  d3  d4)T - deviations by each criterion on an 
admissible set of S: dk =fk

*-fk
0, k= 4,1 , and matrix of 

relative estimates of  

 ( )
( )

1,* *
1,

* 0

( ) ,

where ( ) / .

k K
q k q K

k k k k

X X

X f f d

λ λ

λ

=

=
=

= −

 

( )

( )

*

*

-112.1   -4306.1   -449.3    690.0  42.48
-100.0   -5500.0   -310.5    572.5 -1700.

, ,
-72.1   -3903.5   -2120.2    534.2 1780.5
-69.6   -4456.1   -1149.8    488.4 -201.6

1.0000    0.2977    0.0616  

F X D

Xλ

= =

=

       0
0.7170    1.0000   -0.0164   0.5829
0.0584    0.0609    1.0000    0.7726
0             0.3859    0.4550    1.0000

 

Discussion. The analysis of sizes of criteria in relative 
estimates showed that in points of an optimum of X *={X1

*, 
X2

*, X3
*, X4

*} the relative assessment is equal to unit. 
Other criteria there is much less than unit. It is required to 
find such point (parameters) at which relative estimates 
are closest to unit. The step 4 is directed on the solution of 
this problem. 

Step 4. Creation of λ-problem is carried out in two 
stages: originally the maximine problem of optimization 
with the normalized criteria is under construction: 

 ( ) ( )max min , 0, 0,k
kx

X G X Xλ λ ≤ ≥   

which at the second stage was transformed to a standard 
problem of mathematical programming (λ-problem): 

 max ,λ λ=  (51) 

at restrictions 
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+ . * x * x  - f  

f f
λ

 +
 
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 
 
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−
 (52) 
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 ( )2

1 2

3800 5500;
0 1,25 100,25 100,

f x
x xλ

≤ ≤

≤ ≤ ≤ ≤ ≤ ≤
 (56) 

where the vector of unknown had dimension of N+1: 
X={x1, …, xN, λ}. Appeal to function fmincon(), [14]: 

 [ ]
'Z _ TehnSist _ 4Krit _ L ',X0,

Xo,Lo fmincon Ao,bo,Aeq,beq, lbo,ubo, .
'Z _ TehnSist _ LConst ',options

 
 =  
 
 

 

As a result of the solution of a vector problem of 
mathematical programming (45)-(50) at equivalent criteria 
and λ-problem corresponding to it (51)-(56) received: 

Xo={Xo, λo}={Xo={x1=60.36, x2=64.52, λo=0.3236} - an 
optimum point – design data of technical system, point Xo 
is presented in Figure 3; 

fk(Xo), k= K,1
K,1

 - sizes of criteria (characteristics of 
technical system): {f1(Xo)=83.3, f2(Xo)=4350.1, 
f3(Xo)=915.8, f4(Xo)=555.2}; 
λk(Xo), k= K,1

K,1

  - sizes of relative 
estimates{λ1(Xo)=0.3236, λ2(Xo)=0.3236, λ3(Xo)=0.3236, 
λ4(Xo)=0.6683}; 
λo=0.3236 is the maximum lower level among all 

relative estimates measured in relative units: : λo=min 
(λ1(Xo), λ2(Xo), λ3(Xo), λ4(Xo))=0.3236. A relative 
assessment - λo call the guaranteed result in relative units, 
i.e. λk(Xo) and according to the characteristic of technical 
fk(Xo) system it is impossible to improve, without 
worsening thus other characteristics. 

Discussion. We will notice that according to the 
theorem 1, in Xo  point criteria 1, 2, 3 are contradictory. 
This contradiction is defined by equality of λ1(Xo)= 
λ2(Xo)= λ3(Xo)=λo=0.3236, and other criteria an inequality 
of λ4(Xo)=0.6683>λo. 

Thus, the theorem 1 forms a basis for determination of 
correctness of the solution of a vector task. In a vector 
problem of mathematical programming, as a rule, for two 
criteria equality is carried out: 
λo = λq(Xo) = λp(Xo), q, p ∈ K, X ∈ S,  (in our example 

of such criteria three) and for other criteria is defined as an 
inequality: 

 ( ) , .o o
k X k q p kλ λ≤ ∀ ∈ ≠ ≠K  

In an admissible set of points of S formed by 
restrictions (56), optimum points X1

*, X2
*, X3

*, X4
*, united 

in a contour, presented a set of points, optimum across 
Pareto, to So⊂S. For specification of border of a great 
number of Pareto calculated additional points: X o

12 , X o
13 , 

X o
34 , X o

42  which lie between the corresponding criteria.  

 

Figure 4. The solution of λ-problem in three-dimensional system of coordinates of x1, x2 and λ 
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For definition of a point of X o
12  the vector problem was 

solved with two criteria (51), (52), (53), (56).  
Results of the decision:  
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Other points were similarly defined: 
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Points: X o
12 , X o

13 , X o
34 , X o

42  are presented in Figure 3. 
Pareto's great number of S lies between points of an 
optimum of X 1

* X o
12 X *

2 X o
13 X *

3 X o
34 X *

4 X o
42 . 

Coordinates of these points, and also characteristics of 
technical system in relative units of λ1(X), λ2(X), λ3(X), 
λ4(X) are shown in Figure 4 in three measured space, 
where the third axis of λ - a relative assessment. 

In the course of modeling parametrical restrictions (30), 
functional restrictions (29) can be changed, i.e. some set 
of optimum decisions is received. Choose a final version 
which in our example included from this set of optimum 
decisions: 
•  parameters of technical system Xo={x1=60.36, 

x2=64.52}; 
•  in point Xo of the first characteristic of f1(X) will 

assume to the look presented in Figure 5; 
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Figure 5. The first characteristics of f1(X) of technical system in natural 
indicator 

•  in point Xo of the second characteristic of f2(X) will 
assume to the look presented in Figure 6; 
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Figure 6. The second characteristics of f2(X) of technical system in 
natural indicator 

•  in point Xo of the third characteristic of f3(X) will 
assume to the look presented in Figure 7; 
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Figure 7. The third characteristics of f3(X) of technical system in natural 
indicator  

•  in point Xo of the fourth  characteristic of f4(X) will 
assume to the look presented in Figure 8; 
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Figure 8. The fourth characteristics of f4(X) of technical system in 
natural indicator 

Collectively, the submitted version: 
• point - Xo; characteristics of f1(Xo), f2(Xo), f3(Xo), f4(Xo);  



67 American Journal of Modeling and Optimization  

• relative estimates of  λ1(Xo), λ2(Xo), λ3(Xo), λ4(Xo);  
• maximum  λo relative level such that λo ≤ λk(Xo) ∀k ∈ K  
- there is an optimum decision at equivalent criteria 

(characteristics), and procedure of receiving is adoption of 
the optimum decision at equivalent criteria (characteristics). 

5. Conclusions 
The problem of adoption of the optimum decision in 

difficult technical system on some set of functional 
characteristics is one of the most important tasks of the 
system analysis and design. In work the new technology 
(methodology) of creation of mathematical model of 
technical system in the conditions of definiteness and 
uncertainty in the form of a vector problem of 
mathematical programming is presented. At creation of 
characteristics in the conditions of uncertainty regression 
methods of transformation of information are used. The 
methodology of modeling and adoption of the optimum 
decision is based on normalization of criteria and the 
principle of the guaranteed result (maxmin). This 
methodology has system character and can be used when 
modeling both technical, and economic systems. Authors 
are ready to participate in the solution of vector problems 
of linear and nonlinear programming. 
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