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Abstract

Social networking sites such as Google+, Facebook, Twitterand LinkedIn, are cloud ser-
vice providers for person to person communications. There are different approaches to
building these sites ranging from SQL to NoSQL and NewSQL, Cache Augmented SQL,
graph databases and others. Some provide a tabular representation of data while others
offer alternative models that scale out. Some may sacrifice strict ACID (Atomicity, Consis-
tency, Isolation, Durability) properties and opt for BASE (Basically Available, Soft-state,
Eventual consistency) to enhance performance. Independent of a qualitative discussion of
these approaches and their merits, a key question is how do these systems compare with
one another quantitatively? This dissertation investigates the viability of a benchmark to
address this question.

Our primary contribution is the design and implementation of a novel benchmark for
interactive social networking actions named BG (http://bgbenchmark.org). BG’s design
decisions are as follows: First, it rates the performance ofa system for processing inter-
active social networking actions by computing two values: Socialites and Social Action
Rating (SoAR) using a pre-specified Service Level Agreement, SLA. An example SLA
may require 95% of issued requests to observe a response timefaster than 100 millisec-
onds. Second, BG elevates the amount of unpredictable data produced by a solution to a
first class metric, including it as a key component of the SLA (similar to the average re-
sponse time) and quantifying it as a part of the benchmarkingprocess. It also computes the
freshness confidence to characterize the behavior of a weak consistency technique. Third,
BG’s generated workload is characterized by reads and writesof a very small amount of
data from big data. Fourth, BG is a modular, extensible framework that is agnostic to its
underlying data store. Fifth, BG employs a logical partitioning of data to scale both ver-
tically and horizontally to thousands of nodes. This is essential for evaluating scalable
installations consisting of thousands of nodes. Finally, BGincludes a visualization tool to
empower an evaluator to monitor an in-progress benchmark and identify bottlenecks.

BG’s possible use cases are diverse. One may use BG to compare and contrast vari-
ous data stores with one another, characterize tradeoffs associated with alternative physical
representations of data, or quantify the behavior of a data store in the presence of various
failures (either CP or AP of the CAP theorem) among the others. This dissertation demon-
strates use of BG in two contexts. First, to rate an industrialstrength relational database
management system and a document store, quantifying their performance tradeoffs. This
analysis includes the use of a middle tier cache (memcached)and its impact on the per-
formance of each system. Second, to gain insight into alternative design decisions for
implementing a social action by characterizing their behavior with different social graphs
and system loads. BG’s proposed framework is quite novel and opens several new research
directions that benefit the systems research community.
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Chapter 1

Introduction

There has been an explosion of novel data stores with varyingarchitectures and design deci-
sions for managing the ever increased volume and variety of data produced by applications
with unique and strict requirements. Academia, cloud service providers such as Google
and Amazon, social networking sites such as LinkedIn and Facebook, and computer in-
dustry continue to contribute systems and services with novel assumptions. In 2010, Rick
Cattell surveyed 23 systems [25] and we are aware of 10 more1 since that writing. In his
survey, Cattell identified a “gaping hole” with a scarcity of benchmarks to substantiate the
claims made by the different systems. Good benchmarks are essential because they settle
debates and enable the discipline to make rapid progress [89]. They are a component of a
scientific endeavor to understand alternative design decisions, quantify their tradeoffs, and
obtain insights to develop improved designs.

A good benchmark provides metrics that are relevant and not misleading. Prior to ad-
vent of data stores that sacrificed strong consistency, performance metrics such as response
time and throughput sufficed. With advent of data stores thatprovide weak consistency
techniques to enhance performance and data availability inthe presence of network par-
titions [112, 75], a benchmark must quantify the amount of unpredictable data (stale, in-
consistent, or simply erroneous data) produced by a data store [12]. This empowers an
experimentalist to quantify both the performance and the amount of unpredictable data
produced by alternative weak consistency techniques and solutions.

BG [12], a social networking benchmark (visit http://bgbenchmark.org), was designed
to quantify these new metrics and address certain aspects ofthe Cattell’s hole that is too
large to address with just one benchmark. It was motivated bythe need to evaluate the
performance of a transparent caching framework [48] developed in the context of a social
networking site named RAYS [44]. Several social networking sites have either developed
their own data store, e.g., Facebook’s Cassandra [69] and LinkedIn’s Voldemort [113, 72],
or use a NoSQL solution, e.g., FourSquare’s MongoDB [82]. BG is intended to provide
insights into the performance of these systems.

We developed BG in 2012 and released a stable version of it in January 2013. Its
conceptual schema and thirteen actions are an abstraction of today’s social networking
sites such as Google+, Facebook and others. Table 1.1 provides a comprehensive list of

1Apache’s Jackrabbit and RavenDB, Titan, Oracle NoSQL, FoundationDB, STSdb, EJDB, FatDB, SAP
HANA, CouchBase.

1



Action Facebook Google+ Twitter LinkedIn YouTube FourSquare Delicious Academia.edu Reddit.com

View
X X X X X X X X X

Profile (VP)
List

X X X X X X X X ✗
Friends (LF)
View
Friend X ✗ ✗ X ✗ X ✗ ✗ ✗
Requests (VFR)
Invite

X
Add to

Follow X Subscribe X Follow Follow Follow
Friend (IF) Circle
Accept
Friend X ✗ ✗ X ✗ X ✗ ✗ ✗
Request (AFR)
Reject
Friend X ✗ ✗ X ✗ X ✗ ✗ ✗
Request (RFR)
Thaw

X
Remove from

Unfollow X Unsubscribe X Unfollow Unfollow Unfollow
Friendship (TF) Circle
View Top-K

X X X X X X X X X
Resources (VTR)
View
Comments on X X X X X X X X X

a Resource (VCR)
Post Reply Recommend Post Add Add Post
Comment on X X to a a colleague’s Comment Comment on tag to answer to X

a Resource (PCR) tweet work on a video a check-in a link a question
Delete Comment Delete the Withdraw Remove Delete Remove Delete
from a X X reply for recomm- comment comment on tag from answer to X

Resource (DCR) a tweet endation on a video a check-in a link a question
Share Resource
(SR) X X Post a tweet Update profile Upload a video X X X X

View News
Feed (VNF) X X X X X X X X X

Table 1.1: Socialite actions and their compatibility with several social networking sites.

the surveyed sites and a matrix that describes the compatibility of their actions with those
abstracted by BG. The first column of Table 1.1 shows the thirteen actions that constitute
BG. The name of each action is self explanatory. These are simple actions that read and
write a small amount of data. Except for the View News Feed action, all other actions
that reference members are binary consuming two member ids as input. For example, the
two member ids specified with the View Profile action identifythe member who is viewing
a profile and the member whose profile is being viewed. Those actions that consume a
resource id either read the resource and its comments, modify a comment on that unique
resource, or share the resource with other members.

BG’s database consists of a fixed number ofmembersandpageswith a registered pro-
file. Its workload generator implements a closed simulationmodel with a fixed number of
threadsT . Each thread emulates a sequence of members/pages performing a social action
shown in Table 1.1. At any instance in time, an emulated member/page who is actively
engaged in a social action is called asocialite. While a database may consist of millions of
members/pages, at mostT simultaneous socialites issue requests with BG’s workload gen-
erator. Given a social graph, BG generates actions that are valid. For example, it extends a
friendship from Member A to Member B only when they are not friends. It realizes this by
maintaining a representation of the social graph in its memory. BG uses this representation
to ensure its emulated simultaneous members and resources are unique at an instance in
time.

While One may use BG for a variety of purposes, this dissertation emphasizes two use
cases. First, to rate one or more data stores to either identify the performance limits of a
data store, compare the performance of different data stores with one another, or both using

2
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Figure 1.1: Throughput of an RDBMS as a function ofT with the View Profile action,
10,000 members, 12 KB profile image size,β=100 msec,τ=0%,θ=0.27. Confidence (α) is
shown in red. With 12 KB images, the RDBMS fragments the images into smaller chunks
which introduce an additional overhead while retrieving the images. This results in the
processor on the node hosting the RDBMS, getting fully utilized and limits its performance.

a single value. Second, to provide insights into the performance of alternative designs and
algorithms with a different amount of system load. We describe each in turn.

BG rates a system withat leastα percentage of actions observing a response time equal
to or less thanβ with at mostτ percentage of requests observing unpredictable data in∆
time units. For example, an experimentalist may specify a workload with the requirement
that at least 95% (α=0.95) of actions to observe a response time equal to or less than 100
msec (β=0.1 second) with at most 0.1% (τ=0.001) of requests observing unpredictable data
for 1 hour (∆=3600 seconds). With such a criterion, BG computes two possible ratings for
a system:

1. SoAR: Highest number of completed actions per second that satisfy the specified
criterion. Given several systems, depending on the application, the one with the
highest SoAR is more desirable.

2. Socialites: Highest number of simultaneous threads thatsatisfy the specified SLA. It
quantifies the multi-threading capability of the data storeand whether it suffers from
limitations such as the convoy phenomena [20] that diminishes its throughput rating
with a large number of simultaneous requests. Given severalsystems, depending on
the application, the one with the highest Socialites ratingmay be more desirable.

These ratings are not a simple function of the average service time (̄S) of a workload.
The specified confidence (α), the tolerable response time (β), and the amount of unpre-
dictable data (τ ) observed from a system impact its SoAR and Socialites rating. The key
advantage of these ratings is that they reduce the performance of a system to two numbers,
simplifying communication of results, allowing definitionof clear performance objectives
and enabling comparative studies. BG rates a data store by imposing an increasing amount
of load starting from a low load to a high load (T ), emulating a mix of actions against
the data store. It computes the percentage of actions (α confidence values) that observe a
response time faster thanβ and provides insights into the system behavior. To illustrate,
Figure 1.1 shows the throughput of an industrial strength relational database management
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system (RDBMS) as a function of the number of threadsT for a read only action,τ=0.
We show the different confidence values forβ=0.1 second. As we increase the number
of threads, the throughput of the system increases. Beyond 4 threads, a queue of requests
forms causing an increase in system response time. This is reflected in a lowerα value.
With 32 threads, almost all (99.83%) requests observe a response time higher than 100
msec.

Second, one may use BG to study the behavior of alternative design choices with a
varying amount of system load and different social graphs. Apractitioner may specify a
tolerable response time (β) and use BG to either reason about the behavior of a design
choice or understand and discover trends about the behaviorof an algorithm and its im-
plementation. For example, Figures 1.2 and 1.3, demonstrate the behavior of two different
design choices, termed Push and Pull, used for implementingfeed following actions (View
News Feed and Share Resource actions). Push pre-computes thenews feed for each mem-
ber and updates it every time there is a new feed for the member. Pull computes the news
feed for a member every time the member requests to view her feed. A SoAR rating is not
appropriate for an investigation of these alternatives because the data set size increases as
a function of the number of Share Resource actions issued by the socialites. Instead, it is
more appropriate to analyze the behavior of these alternatives with different system loads.
We elaborate on this in the next two paragraphs.

As shown in Figure 1.2, with a lower imposed load (T ), the Pull architecture results
in a higher throughput when compared to Push. With intermediate system load (T = 50
to T = 110), Push becomes superior to Pull. This is because with Push the news feed is
already constructed and is retrieved without issuing additional queries. With a high system
load (T > 110), Push and Pull switch places with Pull providing a higher performance.
This is because the View News Feed action displays the top 10 shared resources. While
Pull retrieves only these 10 feeds, Push must retrieve the entire news feed and sort it in the
application memory each time. This network transmission and processing time causes Push
to become inferior. An alternative implementation for Pushmay sort the shared resources
while updating a member’s news feed every time a new feed is published. This will reduce
the response time for the View News Feed action but will increase the response time for
the Share Resource action for Push. One may use BG to evaluate the behavior of this and
other designs.

Figure 1.3 shows how the change in the number of friends (followers) per member
impacts the observed throughput for these two design considerations. For these social
graphs with different fan-outs, the throughput observed using Pull is higher than that for
Push. However, as we increase the number of friends per member the observed throughputs
for both systems decrease and the gap in performance betweenPush and Pull becomes
negligible. Section 8.4 provides additional details aboutthese experiments.

Today’s BG is designed for high throughput data stores that process simple operations
that read and write a small amount of data. One may use BG for a variety of purposes
ranging from comparing different data stores with one another to characterizing the perfor-
mance of a data store under different settings such as (1) normal mode of operation with
alternative physical data organizations, see Section 8.1,(2) in the presence of a network
partition (either CP or AP in CAP [75]), and (3) when exercisingthe elasticity of a data
store by adding or removing nodes incrementally. We have employed BG to compare a
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Figure 1.2: Performance of Pull vs. Push with MongoDB for a High (11% Write) Mixed
workload of Table 8.9 forθ = 0.27. M = 10, 000, P = 100, ι = 1, 000, ̺ = 10, φ = 100,
ρ = 10. For all workloads, 1% of the SR actions are issued by pages.
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Figure 1.3: Impact of modifying the number of friends per member (φ) on the performance
of Pull and Push with MongoDB for a workload consisting of 1% Share Resource action
and 99% View News Feed Action.M = 10, 000, P = 100, ι = 1, 000, ̺ = 10, ρ = 10 and
θ = 0.27. For all workloads, 1% of the SR actions are issued by pages.

relational representation of a social graph with its JSON representation [14], quantify the
tradeoffs associated with alternative consistency techniques for a cache augmented rela-
tional data store [47], and others. Chapter 8 illustrates these use cases by comparing the
following 3 different data stores with one another:

• SQL-X: An industrial strength relational database management system with ACID
properties and an SQL query interface. Due to licensing restrictions, we cannot reveal
its identity and name it SQL-X.

• MongoDB version 2.4.8, a document store for storage and retrieval of JavaScript
Object Notations, JSON. MongoDB is a representative NoSQL system. See [25] for
a survey.
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• CASQL: SQL-X and MongoDB extended with memcached server version 1.4.2 (64
bit). This implementation employs Whalin memcached client version 2.5.1 to com-
municate with the memcached server.

1.1 Thesis Contributions

BG is inspired by prior benchmarks that evaluate cloud services such as YCSB [29] and
YCSB++ [88], e-commerce sites [4], and object-oriented [23] and transaction processing
systems [53]. It is a benchmarking framework developed for social networks which tries to
answer questions such as:

1. What is the tradeoff associated with the alternative architectures? Which component
of a data store becomes a bottleneck and dictates its SoAR andSocialites ratings?

2. Which systems perform better for what kind of workloads?

3. How do we compare one data store with another for a social networking application?

4. What is the trade-off between ACID and BASE? Does the performance improve by
10% or a factor of 100? What percentage of reads produce unpredictable data? Is it
0.001% or 10% of all issued reads?

5. Many NoSQL solutions claim scalability and elasticity astheir main benefit. How
well do these solutions scale when compared with one anotherfor social networking
workloads?

6. Which systems are truly mature? For example, how long does it take the system to
load 1 million entities? A few minutes or several weeks.

BG’s contributions are along the following six dimensions: First, it emphasizes inter-
active social actions that read and write a small amount of data. Second, it promotes the
amount of unpredictable data produced by a solution as a firstclass metric for comparing
different data stores with one another. The value of this metric is impacted by BG’s knobs
such as the exponent of the Zipfian distribution used to generate referenced members and
the inter-arrival time between two socialites emulated by athread. These knobs enable one
to approximate a realistic use case of an application to quantify unpredictable data practi-
cally. Third, BG computes the freshness confidence to characterize the behavior of a weak
consistency technique for a data store. Fourth, BG simplifiesevaluation of data stores by
reducing their performance to two values: Socialites and Social Action Rating (SoAR) us-
ing a pre-specified SLA. Fifth, BG is data store agnostic and its shared nothing architecture
enables evaluating data stores with high processing capabilities. Sixth, BG’s visualization
tool empowers an evaluator to quickly author databases withdifferent characteristics and
invoke and monitor the benchmarking process for evaluatinga data store.
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1.2 Thesis Outline

The rest of this dissertation is organized as follows. Chapter 2 starts with a brief survey of
six different well-known benchmarks shown in Table 2.1: RUBiS [4], RUBBoS [87] TPC-
C [53], YCSB [29], YCSB++ [88] and LinkBench [8]. For each benchmark we describe
its data model and compare its characteristics with BG. Chapter 3 introduces the concep-
tual schema for BG’s social graph, its logical data model and its thirteen interactive social
actions. Chapter 4 describes the novel features of BG including its extensible software
architecture that scales to evaluate the fastest data stores. Chapter 5 describes the physi-
cal data design used by BG to create social graphs. Chapter 6 describes BG’s validation
mechanism used to compute the amount of unpredictable data and freshness confidence for
a solution. Chapter 7 emphasizes on BG’s rating mechanism to compute the SoAR and
Socialites rating for a solution. Chapter 8 illustrates use of BG to evaluate the performance
of a single node data store, demonstrates how BG can be used to understand performance
trends for different solutions and explains how BG can be usedto study the scalability of
multi-node data stores. Finally Chapter 9 concludes by describing the long term research
directions that shape the future of BG.
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Chapter 2

Related Work

BG falls in thevector basedapproach of [98] that models application behavior as a list of
actions and sessions (the ‘vector’) and randomly applies each action to its target data store
with the frequency a real application would apply the action. The input workload file of
BG specifies the frequency of different actions and sessions,configuring BG to emulate a
wide range of social networking applications. (See Table 4.1 for three example mixes.) This
flexibility is prevalent with both YCSB [29] and YCSB++ [88]. In fact, our implementation
of BG employs the core components of YCSB and extends them with new ones such as the
actions of Section 3.2, validation mechanism of Chapter 6, D-Zipfian, BGCoord, and BG’s
visualization deck. Those with hands on experience with YCSBfind BG familiar with the
following key modifications and extensions:

1. A more complex conceptual schema specific to social networks.

2. Simple table operations of YCSB have been replaced with social actions and ses-
sions.

3. BG consumes an SLA to compute two ratings for a data store: SoAR and Socialites.
If no SLA is specified, BG executes the same as YCSB by imposing a fixed amount
of workload using a fixed number of threadsT .

4. BG quantifies the amount of unpredictable data produced by adata store. techniques
and solutions.

5. BG also computes the probability of producing valid data asa function of time to
characterize the behavior of a weak consistency technique.We term this freshness
confidence.

6. BG employs a shared-nothing architecture and constructs self-contained fragments
of its database to ensure concurrent socialites emulated byindependent BGClients
are unique, see Section 4.3. This eliminates the need for coordination between BG-
Clients during benchmarking phase, enabling BG to scale to a large number of nodes.

7. BG includes a visualization tool to empower an evaluator tomonitor an in-progress
benchmark and identify bottlenecks.
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TPC-C RUBBoS RUBiS YCSB YCSB++ BG LinkBench

Target On-Line Transaction Online E-Commerce Cloud Cloud Interactive social Facebook’s Production
App Processing News Forums Auction Sites Services Services Networking Actions MySQL Deployment

jmob.ow2.org/ github.com/ github.com/ github.com/
URL www.tpc.org rubbos.html rubis.ow2.org brianfrank MiloPolte bgbenchmark.org facebook

cooper/YCSB /YCSB /linkbench
Year

1992 2002 2004 2010 2011 2013 2013
introduced

Table 2.1: Overview of 7 benchmarks for simple operations.

Some of BG’s extensions to YCSB are similar to those that differentiate YCSB++ from
YCSB. For example, the concept of multiple BGClients managed by BGCoord is similar to
how YCSB++ supports multiple YCSB clients. However, there are also differences. First,
YCSB++ includes mechanisms specific to evaluate table stores such as HBase. These in-
clude function shipping and fine grained access control. Instead of these, BG emphasizes
interactive social networking actions and their implementation with alternative data stores.
While extension 6 of BG (see the previous paragraph) is similarto ingest-intensive exten-
sion of YCSB++, it goes beyond simple ranges that partition data across multiple nodes.
BG logically partitions friendships and resources of members to constructN self-contained
independent social networks whereN is the number of BGClients.

Second, YCSB++ consists of an elegant mechanism to quantify the inconsistency win-
dow: The lag in acknowledged data store changes that are not seen by other clients for some
time due to the use of a weak consistency semantics such as eventual consistency [112]. BG
captures the impact of such design decisions by quantifyingthe amount of unpredictable
data and freshness confidence. All three metrics are in synergy and may co-exist in a
benchmark.

Finally, both YCSB and YCSB++ lack the concept of an SLA to rate a data store.
SLAs are the essence of both A and C benchmarks of TPC [53]. Forexample, TPC-A
measures transactions per second (tps) subject to a response time constraint. BG is similar
as it employs SLAs to rate a data store, see Chapter 7. It is different than TPC because it
focuses on social networking actions and incorporates unpredictable data as a component
of SLA.

Table 2.1 shows seven popular benchmarks developed and usedto evaluate data stores.
Others [53] include the Wisconsin benchmark [19], TPC-E/H/DS/VMS/Energy [32], Big-
Bench [49], and the Linked Data Benchmark Council (LDBC) [31]. TheWisconsin bench-
mark is a single-user microbenchmark and amongst the very first DBMS benchmarks. This
benchmark was developed to evaluate the various componentswithin a relational database.
The TPC-E simulates the OLTP workload of a brokerage firm. TPC-Hand TPC-DS are
decision support benchmarks. TPC-VMS extends TPC-C, TPC-E, TPC-H, and TPC-DC
benchmarks by adding the methodology to obtain performancemetrics for virtualized
databases. Finally, TPC-Energy augments the existing TPC benchmarks with energy met-
rics. BigBench extends TPC-DS benchmark with semi-structuredand unstructured data
and is detailed in Section 2.4. The LDBC focuses on the graph-shaped data from different
applications, developing methodologies to evaluate the performance of graph databases.

Below, we present the alternative benchmarks shown in Table 2.1, starting with the most
relevant. Each section compares BG with each alternative. Wedo not repeat a discussion
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Key feature TPC-C RUBBoS RUBiS YCSB YCSB++ BG LinkBench

Unpredictable
✗ ✗ ✗ ✗ ✗ X ✗

reads
Parallelism X X X ✗ X X ✗

SLA X ✗ ✗ ✗ ✗ X ✗

Inconsistency
✗ ✗ ✗ ✗ X X ✗

Window
Rating

✗ ✗ ✗ ✗ ✗ X ✗
mechanism
Visualization

✗ X X ✗ X X ✗
Tool

Table 2.2: Key features of 7 popular benchmarks for simple operations.

of YCSB and YCSB++ in the aforementioned paragraphs. This chapter concludes with a
discussion of the BigBench benchmark.

2.1 LinkBench

Similar to BG, LinkBench [8] is a benchmark developed for social networking systems.
Both have a complicated conceptual schema related to that of asocial networking sys-
tem and assume similar workload characteristics. The workloads consist of actions that
are similar to social interactions users perform in a socialnetworking system which are
fairly simple and short-lived. However, LinkBench’s approach differs from that of BG.
BG simulates socialites performing social networking actions while LinkBench uses work-
loads derived from traces of Facebook’s production database system. Unlike LinkBench,
BG’s workload is stateful, see Section 5.2. BG is data store agnostic and emulates the en-
tire storage stack including in-memory caches while LinkBench focuses on their persistent
sharded MySQL storage layer only. To elaborate, at Facebook, persistent storage for the
social graph is provided by sharded MySQL databases. Facebooks memcached and TAO
cache clusters provide a caching layer that can serve most reads, so the MySQL layers
production workload is comprised of cache-miss reads and all writes [8].

2.2 TPC-C

The TPC-C [71] benchmark from the Transaction Processing Council is an on-line transac-
tion processing (OLTP) benchmark for comparing alternative OLTP solutions using various
hardware and software configurations. In sharp contrast, BG is data store agnostic and one
may use it to evaluate the performance of any data store.

TPC-C involves a mix of five concurrent transactions of different types which include
entering and delivering orders, recording payments, checking the status of orders, and mon-
itoring the level of stock at the warehouses. These transactions do look-up, update, insert
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and delete, and must exhibit atomicity, consistency, isolation and durability (ACID) prop-
erties.

With the assumed ACID properties, TPC-C does not have a metric to compute the
amount of stale data such as those available in BG and YCSB++. TPC-C quantifies the
processing capability of a system using its throughput, transactions per minute (tpm-C).
TPC-C reports this metric along with the total system cost ($/tpm-C) where the system cost
is an approximation of the true cost of the vendor-supplied portion of the system to the
end-user including maintenance costs [53].

TPC-C introduced the concept of SLA in order to compute systemperformance. But
unlike BG for which the SLA requirement is an input parameter that can be adjusted for
different workloads, TPC-C measures throughput of a system while satisfying afixed SLA
that requires 90% of each type of transaction to have a response time of at most 5 seconds,
except stock-level which can be at most 20 seconds. Finally,similar to the previously
discussed benchmarks, TPC-C supports parallelism and may use multiple nodes to impose
a higher load on its target transaction processing system.

2.3 RUBiS and RUBBoS

RUBiS is an auction site benchmark modeled after eBay.com. It was developed due to ab-
sence of benchmarks for web sites with dynamic content and isused to evaluate application
design patterns and application server’s performance scalability. Unlike BG which evalu-
ates data stores, the target application for RUBiS is the application server. So it does not
have a metric to compute the amount of stale data produced in an application and computes
the application performance in terms of the number of requests processed per minute.

RUBiS implements the core functionality of an auction site such as selling, browsing
and bidding by implementing 26 user interactions with the application data stored in a
relational database management system.

The benchmark generator tool for RUBiS emulates users generating workloads for the
dynamic content sites. Similar to BG this tool can run on multiple machines and can be
used to emulate multiple concurrent clients and an increasing rate of interactions with the
system.

RUBiS is extended with a tool which collects utilization statistics (CPU, memory, net-
work bandwidth, etc.) on each of the client machines while running the benchmark. At
the end of the benchmark execution, RUBiS displays detailed statistics about the overall
throughput (requests/minute) and response time statistics. Similar to BG’s visualization
deck, this tool provides immediate insight into the system behavior by providing both big
picture and in-depth details.

RUBBoS [87] is very similar to RUBiS and is developed to evaluatethe performance
of application servers and their scalability. RUBBoS was modeled after slashdot.com and
implements the core functionality of an online news forum such as browsing and submitting
comments and stories, reviewing stories and rating comments.

RUBBiS and RUBBoS assume their infrastructure produces correctresults and have no
means of quantifying either stale data or the duration of time that the system produces stale
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data. Moreover, both benchmarks lack a framework to rate a data store. These concepts are
supported by BG, differentiating it from RUBiS and RUBBoS.

2.4 BigBench

BigBench [49] is an end-to-end big data benchmark which was developed based on a prod-
uct retailer. The business cases for the retailer were the main driver for identifying the
five main category of queries that constitute BigBench’s workload. These categories are
: Marketing, Merchandising, Operations, Supply Chain and New Business Models. They
motivate complex operations covering different dimensions of big data analytics. Hence,
BigBench covers a variety of data (structured, semi-structured and un-structured) and their
associated analytic such as those used in support of decision support applications.

BG is different because it emphasizes simple operations resembling OLTP style work-
loads. Moreover, BG abstracts the features of a social networking site instead of a retailer.
Finally, BG assumes a data store may produce stale data while BigBench assumes its target
data store provides the correct results always.
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Chapter 3

BG’s Conceptual and Logical Data
Models

This chapter describes BG’s data model used to evaluate the performance of a data store
for interactive social networking actions. We start with a conceptual design of data and
its reduction to two logical data models: relational and JSON. Subsequently, Section 3.2
and 3.3 describe the different actions and sessions supported by BG, respectively.

3.1 Conceptual Data Model

Figure 3.1.a shows the conceptual data model of BG’s databaseusing the Entity-
Relationship (ER) data model [28]. The Member entity set consists of accounts registered
with a social network that belong to individual people. Its attributes include a unique
identifier and a number of string attributes such as firstname, lastname and others. The
number of these attributes and their lengths are configuration parameters and can be
adjusted to generate different database sizes.

In addition, each member may have either zero or 2 images. With the latter, one is a
thumbnail and the second is a higher resolution profile image. While thumbnail images are
small and in order of KBs, the profile images are in order of tensand hundreds of KBs if
not MBs. Typically, thumbnails are displayed when listing friends of a member and the
profile image is displayed when visiting a member’s profile.

A member may either extend an invitation to or be friends withanother member. Fig-
ure 3.1.a captures this using the “Invite” and “Friend” relationship sets1, respectively.

A member may “own” resources such as images, a posted question, a technical
manuscript, etc. These entities are grouped in one set named“Resources”. The existence
of a resource depends on it being “owned” by a member. Hence, Resources is a weak
entity set and the participation of a resource in the “owned”relationship is mandatory.s A
member may post a resource, say an image, on the profile of another member, represented
as a ternary relationship between two members and a resource. In this relationship, the
two members might be the same member where the member is posting the resource on her

1An alternative captures both relationships with one Friendrelationship set and uses an attribute to differ-
entiate between invitations and friendships.
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3.1.a Conceptual data model of BG’s database.

3.1.b JSON-Like data model of BG’s database.

3.1.c Relational data model of BG’s database.

Figure 3.1: Conceptual and logical data models of BG’s database.
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3.2.a Conceptual data model of BG’s database.

3.2.b JSON-Like data model of BG’s database.

3.2.c Relational data model of BG’s database.

Figure 3.2: Conceptual and logical data models of BG’s database including feed following
actions.
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Database parameters

M Number of members in the database.
P Number of pages in the database.
φ Number of friends per member.
ρ Number of resources per member.
ι Number of followers per page.
̺ Number of pages followed by each member.

Table 3.1: BG’s database parameters and their definitions.

Term Definition

Account Any registered profile with a social network which can be
either a member or a page.

Action A logical social operation implemented by a web page and
invoked by a mouse click.

Inter-arrival time Idle time between two socialite sessions emulated by one thread.
Member It is an account registered with a social network system that

belongs to an individual person. Members can perform all BG’s
13 social actions. They can be friends with other members and follow
pages.

Page It is an account registered with a social network that is used to
connect people (members) to a topic, which can be a company,
celebrity, brand, etc.
Pages can be followed only by members,
do not follow anyone and do not have any friends.

Resource An entity that a socialite may browse and post a comment on,
e.g., an image.

Session A sequence of actions by a socialite.
Socialite A member/page engaged in a social session.
Think time Idle time between actions in a session.

Table 3.2: Social networking terms and their definitions.

own profile. A member (either the owner or another) may comment on a resource. This is
implemented using the “Manipulation” relationship set. A member may restrict the ability
to comment on a resource only to her friends. Figures 3.1.b and 3.1.c show the logical
design of the ER diagram with both MongoDB’s JSON-like and relational data models.
An experimentalist builds a database by specifying the number of members (M ) in the
social network, number of friends per member (φ), and resources per member (ρ), see
Table 3.1. Some of the relationships might be generated using either a uniform or a skewed
distribution. For example, one may use a Zipfian distribution with either (a) exponent 0.99
to model a uniform distribution that assigns 20% of friendships to 20% of members, or (b)
exponent of 0.27 to model a skewed distribution to assign 62%of friendships (M × φ) to
20% of members [63].

16



Figure 3.2.a shows the remainder of BG’s schema that supports feed following actions as de-
tailed in see Section 3.2. The “Invite” and “Manipulation”’ relationship sets showed in Figure 3.1.a
have been removed to make this figure readable. The Account entity set is ageneralization of
Members (shown in Figure 3.1) and Pages entity sets. Pages are special topics such as business,
celebrities, brands and etc. that share resources with their followers who are Members. (See Ta-
ble 3.2 a for list of terms and their definitions.) Members also share resources with other Members
who are their friends. These two relationships are captured using the two “Share” relationship sets.

A member owns a News Feed entity. The News Feed entity for a member displays thetop k
events shared by Pages followed by the member or shared by her friends. This is captured using
the “Displays” relationship set. Figures 3.2.b and 3.2.c show the logical design for the ER diagram
shown in Figure 3.2.a with both MongoDB’s JSON-like and relational data models.

With this conceptual model, an experimentalist must specify the number of pages (P ), the
number of followers for each page,ι, and the number of pages followed by each member,̺, in
addition to the parameters mentioned before, see Table 3.1. BG first inserts the members, their
friendship relationships and their resources into the data store. Next, it inserts the pages, creates the
following relationships and inserts the page resources, see Chapter 5.

One may specify BG workloads at the granularity of an action, a session, or a mix of these two
possibilities. A session is a sequence of actions withǫ think time between actions andψ inter-arrival
time between sessions. Table 1.1 shows BG’s list of actions and its compatibility withseveral social
networking sites. We detail these in Section 3.2. Section 3.3 enumerates the different sessions
supported by BG. One may extend BG with new sessions consisting of an arbitrary mix of actions.

Similar to YCSB [29], BG exposes both its schema and its actions to be implemented byan
experimentalist. Thus, the experimentalist may target an arbitrary data store,specify its physical
data model for the conceptual data model of Figure 3.2.a, provide an implementation of the actions
of Table 1.1, and run BG to evaluate the target data store. In addition, the experimentalist may use
BG to evaluate various physical data representations for a given data store, see Section 8.1. As
detailed in Chapter 7, these functionalities are divided between a Coordinator, named BGCoord,
andN slave processes, named BGClients.

When generating a workload, BG is by default set to prevent two simultaneous threads from
emulating the same member concurrently. This is to model real life user interactions as closely
as possible. An experimentalist may eliminate this assumption by modifying a setting in the BG
software.

3.2 Actions

This section details thirteen social networking actions that an experimentalist may use to define a
workload for a data store. We present each action by describing an implementation of it using SQL-
X, MongoDB, and CASQL to highlight the significance of database parameters such as number
of friends per member and their impact on the performance of a data store. The three data stores
are described in Chapter 1. A more in depth analysis of alternative physical data design with the
different systems is provided in Section 8.1.

For the first two actions, we present SoAR numbers (see Chapter 1) using the following SLA:
95% of requests observe a response time equal to or faster than 100 msecwith the amount of
stale data less than 0.1%. Member ids are generated using a Zipfian distributionwith exponent
0.27. Reported numbers were obtained from a dedicated hardware platform consisting of six PCs
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Figure 3.3: SoAR of 3 different systems with View Profile and different profile image sizes,
M=10,000,β=100 msec,α=95%,ǫ=ψ=0, θ=0.27.

connected using a Gigabit Ethernet switch. Each PC consists of a 64 bit 3.4GHz Intel Core i7-2600
processor (4 cores with 8 threads) configured with 16 GB of memory, 1.5 TB of storage, and one
gigabit networking card. Even though these PCs have the same exact model and were purchased
at the same time, there is some variation in their performance. To prevent this from polluting our
results, the same one node hosts the different data stores for all ratings.This node hosts both
memcached and SQL-X to realize CASQL. Either all or a subset of the remaining 5 nodes are used
as BGClients to generate requests for this node, see Section 4.3. With all reported SoAR values
greater than zero, either the disk, all cores, or the networking card of the server hosting a data store
becomes fully utilized. When SoAR is zero, this means the data store failed to satisfy the SLA with
one single threaded BGClient issuing requests,N=T=1.

3.2.1 View Profile, VP

View Profile (VP) emulates a socialite visiting the profile of either herself or another member. Its
input include the socialite’s id and the id of the referenced member,Ur. BG generates these two ids
using a random number conditioned using the Zipfian distribution of access with a pre-specified2

exponent (specified in the input configuration file by the experimentalist who is benchmarking a
system), see Figure 4.4. When the Socialite’s id is not equal toUr the output includesUr ’s profile
attributes and the following two aggregate information:Ur ’s number of friends,Ur ’s number of
resources (e.g., images). If the socialite is referencing her own profile (socialite’s id equalsUr ’s id)
then VP retrieves a third aggregate information:Ur ’s number of pending friend invitations.

VP retrieves all attributes ofUr exceptUr ’s thumbnail image. This includesUr ’s profile im-
age assuming the database is created with images, see Section 3.1. An implementation of VP with
the different data stores is as follows. With MongoDB (SQL-X), it retrieves the document (row)
corresponding to the specifiedUr userid [14]. With MongoDB, VP may compute the number of
friends and pending invitations by counting the number of elements in pendingFriends and con-
firmedFriends arrays, respectively. It may count the number of resources posted onUr ’s wall by
querying the Resources collection using the predicate “walluserid =Ur ’s userid”. With SQL-X,
VP may issue different aggregate queries. With a CASQL system, VP may construct two differ-
ent keys usingUr ’s userid: self profile when socialite’s id equalsUr ’s userid and browse profile

2The exponentθ used in this section is 0.27.
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when socialite’s id does not equalUr ’s userid. Section 8.1 describes other physical data designs
using SQL-X and MongoDB. Presence of a profile image and its size impact SoAR of different
data stores for VP dramatically [97], see Section 8.1. Figure 3.3 shows the performance of three
different systems for a BG database consisting of no-images, and a 2 KB thumbnail image with
different sizes for the profile image: 2 KB, 12 KB, and 500 KB. These settings constitute the x-axis
of Figure 3.3. The y-axis reports SoAR of different systems.

With no images, MongoDB provides the best performance, outperforming both SQL-X and
CASQL by almost a factor of two. With 12 KB images, SoAR of SQL-X drops dramatically from
thousands to hundreds3. With 500 KB image sizes, SQL-X cannot perform even one VP action
per second that satisfies the 100 msec response time (with 1 thread), producing a SoAR of zero.
SoAR of MongoDB and CASQL also decrease as a function of larger imagesize because they must
transmit a larger amount of data to the BGClient using the network. However,their decrease is not
as dramatic as SQL-X.

CASQL outperforms SQL-X because these experiments are run with a warmup phase that
issues 500,000 requests to populate memcached with key-value pairs pertaining to different member
profiles. Most requests are serviced using memcached (instead of SQL-X). While this does not
payoff4 with small images, with 12 KB and 500 KB image sizes, it does enhance performance of
SQL-X considerably.

3.2.2 List Friends, LF

List Friends (LF) emulates a socialite viewing either her list of friends or another member’s list
of friends. This action retrieves the profile information of each friend. Inthe presence of images,
it retrieves only the thumbnail image of each friend. At database creation time,BG empowers an
experimentalist to configure a database with a fixed number of friends per member (φ). This has a
significant impact on the performance of a data store. To illustrate, Figure 3.4 shows SoAR of the
alternative data stores for LF with three differentφ values. per member. (The median Facebook
friend count is 100 [110, 9].) A largerφ value lowers the rating of all data stores. Overall, CASQL
provides the best overall performance with 50 and 100 friends per member. With SQL-X and
CASQL the network on the data store and the node hosting the cache respectively become the
bottleneck. With MongoDB the CPU on the node hosting the data store becomes fully utilized.
Below, we describe implementation details of each system in order to explain the presented results.

SQL-X must join the Friend table with the Members table (see Figure 3.1.c) to compute the so-
cialite’s list of friends. We assume the friendship relationship between two members is represented
as 1 record5 in Friend table, see Figure 3.1.c. CASQL caches the final results of the LF action and
enhances SoAR of SQL-X by less than 10% withφ values of 50 and 100. Withφ=1000, SQL-X
slows down considerably and can no longer satisfy the 100 msec response time requirement. The
CASQL alternative is also unable to meet this SLA because each key-value islarger than 1 MB, the
maximum key-value size supported by memcached. This renders memcached idle, redirecting all
requests issued by CASQL to SQL-X, producing zero for system SoAR.One may modify mem-
cached to support key-value pairs larger than 2 MB (φ=1000 and each thumbnail is 2 KB) to realize
an enhanced SoAR with CASQL.

3We use SQL-X with the physical data design shown in Figure 3.1.c. This design can be enhanced to
improve performance of SQL-X by ten folds or more [14]. See Section 8.1 for details.

4There are several suggested optimization to the source codeof memcached to improve its perfor-
mance [86, 7]. Their evaluation is a digression from our mainfocus. Instead, we focus on the standard
open source version 2.5.1 [77].

5See Section 8.1 for a discussion of representing friendshipas 2 records and its impact on SoAR.
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Figure 3.4: SoAR of List Friends with 3 different data storesas a function of number of
friends per member (φ),M=10,000,β=100 msec,α=95%,ǫ=ψ=0, θ=0.27.

With MongoDB, an implementation of LF may retrieve the confirmed friends either one docu-
ment at a time or as a set of documents. With both approaches, the BG client starts by retrieving the
confirmedFriends array of the referenced member, see Figure 3.1.b. Withone document at time, the
client processes the array and for each userid, retrieves the profile document of that member. With
a set at a time, the client provides MongoDB with the array of userids to retrieve a set containing
their profile documents. With both, SoAR of MongoDB is inferior to the join operator of SQL-X.

3.2.3 Other Actions

View Friend Requests, VFR:This action retrieves a socialite’s pending friend requests. It retrieves
the profile information of each member extending a friend request invitation along with her thumb-
nail (assuming the database is configured with images). Both the implementation and the behavior
of SQL-X, MongoDB, CASQL with VFR are similar to the discussion of LF.
Invite Friend, IV: This action enables a socialite, say B, to invite another member, say A, of the
social network to become her friend. With MongoDB, this action inserts B’s userid into A’s array
of pendingFriends, see Figure 3.1.b. With both SQL-X and CASQL, this operation inserts a row in
the Friend table with status set to “pending”, see Figure 3.1.c. CASQL invalidates the memcached
key-value pairs corresponding to A’s self profile (with a count of pending invitations) and A’s list
of pending invitation. A subsequent VP invocation that references thesekey-value pairs observes a
cache miss, computes the latest key-value pairs, and inserts them in the cache.
Accept Friend Request, AFR:Socialite A uses this action to accept a pending friend request
from Member B of the social network. With MongoDB, this action inserts (a) A’s userid in B’s
array of confirmedFriends, and (b) B’s userid in A’s arrays of confirmedFriends, see Figure 3.1.b.
Moreover, it removes B’s userid from A’s array of pendingFriends.With both SQL-X and CASQL,
this operation updates the “status” attribute value of the row correspondingto B’s friend request to A
to “confirmed”, see Figure 3.1.c. CASQL invalidates the memcached key-value pairs corresponding
to self profiles of members A and B, profiles of members A and B as visited by others, list of friends
for members A and B, list of pending invitations for member A.
Reject Friend Request, RFR:Socialite A uses RFR to reject a pending friend request from a
Member B. BG assumes the system does not notify Member B of this event. With MongoDB,
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we implement RFR by simply removing B’s userid from the A’s array of pendingFriends, see Fig-
ure 3.1.b. With both SQL-X and CASQL, RFR deletes the friend request rowcorresponding to B’s
friend request to A, see Figure 3.1.c. CASQL invalidates the key-value pairs corresponding to A’s
self profile and pending friend invitations from memcached.
Thaw Friendship, TF: This action enables Socialite A to remove Member B as a friend. With Mon-
goDB, TF removes A’s userid from B’s array of confirmedFriends andvice versa, see Figure 3.1.b.
With both SQL-X and CASQL, TF deletes the row corresponding to the friendship of user A and B
(with status equal to “confirmed”) from Friends table, see Figure 3.1.c. CASQL invalidates the key-
value pairs corresponding to the list of friends for users A and B, self profile of users A and B, and
profiles of users A and B as visited by other users (because their numberof friends has changed).
View Top-K Resources, VTR:When BG populates a database, it requires each member to create
a fixed number of resources. Each resource is posted on the wall of a randomly chosen member,
including oneself’s wall. View Top-K Resources (VTR) enables a socialiteto retrieve and display
her top k resources posted on her wall. Both the value ofk and the definition of “top” are con-
figurable. Top may correspond to those resources with the highest number of “likes”, date of last
view/comment (recency), or simply its id. At the time of this writing, BG supports thelast one. With
MongoDB, we analyzed two implementations. With the first, VTR queries the Resources collection
in a sorted order to retrieve topk resources posted on a socialite’s profile. With the second, a sorted
array of resource ids for the resources posted on each member’s wallis stored with the member’s
information; VTR queries this array to retrieve the topk resource ids for a socialite and then queries
the Resources collection to retrieve the resources, see Figure 3.5.a. Thelatter required issuing two
queries and resulted in a performance lower than that observed with the former. With SQL-X and
CASQL, VTR queries the Resources table and uses topk ordered using their rid. CASQL constructs
a unique key using the action and socialite userid, serializes the results as a value, and inserts the
key-value pair in memcached for future reference.
View Comments on Resource, VCR:A socialite displays the comments posted on a resource
with a unique id (rid) using VCR action. BG generates rids for this action by randomly selecting
a resource owned by a member (selected using a Zipfian distribution). With MongoDB, we ana-
lyzed two different implementations. The first implementation supported the schema shown in Fig-
ure 3.1.b where the comments for every resource are stored within the manipulation array attribute
for that resource. With this implementation, VCR retrieves the elements of manipulation array of
the referenced resource, see Figure 3.1.b. The second implementation creates a separate collection
for the comments named Manipulations, see Figure 3.5. With this implementation, VCR queries
the Manipulations collection for all those documents whose rid equals the referenced resource’id.
With SQL-X, VCR employs the specified identifier of a resource to query the Manipulation table
and retrieve all attributes of the qualifying rows, see Figure 3.1.c. CASQL constructs a unique key
using rid to look up the cache for a value. If it observes a miss, it invokes the procedure for SQL-X
to construct a value. The resulting key-value pair is stored in memcached for future reference.
Post Comment on a Resource, PCR:A socialite uses PCR to comment on a resource with a
unique rid. BG generates rids by randomly selecting a resource owned bya member selected using
a Zipfian distribution. It generates a random array of characters as thecomment for a user. The
number of characters is a configurable parameter. With MongoDB, PCR is implemented by either
generating an element for the manipulation array attribute of the selected resource, see Figure 3.1.b
or generating a document, setting its rid to the unique identifier of the referenced resource and
inserting it into the Manipulations collection, see Figure 3.5. With SQL-X and CASQL, PCR inserts
a row in the Manipulation table. CASQL invalidates the key-value pair corresponding to comments
on the specified resource id.

21



3.5.a. Data Model 1

3.5.b. Data Model 2

Figure 3.5: Two alternative JSON-Like data models of BG’s database.
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Delete Comment from a Resource, DCR:This action enables a socialite to delete a unique com-
ment posted on one of her owned resources chosen randomly. With MongoDB, an implementation
of DCR either removes the element corresponding to the comment from the manipulation array
attribute of the identified resource, see Figure 3.1.b or removes the document corresponding to
the comment posted on the referenced resource from the Manipulations collection, see Figure 3.5.
With SQL-X and CASQL, DCR deletes a row of the Manipulation table. CASQL invalidates the
key-value pair corresponding to comments on the specified resource id.
Share Resource, SR:Each member (page) in BG’s social graph can share a resource she (it)owns
either publicly or with a list of specific members. If shared publicly, then the resource will be
available for all the members who are friends with the owner of the resource(are following the
page). If shared specifically with a list of members, then the resource is made available to those
members only.

When an experimentalist creates a BG database with pages, BG requires each member to follow
a fixed number of pages (̺) and each page to consist of a fixed number of resources (ρ). These
resources are created on the page’s own wall and can be shared publicly with all the followers of
the page or specifically with a list of them. Share Resource (SR) action enables a socialite to share
resources she owns with all her followers or a subset of them. We analyze two implementations of
this action using MongoDB and SQL-X. With the first implementation, Pull, every timea resource
is shared, a new record for the shared item is created [100]. This record maintains the resource
information as well as some meta information such as a list of followers allowed to see the shared
resource (recipients in Figure 3.2.b). The second implementation, Push, extends Pull as follows. It
maintains a News Feed entity for each follower and inserts the shared resource in this entity [100],
see Section 8.4 for details.

The SR action requires the memberid of either the member or the page who emulatesthe action,
the resourceid for the resource owned by the member which is going to be shared with followers
(the resource is owned by the socialite performing the action) and a list of followers allowed to
see the shared item. If this list is set to -1 then the resource is shared with all the followers of the
resource owner. This is the only action that can be emulated by pages. BG can also be configured
to issuer% of SR actions by pages and (1− r%) of them by members. The value ofr can be given
to BG as an input parameter in the configuration file.

Both the number of followers per page (ι) and the number of friends per member (φ) may impact
the throughput observed with different data stores using workloads consisting of SR actions. For
example with the Push approach, every time a celebrity (page with more than 1,000,000 followers)
shares a resource, the News Feed entities for all its followers need to be updated, see Section 8.4.2
for more details.
View News Feed, VNF:Each member of BG owns a News Feed entity. The VNF action enables a
socialite to retrieve her news feed and display the topk resources shared with the member. These
resources may be shared publicly or privately with the member by other members she is following.
The definition of topk is configurable. This action requires the memberid of the Member emulating
the action, and the value fork and returns a list ofk resources satisfying the order required by the
application, as the events in the member’s news feed.

An implementation of this technique may use the design of the Share Resource action as follows.
With the first one, Pull, upon a VNF action, the pages followed by the member andher friends are
queried. Next, all the resources shared by these members/pages which are either shared publicly or
specifically shared with the member are retrieved. Finally the topk criteria is applied to limit the
number of shared resources tok and the finalk resources are returned as the events displayed on
the member’s News Feed. With the second implementation, Push, the events shared with a member
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(publicly or privately) are maintained in a structure (News Feed entity) and updated upon an SR
action. So a VNF action only retrieves this News Feed structure for each member emulating the
action.

The performance of VNF is impacted by the number of friends per member (φ) and number of
pages followed by each member (̺). With a larger value ofφ and̺ for a member, VNF will require
retrieving a larger amount of data that results in slower service times.

Computing the SoAR for a data store with a workload consisting of VNF and SR actions de-
pends on the duration of the experiment, see Section 7.3. This is because withan increase in the ex-
periment duration, a larger number of SR actions are emulated and the News Feed for each member
will consist of larger number of events resulting in slower response times and a lower throughput.

3.3 Sessions

A sessionis a sequence of actions performed by a socialite. BG employs the Zipfian distribution
to select one of theM members to be the socialite. The selected session is based on a probability
computed using the frequencies specified for the different sessions in aconfiguration file. A key
conceptual difference between actions and sessions is the concept ofthink time,ǫ. This is the delay
between the different actions of a session emulated on behalf of a socialite.BG supports the concept
of inter-arrival time (ψ) between socialites emulated by a thread with both actions and sessions.

Currently, BG supports 8 sessions. The first session is the starting point for the remaining 7
sessions. These sessions are as follows:

1. ViewSelfProfileSession,{VP(mi), VTR(mi)}: A Membermi visits her profile page to view
her profile image (if available), number of pending friend requests, number of confirmed
friends, and number of resources posted on her wall. Next, the member lists her topk re-
sources.

2. ViewFrdProfileSession,{VP(mi), VTR(mi), LF(mi), VP(mj), VTR(mj) | mj ∈ LF(mi))}:
After viewing self profile and topk resources, Membermi lists her friends and picks one
friend randomly,mj . Next,mi viewsmj ’s profile andmj ’s top k resources. Ifmi has no
friends, the session terminates without performing the two actions onmj .

3. PostCmtOnResSession,{VP(mi), VTR(mi), VP(mrand), VTR(mrand), VCR(rrand) | rrand
∈ VTR(mrand), PCR(rrand), VCR(rrand) }: After viewing self profile and topk resources,
Membermi views the profile of a randomly chosen membermrand, lists mrand’s top k
resources, and picks one resource randomly,rrand. If there are no resources, the rest of the
actions are not performed. Otherwise,mi views comments posted onrrand, posts a comment
on rrand and views all comments onrrand a second time.

4. DeleteCmtOnResSession,{VP(mi), VTR(mi), VCR(rrand), DCR(rrand) | rrand ∈VTR(mi),
VCR(rrand) }: After viewing self profile and topk resources, Membermi views comments
on one of her own randomly selected resource,rrand, deletes a comment from this resource
(assuming it exists), and views comments onrrand again. If rrand has no comments, she
skips the remaining actions and the session terminates.

5. InviteFrdSession,{VP(mi), VTR(mi), LF(mi), IF(mj), VFR(mj) |mj ∩ LF(mi) = ∅}: After
viewing self profile and topk resources, Membermi lists her friends, and selects a random
membermj who has no pending or confirmed relationship6 with mi. (If all members of the

6Includes friendship, pending invitation frommi tomj , and pending invitation frommj tomi.
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database aremi’s friend then the remaining two actions are not performed.) She invitesmj

to be friends and concludes by listing her own pending friend requests.

6. AcceptFrdReqSession,{VP(mi), VTR(mi), LF(mi), VFR(mi), AFR(mj) |mj ∈ VFR(mi),
VFR(mi), LF(mi) }: After viewing self profile and topk resources, Membermi lists her
friends and pending friend requests. Next, she picks a pending friendrequest by member
mj and accepts this friend request (if any). She reviews her friend request a second time
and concludes by listing her friends. Ifmi has no pending friend requests, she skips the
remaining actions and the session terminates.

7. RejectFrdReqSession,{VP(mi), VTR(mi), LF(mi), VFR(mi), RFR(mj) | mj ∈ VFR(mi),
VFR(mi), LF(mi) }: After viewing self profile and topk resources, Membermi lists her
friends and pending friend invitation to select an invitation from membermj . She rejects
friend request frommj , views her own friend requests and lists her friends a second time. If
mi has no pending friend requests, she skips the remaining actions and the session terminates.

8. ThawFrdshipSession,{VP(mi), VTR(mi), LF(mi), TF(mj) |mj ∈ LF(mi), LF(mi) }: After
viewing self profile and topk resources, Membermi lists her friends and select a friendmj

randomly. Next,mi thaws friendship withmj . This session concludes withmi listing her
friends. Ifmi has no friends, she skips the remaining actions and the session terminates.

Note the dependency between the value ofmi andmj with ViewFrdProfileSession, InviteFrdSes-
sion, RejectFrdReqSession, and ThawFrdshipSession. For example, with ViewFrdProfileSession,
mj must be a friend ofmi. If mi has no friends, the session terminates without performing the
remaining actions.

3.4 Summary

This chapter described the conceptual data model of BG and its reduction totwo logical data mod-
els, JSON and relational. In addition, we described the different actions and sessions supported
by BG. Conceptually, BG is a stateful benchmark. It generates actions and session requests that
are meaningful. For example, it does not issue an Invite Friend action on behalf of Socialite A
to Member B if they are friends. Similarly, with a session such as DeleteCmtOnResSession that
enables Socialite A to delete a comment created on one of the resources posted on her wall, BG
generates a comment that is guaranteed to exist prior to invocation of the DCRcommand of this
session. Section 5.2 describes how BG implements these concepts physically.
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Chapter 4

An Extensible and Scalable
Benchmarking Framework

BG is a scalable benchmark that utilizes multiple nodes to generate requests forhighly scalable data
stores. It is an extensible framework with the following two architectural components: one or more
BGClients and one BGCoord. The BGCoord is a coordinator that starts andstops the BGClients,
gathers performance statistics from the BGClients and aggregates them together, and rates a data
store per discussions of Chapter 7. Each BGClient is an extensible component that exposes BG’s
conceptual database schema and its social networking actions, and data store initialization and shut
down for implementation by an experimentalist, see Chapter 3. This makes BG datastore agnostic
by empowering an experimentalist to tailor BG to any data store and use its core functionality to
initialize the data store, create a database, populate the database with data, generate a pre-specified
mix of actions using a fixed number of threads, and rate a data store. The core of each BGClient is a
plug-and-play infrastructure that is modular and configurable. Its thirteen actions are modules and
one may extend BG with new actions by authoring new modules. A BGClient reads a configuration
file that specifies a mix of actions and sessions, the degree of skew that should be used to reference
members, and the duration of an experiment specified either as a fixed amount of time or a fixed
number of requests issued to the data store.

Next section describes BG’s input configuration file and how it can be used to invoke a valid
workload. Section 4.2 describes the the software architecture of BGClient,its core components,
its extensibility and how an experimentalist may introduce new commands as modules. Finally,
Section 4.3 describes how multiple BGClients partition a social graph in order to generate requests
without synchronizing with one another to scale to a large number of nodes.This discussion in-
cludes a novel decentralized implementation of Zipfian named D-Zipfian [13].D-Zipfian ensures
the distribution of generated requests is not impacted by the degree of parallelism, i.e., the number
of BGClients used to generate requests in a scalable manner. We detail BG’srating mechanism in
Chapter 7.

4.1 Mix of Actions

One may evaluate a data store by specifying a workload consisting of a mix of actions. Three ex-
ample workloads are shown in Table 4.1. Note that it is acceptable to specify zero as the frequency
of an action as it causes BG to not issue that action. An action may reference one or more entities
(e.g., members, resources, comments used by the actions). BG selects the identity of the entity us-
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BG Very Low Low High
Social Type (0.1%) (1%) (10%)
Actions Write Write Write

View Profile Read 40% 40% 35%
List Friends Read 5% 5% 5%
View Friend Requests Read 5% 5% 5%
Invite Friend Write 0.04% 0.4% 4%
Accept Friend Request Write 0.02% 0.2% 2%
Reject Friend Request Write 0.02% 0.2% 2%
Thaw Friendship Write 0.02% 0.2% 2%
View Top-K Resources Read 49.9% 49% 45%
View Comments on a Resource Read 0% 0% 0%
Post Comment on a Resource Write 0% 0% 0%
Delete Comment from a ResourceWrite 0% 0% 0%
Share Resource Write 0% 0% 0%
View News Feed Read 0% 0% 0%

Table 4.1: Three mixes of social networking actions.

ing either a random or a Zipfian distribution as specified by the configurationfile, see Section 4.3.1.
For example, with the View Profile action, the configuration file may specify the use of the Zipfian
distribution to select a member performing this action and the use of a random distribution to select
the member whose profile is being viewed. Similarly, the Thaw Friendship action,a Zipfian distri-
bution generates the identity of a member to emulate the action and a random distribution to select
one of this member’s friends to thaw friendship1.

In addition, each workload is symmetric. A symmetric workload is one that does not change
the state of the database characterized by its size and the structure of its social graph. With a
workload involving write actions, the database size remains constant only if total size of the records
inserted equals the total size of records deleted from the database. The structure of a social graph
is determined by the number of friends per member. In order for it to remain unchanged, workload
involving updates should maintain the number of friends per member and the number of comments
posted per resource constant (The number of friends per member should remain the same as the
initial number of friends inserted per member and the number of comments postedper resource
should remain the same as the initial number of comments posted for each resource). The workload
mixes of Table 4.1 ensure a constant database size and a fixed social graph structure by ensuring the
following two conditions:

• As the size of each comment posted on a resource is constant, the total number of new
comments inserted should be equal to the total number of comments deleted from the system.
This is possible by specifying an equal percentage for the Post Comment on Resource and
Delete Comment From Resource actions.

• The rate at which friendships are generated should be equal to the rate at which friendships
are being thawed from the system. This is possible if the percentages specified for the friend-

1BG is developed using YCSB’s core modules and inherits its Uniform and Latest distributions that can
be used to select a member for emulating an action.

27



0

1000

2000

3000

4000

5000

MongoDB MongoDB MongoDB

SoAR (Actions/Second)
CASQL CASQL

CASQL

0.1% Write  1% Write  10% Write

SQL−X SQL−XSQL−X

Figure 4.1: SoAR for 3 mixes of read and write actions for three different data stores,
M=10,000, 12 KB image size,φ=100,ρ = 100, β=100 msec,α=95%,τ=0.01%,ǫ=ψ=0,
θ=0.27.

ship actions (Accept Friend Request, Reject Friend Request, Thaw Friendship and Invite
Friend) satisfy the following constraints:

1. Percentage of Invite Friend = percentage of Reject Friend Request +percentage of
Accept Friend Request

2. Percentage of Thaw Friendship = percentage of Accept Friend Request

An experimentalist may specify an arbitrary mix of actions as a workload by defining new set
of parameters (percentage for actions and distribution). Figure 4.1 shows SoAR of the different
systems with the 3 mixes for a database with 10,000 members and 100 friends permember. Mon-
goDB2 outperforms SQL-X for the different mixes by almost a factor of 3. The CASQL is sensitive
to the percentage of write actions as they invalidate cached key-value pairs, causing read actions to
be processed by the RDBMS. With a Very Low (0.1%) write mix, CASQL outperform MongoDB
by more than a factor of 3. With a high percentage (10%) of write actions, SoAR of CASQL is
slightly higher than MongoDB.

The observed trends with SQL-X and MongoDB change depending on themix of VP and LF
actions. In Figure 4.1, MongoDB outperforms SQL-X because the frequency of VP is significantly
higher than LF. If this was switched such that LF is more frequent than VP then SQL-X would out-
perform MongoDB. A system evaluator should decide the mix of actions based on the characteristics
of a target application.

4.2 Extensibility and Modularity

In addition to being configurable, BG is modular and extensible. Hence, onemay adapt BG by
modifying or updating it to support new data stores and new application requirements. BG consists
of loosely-coupled modules/components allowing each component to be modified with minimal
impact on the rest of the system3. Figure 4.2 shows BG’s components. The Generator component,

2We use MongoDB with its strict write concern which requires each write to wait for a response from the
server [58]. Without this option, MongoDB produces stale data (less than 0.01%).

3As BG was developed on top of YCSB’s core functionality it inherits some of YCSB’s modules [29].
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Figure 4.2: BGClient architecture and its components.

produces both the data loaded into the data store during the load phase and the workload (see Sec-
tion 4.1) issued to the data store during the benchmarking phase. This component consists of two
sub-components: ActionGenerator and DataGenerator. The ActionGenerator module is responsible
for generating the actions that need to be issued against the data store. These actions depend on the
mix of workload specified (by the configuration file) for the benchmarking phase. The DataGener-
ator is responsible for populating the data store with data during the load and identifying member
ids that participate in an action. The member distribution controls the activity levelfor the different
members (see Section 8.4). A member with a higher activity level is picked more frequently to is-
sue actions to the data store. These components allow for introducing new social actions or member
distributions easily.

BG’s Measurement component provides methods to quantify the time used to execute different
actions. It can be easily extended to measure, summarize and report new performance metrics. The
Validation component is responsible for computing the amount of unpredictable data as detailed in
Chapter 6. One may modify and extend the algorithms in this module with minimal impact onother
components. And finally, the Data Store Interface component is fully exposed an available to be

29



tailored to other data store back-ends to evaluate new data stores. We now discuss how BG can be
extended in more details.

• New Actions: Introducing new actions within BG is simple and can be done in three steps.
The first step is to define the interface for the action, this is the name of the action, the value
it returns and the parameters required for the action, for example the ThawFriendship action
requires two memberids, one identifies the socialite performing the action and thesecond
is the target member of this action. Next the ActionGenerator is extended with thebody
of the action to identify the memberids. In our example, this is picking socialite A usinga
distribution, picking the second member from the friends of Member A4 , issuing the action,
updating BG’s internal data structures and logging the appropriate information required for
validation. The final step is to measure the duration of the action by adding the action to the
measurement component.

• New Distributions: BG can also easily be extended to support different distributions to gen-
erate memberids. For this purpose, the DataGenerator component can be extended to create
the new distribution by assigning probability of references for each of themembers. Next,
BG can be configured to use the new distribution to select members when emulating actions.

• New Data Store Back-ends: BG can be used to evaluate new data stores. This can be done by
introducing a new implementation of the Data Store Interface class for the target data store.
This class should implement all the social actions that have an interface in the ActionGener-
ator.

BG is extensively being used all around the world and its highly modular design minimizes the
effort required for using and extending it. We conducted a survey on 25 of BG’s users to understand
its usability, extensibility with a variety of NoSQL data stores and ease of software update, see
Appendix A for the surveys. These members were familiar with Java and Java IDE Tools and had
a good understanding of their data store’s functionalities. 88% of the members found BG easy to
install, and claimed to be comfortable using BG and extending it for a new data store. Figure 4.3
shows the average number of hours spent by these users to extend BG for their data stores.

4.3 Scalable Request Generation

Today’s data stores use techniques that may fully utilize resources (CPU and network bandwidth)
of a single node benchmarking framework. For example, Whalin client for memcached (CASQL)
is configured to compress key-value pairs prior to inserting them in the cache. It decompresses key-
value pairs upon their retrieval to provide the uncompressed version to its caller, i.e., BG. Use of
compression minimizes CASQL’s network transmissions and enhances its cache hit rate by reducing
the size of key-value pairs with a limited cache space. It also causes the CPUof the node executing
BG to become 100% utilized for certain workloads. This is undesirable because the resulting SoAR
reflects the capabilities of the benchmarking framework instead of the data store.

To address this issue, BG implements a scalable benchmarking framework using a shared-
nothing architecture, see Figure 4.4. Its software components are as follows:

4BG is stateful and maintains the information about members’friends and pending friendship relation-
ships in its internal data structures. This is required in order for BG to perform valid actions. For example if
Member A and Member B are already friends BG should not try to generate a friend request from Member
A to Member B.
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Figure 4.3: Average number of hours spent to extend BG for a newdata store.

1. A coordinator, BGCoord, computes SoAR and Socialites rating of a data store by implement-
ing both an exhaustive and a heuristic search technique. Its input are theSLA specifications
and parameters of an experiment, see Table 7.2. It computes the fraction ofworkload that
should be issued by each worker process, named BGClient, and communicates it with that
BGClient. BGCoord monitors the progress of each BGClient periodically, aggregates their
current response time and throughput, and reports these metrics to BG’s visualization deck
for display, see Item 3. Once all BGClients terminate, BGCoord aggregatesthe final results
for display by BG’s visualization deck.

2. A BGClient is slave to BGCoord and may perform three possible tasks. First, create a
database. Second, generate a workload for the data store that is consistent with the BGCoord
specifications. Third, compute the amount of unpredictable data producedby the data store.
It transmits key metrics except for the amount of unpredictable data to BGCoord periodically.
At the end of the experiment, it computes all metrics and transmits them to BGCoord.

3. BG visualization deck enables a user to specify parameter settings for BGCoord, initiate
rating of a data store, and monitor the rating process, see Appendix B.

Once BGCoord activatesN BGClients, each BGClient generates its workload independently
to enable the benchmarking framework to scale to a large number of nodes. We realize this by
constructing the physical database of Section 3.1 to consist ofN logical self-contained fragments.
Each fragment consists of a unique collection of members, resources, and their relationships. BG
can realize this because it generates the benchmark database. BGCoordassigns a logical fragment
to one BGClient to generate its workload. This partitioning enables BG to implementuniqueness
of concurrent socialites, i.e., the same member does not manipulate the database simultaneously.
Note that construction of logical fragments has no impact on the size of the physical database and
its parameter settings such as number of friendships.
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Figure 4.4: BG’s shared nothing architecture.

With BG, an experiment may specify a Zipfian distribution with a fixed exponentand vary the
number of BGClients, value ofN . BGClients implement a decentralized Zipfian, D-Zipfian [13],
that produces the same distribution of references with different values of N . This enables us to
compare results obtained with different number of BGClients with one another. We implement
D-Zipfian to incorporate heterogeneity of nodes (hosting BGClients) where one node produces re-
quests at a rate faster than the other nodes. D-Zipfian assigns more load tothe fastest node by
assigning a larger logical fragment to it and requiring it to produce more requests. Hence, theN
BGClients complete issuing requests at approximately the same time. For details of D-Zipfian, see
Section 4.3.1.

Figure 4.5 shows the throughput of MongoDB as a function of threads (T ) that emulate concur-
rent socialites. Presented results pertain to different number of BGClientsperforming View Profile
(VP) action with D-Zipfian and exponent 0.27. The Socialites rating is the length of each curve
along the x-axis. While it is 317 with 1 BGClient, it increases 3.2 folds to 1024 with8 (16) BG-
Clients. A solid rectangular box denotes the SoAR rating with a given number of BGClients. It also
increases as a function ofN ; from 15,800 with 1 BGClient to 33,200 with 16 BGClients. With 1
BGClient, the client component of MongoDB used by the BGClient to communicatewith its server
component is limiting the observed ratings. We know it is not the hardware platform because we
can run multiple BGClients on one node to observe higher ratings. Four physical nodes are used
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Figure 4.5: MongoDB’s throughput as a function ofT with View Profile (VP) action and
different number of BGClients,N . M=10,000, No image,β=100 msec,α=95%,ǫ=ψ=0,
θ=0.27.

in the experiments of Figure 4.5. Both SoAR and Socialites rating remain unchanged from 8 to 16
BGClients. D-Zipfian ensures the same distribution of requests is generatedwith 1 to 16 BGClients.

4.3.1 D-Zipfian: A Decentralized Implementation of Zipfian

With most applications, a uniform random distribution of access to data items is typically not real-
istic due to Zipf’s law [122]. This law states that given some collection of data items, the frequency
of any data item is inversely proportional to its rank in its frequency table. This means the data item
with the lowest rank in the frequency table will occur more often than the data item with the second
lowest rank, the data item with the second lowest rank in the frequency tablewill occur more often
than the one with the third lowest rank, and so on and so forth. By manipulatingthe exponent5 θ
that characterizes the Zipfian distribution one may emulate different rules ofthumb such as: 80% of
requests (ticket sales [33], frequency of words [122], profile look-ups) reference 20% of data items
(movies opening on a weekend, words uttered in natural language, members of a social networking
site).

Use of multiple BGClients raises the following research question: How do BGClients produce
requests such that their overall distribution conforms to a pre-specified Zipfian distribution? One
solution, named Replicated Zipfian (R-Zipfian), requires each BGClient to employ the specified
Zipfian distribution with the entire population independently. R-Zipfian is effective when BG pro-
duces workloads with read only references. It also accommodates heterogeneous nodes where each
node produces requests at a different rate as each BGClient uses theentire population to generate
the Zipfian distribution.

However, with BG, R-Zipfian introduces additional complexity in two cases. First, different
BGClients might be required to reference a unique data item at an instance in timein order to model
reality. For example, they might be required to emulate a unique user of a social networking site
performing an action such as accepting friend request. R-Zipfian would require additional software
to coordinate multiple BGClients to guarantee uniqueness of the referenced data items. Second,
BG measures the amount of unpredictable data produced by a data store using workloads that are a
mix of read and write actions. It time stamps these to detect unpredictable reads. R-Zipfian would

5See Equation 4.1 in Section 4.3.1.
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Figure 4.6: Performance of MongoDB with two different number of BGClients.

require BG to utilize synchronized clocks [70, 78, 43, 61, 93] to detect unpredictable reads. Both
complexities are avoided by partitioning data items across BGClients.

With partitioning, BGCoord assigns a disjoint set of data items to each BGClient. ABGClient
issues requests that reference its assigned data items only. This ensuresBGClients reference unique
data items simultaneously. Moreover, the potential read-write and write-write conflicts are localized
to each BGClient and its partition, enabling it to quantify its observed amount ofunpredictable data
using its own system clock and independent of the other BGClients.

With N BGClients, each BGClient must reference data items such that the overall distribution
of references conforms to a Zipfian distribution with a pre-specifiedθ. Moreover, the resulting dis-
tribution must remain constant as a function ofN , i.e., the degree of parallelism employed by BG.
This property is not trivial to realize because each BGClient has a subset of the original population
and issues requests independently. As discussed in Section 4.3.1, if eachBGClient uses the original
θ with a subset of the population, the resulting distribution becomes more uniformas we increase
the value ofN . This is not desirable because it produces experimental results that areerratic and
difficult to explain. For example, one may quantify the processing capability of a cache augmented
SQL (CASQL) data store [48, 86, 7] withn1 andn2 BGClients (n1 < n2) and observe a lower pro-
cessing capability withn2 because its distribution pattern is more uniform (which reduces the cache
hit rate with a limited cache size). This is avoided by making the Zipfian distribution independent
of N .

Problem Statement

With a Zipfian distribution, assumingM is the number of data items, the probability of data itemi
is:

pi(M, θ) =
1

i(1−θ)

∑M
m=1(

1
m(1−θ) )

(4.1)

whereθ characterizes the Zipfian distribution.
Assuming data items are numbered 1 toM , a centralized implementation of Zipfian is as fol-

lows:

1. Compute the probability of each data item using Equation 4.1.
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2. Compute array A consisting ofM elements where the value of the first element is set to the
probability of the first item,A[1] = p1(M, θ), and the value of each remaining elementm
is the sum of its assigned probability and the probabilities assigned to the previousm − 1
elements,A[i] =

∑i
j=1 pj(M, θ), 1 ≤ i ≤ M . The last element of the array,A[M ], should

equal 1 because sum of theM probabilities equals one. If this value is slightly lower than 1
then set it to 1.

3. Generate a random valuer between 0 and 1. Identify thekth element of the array that satisfies
the following two conditions: a) A[k] is greater than or equal tor, and b) Either A[k-1] has
a value lower thanr or is non existent (becausek is the first element of A). Producek as the
referenced data item,1 ≤ k ≤M .

For an example, see discussions of Table 4.2 in Section 4.3.1.
The challenge is how to parallelize this simple algorithm such thatN BGClients reference

data items and produce a distribution almost identical to that of one BGClient referencing data
items. Below, we differentiate between local and global probability of a data item to provide a
mathematical formulation of the problem.

Each data itemi has a local and a global probability of reference. Its local probability specifies
its likelihood of reference by its assigned BGClientk withmk data items. One possible definition of
the local probability of an objecti is provided by Equation 4.1,pi(mk, θ). An algorithm may either
use this definition or provide a new one, see Crude in Section 4.3.1 and D-Zipfian in Section 4.3.1.
The global probability of data itemi assigned to BGClientk is a function of its local probability
and the ratio of the number of references performed by BGClientk (Ok) relative to the total number
of references (O) byN BGClients:

qi(M, θ,N) =
Ok

O
× pi(mk, θ) (4.2)

With 1 BGClient,N = 1, local and global probability of a data item are identical,qi(M, θ, 1) =
pi(mk, θ), because all data items are assigned to one BGClient,mk =M , and that BGClient issues
all requests, i.e.,O1

O
= 1. With 2 or more BGClients, the global probability of a data item is lower

than its local probability,qi(M, θ, 1) ≤ pi(mk, θ). See discussions of Table 4.2 in Section 4.3.1.
In sum, a parallel implementation of Zipfian withN BGClients may manipulate either the

number of data items (mk) assigned to each BGClientk and their identity, the definition of the local
probability of an objecti, the number of references (Ok) made by BGClientk, or all three. Note
that by manipulatingOk, we are not shortening the execution time of one BGClient relative to the
others, see Section 4.3.1. To the contrary, as detailed in Section 4.3.1, D-Zipfian manipulatesOk

to require a mix of fast and slow BGClients to complete at approximately the same time.This is
important because if one BGClient finishes considerably sooner than the others then the degree of
parallelism is no longerN .

A mathematical formulation imposes the following constraint on a parallel implementation of
Zipfian: qi(M, θ,N) ≈ qi(M, θ, 1) for all i andN > 1. It states the computed global probability
of each data itemi with two or more BGClients should be approximately the same as its computed
probability with one BGClient.

The concepts presented in this section are demonstrated with an example in the next section
using two näıve and intuitive ways to parallelize the centralized implementation of the Zipfian.
They pave the way for the correct parallel implementation, D-Zipfian of Section 4.3.1. The reader
may skip to Section 4.3.1 for the final solution.
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Data item Zipfian/Crude withN = 1 Crude withN = 3
i pi(12, 0.01) = qi(12, 0.01, 1) A[i] pi(4, 0.01) qi(4, 0.01, 3)

1 0.319014588 0.319014588 0.477558748 0.159186249
2 0.160616755 0.479631343 0.240440216 0.080146739
3 0.107512881 0.587144224 0.160944731 0.053648244
4 0.080866966 0.668011191 0.121056305 0.040352102
5 0.064838094 0.732849284 0.477558748 0.159186249
6 0.054130346 0.786979631 0.240440216 0.080146739
7 0.046469017 0.833448647 0.160944731 0.053648244
8 0.04071472 0.874163368 0.121056305 0.040352102
9 0.036233514 0.910396882 0.477558748 0.159186249
10 0.032644539 0.943041421 0.240440216 0.080146739
11 0.029705152 0.972746574 0.160944731 0.053648244
12 0.027253426 1 0.121056305 0.040352102

Table 4.2: Example with 12 data items andθ=0.01.

Example and Two Näıve Approaches

This section uses a small population consisting of twelve data items (M=12) to demonstrate the
concepts presented in Section 4.3.1. In addition, it describes two naı̈ve techniques to parallelize
Zipfian and their limitations.

Table 4.2 shows the local and global properties of the individual data items with 1 and 3 nodes,
N=1 andN=3. Its first column shows the individual data items numbered from 1 to 12. Itssecond
and third columns correspond to one node (N = 1) and show the local and global probabilities
of each data item with the exponent 0.01,θ=0.01, and the values of Array A used by a central-
ized implementation to generate the Zipfian distribution, respectively. To implementZipfian, an
implementation generates a random valuer between 0 and 1, sayr=0.5. It produces data item 3 as
its output because A[3] exceeds 0.5 and A[2] is less than 0.5. (See Step 2of the pseudo-code to
generate data items in Section 4.3.1 for a precise definition of selecting A[i].)

With N BGClients, sayN=3, a technique namedCruderange partitions data items across the
BGClients as follows: BGClient 1 is assigned data items number 1 to 4, BGClient 2 isassigned data
items number 5 to 8, and BGClient 3 is assigned data items number 9 to 12. It uses Equation 4.1
with mi = 4 and the originalθ value (0.01) to compute the local probability of each data item, see
the fourth column of Table 4.2. The fifth column of Table 4.2 shows the global probability of each
data item with Crude using Equation 4.2 assuming each BGClient produces1

3 of references, i.e.,
O = 3 × Ok. These are significantly different than those with 1 BGClient, compare 2nd and 5th
columns, and do not satisfy the mathematical constraint presented in Section 4.3.1.

Crude may assign data items toN BGClients in several other ways including:

• Hash (instead of range) partition data items using their idi to assignmk data items to BG-
Clientk.

• Provide BGClientk with mk assigned data items. Next, each BGClient would use the cen-
tralized implementation of Zipfian (see Section 4.3.1) with the entire population to reference
a data item. If the referenced data item is not one of themk data items then BGClientk
discards this request and generates a new one.

36



1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

Data item

Probability of reference

N=1

N=3

4.7.a : Crude

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

N = 1
 N = 3

Data item

Probability of reference

4.7.b : Normalized-Crude

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

N = 1

Data item

N = 3

Probability of reference

4.7.c : D-Zipfian

Figure 4.7:qi(M, θ,N) of data items with three different techniques,M=12,θ=0.01, and
N={1, 3}.

While these enable each BGClient to generate a Zipfian distribution independently, the resulting
distribution (across allN BGClients) is dependent on the value ofN . As we increase the value of
N , the resulting distribution becomes more uniform, see Figure 4.7.a. Note that withN=3, the same
distribution is repeated 3 times because each BGClient generates its distribution independently with
mk=4 andθ=0.01. Hence, a data item that was referenced infrequently withN=1 is now accessed
more frequently. Unless Crude manipulates either its definition of local probability of a data item
(pi) or the number of references issued by a BGClient, the results of Table 4.2remain unchanged.

A variant of Crude, namedNormalized-Crude, defines the local probability of a data itemi as
pi =

pi(M,θ)
∑mk

k=1 pk(M,θ)
. This definition utilizesM (instead ofmk) to normalize the probability of data

items assigned to each BGClient. With one node, it is identical to the centralized Zipfian because
its denominator equals 1 (mi = M and the sum of the probability of data items equals 1). With
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more than one node, the global probabilities produced by Normalized-Crude are more uniform than
Crude, see Figure 4.7.b assumingO = 3 × Ok. Note that the most popular data item withN = 1
has a global probability that is almost twice that withN = 3. Section 4.3.1 shows that with a minor
adjustment, Normalized-Crude is transformed into the final solution.

D-Zipfian

We present D-Zipfian assuming BGClients are homogeneous and producerequests at approximately
the same rate. Subsequently, Section 4.3.1 extends the discussion to heterogeneous BGClients that
produce requests at different rates.

Homogeneous BGClients

With N BGClients, D-Zipfian constructsN clusters such that the sum of the probability of data
items assigned to each cluster is1

N
. Given a clusterk consisting ofmk elements and assigned to

BGClientk, D-Zipfian overrides the local probability of each data itemi as follows:

pi =
pi(M, θ)∑mk

m=1 pi(M, θ)
(4.3)

This definition of local probability is identical to that used by Normalized-Crude. D-Zipfian is
different because it constructs clusters by requiring the sum of probability of data items assigned
to one cluster to approximate1

N
. Thus, denominator of Equation 6.1 approximates1

N
. Details of

D-Zipfian can be summarized in two steps.
In this first step, BGCoord computes the probability of access to theM data items using Equa-

tion 4.1. Next, it constructsN clusters of data items such that the sum of the probability of themk

data items assigned to clusterk is 1
N

,
∑mk

i=1 pi(M, θ) = 1
N

. Finally, it assigns clusterk to BGClient
k by transmitting6 the identity of its data items to BGClientk. (A heuristic to construct clusters is
described in the following paragraphs.)

In the second step, each BGClient adjusts the probability of its assigned dataitems using Equa-
tion 6.1. Note that the denominator of Equation 6.1 approximates1

N
because BGCoord assigned

objects to each BGClient with the objective to approximate1
N

. Finally, each BGClient uses its
computed probabilities to generate array A to produce data items, see Section 4.3.1. Generation of
the requests by each BGClient is independent of the other BGClients.

One may construct clusters of Step 1 using a variety of heuristics. We use the following simple
heuristic. After BGCoord computes the quota for each BGClient k,Qk = 1

N
, it assigns data

items to the BGClients in a round-robin manner starting with the data item that has the highest
probability. Once it encounters a BGClient whoseQk is exhausted, BGCoord attempts to assign the
data item with the lowest probability to this BGClient as long as itsQk is not exceeded. Otherwise,
it removes this BGClient from the list of candidates for data item assignment. Itproceeds to repeat
this process until it either assigns all data items to BGClients or runs out of BGClients. If the later,
the coordinator assigns the remaining data items to one of the BGClients7.

Figure 4.7.c shows D-Zipfian’s produced probability with 1 and 3 BGClients and 12 data items.
When compared with Figures 4.7.a and 4.7.b, D-Zipfian approximates the original distribution
closely.

6Alternatively, with a deterministic technique to partition data items into clusters, each BGClient may
execute the same technique independently to compute itsmk assigned objects.

7With the discussions of Section 4.3.1, this is the fastest BGClient always.
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Figure 4.8:χ2 analysis of centralized Zipfian with D-Zipfian as a function of N ,M=10K.

Figure 4.9:χ2 analysis of centralized Zipfian with D-Zipfian as a function of θ with differ-
ent number of data items,M .

We use chi-square statistic to compare the distributions obtained withN = 1 with those
obtained usingN > 1. The chi-square statistic withN > 1 is computed as follows:χ2 =∑M

i=1
(qi(M,θ,N)−qi(M,θ,1))2

qi(M,θ,1) . A smaller value ofχ2 is more desirable. Whenχ2 = 0, it means
the probability distribution withN > 0 is identical to that withN = 1.

Figure 4.8 shows theχ2 statistic as a function ofN BGClients with 10,000 data items and three
differentθ values. A smallerθ value results in a more skewed distribution. Obtained results show
distributions with a handful of BGClients (N ≤ 8) are almost identical toN = 1 asχ2 value is
extremely small. With tens of BGClients, theχ2 value is higher because there is a higher chance of
the sum of probabilities assigned to each BGClient to deviate from1

N
. This is specially true with a

more skewed distribution,θ=0.01. One way to enable D-Zipfian to better approximate a probability
of 1

N
for each BGClient is to increase the number of data items,M . This is shown in Figure 4.9 with

three different values ofM andθ=0.01. As we increase the value ofM , theχ2 statistic becomes
smaller and approaches zero.

Heterogeneous BGClients

It is rare for one to purchase PCs that provide identical performance.As an example, on January 24,
2012, we purchased four identical Desktop computers configured with Intel i7-2600 processors, 16
Gigabyte of memory, and 1 TB of disk storage. When using them as BGClients,we observed one
node to be considerably faster than the others. This fast node is almost twice faster than the slowest
node. This discrepancy violates the assumption of Section 4.3.1 that withN BGClients, each BG-
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R1 R2 R3 R4 χ2

1 1 2 2 0.11
1 1.25 1.5 2 0.07
1 2 2 2 0.06
1 1 1 2 0.12
1 4 4 4 0.16

Table 4.3: Processing rate of four BGClients and their impact on theχ2 statistic,N=4,
M=10K, θ=0.27.

R1 R2 R3 R4 χ2

1 1 2 2 1.91E-08
1 1.25 1.5 2 1.49E-10
1 2 2 2 1.08E-09
1 1 1 2 1.19E-10
1 4 4 4 6.13E-09

Table 4.4:χ2 improves dramatically with the refined D-Zipfian,N=4,M=10K, θ=0.27.

Client issues1
N

of requests. This increases the error (χ2) between the distributions observed with
N > 1 andN = 1. As an example, Table 4.3 showsχ2 observed with five different configurations
of four heterogeneous BGClients.Ri denotes the rate at which a BGClient issues requests, see the
first four columns of Table 4.3. The last column shows theχ2 value whenθ=0.27, comparing the
observed theoretical8 probabilities with 1 BGClient, i.e.,N = 1. Each row corresponds to a differ-
ent configuration of BGClients. For example, the first corresponds to a mixof 4 BGClients where
two BGClients are twice faster than the other two BGClients. This results in errors (χ2 values)
significantly higher than those shown in Figure 4.8.

To address this limitation, we change the first step of D-Zipfian (see Section 4.3.1) to construct
clusters for each BGClient such that their total assigned probability is proportional to the rate at
which they can issue requests. Its details are as follows. Step 1 assigns objects to BGClientk with
the objective to approximate a total probability ofRk∑N

j=1 Rj
for this BGClient (instead of1

N
). With

this change, the distribution withN BGClients becomes almost identical to that of one BGClient,
see Table 4.4.

Discussion

Section 4.3.1 used the observed theoretical probabilities by considering thelocal probability of a
data item in combination with the number of requests,Ok×pi(M,θ)

O×
∑mk

j=1 pj(M,θ)
. This study does not consider

the actual generation of requests using a random number generator because it would require a too
long a diversion from our main topic. We do wish to note that the considered probabilities are the
foundation of generating requests and, without them, it is difficult (if not impossible) to generate

8We compute the observed theoretical probabilities by requiring each BGClientk to multiply its computed
probabilities for a data item with its number of issued requests divided by the total number of requests issued
by all the BGClients, Ok×pi(M,θ)

O×

∑mk
j=1

pj(M,θ)
.
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Figure 4.10:χ2 analysis of an implementation of D-Zipfian generating requests. This
analysis compares centralized Zipfian’s probability for different data items with D-Zipfian
as a function of different degrees of parallelism (x-axis).M=10,000,θ=0.27.

references that produce a Zipfian distribution. An implementation of D-Zipfian with actual request
generation is analyzed in Figure 4.10. The y-axis of this figure showsχ2 statistic, quantifying the
difference in observed probabilities with a centralized Zipfian when compared with D-Zipfian and
different degrees of parallelism (x-axis). As we increase the number of issued requests, D-Zipfian
resembles its centralized counterpart more closely.

With Section 4.3.1, one may apply the concepts of Section 4.3.1 to reduce the observedχ2 val-
ues by several orders of magnitude and very close to zero. The idea is as follows. Once objects are
assigned to the different BGClients, the number of references issued bya BGClientk is normalized
relative to the total probability of its assigned objects. Thus, assuming the benchmark issues a total
of O requests, each BGClientk would issueOk requests:

Ok = O ×

∑mk

i=1 pi(M, θ)
∑N

j=1

∑mj

i=1 pi(M, θ)
(4.4)

While this enhances theχ2 statistic dramatically, its potential usefulness is application specific. For
example, a benchmarking framework may consist of a ramp-up, a ramp-down, and a steady state.
Such a framework collects its observations during its steady state. The steady state might be defined
as either a duration identified by conditions that mark the ramp-up and the ramp-down phases or a
fixed number of requests. With the former,O is not known in advance and the system may not use
Equation 4.4. Even whenO exists, different values ofOk might be undesirable because different
BGClients finish at different times. This is because participating nodes are assumed to be identical
and those BGClients with the lowestOk finish sooner, reducing the degree of parallelism.

We considered constructingV virtual BGClients (V ≥ N ) with several such BGClients mapped
to one physical BGClient [45, 102, 95]. This is beneficial as long as it better approximates the quota
assigned to each physical BGClient. In our experiments, we observed negligible improvement
because approximating the appropriate quota for each virtual BGClient becomes more challenging
as we increase the value ofV , see discussions of Figure 4.8 in Section 4.3.1.

For an analysis of how BG generates requests while preserving the intended distribution refer
to [63]
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Chapter 5

BG’s Physical Data Design

One may implement how BG creates a social graph in different ways. Thesechoices constitute
alternative physical data designs for BG. A physical design in turn impactshow BG generates its
actions. This is specially true for the write actions because BG strives to produce valid ones, e.g.,
BG emulates Member A thawing friendship with Member B only if they are friends.This chapter
describes one physical design that we have implemented and released to thepublic domain (see
http://bgbenchmark.org for details). We provide its details in the next section. Subsequently, we
describe how BG uses this design to generate its actions.

5.1 Social Graph

Prior to generating a workload for a data store, it must be populated with a social graph correspond-
ing to the social actions emulated by the workload [18]. BG’s DataGeneratorcomponent is executed
to create and insert the data for the social graph into the data store, see Section 4.2. A social graph is
identified by its number of Accounts that are specialized into either individualmembers or pages. It
consist of a fixed number of members (M ), pages (P ), number of friends per member (φ), number
of followers per page (ι), number of pages followed by each member (̺) and number of resources
owned by each member or page (ρ), see Table 3.1. While the number of members for a social graph
must be non-zero, its number of pages may be set as 0. WithP = 0, BG will not insert pages in
the data store and will not create following relationships between members andpages. There are
multiple ways of creating the friendship and following relationships in a social graph. Here, we
describe our design and implementation. To simplify discussion and without lossof generality, we
use the term BG to refer to this physical data design.

BG creates a social graph with the same number of friends per member. It also assumes the
same number of followers for each page and the same number of pages followed by each member.
In addition, BG creates an equal number of resources owned by each member and page. Each
resource is posted on a randomly selected member’s wall which may be the resource owner’s own
wall, see Section 3.1. BG creates following relationship between members and pages only if the
following conditions are satisfied (see Table 3.1):

• ̺× ι ≤M

• (P × ι)/̺ ≤M

• P ≤M (This condition is required for BG to create deterministic following relationships.)
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• ̺ ≤ P

• ι ≤M

Using these assumptions, BG generates the social graph using two deterministic functions that
result in deterministic friendship and following relationships between variousaccounts. For ev-
ery Memberi with ̺ > 0, BG generates the following relationships with pages(i%P ), ((i +
1)%P ), ..., ((i + ̺)%P ). With ̺ = 0 it does not create any following relationships between mem-
bers and pages. The maximum value that can be assigned to̺ isP . For the same Memberi, BG also
generates friendship relationships with members((i− φ

2+M)%M), ..., i−1, i+1, ..., ((i+ φ
2 )%M)

where the maximum value ofφ isM − 1. The limitation of generating friendships in this manner is
that only an even number of friends can be inserted for each member, i.e.,φ%2 = 0 . This is trivial
to resolve by assigning friendships in one direction where Memberi has the following members as
friends:(i+ 1)%M, ..., ((i+ φ)%M)

BG can also use multiple threads,T , to load the data for a social graph. In this case the social
graph is divided intoT dis-joint social graphs, each with an equal number of members and pages.
This division occurs if the following four conditions hold true:

• M
T
> φ

• P
T
> ̺

• M
T
> ι

• M
T

× ̺ = P
T
× ι

Otherwise, BG does not create the social graph. BG uses these deterministic functions during
the benchmarking phase to identify the existing relationships in the social graph in order to issue
valid actions, see Section 5.2. In this case, in addition to the social graph parameters, the benchmark
will need the number of threads used for the loading phase,numloadthreads(T ), as one of its input
parameters.

Once the sub social graph for each thread is decided, each thread creates relationships between
the members and pages of its sub social graph using the aforementioned functions. Each thread
also insertsρ resources for each member and page. If theT assigned by the experimentalist for
the load phase violates one of the conditions described above then the BG framework invokes a
deterministic function and selects the greatest thread count less thanT that satisfies these conditions
and uses that to construct the sub social graphs and load the data. This same function is used in the
benchmarking phase to manipulate the numloadthreads parameter given as aninput parameter to
BG by the experimentalist and set it to the actual thread count value that wasused to construct the
sub social graphs and load the data store.

With N BGClients, the D-Zipfian distribution (see Section 4.3) divides the social graph into
N sub social graphs. WhenP 6= 0, the number of followers per page (ι) and the number of
pages followed by each member (̺) are utilized to manipulate the sub-social graphs generated by
D-Zipfian for each BGClient. In this case once D-Zipfian creates the sub social graph, in a post
processing step the members for the sub social graphs are shuffled such that:

1. Total probability of members assigned to each BGClient remains almost equal.

2. The total number of members assigned to each BGClient is equal.
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Figure 5.1:χ2 analysis of the new D-Zipfian distribution used for feed following actions
for M = 1, 000, 000 as a function of number of BGClients with three different values of θ
for D-Zipfian.

The second condition is required in order to load an equal number of pages per member (̺) and
can be achieved by shuffling the members with the least probability across thevarious sub social
graphs for BGClients. BG also ensures that the the number of pages assigned to each BGClient
is equal. For example a social graph withM = 100, 000, P = 100, φ = 100, ρ = 10, ̺ = 10
andι = 10, 000 is divided to four social graphs with 4 BGClients where each social graphhas the
following characteristics:M = 25, 000, P = 25, φ = 100, ρ = 10, ̺ = 10, ι = 10, 000. This
allows us to compare the evaluation results gathered using different numberof BGClients for the
same social graph characteristics. For evaluation of extreme cases suchas scenarios for which all
the members in a social network are following a single page, breaking the social graph into multiple
sub-graphs may not be possible.

The changes made to the D-Zipfian algorithm impact the request distribution. And the impact
increases as the number of BGClients increase. Figure 5.1 shows the amountof error introduced
using theχ2 analysis described in Section 4.3.1. As shows in this figure, the amount of error intro-
duced is negligible and decreases as the skewness in the distribution decreases (D-Zipfian exponent,
θ).

Next, each BGClient loads its own sub social graph into the data store and generates the rela-
tionships between members and pages within its own sub graph. In addition, each BGClient may use
multiple threads during loading the data into the data store. This can only happenif the previously
mentioned conditions hold true for the BGClient’s sub social graph and the number of load threads
the BGClient is using during its loading. Once the social graphs are loaded into the data store, BG’s
ActionGenerator uses the distribution of actions provided as an input to emulate social actions, see
Section 4.2. This generator uses the D-Zipfian distribution to decide the socialite performing each
action.

5.2 Stateful Request Generation

BG generates meaningful requests by maintaining in-memory data structures that maintain the state
of the database. As an example, consider the Accept Friend Request (AFR) action. To ensure this
command is meaningful, BG maintains data structures that track each member and their pending
friend invitations. BG selects a Member A with a list of pending friend invitations.Next, it selects a
member from this list randomly for use with the AFR action. If there are no members with a list of
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Action Lock Member A Lock Member B

A Thaws Friendship with B Yes Yes
A Accepts B’s Friend Request Yes No

A Invites B to be Friends Yes Yes
A Rejects B’s Friend Request Yes No

Table 5.1: Four of BG’s write actions and how they lock members.

pending friend invitations then BG increments a no operation count. At the endof an experiment,
BG reports this number to the experimentalist. An experiment with a high no operation count does
not reflect the workload intended by the experimentalist and its metrics shouldnot be associated
with the workload.

BG is thread safe and employs synchronization primitives such as semaphores. In addition, it
locks the members referenced by the write actions to ensure multiple threads donot issue simulta-
neous actions that cause one to become meaningless. As an example, consider the Thaw Friendship
action. When using one thread to emulate Socialite A who thaws friendship with Member B, BG
locks both Members A and B prior to issuing the command. This prevents another thread from em-
ulating Socialite A performing the same action simultaneously. It also prevents a concurrent thread
from emulating Socialite B who thaws friendship with Member A. Table 5.1 shows the four write
actions that impact friendship and whether they lock either one or both members.

One may turn the locking feature of BG off. This may cause concurrent threads to issue con-
current actions that may cause one or more to become a no operation. This may also cause a data
store to detect integrity constraint violations and throw exceptions.

5.3 Uniqueness of Simultaneous Socialites

BG supports a closed emulation model consisting of a fixed number of simultaneous threads issuing
actions against a data store. Each thread emulates a socialite and BG ensures concurrent socialites
are unique at any point in time. In other words, the members selected to emulate simultaneous
actions against the data store are unique. This is required in order to emulatereality in which a
social network’s member accesses or manipulates data using one active login session.

With BG, the uniqueness of the socialites is implemented using a local data structure that main-
tains if an account (member or page) is busy or not. Once a BG thread decides to emulate an action
and decides the member/page to use, it looks up the status of the member/page in this data struc-
ture. If the member/page’s status is busy, which means it has been picked byanother thread to
emulate a simultaneous action, BG finds the next non-busy member/page to use for its action by
linearly searching through the data structure. If it fails to find a non-busymember, it does not issue
an action against the data store resulting in a no operation, see Section 5.2. If it finds a non-busy
member/page, it changes its status to busy, issues the action against the data store, waits for the ac-
tion to complete and then changes the status of the member/page to non-busy. This is performed in
thread-safe manner using latches. Once the status of a member is set to non-busy, it can be selected
by other threads to emulate actions against the data store.

With multiple BGClients, each BGClient issues request by selecting members fromits own sub
social graph, so checking a BGClient’s local data structure is sufficientand no coordination between
the BGClients is required to ensure the uniqueness of the simultaneous emulatedmembers.
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Chapter 6

Unpredictable Data

Today’s data stores strive to be scalable, highly available, and fast. To realize these objectives,
a system may employ techniques introducing delayed propagation of updatesand undesirable race
conditions, that result in stale, inconsistent or erroneous output, collectively termed as unpredictable
data. Example techniques that produce unpredictable data include use of aweak consistency tech-
nique such as eventual [112, 103] and use of a cache [47] in a mannerthat results in dirty reads [56]
and inconsistent cache states [46, 86].

With an increase in this kind of design approaches, it is becoming increasingly important to
understand the implications of to what extent provision of unpredictable dataimproves the perfor-
mance. This motivates the need for a framework quantifying the amount of unpredictable data [94].
There are many metrics that can be used in this framework to quantify data staleness for an archi-
tecture. Some of these are as follows:

• Probability of observing an accurate value a fixed amount of time, sayt seconds, after an
update occurs [114], termed as freshness confidence.

• Amount of time required for an updated value to be visible by all subsequentreads. This is
termed inconsistency window [114].

• Percentage of reads that observe a value other than what is expected,quantified as the per-
centage of unpredictable data [12].

• Probability of a read observing a value fresher than the previous read for a specific data item,
termed monotonic read consistency [114].

• Age of a value read from the updated data item. This might be quantified in terms of versions
or time [10, 11].

• How different is the value of a data item from its actual value? For example, with a member
who has 10 friends, a solution may return 9 friends for the member whereasa different
solution may return 20 friends. An application may prefer the first [10, 11].

Each of these metrics may provide a new insight into a system’s behavior and itsdesign deci-
sions. A variant of the first two metrics are quantified by benchmarking frameworks such as [94, 88].
BG [12] is the only benchmark to evaluate the correct execution of operations in support of in-
teractive social networking operations. Today’s BG supports two of theaforementioned metrics:
percentage of unpredictable data and freshness confidence.
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Many of today’s applications may tolerate some amount of unpredictable data observed by data
stores [99]. For example, with social networks, once a member posts a status message, it can be
visible to others after 2 minutes and the members may find this acceptable. On the other hand, some
applications such as banking applications may not tolerate unpredictable data. Thus the amount of
unpredictable data (stale, inconsistent or erroneous data) produced by data stores has a significant
impact on its possible use by an application. A novel feature of BG is its ability to quantify the
amount of unpredictable data produced by a data store for an application.It does so by computing
a list of acceptable values for each read using the timestamp for both read and write actions, and
comparing the acceptable values with the observed values. One may use this feature to characterize
the trade-offs associated with different architectures. It can also be used to specify an SLA when
rating different data store solutions, see Chapter 7.

BG also uses the timestamp for read and write actions to quantify the freshnessconfidence
(%) which is the probability of observing an accurate value a fixed amount of time after an update
occurs. The amount of unpredictable data and freshness confidenceare both workload and data
store dependent.

In this chapter, we describe BG’s validation mechanism which is used to quantify the amount
of unpredictable data. This is presented in two parts. First, we describe how validation is performed
for all actions excluding the feed following actions, namely, View News Feedaction and Share
Resource Action. Subsequently, we include feed following actions. We conclude this chapter by
describing the scenarios for which the current validation algorithm fails to compute the amount of
unpredictable data accurately.

6.1 Validation

This section describevalidation as the process of quantifying the amount of unpredictable data
produced by a data store and presents BG’s modular and configurable validation component.

Conceptually, BG is aware of the initial state of data items in the database (by creating them
using deterministic functions supporting an analytical model) and the change of value applied by
each write action1. There is a finite number of ways for a read of a data item to overlap with
concurrent actions that write it. BG enumerates these to compute a range of acceptable values that
should be observed by the read operation. If a data store produces a different value then it has
produced unpredictable data. This process is namedvalidationand BG’s physical implementation
is as follows.

Validation might be an online or an offline technique. While an online technique reports the
correctness of a value produced for a read operation immediately after it completes, an offline
technique would quantify the amount of unpredictable data after a benchmark completes generating
its specified workload. The latter does not quantify the amount of unpredictable data while the
experiment is running. A validation component may implement either extremes, ora hybrid design
that reports the amount of unpredictable data after some delay based on its allocated resources. BG
decouples generation of requests to quantify the performance of a data store from the validation
phase, performing validation in an off-line manner. By doing so, BG prevents the validation phase
from exhausting the resources of a BGClient and reduces the number ofnodes required to generate
requests to evaluate a data store.

1For example consider the Accept Friend Request (AFR) actionof BG. When the AFR operation is issued
by Member A to confirm friendship with Member B, then the writeoperation increments the number of
friends of each member by one. Or when a write operation is issued by Member A to unfriend B then Bs
news must not appear in As feed retrieved by the View News Feed(VNF) action of BG.
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Figure 6.1: There are four ways for a write ofDi to overlap a read ofDi: It may either start
before the read and end in the middle of the read operation (W1), start in middle of the read
and end before the read ends (W2), start in the middle of the read and end after the read
operation (W3), or start before the read and end after the read (W4).

During the benchmarking phase, each thread of a BGClient invokes an action. All actions except
for the Share Resource action generate one log record. There are twotypes of log records, a read
and a write log record corresponding to either a read or a write action. These log records are written
to separate files. One file for the read log records and a second file for the write log records. During
the validation phase, BG processes these log records to quantify the amount of unpredictable data
produced by a data store [12].

A log record consists of a unique identifier, the action that produced it, the data item referenced
by the action, its socialite session id, and start and end time stamp of the action. The read log record
contains its observed value from the data store. The write log record contains either the new value
(namedAbsolute Write Log, AWL, records) or change (namedDelta Write Log, DWL, records) to
existing value of its referenced data item. The log records generated for the Share Resource action
contain information about the referenced data item (e.g. the resource being shared by the member)
and the members the resource is being shared with. The start and end time stamps of each log record
identify when an action that either reads or writes a data item begins and finishes. They enable BG
to compute the 4 possible ways that a write operation may overlap a read operation, see Figure 6.1.
During validation phase, for each read log record that references data itemDi, BG enumerates all
completed and overlapping write log records that referenceDi to compute a range of possible values
for this data item. If the read log record contains a value outside of this rangethen its corresponding
action has observed unpredictable data.

To elaborate, BG uses the set ofq DWL records to compute all serializable schedules that a
data store may generate. The theoretical upper bound on the number of schedules isq!. However,
BG computes fewer schedules because it does not consider the non-overlapping DWL records. BG
identifies these by detecting when the end time stamp of one is prior to the start of the second.
This produces an accurate range of possible values for the read operation. This is best illustrated
with an example. Consider the four log records of Table 6.2 where 3 DWL records overlap 1
read log record. Theoretically, there is a maximum of six (3!) possible waysfor the updates to
overlap one another. However, the actual number of possibilities is two,{{DWL1,DWL2,DWL3},
{DWL2,DWL1,DWL3}}, because DWL3 has a start time stamp after both DWL1 and DWL2.
Thus, assuming the value ofD1 is zero at time zero, acceptable values for the read are{-1, 0, 1, 2},
flagging the observed value 3 as unpredictable. If one had assumed 3! possible schedules incorrectly
then value 3 would have appeared in the acceptable set. This would have confirmed Read1 as valid
incorrectly.
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Operation id Type Data item Start End Value

Read1 Read D1 0 10 3
DWL1 Write D1 1 3 -1
DWL2 Write D1 2 4 1
DWL3 Write D1 5 6 2

Figure 6.2: Example log records.

Log records produced by one BGClient are independent of those produced by the remaining
N − 1 BGClients because BGCoord partitions members and resources among the BGClients log-
ically. Thus, there are no conflicts across BGClients and each BGClient mayperform validation
independently to compute number of actions (sessions) that observe unpredictable data. During
rating, BGCoord collects these numbers from all BGClients to compute the overall percentage of
actions (sessions) that observed unpredictable data, see Chapter 7.

Depending on the duration of the experiment, a BGClient may produce a largenumber of log
records. These records are scattered across multiple files.

6.1.1 Validation of Actions Excluding Feed Following Actions

We now discuss the implementation details of the validation technique used for validating BG’s
non feed following actions. Currently, there are two centralized implementations of this validation
phase using interval-trees [30] as in-memory data structures and a persistent store using a relational
database. The latter is more appropriate when the total size of the write log records exceeds the
available memory of a BGClient. The former is fast when there is a sufficient amount of memory
to stage the write log records in interval trees. This enables the validation phase to read the log files
once to process both read and write log records in one pass. The interval tree maintains the start and
end time stamp of the write log records for each data item,Di. The validation phase assumes three
different kind of interval trees for: (1) each member and write actions that impact her friendships,
(2) each member and write actions that impact her pending friend invitations, and (3) each resource
that is annotated with a write action. It constructs interval trees for a member/resource on demand
as it reads the write log records in memory, creating them when one does notexist for a member
id (resource id) for the corresponding action. Once the write log records are staged in memory,
the validation phase retrieves the read log records. It employs the member id (resource id) and the
action to identify the interval tree with the relevant write log records. Next, it uses the start and end
time stamp of each read log record to enumerate the number of ways it overlapswith the different
write actions by querying the interval trees.

Both in-memory and persistent implementations of validation are optimized for workloads dom-
inated with actions that read data items [3]. These optimizations are as follows. First, if there are
no update log records then there is no need for a validation phase; the validation phase terminates
by deleting the read log file(s) and reporting 0% unpredictable reads. Second, write log records
are processed first to construct a main memory data structure (independent of interval-trees or the
RDBMS) that maintains each updated data item and its value prior to the first writelog record and
after the last write log record on that item, start time stamp of the first write log record, and the end
time stamp of the last write log record on that item. This enables BG to quickly process (prune)
read log records that either reference data items that were never updated (do not exist in the main
memory data structure), or were issued before the first or after the last writer (there is only one pos-
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Workload Number of Number of Number of In-memory Validation
read pruned read write Structure Creation duration
logs logs logs duration (msec) (msec)

0.1% Write Actions 2,414,569 2,194,486 3,343 47 10,047
1% Write Actions 2,327,587 1,446,998 39,922 281 10,281
10% Write Actions 1,592,701 481,317 343,224 1172 22,735

Table 6.1: Validation duration for three workloads of Table4.1

sible value for these and available in the main memory data structure). Third, multiple threads may
process the read log records by accessing the aforementioned data structure with no semaphores as
they are simply looking up data. This makes the validation phase suitable for multi-core CPUs as it
employs multiple threads to process the read log files simultaneously.

Table 6.1 shows the duration of the validation phase for the three workloadsdescribed in Ta-
ble 4.1 using the interval tree approach. These workloads emulate 200 threads issuing actions
against the data store for 900 seconds. As shown in this table, as we increase the percentage of
writes, the number of write actions and the amount of time it takes to construct thein-memory
structures increases. The increase in the duration of processing write files as well as the reduction
in the number of read logs that can be pruned2 increase the overall rating duration.

A key limitation of in-memory implementation using interval trees is that it may exhaust the
available physical memory, causing the operating system to exhibit a thrashing behavior that results
in an unacceptably long validation process. This is specially true with high throughput multi-node
data stores and cache augmented data stores such as KOSAR that process requests in the order of
millions of actions per second. In such cases, one should employ the alternative using an RDBMS.

We have also examined a preliminary implementation of the validation phase using MapRe-
duce [37] that requires the log files to be scattered across a distributed filesystem. Such a deploy-
ment is warranted once BG is deployed at a large scale to evaluate many different data stores.

6.1.2 Validation for Feed Following Actions

The View News Feed (VNF) action of BG retrieves the topk most recent resources shared with a
member by those she follows. A socialite, Member A, shares resources using the Share Resource
(SR) action. Member A may share a resource either publicly with all the membersfollowing A or
with a select list of members following A. Conceptually, BG is aware of the initial state of feed for
every member and changes the value of each member’s news feed upon any related SR action by
adding the shared resource to it. A related SR action for Memberi’s feed is one that is issued by
Memberj followed by Memberi. Note that this discussion applies to pages as well. For each VNF
action, BG enumerates all the relevant SR actions and computes a list of acceptable feed values
(list of acceptable resources). If the data store returns a value other than what is expected then
unpredictable data is observed.

During the benchmarking phase BG generates two write log records for each SR action and one
read log record for each VNF action. The first write log record containsthe start and end time stamp
of the action, the memberid of the member issuing the action and the resourceid ofthe resource
being shared. The second log record also contains the start and end time stamp for the action, the

2With an increased number of updates, the probability of a reading a data item before an update on the
data item reduces.
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resourceid of the resource being shared and the list of followers the resource is shared with. If the list
of followers is set to -1 the resource is shared publicly with all members following this member. The
read log record contains start and end time stamp for the VNF action, the memberid for the member
retrieving her news feed and the list of resourceids that are displayed on it. BG is also aware of
the initial friendship/following relationships for members and pages. In addition, as discussed in
section 6.1 it logs the changes made to the friends of a member3. During validation BG maintains
two additional interval trees. One for the shared resources and the members they are being shared
with and another for the members and the resources they are sharing with other members. Upon
encountering a read log record for a VNF action, BG computes the list of members followed by the
member performing the VNF action at the time of the read using the start and end timestamp logged
for it by querying the interval trees described in Section 6.1. Next, it findsall the resources shared
by these members until that point of time. It only retrieves the list of resources that are either shared
publicly with all followers or are specifically shared with this member. It then compares this list
with the list of resources retrieved from the data store for the member’s feed. As some write actions
may overlap with the VNF action (write actions modifying friendship relationshipsor performing
SR actions), BG computes a super-set of acceptable lists containing resourceids4. If the News Feed
retrieved form the data store is not a subset of any of the lists in the computed set, then the data
store has produced unpredictable data. This is best illustrated with an example. Consider the five
log records in Table 6.1.2. Assume Member B is only following Member A and Member A owns
Resources 1 and 2.

Operation id Type Data item Start End Value
AWL1-1 Write Member A 0 3 1
AWL1-2 Write Resource1 0 3 -1
AWL2-1 Write Member A 0 5 2
AWL2-2 Write Resource2 0 5 {B,C}
Read1 Read Member B 4 6 {1,2}

AWL1-1 and AWL1-2 belong to the same SR action. AWL1-1 indicates that Member A shares
Resource1 and AWL1-2 indicates that Resource1 is shared publicly (identified with value = -1).
Similarly AWL2-1 and AWL2-2 are created by the same SR action. AWL2-1 indicates that Member
A shares Resource2 and AWL2-2 indicates that Resource2 is shared with Member B and Member
C. Read1 indicates that Member B retrieves her news feed and observesResource1 and Resource2
in it. BG’s validation for Read1, finds all the members followed by Member B (in this example only
Member A). Next, it retrieves all the SR actions initiated by the members Member B isfollowing
and either completed before the read or overlapped with it. In this example AWL1-1 and AWL1-2
completed before the read and AWL2-1 and AWL2-2 overlap with it. From these, it retrieves those
that either share a resource publicly (AWL1) or share it specifically with Member B (AWL2) and

3In BG, once a following relationship between a member and a page is created, it can not be modified.
This is because in BG pages can only participate in feed following actions and all other BG actions involv-
ing modification of friendship/following relationships, are only applicable to members and the relationships
between them.

4As the list of friends for a member depends on the completed and overlapping write actions, BG computes
a set of friend lists for the member,Sf . The same holds true for the resources shared by members and BG
computes a set of acceptable shared resources by each memberin the friends list,Sr. The final set of
acceptable resources displayed on a member’s news feed is a Cartesian product ofSf andSr. Computing
this product is expensive so BG computes the union ofSr for each list inSf as the list of acceptable resources
to be displayed on a member’s feed. By doing so BG computes an approximation of the member’s news feed.
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Figure 6.3: Freshness confidence for CASQL with TTL invalidation mechanisms for a
workload consisting of 10% write actions.b = 120 buckets,∆ = 600 seconds.

uses them to compute a set of acceptable resource lists for Member B’s feed. In this example these
are the two acceptable sets:{1} and{1,2}. If the VNF Read1 observed{1,3} then it had observed
unpredictable data. Hence, in this example it did not observe unpredictabledata.

6.1.3 Freshness Confidence

The validation phase also computes the probability (pi) of a read observing the freshest value at most
t units of time after the update on the same data item was completed, freshness confidence. The log
records are processed only once to compute both the amount of unpredictable data and freshness
confidence. The experiment duration,∆, is divided intob time buckets each with a duration of∆

b

units of time. Each bucketbi maintains the total number of read operations (Rbi) between∆
b
× i

to ∆
b
× (i + 1) units of time (where0 ≤ i ≤ b) after the last write on the relevant data item, i.e.,

the last write is retrieved by querying the relevant interval tree. They alsomaintain the number of
valid reads that did not observe unpredictable data for the same period (Vbi). The probability of
observing the freshest value for a read at mostt units after the write is computed by findingi for
which t = ∆

b
× (i+ 1) and computing the following (see Figure 6.3):

pi =

∑j=i
j=1 Vbj∑j=i
j=1Rbj

(6.1)

This metrics is important for applications such as news feed which are tolerant for missing
content but are timely. For example, let us assume Member A follows 100 members and each
member produces at least 1 event every three minutes. Member A may toleratenot seeing the last
content produced by each of the producers in the last three minutes in herfeed. At the same time,
it will be undesirable if she does not see events produced more than 3 minutes ago, say 1 hour
ago. This means even though Member A encounters an unpredictable read, the application can
tolerate the missing events. Thus computing the amount of unpredictable readsis not a good metric
when evaluating alternative solutions of news feed. A better metric is to computethe probability
of observing the freshest value at mostt units of time after the write on the same data item is
completed.

Figure 6.3 shows the freshness confidence for CASQL systems with six different time to live
(TTL) values: 10, 30, 60, 90, 120 and 300 seconds. Use of TTL is analternative to using an
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invalidation technique [47, 86]. It is a simple technique that invalidates a cached entry once its
life time expires. While it reduces software complexity, it produces unpredictable data. Figure 6.3
shows the freshness confidence for a fixedt decreases with higher TTL values which means it takes
a longer time for the value of updates to be available for all reads occurringafter the update.

6.1.4 Evaluation

We used BG’s ability to compute the amount of unpredictable data to analyze the trade-offs for a
CASQL system employing a time to live (TTL).

Figure 6.4 shows the behavior of the system with three different TTL values, 30, 60, and 120
seconds, as a function of the number of BG threads,T . We assume 10% of actions are writes (see
Table 4.1). As expected, obtained results show a higher TTL value resultsin a higher percentage of
unpredictable data. A higher TTL value also enhances performance of CASQL by increasing the
number of references that observe a cache hit. This is shown with a higher percentage of request that
observe a response time faster than 100 msec (α) with T=100: α increases from 79.8% with a 30
second TTL to 98.15% with a 2 minute TTL. In essence, a higher TTL value enhances performance
of CASQL at the expense of producing a higher amount of stale data.

6.2 Discussion

The current implementation of the validation technique is an implementation of a subset of design
choices. This implementation targets a common use case scenario and will not work in all cases:

1. With high throughput data stores that process millions of operations per second an experi-
mentalist may not be willing to wait for hours to obtain an accurate measure of theamount
of unpredictable data. They may be interested in a sampling approach that provides an inac-
curate and quick measure of the amount of unpredictable data.

2. The consistency requirements of one application might be different thananother. For example
with a social networking system, apart from the data value, the order of display may also
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Figure 6.5: An example showing the limitation of BG’s validation mechanisms with an
overlapping read and write log record for data itemDi.

matter. We may have a solution that retrieves the correct comments for a photo but displays
them in the wrong order resulting in miss-interpretations and miss-communications. The
current implementation of BG’s validation, does not emphasize on the order of observed
values but can be extended to maintain the order of data items to be displayed (i.e., based on
recency) and use that in its evaluation of unpredictable data. The validationmechanism can
also be further extended to evaluate the solutions based on the accuracy of results returned.
For example, if the desired order for the commentids for a photo is 1,2,3,4,5, a solution that
returns 2,1,3,4,5 is more accurate than one that returns 1,5,4,3,2.

3. BG’s validation mechanism consumes the start and end timestamps for invoked write actions
to compute a list of acceptable values for every read. This may lead to scenarios for which the
amount of unpredictable data reported by BG may not be accurate. With Figure 6.5, the write
action modifying the value of data itemDi starts at timetwrite,start and ends attwrite,end,
but the actual update is committed to the data store at timetwrite,commit, betweentwrite,start

andtwrite,end
5. The read action for the value of data itemDi, starts at timetread,start and

ends at timetread,end > tread,start such thattwrite,commit < tstart,read < twrite,end and
tread,end < twrite,end. Ideally, the read should observe the updated value as it started after
the update had been committed to the data store. BG’s current validation mechanism will not
report any stale data, if the read observes the old value rather than the updated value. For such
a scenario, one may need to extend BG’s validation mechanism with more complexmodels.

Below, we describe an extension to today’s validation component and discuss a host of design
choices for it. We organize these in a taxonomy consisting of three interdependent steps: Runtime
configuration, Log processing, and Validating. Below, we describe each step and its possible design
choices in turn.

As suggested by its name, the Runtime configuration component configures the modules em-
ployed by the validation phase. This component is used once. Its output specifies the components
used by the validator at runtime. This output is based on the following input parameters:

• How much memory should be allocated to the validation phase? The provided value controls
how much of the write log records are staged in memory prior to processing read log records,
preventing the validation phase from exhausting the available memory.

5This can happen with CASQL solutions with invalidation consistency mechanisms, for which once the
update is committed to the underlying data store, the corresponding cached key-value pair needs to be deleted
as a part of the write action.
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• How long should the validation process run for? The specified duration dictates the number
of processed read and write log records. A duration shorter than that required to process all
log records may produce inaccurate measures of the amount of unpredictable reads.

• What is the degree of parallelism used by the validation process? It is trivial to parallelize the
validation process by partitioning the log records using the identity of their referenced data
items. With a RAID disk subsystems and multi-core CPUs, it is sensible for the component
that streams the log records to partition them (this is the map function of a MapReduce
job). This facilitates independent processing of each partition using a different thread/core to
quantify the amount of unpredictable data.

• What sampling technique should be used by the validation phase? The validation process
may use a host of sampling techniques that should be identified at configuration time. These
are listed under the Log Processing step and detailed below.

The Log Processing phase reads the log records from the log file and processes them to create the
data structures needed for the validation process. It may use a sampling technique to decide which
log records are processed in order to reduce the duration of the validation phase. A disadvantage
of sampling is that the amount of reported unpredictable data may not be accurate. A sampling
technique may be based on:

• Data item/operation type: The validation process may focus on a subset of data items by
processing their read and write log records. It may process those data items with either the
highest frequency of reference, largest number of write log records, most balanced mix of
read and write operations, and others. Alternatively, it may process the log records produced
by a subset of operations.

• Time: A second possibility may require the validation process to sample a fixed interval of
time relative to the start of the benchmarking phase, e.g., process one minute of log files ten
minutes into the benchmarking phase or process the log records generatedduring the peak
system load, e.g., shoppers during Christmas time.

• Number of processed log records: A third possibility requires the validationprocess to sam-
ple a fixed number of log records, e.g., 10K log records, 20% of log records relative to the
start of the benchmarking phase, 2 out of every 10 log records, and others.

• Random/Custom: A final possibility is for one to come up with a custom sampling approach
where log records satisfying a specific condition are processed by the validation process, e.g.,
log records generated by members is a specific geographical locations.

The Validating phase can execute at the same time as the Log Processing phase and is responsible
for computing a list of acceptable values for each read and comparing the observed value with the
computed list. One can implement custom validation approaches which deal with different data
types such as primitive, array type or user-defined and apply different kinds of manipulations to
identify the list of acceptable values for a read.
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Chapter 7

Rating a Data Store

To rate a data store is to compute a value that describes the performance of the data store for a
workload. BG computes two possible ratings for a data store, named SoAR and Socialites. The
Social Action Rating, SoAR, of a data store is its highest number of simultaneous social actions
completed while satisfying the pre-specified SLA. The Socialites rating quantifies the maximum
number of simultaneous members that may access the data store while satisfying the pre-specified
SLA. Figure 7.1 illustrates these two ratings using MongoDB as an example. Itshows the SoAR of
MongoDB is approximately 35,000 while its Socialites rating is 1025.

Figure 7.2 shows BG’s software components that rate a data store. Theseinclude multiple BG
Clients (BGClient), one BG Coordinator (BGCoord), and one delta analyzer. BGCoord, issues
commands to BGClients to either create BG’s schema, construct a database and load it, or generate
a workload for the data store. A BGListener on each BGClient node facilitates communication
between BGCoord and its spawned BGClient. One may host multiple BGListenerson different
ports on a node. A configuration file informs the BGCoord of the differentBGListeners and their
ports. (It is possible to extend BGClient with the functionality provided by BGListener to eliminate
the BGListener all together). EachBGClient implements the 13 actions of Table 1.1 for the target
data store. In addition, they include the design elements outlined in Chapter 4 to realize a scalable

Figure 7.1: BG’s SoAR and Socialites rating.
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Figure 7.2: Software components of BG’s rating mechanism.

request generation framework. TheBGCoord employs a heuristic search technique that conducts
experiments, each with a fixed number of threadsT , using the target data store. The number of
conducted experiments is a function of the true SoAR rating of the data store.When this value is
in the order of a few thousands, BGCoord conducts between 10 to 20 unique1 experiments. When
the value is in the order of one hundred million, BGCoord may conduct between 50 to 60 unique
experiments. It may load the database in between experiments and use agile data loading technique
to expedite the rating process. This chapter describes these two components in Section 7.1 and 7.2,
respectively.

The duration of each experiment (δ) conducted by BGCoord is dictated by theDelta Analyzer.
The maximum value ofδ is the duration specified by the SLA,∆. A smaller value ofδ is desirable
because it expedites the rating process. Ideally,δ should be the smallest possible value that reflects
the behavior of a data store as if the experiment was running for∆. We discuss the computation of
δ in Section 7.3.

This chapter concludes with an analysis of the agile delta loading techniques and the delta
analyzer. It quantifies the observed speedup when compared with a rating mechanism that does
not utilize these techniques. Obtained results show a factor of 4 to more than 10 speedup with the
proposed techniques.

1BGCoord caches the results of different experiments and looks up their observed throughput when the
heuristic search attempts to repeat an experiment with the sameT value.
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7.1 Heuristic Search

BGCoord conducts several experiments, each with a fixed number of threadsT . It employs a heuris-
tic algorithm to vary the value ofT to impose a different amount of load on the data store. These
threads are spread across theN BGClients. At the end of each experiment, each BGClient reports
its observed number of unpredictable reads, and the percentage of requests that observed a response
time equal to or faster than that required by the SLA,β. This experiment issuccessfulas long as
all of the following hold true: 1) observed average percentage of unpredictable reads across allN
BGClients is less than or equal to the SLA specified tolerable amount of unpredictable reads, and
2) the percentage of requests that observe a response time less than or equal to the SLA specified
response time (β) is greater than or equal to the SLA specified percentage (α). Otherwise, this
experiment hasfailed to meet the specified SLA.

One approach to compute SoAR and Socialites rating of a data store is to conduct experiments
starting withT=1 and incrementT by one every time an experiment succeeds. It would maintain
the highest observed throughput and the highestT value. And, it terminates once an experiment
fails (see Assumption 1 below) to satisfy the SLA, reporting the highest observed throughput as
SoAR and the largestT as Socialites rating of the data store. A limitation of this strategy is that it
requires a substantial amount of time. For example, in Figure 7.1, MongoDB supports a Socialites
rating of 1025,T=1025. An exhaustive search starting with 1 thread and assuming∆=10 minutes
would require more than 7 days.

BGCoord employs heuristic search to expedite rating of a data store. This expedites rating of
a data store by conducting fewer experiments than an exhaustive search. This technique makes the
following 3 assumptions about the behavior of a data store as a function ofT :

1. Throughput of a data store is either a square root function or a concave inverse parabola of
the number of threads, see Figure 7.9.a.

2. Average response time of a workload either remains constant or increases as a function of the
number of threads, see Figure 7.9.b.

3. Percentage of stale data produced by a data store either remains constant or increases as a
function of the number of threads, see Figure 7.9.c.

These are reasonable assumptions that hold true in most cases. Below, weformalize the second
assumption in greater detail. Subsequently, we detail the heuristic for SoAR and Socialites rating.
Finally, we describe sampling usingδ values (smaller than∆) to further expedite the rating process.

Figure 7.9.b shows the average response time (R̄T ) of a workload as a function ofT . With one
thread,R̄T is the average service time (S̄) of the system for processing the workload. With a handful
of threads,R̄T may remain a constant due to use of multiple cores and sufficient network anddisk
bandwidth to service requests with no queuing delays. As we increase the number of threads,R̄T
may increase due to either (a) an increase inS̄ attributed to use of synchronization primitives by the
data store that slow it down [20, 64], (b) queuing delays attributed to fully utilized server resources
whereR̄T=S̄+Q̄ andQ̄ is the average queuing delay, or both. In the absence of (a), the throughput
of the data store is a square root function ofT , see Figure 7.9.a. In scenario (b),Q̄ is bounded with a
fixed number of threads since BG emulates a closed simulation model where a thread may not issue
another request until its pending request is serviced. Moreover, asR̄T increases, the percentage of
requests observing an̄RT lower than or equal toβ decrease, see Figure 7.9.d.

The heuristic search technique to compute Socialites rating of a data store starts with an exper-
iment using one thread,T=1. If the experiment succeeds, it doubles the value ofT . It repeats this

58



process until an experiment fails, establishing an interval for the value ofT . The minimum value
of this interval is the previous value ofT that succeeded and its maximum is the value ofT that
failed. The heuristic performs a binary search ofT in this interval to compute the highestT value
that enables an experiment to succeed. This is the Socialites rating of the datastore. It is accurate
as long as Assumption 1 is satisfied, see Figure 7.9.a.

The heuristic to compute SoAR is similar to Socialites with several key differences. First,
BGCoord maintains the highest observed throughput with eachT value,λT . It stops doublingT
once an experiment produces a throughput lower thanλT (or fails to satisfy the pre-specified SLA as
is the case with the square root curve of Figure 7.9.a). This is the point denoted as2T in Figure 7.9.e.
Next, it searches the interval (T

2 , 2T ). It may not simply focus on the interval (T,2T) because the
peak throughput might be in the interval (T

2 ,T), see Figure 7.9.e. We now describe the SoAR rating
approach in more detail.

Computing the SoAR of a system, the global maxima, is a well-known problem in mathematical
optimization. One may compare it as a search space consisting of nodes where each node corre-
sponds to the observed throughput with an imposed system load (T ). The node with the highest
throughput that satisfies the pre-specified SLA identifies the SoAR of the system. To identify this
node, the BGCoord implements two techniques to navigate the search space. Both techniques as-
sume the aforementioned assumptions and are detailed in this section. This section also discusses
scenarios that violate our assumptions and suggests a possible approachto navigate the search space.

The first technique, namedOptimal, is guaranteed to compute the SoAR for the system. The
second technique, namedApproximate, is a heuristic search technique that computes the SoAR
of a system with±10% margin of error. Both techniques realize the search space by conducting
experiments where each experiment imposes a fixed load (T ) on the system to observe a throughput
that may or may not satisfy the pre-specified SLA. Each experiment is a node of the search space.
While the search space is potentially infinite, for a well behaved system, it consists of a finite
number of experiments defined by a system load (value ofT ) high enough to cause a resource such
as CPU, network, or disk to become 100% utilized. A fully utilized resource dictates the maximum
throughput of the system and imposing a higher load by increasing the valueof T (with a closed
emulation model) does not increase this observed maximum. A finite value ofT limits the number
of nodes in the search space.

Both Optimal and Approximate navigate the search space by changing the value ofT , imposed
load. Both techniques traverse the search space in two distinct phases: ahill climbing phase and a
local search phase. The local search phase differentiates Optimal from Approximate. Approximate
conducts fewer experiments during this phase and is faster. However, itsSoAR rating incurs a
margin of error and is not as accurate as Optimal. Below, we describe the hillclimbing phase
that is common to both techniques. Subsequently, we describe the local search of Optimal and
Approximate in turn.

BGCoord implements the hill climbing phase by maintaining the thread count (Tmax) that re-
sults in the maximum observed throughput (λT ) among all conducted experiments, i.e., visited
nodes of the search space. It starts an experiment using the lowest possible system load, one thread
(T = 1) to issue the pre-specified mix of actions. If this experiment fails then the rating process
terminates with a SoAR of zero. Otherwise, it enters the hill climbing phase where it increases the
thread count toT = r × T wherer is the hill climbing factor and an input to BGCoord. (See
below for an analysis with different values ofr.) It repeats this process until an experiment ei-
ther fails or observes a throughput lower than (λT ), establishing an interval for the value ofT that
yields the SoAR of the system. Once this interval is identified, the hill climbing phase terminates,
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providing the local search space with the identified interval. Below, we describe how Optimal and
Approximate navigate this interval in turn.

The local search phase inputs the limited interval identified by a starting and ending thread
count. The starting thread count isT

r2
and the ending thread count is the currentT . The peak

throughput, SoAR, may reside in either the interval (T
r2

, T
r

) or (T
r
, T ). Optimal identifies the peak

throughput as follows. It focuses onT
r

and conducts experiments withT
r2

± η threads to determine
the slope of the curve in each direction. If both slopes are negative then the pointT is the peak and
the throughput is reported as the SoAR of the data store2. Otherwise, it focuses on the interval that
contains the peak (the interval which has the increasing slope), selects themid-point of this interval
and continues to compute the slope on either of its sides to decide the interval thepeak is in and this
continues until the SoAR of the system is established.

Approximate navigates the interval identified by the hill climbing phase differently. It treats the
start of the interval as the point with the highest observed throughput among all points that have
been executed and its end as the point with the lowest thread count that failed. It then executes an
experiment with the mid-point in this interval. If this experiment succeeds and observes a through-
put higher thanλT , then the heuristic changes the start of the interval to focus on to this point and
continues the process. Otherwise, it changes the end point of the interval to be this point and contin-
ues the process until the interval shrinks to consist of no more points. TheApproximate approach
is not guaranteed to find the peak throughput (SoAR) for a system. Its margin of error depends on
the behavior of the data store and the climbing factorr. With our synthetic experiment (see below),
it produces a result that is within±10% of the true SoAR for the system. Below, we describe an
example to illustrate why Approximate incurs a margin of error.

Consider a scenario where the experiment succeeds withT
2 threads and increases the thread

count toT . With T the experiments succeeds again and observes a throughput higher thanthe
max throughput observed withT2 . Thus, the hill climbing phase increases the thread count to2T
(assuming a climbing factor of 2,r=2). With 2T , the experiment produces a throughput lower
than the maximum throughput observed before. This causes the hill climbing phase to terminate
and establishes the interval (T , 2T ) for the local search. While the local search phase of Optimal
considers an interval ranging fromT2 to 2T , Approximate considers only the intervalT to 2T . With
Figure 7.9.e, Approximate eventually selects T as the thread count for the peak throughput.

Both these techniques visit tens and hundreds of states although the SoAR for the system may
be in orders of thousands and millions. We used a quadratic function,−aT 2 + bT + c = y (a = 1
andb > 1 ), to model the throughput of a data store as a function of number of threads issuing
requests against it. The vertex of this function is the maximum throughput, SoAR, and is computed
by solving the first derivative of the quadratic function:T = b

2 . The Optimal solution and the
Approximate must compute this value as the SoAR of a system modeled using the function. We
select different values ofb andc to model diverse systems whose SoAR varies from 100 to 100
million.

Every time the BGCoord executes an experiment with a given value ofT , it maintains the ob-
served throughput in a HashMap. When exploring points in an interval, it uses this HashMap to
identify repeated experiments. It does not repeat them and simply looks uptheir observed through-
put using the HashMap. This is significantly faster than executing an experiment. Figure 7.3 shows
the number of visited states. When SoAR is 100 million, the Optimal technique conducts 54 exper-

2If the slope on both sides is positive, value ofη is increased and two new points in the intervals are
explored. This continues until the slope on one side is positive and the slope on the other side is negative, or
until there are no more points in the two intervals to be explored. With the latter the Optimal solution fails to
compute the SoAR for the system. Based on our assumptions thelatter is not possible.
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Figure 7.3: Number of experiments conducted to compute SoARusing the Optimal tech-
nique.
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Figure 7.4: Number of experiments conducted to compute SoARwith the Optimal and the
Approximate techniques.

iments to compute the value ofT that maximizes the output of the function. Ten states are repeated
from previous iterations with the same value ofT . To eliminate these, the heuristic maintains the
observed results for the different values ofT and performs a look up of the results prior to conduct-
ing the experiment. This reduces the number of unique experiments to 44. Thisis 3.14 times the
number of experiments conducted with a system modeled to have a SoAR of 500(which is several
orders of magnitude lower than 100 million).

Figure 7.4 shows the number of unique experiments executed with each of thetechniques. Fig-
ure 7.5 shows the ideal SoAR as well as the computed SoARs by the two techniques for the different
curves. As shown in Figure 7.5 the Optimal solution always computes the expected SoAR for the
system and the Approximate approach reports a value which is within±10% of the expected SoAR
value. However, in some cases the Optimal approach conducts more experiments and visits more
states in order to find the solution, see Figure 7.4. This is because for thesecases the Optimal so-
lution, executes a larger number of experiments before it discards intervals that do not contain the
peak.

The total number of visited states is computed by summing the number of experimentsexecuted
in the hill climbing phase and the number of experiments executed in the limited search phase. For
both techniques this value is dependent on the value of the climbing factor. A small climbing factor
may increase the number of experiments executed in the hill climbing phase before the search
interval is identified. Whereas a large climbing factor may increase the numberof experiments
executed in the limited search phase as it may result in a larger search interval, see Figure 7.6.
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Figure 7.5: Computed SoAR using Optimal and Approximate techniques.

Figure 7.6: The impact of the value of climbing factor on the rating, (a) small climbing
factor (b) large climbing factor.

Figure 7.7.a and 7.7.b show the impact of three different climbing factors on the number of
states visited by the Optimal and the Approximate techniques as a function of the SoAR for the
system. With these results, with a higher SoAR for the system, a larger climbing factor visitis fewer
states for both techniques.

Deciding the appropriate value for the climbing factor depends on the workload issued and the
behavior of the data store as a function ofT . One approach is to start withr = 2 and adjust its value
at the end of every experiment in the hill climbing phase. The first experiment runs withT = 1 and
observesλT1 as its throughput. Now we increase the number of threads to2T as the initial value
for r is 2 and note down the observed throughput asλT2. If λT2

λT1
> r then we increase the value of

r by a factor of two else we do not change its value.
Finally, for a system that violates our assumptions, both Optimal and Approximate may fail

to identify system SoAR. For example, Figure 7.8 shows a system where the observed throughput
is not a increasing function of system load. In such a case, both Optimal and Approximate may
become trapped in a local minima and fail to identify the peak throughput of the system. A possible
approach may resemble simulated annealing that performs (random) jumps to escape local minima.
We do not discuss this possibility further as we have not observed a system that violates the stated
assumptions.
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During its search process, BGCoord may run the different experiments with a shorter duration
(δ) than∆ to expedite the rating process,δ < ∆. Once it identifies the ideal value ofT with δ for
SoAR (Socialites), it runs a final experiment with∆ to compute the final SoAR (Socialites rating)
of a data store. A key question is what is the ideal value ofδ? Ideally, it should be small enough
to expedite the time required to rate a data store and, large enough to enable BGto rate a data store
accurately. There are several ways to address this. For example, onemay compare the throughput
computed withδ and∆ for the final experiment and, if they differ by more than a certain percentage,
repeat the rating process with a largerδ value. Another possibility is to employ a set of values forδ:
{δ1, δ2,...,δi}. If the highest twoδi values produce identical ratings, then they establish the value of
δ for that experiment. The number ofδ values in the set should be small enough to render the rating
process faster than performing the search with∆.

The value ofδ is an input to BGCoord. An experimentalist computes this value using the Delta
Analyzer, see Section 7.3. If it is left unspecified, BG uses∆ for the rating process.

7.2 Agile Loading Techniques

With those workloads that change the state of the database (its size, characteristics, or storage
space3), one may be required to destroy and reconstruct the database at the beginning of each ex-
periment to obtain meaningful ratings. To illustrate, consider an asymmetric BG workload that
generates more friendships than thawing them, resulting in a larger number offriendships among
members. Use of this kind of a workload across different back to back experiments results in each
experiment imposing an action such as List Friend for a member with a larger number of friends. If
the data store becomes slower4 as a function of the database size then the observed trends cannot be
attributed to the different amount of offered load (T ) solely. Instead, they must be attributed to both
a changing database size (difficult to quantify) and the offered load. Toavoid this ambiguity, one
may recreate the same database at the beginning of each experiment. This repeated destruction and
creation of the same database may constitute a significant portion of the rating process. As an ex-
ample, the time to load a modest sized BG database consisting of 10,000 members with100 friends
and 100 resources per member is 2 minutes with MongoDB. With an industrial strength relational
database management system (RDBMS) using the same hardware platform, this time increases to
7 minutes. With MySQL, this time is 15 minutes, see Appendix A for details. If the rating of a
data store conducts 10 experiments, the time attributed to loading the data store is ten times the
reported numbers, motivating the introduction of agile data load techniques to expedite the rating
mechanism.

This section presents the following data loading techniques. The first technique, named
Database Image Loading,DBIL, relies on the capability of a data store to create a disk image of
the database. DBIL uses this image repeatedly across different experiments. The second technique,
namedRepairDB, restores the database to its original state prior to the start of an experiment.Our
proposed implementation of RepairDB is agnostic to a data store and does not require a database
recovery technique. Depending on the percentage of writes and the datastore characteristics,
RepairDB may be slower than DBIL.

3Using workloads that insert/delete data to/from the data store, the underlying storage space of the data
store may change from the initial state in such a way that performance of an experiment may differ greatly
from a previously executed experiment.

4An example from YCSB is Workload D that inserts new records into a data store, increasing the database
size. Use of this workload across different experiments with a different number of threads causes each
experiment to impose its workload on a larger database size which may slow down a data store.
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The third technique, namedLoadFree, does not load the database in between experiments. In-
stead, it requires the benchmarking framework to maintain the state of the database in its memory
across different experiments. In order to use LoadFree, the workload and its target data store must
satisfy several conditions. One requirement is for the workload to be symmetric: It must issue
write actions that negate one another in the long run. An example symmetric workload with BG
issues Thaw Friendship (TF) action as frequently as Invite Friend (IF) and Accept Friend Request
(AFR). The TF action negates the other two actions across repeated experiments, see Section 4.1.
This prevents both an increased database size and the possible depletion of the benchmark database
from friendship relationships to thaw. See Section 7.2.3 for other conditionsthat govern the use of
LoadFree.

In scenarios where LoadFree cannot be used for the entire rating of adata store, it might be
possible to use LoadFree in several experiments and restore the database using either DBIL or
RepairDB. The benchmarking framework may use thishybrid approach until it rates its target data
store. Section 7.4 shows the hybrid approaches provide a factor of fiveto twelve speedup in rating
a data store.

The primary contribution of this section is several agile data loading techniques for use with
the cloud benchmarks. Note that the overhead of loading a benchmark database is a recognized
topic by practitioners dating back to Wisconsin Benchmark [19, 39] and 007[23, 116, 117], and by
YCSB [29] and YCSB++ [88] more recently. YCSB++ [88] describes a bulk loading technique that
utilizes the high throughput tool of a data store to directly process its generated data and store it in an
on-disk format native to the data store. This is similar to our DBIL technique. DBIL is different in
three ways. First, DBIL does not require a data store to provide such a tool. Instead, it assumes the
data store provides a tool that creates the disk image of the benchmark database once its loaded onto
the data store for the very first time. This image is used in subsequent experiments. Second, DBIL
accommodates complex schemas similar to BG’s schema. Third, DBIL does not require knowledge
about load balancing mechanisms implemented within a multi-shard data store and can be used to
load the appropriate data on each shard5. Both RepairDB and LoadFree are novel and apply to data
stores that do not support either the high throughput tool of YCSB++ orthe disk image generation
tool of DBIL. They may be adapted and applied to other benchmarking frameworks that rate a data
store similar to BG.

The following 3 sections describe an implementation of DBIL, RepairDB, and LoadFree with
BG. As shown in Figure 7.2, BG assumes BGCoord issues commands to BGClients to either create
BG’s schema, construct a database and load it, or generate a workload for the data store. We now
describe DBIL, RepairDB, and LoadFree in turn.

7.2.1 Database Image Loading

Various data stores provide specialized interfaces to create a “disk image”of the database [85].
Ideally, the data store should provide a high-throughput external tool [88] that the benchmarking
framework employs to generate the disk image. Our target data stores (MongoDB, MySQL, an
industrial strength RDBMS named6 SQL-X) do not provide such a tool. Hence, our proposed tech-

5With multi-shard MongoDB, the data is initially loaded ontothe primary shard and then chunks are
dispersed across all the shards for better load balancing. With DBIL once the disk image for each shard is
created after the load balancing is completed, the image canbe used repetitively to avoid the load balancing
process for subsequent loads which may be slow. For example with an 18 shard MongoDB and two sec-
ondaries for each shard, it takes almost 24 hours to load a social graph with 100,000 members and wait for
chunk migration/balancing to complete. with DBIL the subsequent loads were reduced to 9 minutes.

6Due to licensing restrictions, we cannot disclose the name of this system.
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7.9.a : Throughput as a function ofT 7.9.b : Average response time as a function ofT

7.9.c : Percentage of stale data as a function ofT

7.9.d :α as a function ofT 7.9.e : SoAR search space

Figure 7.9: Assumptions of BG’s rating technique.
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Figure 7.10: Comparing the loading duration for DBIL with loading duration for using BG
to construct a social graph of 100,000 members using different storage mechanisms for the
data store.

nique first populates the data store with benchmark database and then generates its disk image. This
produces one or more files (in one or more folders) stored in a file system. Anew experiment starts
by shutting down the data store, copying the files as the database for the datastore, and restarting
the data store. This technique is termed Database Image Loading,DBIL. In our experiments, it
improved the load time of MongoDB with 1 million members with 100 friends and 100 resources
per member by more than a factor of 400. Figure 7.10 compares the amount oftime it takes to load
a social graph consisting of 100,000 members using DBIL with using BG to construct the database
for a data store that stores its data on disk, an MLC SSD and a virtual disk7. The reason copying an
image of a database using DBIL is faster than constructing the social graphusing BG is because it
does a sequential read and write of a file. BG’s construction of the socialgraph is slower because
it generates members and friendships dynamically8. This may cause a data store to read and write
the same page (corresponding to a member) many times in order to update a pieceof information
(a member’s JSON object) repeatedly (modify friends). In addition, it also must construct index
structure that is time consuming9.

With DBIL, the load time depends on how quickly the system copies the files pertaining to the
database. One may expedite this process using multiple disks, a RAID disk subsystem, a RAM disk
or even flash memory. We defer this analysis to future work. Instead, in thefollowing, we assume a
single disk and focus on software changes to implement DBIL using BG.

Our implementation of DBIL utilizes a disk image when it is available. Otherwise, it first creates
the database using the required (evaluator provided) methods10. Subsequently, it creates the disk
image of the database for future use. Its implementation details are specific to a data store. Below,

7With disk and the MLC SSD the disk on the node hosting the data store becomes the bottleneck. With the
virtual disk, the CPU of the node hosting the data store becomes the bottleneck as now all the data is written
to the memory. DBIL is faster than this approach as it eliminates the overhead of locking and synchronization
on the data store.

8Constructing the social graph using BG without actually issuing calls to the data store takes less than a
second showing that BG does not impose any additional overhead while loading the social graph into the data
store.

9In addition, with MongoDB, there is also the overhead of locking and synchronization on the data store
10With BG, the methods are insertEntity and createFriendship. With YCSB, this method is insert.
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we present the general framework. For illustration purposes, we describe how this framework is
instantiated in the context of MongoDB. At the time of this writing, an implementation ofthe
general framework is available with MongoDB, MySQL and SQL-X.

We implemented DBIL by extending BGCoord and introducing a new slave component that runs
on each server node (shard) hosting an instance of the data store. (The BGClient and BGListener are
left unchanged.) The new component is namedDBImageLoaderand communicates with BGCoord
using sockets. It performs operating system specific actions such as copy a file, and shutdown and
start the data store instance running on the local node.

When BGCoord loads a data store, it is aware of the nodes employed by the data store. It
contacts the DBImageLoader of each node with the parameters specified bythe load configuration
file such as the number of members (M ), number of friends per member(φ), number of BGClients
(N ), number of threads used to create the image (TLoad), etc. The DBImageLoader uses the values
specified by the parameters to construct a folder name containing the different folders and files that
correspond to a shard. It looks up this folder in a pre-specified path. If the folder exists, DBIm-
ageLoader recognizes its content as the disk image of the target store andproceeds to shutdown
the local instance of the data store, copy the contents of the specified folder into the appropriate
directory of the data store, and restarts the data store instance. With a sharded data store, the order
in which the data store instances are populated and started may be important. Itis the responsibility
of the programmer to specify the correct order by implementing the “MultiShardLoad” method of
BGCoord. This method issues a sequence of actions to the DBImageLoaderof each server to copy
the appropriate disk images for each server and start the data store server.

As an example, a sharded MongoDB instance consists of one or more Configuration Servers,
and several Mongos and Mongod instances [84]. The Configuration Servers maintain the metadata
(sharding and replication information) used by the Mongos instances to route queries and perform
write operations. It is important to start the Configuration Servers prior to Mongos instances. It
is also important to start the shards (Mongod instances) before attaching them to the data store
cluster. The programmer specifies this sequence of actions by implementing ”MultiShardStart” and
”MultiShardStop” methods of BGCoord.

7.2.2 Repair Database

Repair Database,RepairDB, marks the start of an experiment (TStart) and, at the end of the ex-
periment, it employs the point-in-time recovery [74, 73] mechanism of the data store to restore the
state of the database to its state atTStart. This enables the rating mechanism to conduct the next
experiment as though the previous benchmark database was destroyed and a new one was created. It
is appropriate for use with workloads consisting of infrequent write actions. It expedites the rating
process as long as the time to restore the database is faster than destroying and re-creating the same
database.

In our experiments (see Section 7.4), RepairDB was consistently slower than DBIL. Hence,
RepairDB is appropriate for use with those data stores that do not providea DBIL feature (or with
those experiments where RepairDB is faster than DBIL).

With those data stores that do not provide a point-in-time recovery mechanism,the benchmark-
ing framework may implement RepairDB. Below, we focus on BG and describetwo alternative
implementations of RepairDB. Subsequently, we extend the discussion to YCSBand YCSB++.

The write actions of BG impact the friendship relationships between the membersand post
comments on resources. BG generates log records for these actions in order to detect the amount of

68



No. of friends per member (φ) Speedup Factor
10 12
100 7
1000 2

Table 7.1: Factor of improvement in load times with RepairDB when compared with re-
creating the entire database, target data store is MongoDB,M=100K,ρ=100.

unpredictable11 data during its validation phase at the end of an experiment. One may implement
point-in-time recovery by using these log records (during validation phase) to restore the state of
the database to the beginning of the experiment.

Alternatively, BG may simply drop existing friendships and posted comments andrecreate
friendships. When compared with creating the entire database, this eliminates reconstructing mem-
bers and their resources at the beginning of each experiment. The amount of improvement is a
function of the number of friendships per member as the time to recreate friendship starts to domi-
nate the database load time. Table 7.1 shows RepairDB improves the load time of MongoDB12 by
at least a factor of 2 with 1000 friends per member. This speedup is higherwith fewer friends per
member as RepairDB is rendered faster.

BG’s implementation of RepairDB must consider two important details. First, it mustprevent
race conditions between multiple BGClients. For example, with an SQL solution, one may im-
plement RepairDB by requiring BGClients to drop tables. With multiple BGClients, one succeeds
while others encounter exceptions. Moreover, if one BGClient creates friendships prior to another
BGClient dropping tables then the resulting database will be wrong. We prevent undesirable race
conditions by requiring BGCoord to invoke only one BGClient to destroy the existing friendships
and comments.

Second, RepairDB’s creation of friendships must consider the number (N ) of BGClients used
to create the self contained communities. Within each BGClient, the number of threads (Tload) used
to generate friendships simultaneously is also important. To address this, we implement BGCoord
to maintain the original values ofN andTload and to re-use them across the different experiments.

Extensions of YCSB and YCSB++ to implement RepairDB is trivial as they consist of one
table. This implementation may use either the point-in-time recovery mechanism of a data store or
generate log records similar to BG.

7.2.3 Load Free Rating

With Load Free, the rating framework uses the same database across different experiments as long
as thecorrectnessof each experiment is preserved. Below, we define correctness. Subsequently, we
describe extensions of the BG framework to implement LoadFree.

Correctness of an experiment is defined by the following three criteria. First, the mix of actions
performed by an experiment must match the mix specified by its workload. In particular, it is
unacceptable for an issued action to become a no operation due to repeateduse of the benchmark
database, see Section 5.2. For example, with both YCSB and YCSB++, a delete operation must
reference a record that exists in the database. It is unacceptable for an experiment to delete a record

11See Chapter 6 for the definition of unpredictable data.
12The factor of improvement with MySQL is 3.
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that was deleted in a previous experiment. A similar example with BG is when a database is created
with 100 friends per member and the target workload issues Thaw Friendship (TW) more frequently
than creating friendships (combination of Invite Friend and Accept FriendRequest). This may cause
BG to run out of the available friendships across several experiments using LoadFree. Once each
member has zero friends, BG stops issuing TW actions as there exist no friendships to be thawed.
This may introduce noise by causing the performance results obtained in oneexperiment to deviate
from their true value. To prevent this, the workload should be symmetric such that the write actions
negate one another. Moreover, the benchmarking framework must maintainsufficient state across
different experiments to issue operations for the correct records.

Second, repeated use of the benchmark database should not cause theactions issued by an
experiment to fail. As an example, workloads D and E of YCSB insert a record with a primary key
in the database. It is acceptable for an insert to fail due to internal logicalerrors in the data store such
as deadlocks. However, failure of the insert because a row with the samekey exists is not acceptable.
It is caused by repeated use of the benchmark database. Such failurespollute the response times
observed from a data store as they do not perform the useful work (insert a record) intended by
YCSB. To use LoadFree, the uniqueness of the primary key must be preserved across different
experiments using the same database. One way to realize this is to require the core classes of YCSB
to maintain sufficient state information across different experiments to insertunique records in each
experiment.

Third, the database of one experiment should not impact the performancemetrics computed by
a subsequent experiment. In Section 7.2, we gave an example with YCSB andthe database size
impacting the observed performance. As another example, consider BG and its metric to quantify
the amount of unpredictable reads. This metric pertains to read actions that observe either stale,
inconsistent, or wrong data. For example, the design of a cache augmenteddata store may incur
dirty reads [56] or suffer from race conditions that leave the cache and the database in an inconsistent
state [46], a data store may employ an eventual consistency [112, 103] technique that produces either
stale or inconsistent data for some time [88], and others. Once unpredictable data is observed, the
in-memory state of database maintained by BG is no longer consistent with the stateof the database
maintained by the data store. This prevents BG from accurately quantifying the amount of stale
data in a subsequent experiment. Hence, once unpredictable data is observed in one experiment,
BG may not use LoadFree in a subsequent experiment. It must employ eitherDBIL or RepairDB to
recreate the database prior to conducting additional experiments.

LoadFree is very effective in expediting the rating process (see Section7.4) as it eliminates
the load time between experiments. One may violate the above three aforementioned criterion and
still be able to use LoadFree for a BG workload. For example, a workload might be asymmetric
by issuing Post Comment on a Resource (PCR) but not issuing Delete Comment from a Resource
(DCR). Even though the workload is asymmetric and causes the size of the database to grow, if the
data store does not slow down with a growing number of comments (due to use of index structures),
one might be able to use LoadFree, see Section 7.4. In the following, we detail BG’s implementation
of LoadFree.

To implement LoadFree, we extend each BGClient to execute either inone timeor repeated
mode. With the former, BGListener starts the BGClient and the BGClient terminatesonce it has
either executed for a pre-specified13 amount of time or has issued a pre-specified number of re-
quests [29, 88]. With the latter, once BGListener starts the BGClient, the BGClient does not termi-
nate and maintains the state of its in-memory data structures that describe the stateof the database.
The BGListener relays commands issued by the BGCoord to the BGClient usingsockets.

13Described by the workload parameters.
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We extend BGCoord to issue the following additional14 commands to a BGClient (via BGLis-
tener): reset and shutdown. BGCoord issues the reset command when itdetects a violation of the
three aforementioned criteria for using LoadFree. The shutdown commandis issued once BGCoord
has completed the rating of a data store and has no additional experiments to run using the current
database.

In between experiments identified by EOE commands issued by BGCoord, BGClient maintains
the state of its in-memory data structures. These structures maintain the pendingand confirmed
friendship relationships between members along with the comments posted on resources owned by
members. When an experiment completes, the state of these data structures is used to populate
the data structures corresponding to the initial database state for the next experiment. BGClient
maintains both initial and final database state to issue valid actions (e.g., Member Ashould not
extend a friendship invitation to Member B if they are already friends) and quantify the amount of
unpredictable data at the end of each experiment, see [12] for details.

7.3 Idealδ

BG computes the SoAR and Socialite rating for a data store given a pre-specified SLA require-
ment. The SLA consists of four parameters: tolerable response time,β, percentage of actions to
observe the given response time,α, amount of unpredictable data,τ and duration for which these
requirements should hold true,∆. The duration of the rating process is a function of the num-
ber of conducted experiments and the duration of each experiment (δ). The number of conducted
experiments depends on the heuristic search process and whether the target is SoAR or Socialites
rating.

Below, we focus on SoAR and how to determine the duration of each experiment, δ. It is
undesirable to select aδ value equal to∆, i.e.,δ = ∆, because∆ is an input parameter and its value
might be large, resulting in a long rating process. The challenge is to identify avalue forδ such
that it reflects the behavior of the system withδ = ∆ and is the smallest possible value that satisfies
the following: 1) Computes the same SoAR as∆. 2) It is sufficiently long in duration to generate
the pre-specified workload. The workload generated with the idealδ should resemble the workload
that was given to the benchmark as an input (same distribution for actions).Otherwise, the numbers
observed may be incorrect because different actions may have different service times. For example,
consider a mixed workload of four actions with the following probabilities: 0.99, 0.002, 0.003,
0.005 where the first action has a service time of 1 second. With a small value of δ (i.e., δ = 1
second) and with 1 thread (T = 1), BG may only generate the first action and never have a chance
to generate other actions. This is because BG supports a closed simulation model, all other actions
have very low probabilities of reference and the service time for the first action is equal to the ideal
δ. In this case the workload generated by BG will not resemble the actual intended workload and
the results gathered may not be accurate.

3) To estimate the idealδ, we should observe the system processing the workload in asteady-
state. This state is one whose resource utilization and observed throughput donot change in time.
Hence, the observed performance will continue to hold into the future. Notethat a system reaches
the steady-state after its warm-up phase. For example, with data stores suchas CASQLs, requests
observe a higher response time during the warm up phase when the cacheis cold. Once the cache

14Prior commands issued using BGListener include: create schema, load database and create index, Exe-
cute One Experiment (EOE), construct friendship and drop updates. The EOE command is accompanied by
the number of threads and causes BG to conduct an experiment to measure the throughput of the data store
for its specified workload (by BGCoord). The last two commands implement RepairDB.
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Figure 7.11: System throughput as a function of experiment duration with different im-
posed load against the system for a fixed workload.

reaches a state that produces a constant hit rate for a workload, requests start to observe the average
response time. Thus, a steady-state is reached by requiring a ”warm-up”period that is supported by
BG. In the following discussion, we separate a discussion ofδ from the warm-up period, assuming
BG is configured with the correct duration for this period. The appropriate value forδ is both
workload and data store dependent. This value can be decided in a pre-processing phase (using the
Delta Analyzer) and then given to the BGCoord as an input parameter.

Figure 7.11 shows the observed throughput for a data store as a function of the experiment
duration with different amount of load (T ) imposed against the data store. As shown in this figure,
an increase in the thread count (T ) results in a higher observed throughput. For this workload, with
T = 16, the network on the node hosting the data store gets fully utilized resulting in the maximum
observed throughput for the system15. For all values ofT , smaller experiment durations result in
either an incorrect workload issued against the data store or and unsteady data store. However, as
we increase the experiment duration, the observed throughput from thedata store and the resource
utilization for the node hosting the data store stabilize identifying a range of acceptable values for
δ.

Next the BGCoord will useδ to conduct the rating experiments which compute the SoAR and
Socialites rating for a data store for a given workload. If the pre-processing phase fails to compute
a value forδ (δ < ∆) which satisfies the conditions above, it will pickδ = ∆ as the duration for
the rating experiments. For example, with a workload consisting of feed following actions, Share
Resource action (SR) and View News Feed action (VNF), the data set getslarger as more SR actions
are issued against the data store. The complexity of the VNF action is a function of the database
size, causing the observed throughput to change as a function of the experiment duration. This
prevents the Delta Analyzer from computing an idealδ value, see Figure 7.12. However, this is not
important for this class of experiments because one may use BG to quantify thebehavior of different

15Increasing the thread count to a value greater than 16 will not improve the observed throughout for the
system suggesting the SoAR of the system to be observed with athread count equal or lower than 16.
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7.12.a : Mixed High (11%) Write workload of Table 8.9
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7.12.b : Mixed Very Low (0.2%) Write workload of Table 8.9
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Figure 7.12: Importance of experiment duration (δ) on the throughput of MongoDB for two
different workloads of Table 8.9. With both workloads, the Delta Analyzer fails to compute
the idealδ. T is the thread count picked by the Delta Analyzer for Delta Analysis.

algorithms with one another. With these, the SoAR rating is not relevant and theDelta Analyzer
does not apply.

In Figure 7.12, with small values ofδ, the duration is not sufficiently long, the pre-specified
workload is not generated and the numbers observed in these experimentsare not accurate. As the
value ofδ increases the observed throughput decreases. This is because the number of issued SR
actions increases the size of the database and this increase impacts the response time for different
actions.

7.3.1 Delta Analyzer

The Delta Analyzer uses an iterative process to compute the ideal value ofδ. It consists of two
steps: 1) identifying the amount of load to impose on the data store which resultsin the data store
becoming 100% utilized (this load is defined by the number of threads (T ) emulating concurrent
socialites), and 2) computing the ideal value ofδ using theT computed in Step 1.

The analyzer first emulates 1 thread issuing the pre-specified workload against the data store
for duration oft seconds. t is determined as the amount of time required for the data store to
reach a steady-sate. The steady-state is identified by monitoring the data store’s behavior. This
includes monitoring both the resource utilization on the data store and its observed throughput
for the given workload in discrete windows oft′ seconds. Once the resource utilization and the
observed throughput form consecutive windows varies by less thanπ%, the experiment halts.
Next, the final resource utilization (average disk queue, network utilization, memory utilization and
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CPU utilization) on the data store is used to predict the appropriate thread count (T ) that may result
in the data store utilizing at least one of its resources completely. Next the analyzer uses BG with
T = c×T threads to impose the specified workload on the data store fort seconds (c is an inflation
factor which is used to speed up the process of finding the thread count that utilizes the data store
resources completely).

It also monitors the resource utilization on the data store to identify if its predictions were
correct and ifT results in the data store becoming fully utilized. If it does thenT is selected for the
second phase of the analysis, else the resource utilization with the currentT and the inflation factor
are used to predict the new thread count. This process continues until either the resources on the
node hosting the data store become fully utilized or the data store node’s utilization for the various
thread counts does not vary by more thanπ%. Once the value forT is decided, Delta Analyzer
conducts multiple rounds of experiments imposing a workload generated byT threads with various
durations. It starts by assigningδ = 1 second and increasesδ by a factor of two in each iteration.
The workload issued against the data store (mix of actions) and the overallthroughput for each
experiment is monitored. The issued workload is compared with the pre-specified workload and
the observed throughput is compared with the observed throughput from the previous experiments.
The minimumδ value which results in a constant overall throughput (+/-π% marginal error) form
consecutive experiments (δ values) and generates a workload similar to the pre- specified workload
will be selected as the idealδ value for the given workload and data store. For example, if the
experiments withδ = 2, 4 and 8 seconds all result in almost the same throughput and generate the
appropriate workload, thenδ = 2 second is selected as the idealδ value. Next, the BGCoord of
BG employs this value to rate the data store. Figure 7.13 and Figure 7.14 we show the behavior
of MongoDB and SQL-X in terms of observed throughput (actions/second), as a function of the
duration of the experiment (δ). TheT used by the Delta Analyzer for each experiment is available
in the image caption. ThisT is predicted to result in full resource utilization for the data store. The
ideal value forδ is highlighted in each graph. Figure 7.13.a shows 8 experiments are conducted with
different durations shown on the x-axis. In these experiments, the variation between the observed
throughput with the first six experiments was higher than the tolerable threshold chosen at 5%. The
next 3 experiments met the requirement and the one with the smallestδ (32 seconds) was chosen.
The workload in Figures 7.13.b and 7.13.c are different than those in Figure 7.13.a resulting in a
different thread count that utilizes resources completely.

In addition, the number of conducted experiments to find three consecutiveexperiments that
meet the requirements for computing the idealδ is fewer. Similar observations are shown with SQL-
X in Figure 7.14. However, with SQL-X, the number of conducted experiments with workloads
involving writes is higher.

7.4 An Evaluation

This section quantifies the speedup observed with the 3 proposed loading techniques and the Delta
Analyzer using the 10% Write workload of Table 7.3. With the data loading techniques, we consider
two hybrids: 1) LoadFree with DBIL and 2) LoadFree with RepairDB. These capture scenarios
where one applies LoadFree for some of the experiments and reloads the database in between. With
the Delta Analyzer, we focus on both a naı̈ve data loading technique and DBIL to quantify the
observed speedup.

In the following, we start with an analytical model that describes the total time required by BG
to rate a data store. Next, we describe how this model is instantiated by the data loading techniques.
Subsequently, we describe how the idealδ impacts the overall rating duration. We conclude by
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Figure 7.13: Computation of idealδ for MongoDB for three different workloads of Ta-
ble 7.3. With the List Friends workload, the Delta Analyzer picks T = 2, with the Very
Low workload, it picksT = 4 and with High it picksT = 4 as the thread count for Delta
analysis. The load imposed byT results in the network on the data store becoming 100%
utilized.
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Figure 7.14: Computation of idealδ for SQL-X for three different workloads of Table 7.3.
With the List Friends workload, the Delta Analyzer picksT = 4, with the Very Low
workload, it picksT = 4 and with High it picksT = 2 as the thread count for Delta
analysis. The load imposed byT results in the network on the data store becoming 100%
utilized.

76



Database parameters
M Number of members in the database.
φ Number of friends per member.
ρ Number of resources per member.

Workload parameters
O Total number of sessions emulated by the benchmark.
ǫ Think time between social actions constituting a session.
ψ Inter-arrival time between users emulated by a thread.
θ Exponent of the Zipfian distribution.

Service Level Agreement (SLA) parameters
α Percentage of requests with response time≤ β.
β Max response time observed byα requests.
τ Max % of requests that observe unpredictable data.
∆ Min length of time the system must satisfy the SLA.

Environmental parameters
N Number of BGClients.
T Number of threads.
δ Duration of the rating experiment.

Incurred Times
ζ Amount of time to create the database for the first time.
ν Amount of time to recreate the database in between experiments.
η Number of rating experiments conducted by BGCoord.
ω Number of times BGCoord loads the database.
Λ Total rating duration.

Table 7.2: BG’s rating parameters and their definitions.

BG Social Actions Type
List Friends Very Low High

(0.1%) Write (10%) Write
View Profile Read 0% 40% 35%
List Friends Read 100% 5% 5%
View Friends Requests Read 0% 5% 5%
Invite Friend Write 0% 0.04% 4%
Accept Friend Request Write 0% 0.02% 2%
Reject Friend Request Write 0% 0.02% 2%
Thaw Friendship Write 0% 0.02% 2%
View Top-K Resources Read 0% 40% 35%
View Comments on Resource Read 0% 0% 9.9%
Post Comment on a Resource Write 0% 0% 0%
Delete Comment from a ResourceWrite 0% 0% 0%

Table 7.3: BG workloads consisting of a mix of social networking actions used for idealδ
experiments.
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M Action DBIL RepairDB LoadFree LoadFree + DBIL LoadFree + RepairDB

100K
ζ 165 157 157 165 157
ν 8 26 0 1.9 6.4
Λ 290 481 200 228 270

500K
ζ 361 351 351 361 351
ν 10 165 0 2.5 41.2
Λ 514 2205 394 431 847

1000K
ζ 14804 14773 14773 14804 14773
ν 31 588 0 7.75 147
Λ 15188 21284 14816 14932 16433

Table 7.4: BG’s rating of MongoDB with 1 BGClient using High workload of Table 7.3,
φ=100,ρ=100,δ=3 minutes,∆=10 minutes, andη=11. All reported durations are in min-
utes. The hybrid techniques used either DBIL or RepairDB for approximately 25% of the
loading experiments.

M DBIL RepairDB LoadFree LoadFree + DBIL LoadFree + RepairDB
100K 6.8 4 9.6 8.7 7
500K 8.4 1.9 10.7 10.1 5
1000K 11.7 8 12 11.9 10.8

Table 7.5: Observed speedup (S) when rating MongoDB using agile loading techniques.

presenting the observed enhancements and quantifying the observed speedup relative to not using
the proposed techniques.

7.4.1 Analytical Model

With BG, the time required to rate a data store depends on:

• The very first time to create the database schema and populate it with data. Thiscan be
done either by using BGClients to load BG’s database or by using high throughput tools
that convert BG’s database to an on-disk native format of a data store.We let ζ denote the
duration of this operation. With DBIL,ζ is incurred when there exists no disk image for the
target database specified by the workload parametersM , P , φ, ι, ̺ andρ, and environmental
parameterN and others. In this case, the value ofζ with DBIL is higher than RepairDB
because, in addition to creating the database, it must also create its disk image for future use,
see Table 7.4.

• The time to recreate the database in between rating experiments,ν. With DBIL and Re-
pairDB,ν should be a value less thanζ. Without these techniques,ν equalsζ, see below.

• The duration of each rating experiment,δ.

• Total number of rating experiments conducted by BGCoord,η.
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• Total number of times BGCoord loads the database,ω. This might be different thanη with
LoadFree and hybrid techniques that use a combination of LoadFree with the other two tech-
niques.

• The duration of the final rating round per the pre-specified SLA,∆.

The total rating duration is:
Λ = ζ + (ω × ν) + (η × δ) + ∆ (7.1)

With LoadFree,ω equals zero. The value ofω is greater than zero with a hybrid technique that
combines LoadFree with either DBIL or RepairDB. The value ofν differentiates between DBIL
and RepairDB, see Table 7.4. Its value is zero with LoadFree16.

By settingν equal toζ, Equation 7.1 models a naı̈ve use of BG that does not employ the
agile data loading techniques described in this chapter. Such a naı̈ve technique would require 1927
minutes (1 day and eight hours) to rate MongoDB with 100K members. The thirdrow of Table 7.4
shows this time is reduced to a few hours with the proposed loading techniques.This is primarily
due to considerable improvement in load times, see the first two rows of Table 7.4. Note that the
initial load time (ζ) with DBIL is longer because in addition to loading the database it must construct
the disk image of the database.

The last six rows of Table 7.4 show the observed trends continue to hold true with databases
consisting of 500K and 1 million members. In addition, when rating a data store ifδ < ∆ is used
as the duration of each rating experiment, then the overall duration for of the rating process will
improve. An obvious question is the impact of the discussed techniques while leaving other pieces
alone relative to the naı̈ve use of BG (ν=ζ) and whenδ = ∆? Amdahl’s Law [2] provides the
following answer:

S =
1

(1− f) + f/k
(7.2)

whereS is the observed speedup,f is the fraction of work in the faster mode, andk is speedup
while in faster mode. The next two paragraphs will describe how these two factors are computed for
the speedup results shown for various agile data loading techniques and the idealδ rating duration.

With only focusing on the data loading techniques, the fraction of work donein the faster
mode is computed asf = ω×ζ

Λ , and the speedup while in faster mode is computed usingk = ζ
ν
.

With LoadFree,ν is zero, causingk to become infinite. In this case, we compute speedup using
a large integer value (maximum integer value) fork becauseS levels off with very largek values.
Figure 7.15 illustrates this by showing the value ofS as the value off with 0.92 (1 million member
database) using differentk values.

When only changing the idealδ from δ = ∆ to idealδ, the fraction of work done in the faster
mode is computed asf = η×∆

Λ . With a fixed rating duration, e.q.δ = 180 seconds,f will be
computed asf = η×180

Λ . Similarly,k is computed ask = ∆
δ

andk = 180
δ

respectively.
When we use both an agile data loading technique and the idealδ computed by the Delta An-

alyzer in our rating experiments, the following are used to compute the overallspeedup compared
to the näıve usage of BG withδ = ∆ sndδ = 180 seconds respectively:f = (ω×ζ)+(η×∆)

Λ and

k = (ω×ζ)+(η×∆)
(ω×ν)+(η×δ) , andf = (ω×ζ)+(η×180)

Λ andk = (ω×ζ)+(η×180)
((ω×ν)+(η×δ) .

16With LoadFree, a value ofν higher than zero is irrelevant asω equals zero.
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Figure 7.15:S as a function ofk.

Data Store Action DBIL RepairDB LoadFree LoadFree+DBIL LoadFree+RepairDB

MongoDB
ζ 165 157 157 165 157
ν 8 26 0 1.9 6.4
Λ 290 481 200 228 270

MySQL
ζ 2514 2509 2509 2514 2509
ν 4.7 1206 0 1.2 302
Λ 2613 15816 2552 2571 5868

SQL-X
ζ 158.5 153.5 153.5 158.5 153.5
ν 5 30 0 1.3 7.5
Λ 253 525 197 214 279

Table 7.6: BG’s rating of MongoDB, MySQL and SQL-X with 1 BGClientusing High
workload of Table 7.3,M=100K,φ=100,ρ=100,ω=11,δ = 3 minutes,∆ = 10 minutes,
andη=11. All reported durations are in minutes. The hybrid techniques used either DBIL
or RepairDB for approximately 25% of the loading experiments.

7.4.2 Observed Speedup with Load Techniques

Table 7.5 shows the observed speedup (S) for the experiments reported in Table 7.4. LoadFree
provides the highest speedup followed by DBIL and RepairDB. The hybrid techniques follow the
same trend with DBIL outperforming RepairDB. Speedups reported in Table7.5 are modest when
compared with the factor of improvement observed in database load time between the very first and
subsequent load times, compare the first two rows (ζ andν) of Table 7.4. These results suggest the
following: Using the proposed techniques, we must enhance the performance of other components
of BG to expedite its overall rating duration. (It is impossible to do better than a zero load time of
LoadFree.) A strong candidate is the duration of each experiment (δ) conducted by BG. Another is
to reduce the number of conducted experiments by enhancing BG’s heuristic search technique.

Reported trends with MongoDB hold true with both MySQL and an industrial strength RDBMS
named17 SQL-X. The time to load these data stores and rate them with 100K member database is

17Due to licensing restrictions, we cannot disclose the name of this system.
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Data Store DBIL RepairDB LoadFree LoadFree+ DBIL LoadFree+ RepairDB
MongoDB 6.8 4 9.6 8.7 7
MySQL 11.6 1.9 11.8 11.8 5
SQL-X 7.6 3.6 9.6 9 6.8

Table 7.7: Observed speedup (S) when rating MongoDB, MySQL and SQL-X with
M=100K for High workload of Table 7.3.

shown in Table 7.6. While SQL-X provides comparable response time to MongoDB, MySQL is
significantly slower than the other two. This enables BG’s rating of MySQL to observe the highest
speedups when compared with the naı̈ve technique, see Table 7.7.

7.4.3 Observed Speedup with Load Techniques and Idealδ

This section analyzes the observed speedup with theδ value computed using the Delta Analyzer,
highlighting its usefulness to expedite the rating process. We assume that 11 rating experiments are
required to compute the SoAR of the systems. We compare this with two alternativechoices ofδ.
First, whenδ is set to the SLA duration specified by the experimentalist, i.e.,δ=∆. Second, when
an experimentalist sets the value ofδ based on experience. In particular, when we first started using
BG’s rating mechanism, we quickly converged on 180 seconds as sufficiently long to rate different
data store effectively, i.e.,δ=180 seconds. The following considers these alternative choices ofδ
values with both the DBIL technique and a naı̈ve technique that re-loads the database each time.
Table 7.8 shows the parameters used for the analytical model for both MongoDB and SQL-X with
a social graph of 10,000 members.

Figure 7.16 shows the observed speedup observed with MongoDB usingthe analytical models
of Section 7.4.1. Its x-axis shows different SLA durations (∆) ranging from 3 minutes to 10 hours.
The y-axis shows the observed speedup. The speedup is most dramatic with thedelta computed by
the Delta analyzer because it computes a value of 4 seconds forδ, see Figure 7.16.a. In this figure,
as the value of∆ increase on the x-axis, the duration of each experiment becomes longer with both
DBIL and näıve. With the Delta Analyzer the duration of each experiment is kept constantat 4
seconds, enhancing the observed speedup. The gains are more significant with DBIL because the
time to recreate the database at the beginning of each experiment is significantly faster than that
with näıve, 50 seconds versus 11 minutes.

Figure 7.16.b shows the scenario where the value ofδ is kept constant at 180 seconds. As the
duration specified by the SLA increases, the observed speedup dropsbecause the portion of work
that does not benefit from a shorter experiment time dominates, see Equation 7.2. These results
highlight the importance of using Delta Analyzer to compute the duration of eachexperiment instead
of either estimating it or defaulting to the SLA duration.

Figure 7.17 shows the observations made with MongoDB hold true with the SQL-X system.
Figure 7.18 compares the speedup observed with both SQL-X and MongoDB as a function of the
duration specified by SLA and used as the duration of each experiment,δ=∆. The observed speedup
is higher with MongoDB because its database creation time at the beginning of each experiment is
faster. Thus, the fraction of work that benefits from the use ofδ computed using the Delta Analyzer
is more dominant, see Equation 7.2.
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Data store ζ (secs) ν (secs) using DBIL idealδ (secs) for Very Low (0.1%) Writes
workload of Table 7.3

MongoDB 686 50 4
SQL-X 491 300 64

Table 7.8: Parameters used for speed up evaluation for a social graph with 10,000 members.
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Figure 7.16: Speedup computed with MongoDB when comparing the use of idealδ for
rating vs. the use of twoδ values for two loading techniques: DBIL and naı̈ve. Table 7.8
shows the parameters used for this computation. To generatethe graphs the following
values were assigned to∆: 3, 6, 10, 12, 60, 600 minutes. The Very Low (0.1%) Write
workload of Table 7.3 was used for these experiments.
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Figure 7.17: Speedup computed with SQL-X when comparing theuse of idealδ for rating
vs. the use of twoδ values for two loading techniques: DBIL and naı̈ve. Table 7.8 shows
the parameters used for this computation. To generate the graphs the following values were
assigned to∆: 3, 6, 10, 12, 60, 600 minutes. The Very Low (0.1%) Write workload of
Table 7.3 was used for these experiments.
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Figure 7.18: Speedup computed with SQL-X and MongoDB when comparing the use of
the DBIL loading technique and idealδ for rating vs. the use of the naı̈ve loading technique
andδ = ∆. The following values were assigned to∆ to generate this graph: 3, 6, 10, 12,
60, 600 minutes. The Very Low (0.1%) Write workload of Table 7.3 was used for these
experiments.
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Chapter 8

BG’s Alternative Use Cases

One may use BG for a variety of purposes. This includes comparing the performance of different
data stores with one another, quantifying the tradeoffs associated with alternative design decisions
such as weak consistency techniques, characterizing the behavior of data mining algorithms in the
context of biological databases and programming paradigms and others. This chapter focuses on
the first two use case of BG. BG can be used to both compare various solutions by computing their
SoAR and Socialites rating, see Chapter 7, and study their behavior by understanding observed
trends. Comparing the performance of alternative solutions is important as itprovides the experi-
mentalist with possible inefficiencies and bugs. This will allow an application developer to pick the
solution which is better for her application and also help data store vendors improve their solutions.
In addition, understanding the behavior of a solution by analyzing trends inits observed behavior
will help an application developer to make predictions about the system behavior in various scenar-
ios and take the appropriate steps to improve the performance of her application. It will also help
data store vendors improve the functionality and behavior of their system for different scenarios.
Section 8.1 highlights the importance of physical data representation on the performance of a single
node data store. It describes the use of BG to compare and contrast various physical data models
for the data stores introduced in Chapter 1. The results gathered provideinsights about how the
data model for a single node data store can be modified to improve its performance. In addition, it
uses the obtained rating results to identify trade-offs between the different data stores for its various
workloads.

Section 8.3, emphasizes on the use of BG to study the scalability claims of different archi-
tectures. We first identify the factors impacting the scalability of a data store and then use those
factors to investigate their impacts, understand tradeoffs between the performances of the alterna-
tive architectures and learn about the formed bottlenecks limiting their behavior. We use the results
of our first study from Section 8.1 to select the architecture which results inthe best single node
performance for BGs workloads and utilize BG’s rating mechanism to characterize the impact of
sharding, replication, processing capability and data set size on a multi-node clustered MongoDB’s
performance.

Finally Section 8.4 uses BG to explore two alternative architectures enabling feed following
actions. Real-time computing of news feed for users is now a key feature ofmany popular social
networking systems. This computation is not trivial due to the combination of dense connection
networks, low latency requirements and high throughput for most recentand relevant activities.
Hence, developing an architecture that considers all these factors andresults in the best performance
is one of the challenging research topics. We describe each of the architectures, namely termed as
Push and Pull, in detail, and demonstrate the tradeoffs between them. Our studies focus on using
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BG to understand the factors impacting the performance of these architectures as well as the trends
in their observed behaviors.

8.1 Use of BG to Study Performance of a Single Node Data
Store

In this section, we use BG to investigate alternative physical data organization techniques to enhance
the performance of an industrial strength relational database managementsystem (RDBMS) and a
document store named MongoDB. First, we highlight the importance of physical data design and
its impact on the performance of a data store. Second, we illustrate the use ofthe BG benchmark to
evaluate alternative physical representations for a given data store. We report SoAR ratings using
one SLA: 95% of actions observing a response time equal to or faster than100 milliseconds. Given
several data organization techniques, the one with the highest SoAR (seeChapter 7) is superior.

The RDBMS represents the so-called SQL solutions that employ the join operator and imple-
ment the concept of transactions that support ACID properties. MongoDB represents systems that
employ a JSON representation of data to eliminate the join operator and scale horizontally. While
horizontal scaling is important and discussed in Section 8.3, the performance of a single node is
equally important. For example, Section 8.1.1 shows that a change in how thumbnail images (used
to display friends of a member) are managed by MongoDB enhances its SoARfrom zero to more
than seven thousand. Horizontal scalability is not a substitute for such physical data design decisions
(and vice versa).

In general, with a scalable system, the faster the performance of a single node, the fewer nodes
one needs [105]. Consider two solutions that utilize the same system. With an enhanced data design,
say A, a single node provides 10 times the performance of a basic data design B. This means a
service provider with a 1,000 node deployment using design B may provide the same performance
with 100 nodes using design A. This lowers hardware cost, rack space,cooling requirement, and
power consumption. More significantly, if each node fails on average every three years, then design
B will see a failure every day, while design A will see a failure less than onceevery 2 weeks.

The data design techniques that we investigate are as follows. First, we analyze alternative
designs to store and retrieve images. Many social networking sites store and retrieve the profile
image of a user and the thumbnail image of their friends. With the RDBMS, we analyze whether
these images should be stored as files in the file system, as a BLOB in the RDBMS,or a hybrid
of the two. With MongoDB, we investigate the use of its Grid File System (GridFS), thumbnails
as an array of bytes in the member document, and as files in the file system. These decisions
have a profound impact on the observed system performance. With SQL-X, BG’s Social Action
Rating (SoAR) of the right design is more than forty times higher than a basic design without the
optimizations. With MongoDB, SoAR of the right design is seven thousand whilethe basic design
has a SoAR of zero.

Second, with a relational data design, we consider whether pending friend invitations and con-
firmed invitations should be stored in one table or two different tables. With each, we consider
whether a friendship should be represented as one or two rows. We observe the two table design
enhances SoAR of SQL-X by 33% when write actions occur frequently (10%). The observed differ-
ence between one and two row representation of a friendship is negligible.In addition, we consider
migrating the workload of simple analytics performed by a read action (such asshowing the number
of friends for a member) to write actions. A key negative finding here is thatmaterialized views of
our industrial strength RDBMS do not support this concept effectively. We consider an alternative
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that requires a developer to implement the analytics as columns of a row and show that it enhances
SoAR by more than a factor of two when write actions are infrequent.

Third, we analyze the use of two middle-tier caches, memcached and Ehcache, to look up the
results of social actions instead of computing by issuing queries to a data store. Both memcached
and Ehcache are in-memory Key-Value Stores (KVSs) that augment a datastore to implement two
different architectures. A central premise of our study is that there is sufficient memory to accom-
modate the entire database [66, 90]. This renders the results obtained from the cache augmented
data stores comparable with the data store in stand alone mode. Our experimental results show
Ehcache provides the highest SoAR rating. It enhances the performance of our data stores by more
than a factor of 5 when a workload utilizes the CPU of the server hosting ourdata store fully. It
enhances SoAR by more than a factor of 50 when the workload exhausts the network bandwidth
link to the server, utilizing it fully, see Section 8.1.7 for details.

BG models a database consisting of a fixed number of members (M ) with a registered pro-
file. Each member profile may consist of either zero or 2 images. With the latter, one image is a
thumbnail and the second is a higher resolution image. While thumbnails are displayed when list-
ing friends of a member, the higher resolution image is displayed when a member visits a member’s
profile. An experiment starts with a fixed number of friends (φ) and resources per member. This
section assumes a database of 10,000 members (M = 10, 000) with no pages (P = 0), 2 KByte
thumbnail images and 12 KByte profile images. We also consider larger databases with larger num-
ber of members and databases with no images. All experiments start with 100 friends and resources
per member.

An ideal physical data design is one that maximizes SoAR of a system. All SoARratings in
this section are established with the following SLA: 95% of requests observea response time of
100 milliseconds or faster with unpredictable (stale) data lower than 0.1%. Datadesigns using
materialized views and cache augmented RDBMSs may produce stale data. Theformer is because
the RDBMS may propagate updates to the materialized view asynchronously. The latter is due to
write-write race conditions between the RDBMS and the cache [46].

Figure 3.1.c shows the relational design of BG’s database. Index structures are constructed on
the appropriate attributes to facilitate efficient processing of read actions.For example, with View
Profile action referencing a member with a specific userid, say 5, a hash index facilitates efficient
retrieval of the member corresponding to this userid. Members table may storeimages as BLOBs.
Alternatives are discussed in Section 8.1.1. Computing either list of friends or pending friends
requires a join between Members and Friends table. Section 8.1.5 explores use of materialized
views and its alternatives to migrate the work of read actions to write actions forcomputing simple
analytics. We report SoAR of these designs with an industrial strength relational data store named1

SQL-X.
Figure 3.5.a shows the JSON design of BG’s database tailored for use with MongoDB. For each

memberMi, this design maintains three different arrays:

• pendingFriends maintains the id of members who have extended a friend invitation toMi.

• confirmedFriends maintains the id of members who are friends withMi.

• wallResourceIds maintains the id of resources (e.g., images) posted onMi’s profile.

One may store profile and thumbnail image of each member either in the file system, MongoDB’s
GridFS, or as an array of bytes. Figure 3.5 shows the last two choices. When images are stored in the
GridFS, the imageid and thumbnailid store the profileimageid and thumbnailimageid as attributes of

1Due to licensing agreement, we cannot disclose the identityof this system.
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the Members collection (instead of the array of bytes shown in Figure 3.5.a).Section 8.1.1 discusses
these alternatives and shows one design provides a SoAR significantly higher than the other two.

In the next 3 sections, we provide additional details about BG’s actions and their implementation
using both the relational and JSON representations. We discuss changesto the physical organization
of data and their impact on the SoAR of SQL-X and MongoDB. We analyze SoAR of SQL-X with
different mixes of actions, see Table 4.1. Post Comment and Delete Comment actions are eliminated
because we have no improved designs to offer for this action.

To simplify discussion, we classify BG’s actions into those that either read orwrite data. A read
action is one that queries data and retrieves rows without updating them. A write action is one that
either inserts, deletes, or updates rows of the RDBMS. Column 2 of Table 4.1identifies different
read and write actions.

All reported SoAR numbers are based on a dedicated hardware platformconsisting of six PCs
connected using a Gigabit Ethernet switch. Each PC consists of a 64 bit 3.4GHz Intel Core i7-2600
processor (4 cores with 8 threads) configured with 16 GB of memory, 1.5 TB of storage, and one
Gigabit networking card. One node hosts SQL-X at all times. All other nodes are used as BGClients
to generate workload for this node. With all reported SoAR values greaterthan zero, either the disk,
all cores, or the networking card of the server hosting a data store become fully utilized. We report
on use of two networking cards to eliminate the network as a limiting resource. When SoAR is
reported as zero, this means a design failed to satisfy the SLA.

8.1.1 Manage Images Effectively

There is folklore that an RDMBS efficiently handles a large number of small images, while file
systems are more efficient for storage and retrieval of large images [97]. With BG, we show physical
organization of profile and thumbnail images in a data store impacts its SoAR ratingdramatically2.
For example, if thumbnail images are not stored as a part of the profile structure representing a
member then the performance of the system for processing the List Friend (LF) action is degraded
significantly. This holds true with both MongoDB and SQL-X. Performance of SQL-X is further
enhanced when profile images are stored in the file system. The same does not hold true with
MongoDB. Below, we provide experimental results to demonstrate these observations.

The LF action of BG retrieves the thumbnail image and profile information of friends of a
member, the attributes of Member table shown in Figure 3.1.c. Figure 8.1 shows the SoAR rating
of LF with SQL-X and MongoDB with 100 friends per member. While SQL-X performs a join
between two tables (Members and Friends of Figure 3.1.c) to perform this action, MongoDB looks
up an array of member identifiers (confirmedFriends of Figure 3.1.b for thereferenced Member
JSON instance). With SQL-X, we consider thumbnails stored in either the file system or the record
representing the member. With MongoDB, we consider thumbnails stored in its Grid File System
(GridFS) or as an array of bytes in the JSON-like representation of a member. With both systems,
storing the thumbnail image as a part of the member profile enhances SoAR rating of the system
from zero to a few hundred. In these experiments, the CPU of the data store becomes 100% utilized.
It is interesting to note that, with a single node, the join operation of SQL-X is notnecessarily slower
than MongoDB’s processing of cofirmedFriends array to retrieve documents corresponding to the
friends of the member.

The performance of SQL-X for processing View Profile (VP) action of BG is enhanced when
profile images arenot stored in the RDBMS. An alternative is to store them in the file system with

2BG can be used to evaluate various physical organization of images such as storing them in an RDBMS,
in the file system or other alternative approaches like thoseimplemented within Haystack [17].
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Figure 8.2: SoAR of SQL-X for processing a workload consisting of 100% View Profile
action with images stored as either BLOBs or in the FS,M=10K,φ=100.

a member record maintaining the name of the file containing the corresponding profile image [97,
16]. Figure 8.2 shows the SoAR of SQL-X with these two alternatives for twodifferent image
sizes: 2 KB and 12 KB. (As a comparison, with no images, SoAR of SQL-X is 119,746 for this
workload.) A small image size, 2 KB, enables SQL-X to store the image inline with themember
record, outperforming the file system by a factor of 3. SQL-X limit on storingimages inline is 4
KB BLOB sizes. Beyond this, for example with 12 KB image sizes, its performance diminishes
dramatically, enabling the file system to outperform it by more than 40 folds.

MongoDB’s GridFS provides effective support for images and its SoARis comparable to the
use of the file system with profile images equal to or smaller than 12 KB. It outperforms the file
system by more than a factor of two with very large profile images, e.g., 500 KB. It is worth noting
that SQL-X outperforms MongoDB with image sizes smaller than 4 KB by inlining them in profile
records. Beyond this limit, MongoDB outperforms SQL-X. Similar to the thumbnaildiscussions, if
profile image sizes are known to be small in advance then one may inline them with MongoDB by
representing them as an array of bytes in the Members collection, see Figure 3.5.a. Key considera-
tions include MongoDB’s limit of 16 Megabyte for the size of a document and the impact of large
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Social Action One Record per Friendship Two Records per Friendship

Member 1’s SELECT count(*) FROM Friends SELECT count(*) FROM Friends
number WHERE (inviterID=1 OR inviteeID=1) WHERE inviterID = 1 AND status = ‘C’
of friends AND status=‘C’

SELECT m.* FROM Member m,
Friends f SELECT m.* FROM Member m,

Member 1’s WHERE ((f.inviterID=1 and Friends f
list of m.MemberID=f.inviteeID) OR WHERE f.inviteeID=1 and
friends (f.inviteeID=1 and f.status=‘C’ and

m.MemberID=f.inviterID)) m.MemberID=f.inviterID
and f.status = ‘C’

Member 1
invites INSERT INTO Friends values (1, 2, ’P’)
Member 2
Member 2 1. UPDATE Friends SET status = ‘C’
accepts UPDATE Friends WHERE inviterID=1 and inviteeID=2
Member 1’s SET status = ‘C’ 2. INSERT into Friends (inviteeID,
invitation WHERE inviterID=1 and inviteeID=2 inviterID, status) values (1, 2, ‘C’)
Member 2
rejects DELETE FROM Friends
Member 1’s WHERE inviterID=1 and inviteeID=2 and status=‘P’
Invitation
Member 1
thaws DELETE
friendship FROM Friends
with WHERE (inviterID=1 and inviteeID=2) OR
Member 2 (inviterID=2 and inviteeID=1) and status=‘C’

Table 8.1: One record and two record representation of a friendship with one table, Friends
table of Figure3.1.c.

documents on actions that do not require the retrieval of the profile image. For example, the List
Friend (LF) action does not require the profile image. MongoDB providesan interface to remove
some attribute values of a document while constructing a query. For example,one may query the
Members collection for a document with userid 1 and not retrieve the profile image of the qualifying
document by issuing the following expression: db.member.find({“userid”:1,“profileimage”:false}).

8.1.2 Friendship

The concept of friendship between two members is central to a social networking site. The first
column of Table 8.1 shows most of BG actions that exercise this concept. Thissection evaluates the
alternative design of data with both a relational and a JSON representation.An important consider-
ation is how to represent the thumbnail image of each member displayed when listed as a friend of
another member. This was discussed in Section 8.1.1. Hence, all SoARs presented in this section
use a BG database configured with no images.
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Social Action One Record per Friendship Two Records per Friendships

Member 1’s SELECT count(*) SELECT count(*)
number FROM Frds FROM Frds
of friends WHERE frdID=1 OR frdID2=1 WHERE frdID = 1
Member SELECT m.* FROM Member m, Frds f SELECT m.*
1’s WHERE ((f.frdID=1 and FROM Member m, Frds f
list of m.MemberID=f.frdID2) OR WHERE f.frdID1=1 and
friends (f.frdID2=1 and m.MemberID=f.frdID2

m.MemberID=f.inviterID))
Member 1
invites INSERT INTO PdgFrds values (1, 2)
Member 2
Member 2 1. DELETE FROM PdgFrds WHERE 1. DELETE FROM PdgFrds WHERE
accepts inviterID=1 and inviteeID=2 inviterID=1 and inviteeID=2
Member 1’s 2. INSERT into Frds (frdID1, frdID2) 2. INSERT into Frds (frdID1, frdID2)
invitation values (1, 2) values{(1, 2), (2,1)}
Member 2
Rejects DELETE FROM PdgFrds
Member 1’s WHERE inviterID=1 and inviteeID=2
Invitation
Member 1
thaws DELETE FROM Frds WHERE
friendship (frdID1=1 and frdID2=2) OR
with (frdID1=2 and frdID2=1)
Member 2

Table 8.2: One record and two record representation of a friendship with two tables, Frds
and PdgFrds.

8.1.3 Relational Design: A Tale of One or Two

With a relational design, one may represent pending and confirmed friendships as either one or two
tables. With each alternative, a friendship might be represented as either one or two rows. We
elaborate on these designs below. Subsequently, we establish their SoAR rating. Obtained results
show that a two table design is superior to a one table design.

Figure 3.1.c shows a one table design that employs an attribute named “status” todifferentiate
between pending and confirmed friendships: A ’C’ value denotes a confirmed friendship while a
’P’ value denotes a pending friendship. The second column of Table 8.1 shows the SQL commands
issued to implement the alternative BG actions with this design. Note the use of disjunctive (“OR”)
predicates in the qualification list of the SQL queries. A designer may simplify these queries and
eliminate their use of disjuncts by representing a friendship with two records.The resulting queries
are shown in the third column of Table 8.1. The design changes the implementationof accept
friendship (fourth row of Table 8.1) into a two SQL statement transaction. Inour implementation,
all transactions are implemented as stored procedures in SQL-X.

An alternative to the one table design is to employ two different tables and separate pending
friend invitations from confirmed invitations, see Table 8.2. This eliminates the “status” attribute
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used with the one table design. However, the data designer is still faced with the dilemma to repre-
sent a friendship either as one row or two rows in the table correspondingto the confirmed friends.
The second and third row of Table 8.2 shows the SQL commands with these two possibilities. A
key difference is that SQL queries are simpler with the two record design.

When comparing the alternative designs, the two record design requires more storage space than
the one record design. However, its resulting SQL queries are simpler to author and reason about.
With one user issuing requests (single threaded BG), the larger number ofrecords does not impact
the service time of issued queries and update commands because index structures facilitate retrieval
and manipulation of the relevant records. In a multi-user setting with a mix of read and write
actions, see Table 4.1, the two table design outperforms the one table design when the frequency of
write action is high enough to result in conflicts. Figure 8.3 shows SoAR of these two alternatives
with each friendship represented as two records. Observed SoAR with amix of very low (0.1%)
write actions is almost identical for the two designs due to the use of index structures and a low
conflict rate. With a mix of high (10%) write actions, the two table design outperforms the one table
design by more than 30%. We speculate this is due to ACID property of transactions slowing down
the one table design as it is used concurrently to process both pending andconfirmed friendship
transactions. The two table design reduces this contention among concurrently executing actions.
For example, the query to compute the number of pending friend invitations fora member no longer
competes for the same data as a transaction that thaws friendship between twomembers.

8.1.4 MongoDB: List Friends

With MongoDB, BG’s List Friend (LF) action is most interesting because it must retrieve the docu-
ments pertaining to the friends of a referenced member. These can be retrieved either one document
at a time or all documents at once. With the former, LF is implemented by issuing a query to retrieve
the basic profile information for each confirmed friend. With the latter, the entire list is used with
the $in operator to construct the query issued to MongoDB. This operatorselects all the documents
whose identifiers match the values provided in the list. With an under utilized system (a few BG
threads), the second approach provides a response that is approximately 1.5 times faster than the
first. This is because the first approach incurs the overhead of issuingmultiple queries across the
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network for each document. The SoAR of these two alternatives is almost identical because the
CPU of the server hosting MongoDB becomes 100% utilized.

MongoDB supports a host of write concerns, see [80] for details. We investigate two, termed
normalandsafein MongoDB’s documentation. Both are implemented by MongoDB’s java client.
The normal write concern returns the control once the write is issued to the driver of the client. The
safe write concern returns control once it receives an acknowledgment from the server. With a low
system load (BG with one thread), the normal write concern improves the average response time
of MongoDB by 13%. It does not, however, improve the processing capability of the MongoDB
server and has no impact on its SoAR when compared with the safe write concern. Moreover, in
our experiments, it produced a very low (< 0.1%) amount of unpredictable reads.

8.1.5 Migrate Work of Reads to Writes

Due to a high read to write ratio of social networking sites, one may enhance the average service time
of the system by migrating the workload of reads to writes. With RDBMSs, one way to realize this
is by using materialized views, MVs. Section 8.1.6 discusses this approach and shows that it slows
down write actions so dramatically that it is difficult to argue they are interactive. It presents an
alternative namedManualthat does not suffer this limitation. However, Manual requires additional
software and incurs the overhead of a development life cycle (design, implementation, debugging
and testing).

8.1.6 Read Mostly Aggregates as Attributes

Social networking sites present their members with individualized “small analytics” [104], aggre-
gate information such as count of friends. BG models these using its View Profile (VP) action that
provides each member with her count of resources, friends, and pending friend invitations. One
may implement these in two ways: 1) Compute the aggregates each time the VP action isinvoked,
2) Store the value of aggregates, look them up to process VP, and maintain them up to date in the
presence of write actions that impact their value. An example SQL query thatimplements the for-
mer, termedBasic, is illustrated in the first row of Table 8.1. The latter migrates the workload of
read actions to write actions. It is appropriate when write actions are infrequent, Below, we present
two alternatives to implement the second approach.

One may use Materialized Views (MVs) of SQL-X to store the value of BG’s simple analytics
and require the RDBMS to maintain their value up to date. This was implemented as follows. First,
we define one MV for each aggregate of the VP action. The resulting 3 views have two columns:
userid and the corresponding aggregate attribute value. Next, we authoran MV that joins these
three views with the original Member table (using the userid attribute value), implementing a table
that consists of each member’s attributes along with 3 additional attribute valuesrepresenting each
aggregate for that member. This table is queried by the VP action to look up the value of its simple
analytic instead of computing it.

One may configure SQL-X to refresh MVs either synchronously or asynchronously in the pres-
ence of updates. The asynchronous refresh is in the order of hours, causing the MV to contain stale
data. BG quantifies these asunpredictablereads. Below, we discuss this in combination with the
observed SoAR.

With no profile image and a read workload that invokes the VP action only, the authored MV
improves SoAR of SQL-X by more than factor of 6 from 19,020 to 119,746 actions per second.
With a workload the performs infrequent (0.1%) writes, asynchronous mode of processing updates
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enables MVs to enhance SoAR of SQL-X by almost a factor of two, see Figure 8.4. However, this
causes 31% of reads actions to observe unpredictable (stale) data. Theamount of unpredictable data
increases to 72% with a high frequency (10%) of write actions, enhancingSoAR of SQL-X by a
modest 11%.

The synchronous refresh mode of MVs eliminates unpredictable data. However, as shown in
Figure 8.4, it degrades SoAR of SQL-X significantly. This is because it slows down write actions
dramatically. As an example, the service time of the Accept Friend Request write action is slowed
down from 1.7 millisecond to3 1.94 seconds with an under-utilized system, i.e., one BG thread.
These service times are not interactive, rendering MVs inappropriate for BG’s workload.

An alternative to MVs, namedManual, is for a software developer to implement aggregates
as attributes by extending the Member table with 3 additional columns, one for each aggregate.
When a member registers a profile, these attribute values are initialized to zero.The developer
authors additional software (either in the application software or in the RDBMS in the form of
stored procedures and triggers) for the write actions that impact these attribute values to update
them by either incrementing or decrementing their values with one. For example,the developer
extends a write action that invites Member 1 to be friends with Member 2 to increment the number
of pending friends for Member 1 by one as a part of transaction that updates the Friends table, see
Section 8.1.2.

Manual speeds up the VP action by transforming 4 SQL queries into one. The four queries in-
clude retrieval of the referenced member’s profile attribute values, count of friends, count of pending
friend invitations, and count of resources. In our experiments, Manual enhanced SoAR of SQL-X
for processing the VP action by the same amount as MVs. When write actions are infrequent (0.1%),
Manual enhances SoAR of SQL-X by almost a factor of two and outperforms MVs, see Figure 8.4.
With frequent (10%) write actions, Manual continues to outperform MV. However, its SoAR is two
times lower than Basic due to the overhead of write actions updating attributes in atransactional
manner with ACID properties. Note that response time of write actions remains interactive with
Manual, faster than 2 milliseconds with an underutilized system.

3A 1,141 fold slow down.
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8.5.a) Client-Server (CS) 8.5.b) Shared Address Space (SAS)

Figure 8.5: Alternative cache augmented SQL architectures.

Basic Basic Boosted Boosted memcached Ehcache
SQL-X MongoDB SQL-X MongoDB

No Image 0.1% Write 12,322 12,097 33,694 11,434 55,634 271,760
10% Write 13,976 8,492 28,503 8,222 49,006 286,260

12 KB Profile 0.1% Write 305 0 11,820 8,451 11,888 147,845
Image 10% Write 300 0 10,977 6,385 10,271 144,672

Table 8.3: SoAR of alternative designs for two write workload of Table 7.3 for 10,000
members.

A draw back of Manual is the additional software and its associated software development life
cycle (design, implementation, testing and debugging, maintenance). Its key advantages include
interactive response times for both the read and write actions with no unpredictable reads.

8.1.7 Cache Augmented Database Management Systems, CADBMS

With both MongoDB and SQL-X, a developer may avoid issuing queries to the data store by caching
its output,value, given its unique input,key. This is the main motivation for middle tier caches [62,
27, 118, 38, 36, 68, 5, 6, 91, 56]. This section focuses on a specificsubclass that employs in-
memory Key-Value Stores (KVS) with a simple put, get, delete interface. Its usecase is as follows.
The developer modifies each read action to start by converting its input to a key. Next, it looks up
the KVS for a value. If the KVS returns a value then the value is produced as the output of the action
without executing the main body of the read action which issues data store queries. Otherwise, the
body of the read action executes, issues data store queries to compute a value (i.e., output of the
read action), stores the resulting key-value pair in the KVS for future use, and returns the output to
BG.

The developer must modify each write action to invalidate key-value pairs thatare impacted
by its insert, delete, update command to the data store. For example, the write action that enables
Member 1 to accept Member 2’s friendship request must invalidate 5 key-value pairs. These corre-
spond to Member 1’s profile, list of friends and list of pending friends, and Member 2’s profile and
list of friends.
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Basic Basic Boosted Boosted
SQL-X MongoDB SQL-X MongoDB

No Image 0.1% Write 15,593 11,715 22,512 11,312
10% Write 3,477 8,541 7,388 8,913

12 KB Profile 0.1% Write 201 0 5,487 8,137
Image 10% Write 198 0 3,509 6,574

Table 8.4: SoAR of alternative designs for two write workload of Table 7.3 for 100,000
members.

The maximum number of unique key-value pairs is a function of the number of members and
read actions. With a database of 10,000 members, the View Profile action of BGmay populate
the KVS with 10,000 unique key-value pairs. With all six read actions of BG, see Table 4.1, the
KVS may consist of a maximum of 60,000 unique key-value pairs. The KVS mayconsist of fewer
key-value pairs because BG may not reference some members due to our use of the Zipfian distri-
bution [13] of access to pick userids.

There are two categories of in-memory KVSs: Client-Server (CS) and Shared Address Space
(SAS), see Figure 8.5. With CS, the application server communicates with the cache via message
passing. A popular CS KVS is memcached [77]. With SAS, the KVS runs in the address space of
the application. Examples include Terracotta’s Ehcache [108] and JBossCache [22]. SAS KVSs
implement the concept of a transaction to atomically update all replicas of a key-value in different
application instances. Both CS and SAS architectures may support replication of key-value pairs and
implement consistent hashing to enhance availability of data and implement elasticity. A discussion
of these topics is a digression from our focus. Instead, we focus on theperformance of a single
cache instance. With memcached, the cache server is a process hosted ona different server than the
one hosting the data store. With Ehcache, the cache instance executes in theaddress space of the
BGClient.

In the following, we focus on the impact of the KVS with a very low (0.1%) and ahigh (10%)
frequency of writes. With these workloads, both MongoDB and SQL-X provide comparable SoARs
as either the CPU or network bandwidth of the server hosting the KVS becomes 100% utilized.
Hence, without loss of generality, we present SoARs observed with SQL-X using either memcached
or Ehcache.

Table 8.3 presents SoAR of the alternative designs when the database is configured with either
no images or 12 KB profile image sizes with two different mixes of workloads. These results
show Ehcache provides the highest SoAR, outperforming memcached by more than a factor of 13
(5) with images (no images). This is because it runs in the same address space as the BGClient,
avoiding the overhead of transmitting key-value pairs across the network and deserializing them. In
these experiments, the four core CPU of the server hosting BGClient (andthe Ehcache) becomes
100% utilized, dictating the overall system performance. (This bottleneck explains why there is
no difference between SQL-X and MongoDB once extended with Ehcache.) It is interesting to
note that the SoAR of Ehcache with 12 KB images is almost twice lower than that withno images.
This is due to network transmission of images for invalidated key-value pairs,increasing network
utilization from 30% to 88%.

With memcached, the four core CPU of its server becomes 100% utilized when there are no
images, dictating its SoAR rating. With 12 KB profile images, the network bandwidthbecomes
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100% utilized dictating SoAR of memcached. In these experiments, memcached could produce
key-value pairs at a rate of 2 Gbps as its server was configured with two Gbps networking cards.

8.1.8 A Comparison of Alternative Designs

In addition to presenting SoAR of memcached and Ehcache, Table 8.3 showsSoAR of the Basic
SQL-X and MongoDB data designs when compared with their Boosted alternatives. Boosted incor-
porates all of the best practices presented in the previous sections except for the use of caches4. With
both SQL-X and MongoDB, the Basic data design is inferior to the Boosted alternative because it
is inefficient and utilizes its 4 core CPU fully.

With Boosted and no images, the CPU of the server hosting the data store becomes 100%
utilized, dictating its SoAR. This is true with both SQL-X and MongoDB and the two workloads,
0.1% and 10% frequency of writes. These results suggest SQL-X processes BG’s workload more
efficiently than MongoDB because its SoAR rating is two folds higher.

With 12 KB profile images, both SQL-X and MongoDB continue to utilize their CPU fully with
the Basic data design. With Boosted, the network becomes 100% utilized and dictates their SoAR
rating. Table 8.4 compares the SoAR rating for the Basic and Boosted designs of MongoDB and
SQL-X for a social graph with 100,000 members (M = 100, 000). With the Basic design and no
images, for both SQL-X and MongoDB the CPU of the node hosting the data store becomes the
bottleneck. With images, for MongoDB the CPU continues to be fully utilized but with SQL-X the
disk becomes the bottleneck. With the Boosted design and without images, network of the SQL-X
server becomes the bottleneck, whereas with MongoDB the CPU of the data store node becomes
100% utilized. With images, for both Boosted SQL-X and Boosted MongoDB thenetwork becomes
the bottleneck.

4The presented SoAR for memcached and Ehcache use the Boosteddata design.
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8.2 Use of BG to Study Scalability of a Data Store

In recent years a number of new systems have been designed which provide scalability for simple
read/write operations such as the operations in social networks. The design of these systems is
optimized for different workloads and is impacted by the following tradeoffs[29] that may impact
the scalability of data stores.

• Read vs. write performance: In a social networking application, it is difficult to predict which
data will be read or written next. A higher read throughput can be achieved by either moving
the work of reads to writes or by using cache augmented architectures [47].

• Performance vs. durability: Writes may either be synchronized to disk before the system
returns success to the user or stored in memory and flushed to disk at a latertime [29]. The
advantage of the latter is enhanced system performance. Its disadvantage is possible data loss
(non flushed writes) in the presence of failures. If writes are performed asynchronously, they
may produce unpredictable data [112].

• Performance vs. consistency: According to the CAP theorem, distributed systems cannot
satisfy consistency and availability in the presence of network partitions. Many of today’s
data stores utilize weaker consistency techniques such as eventual consistency to synchronize
replicas. Replication is used to improve availability, prevent data loss, and enhance perfor-
mance. Eventual consistency mode avoids high write latency by allowing replicas to be out
of synch, resulting in users observing unpredictable data.

• Data model: Flexible data models used in NoSQL solutions simplify upgrading the appli-
cation to support new entities and enhance scalability of a data store by providing a simple
schema and a put/get interface with less overhead.

• Row-based vs. column-based representation: In row-based storage, all of a record’s fields are
stored contiguously on disk. With column-based storage, different columns can be stored sep-
arately on different servers. Row-based storage supports efficient access to an entire record
and is ideal if we typically access a few records in their entirety. Column-based storage is
more efficient for accessing a subset of the columns from multiple recordstogether.

Rick Cattell in his paper [25] does a survey of more than 20 scalable data stores and their
characteristics, and claims that although the performance on a single multicorenode is important,
a key feature of these systems is their shared nothing horizontal scaling architecture which enables
them to complete a large number of simple read/write operations per second. Healso points out
at the scarcity of benchmarks to evaluate and compare the scalability of thesedata stores with one
another.

BG is a data store agnostic benchmark which can be used to evaluate the scalability claims
of various data stores and compare them with each other in a fair manner. BG’s shared nothing
architecture, see Section 4.3, makes it a perfect choice for evaluating theperformance of various
scalable data stores with increased capabilities. In this section we use BG to examine the scala-
bility characteristics of MongoDB for the simple operations of Web 2.0 [79] applications such as
social networking systems. By simple operations, we refer to reads or writes that access or modify
a small amount of data from big data and do not contain complex queries, complex joins or large
table scans. A cloud service provider such as a social networking site maystart on a small set of
servers. As the number of members and their request rates increase, every tier in the stack must
scale to support additional load. This is why evaluating the scalability of data stores used in social
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networks is becoming more and more important. Understanding the scalability behavior of these
systems provide data store vendors with insights to address the limitations of theirsolution. This
can be helpful as it allows them to add features and functionality to their products to become more
competitive in their market segment and advocates different software andhardware architectures
opening several research directions that will benefit the community. In addition, application devel-
opers should consider the scalability behavior of various data stores andthe factors that impact them
for their applications in order to predict the performance of their system in different scenarios and
make decisions about how to improve it.

8.3 Scalability

In contrast to traditional RDBMSs such as SQL-X, NoSQL and NewSQL [90] data stores are de-
signed to scale to thousands and millions of users performing read and write actions. BG’s SoAR
rating is ideal to evaluate the scalability claims of these data stores. One may characterize scalability
as a function of the database size, size of a hardware platform hosting thedata store, or both. Below,
we describe each in turn.

Table 8.5 shows the SoAR of a single node with different database sizes. As we increase the
size of the social graph from 100K to 500K, the impact on a workload consisting of either the View
Profile or List Friends action is minimal. With 500K, MongoDB utilizes the available 16 GB of
memory fully. With an increase to a 1 million (1M) member social graph, the SoAR ofView Profile
drops several folds due to formation of a transient disk queue and a high(> 50%) CPU utilization.
With workloads consisting of a mix of write actions, the disk queue becomes permanent, causing the
SoAR of MongoDB to drop to zero. This also holds true with the 500K social graph. Though, the
impact is characterized by examining the percentage of actions that satisfy the SLA. For example,
with 500K and a Very Low (0.1%) write mix, BG reports 75% of actions observe a response time
faster than 100 milliseconds. This percentage drops to 50% with the 1M member social graph.

One may increase the size of a hardware platform in two ways, vertically or horizontally. The
termvertical scaling refers to increasing the resources of a single node to improve its performance.
These resources might be CPU cores, mass storage devices, amount ofmemory, and the num-
ber/capacity of networking cards. Table 8.6 shows the observed SoAR5 with a 64-bit Dell PC con-
figured with 16GB RAM and an Intel(R) Core(TM) i7-4770 CPU @3.40GHz processor, and either
one or two 1Gbps networking cards. With a read only workload that issueseither the View Profile
or List Friends action and a mixed workload consisting of Very Low (0.1%) Writes, the available
network bandwidth is the limiting resource. Thus, by increasing the number ofnetworking cards
from one to two, MongoDB scales vertically to double its SoAR with the same SLA.(We discuss
the 10% mix of write actions and why its performance does not improve as dramatically below in
the context of multiple shards for one node.)

Horizontalscaling refers to distributing both the data and the load of an application across many
servers. Its typical hardware platform is based on ashared-nothingarchitecture [106] consisting of
many nodes where each node has its own memory, CPU cores, and mass storage devices. One may
realize such a hardware platform using commodity off-the-shelf PCs. In this section, we report on

5The reported SoAR values in this section are with MongoDB version 2.4.9. Those reported in Section 8.1
are using MongoDB version 2.0.8. These two sections were written at different times and 2.4.9 was not
available when conducting the experiments reported in Section 8.1. With MongoDB version 2.0.8 using the
Dell PC, the reported SoAR with High (10%) Write would increase from 4,143 to 5,730. With the same
workload using MongoDB version 2.4.9 and the ZT PC of Section8.1, the reported SoAR with the same
workload reduces from 6,574 to 4,856. This is comparable to the numbers shown in Table 8.3.
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Very Low High
View Profile List Friends (0.1%) (10%)

Write Write
M = 100K 7,699 295 3,866 3,069
M = 500K 7,586 246 0 0
M = 1M 1,381 281 0 0

Table 8.5: SoAR Rating for single node MongoDB with three different database sizes:
100k member, 500k member and 1M member social graphs withφ = 100 andρ = 100.

Very Low High
View Profile List Friends (0.1%) (10%)

Write Write
1 Network card 7,699 295 3,866 3,069
2 Network cards 15,684 581 7,514 4,143

Table 8.6: Vertical scalability for a single node MongoDB for a fixed social graph consist-
ing of 100k members,φ = 100 andρ = 100.

the horizontal scalability characteristics of MongoDB using a cluster of 12 64-bit Dell PCs with the
same aforementioned specifications. See Table 8.5 for SoAR with one node of this cluster.

MongoDB partitions BG’s social graph across the nodes of a shared-nothing architecture in
order to scale horizontally. Its software architecture consists of three components:

1. A shard is amongodinstance that contains a subset of the database. It might be deployed
as either a standalone or a replica set. A standalone mongod instance is the primary daemon
process for the MongoDB system that processes data requests, manages data format, and
performs background management operations. A replica set consists ofoneprimarymongod
instance and one or moresecondarymongod instances. These instances are deployed on
different nodes of a shared-nothing hardware platform. They enablemultiple nodes to have
a copy of the same data, thereby ensuring redundancy and facilitating loadbalancing.

2. A mongosrouting component processes queries from the application layer, determines the
nodes (shards) with the relevant fragment of data, and routes the requests to the correspond-
ing mongod instances to process these operations. A mongos instance returns results to the
application directly.

3. A config servercomponent stores the cluster metadata. This metadata includes details about
which fragment (shard) holds which ranges of documents/chunks of data. mongos instances
communicate with the config servers and maintain a cache of the metadata for the sharded
cluster. MongoDB supports deployment of either one or three config servers. With three
config servers, the metadata across all config servers should be identical. In a production
deployment, one config server may act as a central point of failure. Hence, one may deploy
exactly three config server instances to improve data availability.

These components might be deployed in one server or across differentservers. We elaborate on
these in turn.
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With one server, one may deploy multiple shards and one mongos instance andpartition BG
benchmark’s social graph across the shards. This is most useful when a node is configured with two
or more mass storage devices. In our experiments with one mass storage device and two networking
cards, we observed the SoAR of MongoDB to improve with a High (10%) mix ofwrite actions from
4,143 with 1 shard to 6,939 with 3 shards. We attribute this 67% improvement to howMongoDB
uses a readers-writer [81] lock per shard (mongod instance). Theselocks enable concurrent read
actions to access the database simultaneously and grant exclusive access to a single write action.
With 3 mongod instances, the concurrency of the system is enhanced to improve its SoAR. We
observed no improvements in SoAR beyond 3 shards on a single node. Notethat in Table 8.5 with
1 shard and the 10% mix of write actions, no resource becomes the bottleneckas threads wait for
one another. With 3 shards, the network of the MongoDB server becomesfully utilized.

Figure 8.6.a and 8.6.b show two different deployments of the components of MongoDB. Both
deploy each shard as a replica set consisting of one primary and two secondaries assigned to dif-
ferent nodes of a 3 node shared-nothing architecture. These figures show 3 replica sets in different
colors. The primary of a replica set is denoted asSi wherei is the identity of the replica set. The
corresponding secondaries are denoted asRsi−j where the value ofj is either 1 or 2.

With both architectures, a BGClient thread opens a connection to a mongos instance and issues
all it queries to that instance. This mongos instance is co-located with a shard. When the data
referenced by the BGClient resides in a different shard, the mongos instance directs the query to the
appropriate node for processing and returns the results6. Using BG, we observed the configuration
of Figure 8.6.a to provide a slightly lower SoAR with a High (10%) mix of write actions. We
attribute this to (a) the message passing overhead between config server instances, and (b) a fully
utilized network bandwidth of each server configured with 1 Gbps networking card. Hence, we
focus on the second configuration for the rest of this section.

We analyze the impact of varying the number of nodes by analyzing the speedup and scaleup of
SoAR. These terms are defined as follows:

• SoAR Speedup: With a fix sized social graph and a workload, this metric quantifies the im-
provement in SoAR as we increase the number of nodes in the hardware platform. Ideally,
with twice as many nodes, SoAR should double. This is termed linear speedup.Speedup em-
ulates a service provider with a fixed database size that becomes popular with an increasing
number of simultaneous socialites. It evaluates whether doubling the number of nodes would
provide the same SLA with twice the number of socialites, i.e., SoAR.

• SoAR Scaleup: To quantify this metric, one increases both the size of the social graph and
the number of nodes in the hardware platform proportionally, quantifying SoAR with each
configuration. Ideally, the SoAR should either remain a constant or improve. Scaleup emu-
lates a service provider with a fixed number of socialites (members accessingthe service at
the same time) and an increasing number of members (data set size). It quantifies whether
increasing the number of nodes proportional to the size of the social graph would provide the
same SLA.

Both metrics use a base hardware platform consisting of a fixed number of nodes that is increased
in size. The choice of the hardware platform is arbitrary. Below, we illustrate the flexibility of BG
by using a base hardware platform consisting of one node to quantify SoAR speedup and a base
hardware platform consisting of 3 nodes for SoAR scaleup.

6To minimize the impact of network communication, one may host a mongos on the same node as the
BGClient.
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8.6.a Three Config Servers per deployment

8.6.b One Config Server per deployment

Figure 8.6: Two alternative deployments for a multi-node MongoDB.
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Figure 8.7: Implementing 18 MongoDB replica sets on 6 nodes.

With the experimental results of the next two sections, the mongod instances are deployed as a
replica set consisting of one primary and two secondary instances. There are three times as many
shards as nodes since the SoAR of a single node is enhanced with 3 shards. For example, with six
nodes, there are 18 replica sets as shown in Figure 8.7. We configured mongos instances to use the
secondary instances for processing read actions [83]. This results ina more balanced distribution of
workload across the nodes as a mongos instance has a choice of two nodes to process a read action.
Below, we describe SoAR speedup and scaleup in turn.

SoAR Speedup

The database size used for the base hardware platform has a significant impact on the observed
speedup. This is because the amount of data per node decreases as weincrease the number of
nodes. With a sufficiently high number of nodes, the data assigned to each node fits in the memory
of each node, boosting the performance of each node dramatically. This would result in a super-
linear speedup where withN nodes, the speedup relative to one node is higher thanN . To illustrate,
assume a base hardware platform consisting of one node with a 1M social graph and a workload
consisting of the View Profile action. Table 8.5 shows a SoAR of 1,381 with onenode. With 10
nodes and beyond, the size of the social graph per node drops below 100K members. Table 8.5
shows the SoAR of each node increases to 7,699. This is more than a 5 fold increase in SoAR of a
single node, resulting in a super linear speedup.

We decided to sidestep the impact of memory by using a social graph small enough to fit in the
memory of our base configuration consisting of one node. This is the 100K social graph of Table 8.5.
Next, we increased the size of the base configuration to 3 and 6 nodes, quantifying the SoAR of
MongoDB with each configuration. Figure 8.8 shows the speedup as function of the number of
nodes with three different workloads consisting of 100% List Friend action, 100% View Profile
action, and the High (10%) Write mix of actions. With all workloads, the networkbandwidth of the
nodes of MongoDB becomes 100% utilized, dictating its SoAR. None of the workloads observe a
linear speedup (labeled as ”‘Linear”’ in figure 8.8).
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Figure 8.8: MongoDB’s speedup as a function of the number of nodes for three workloads
for a social graph consisting of 100k members,φ = 100 andρ = 100.

Figure 8.9: MongiDB’s scale up as a function of the number of nodes and size of social
graph. For each member in the social graph,φ = 100 andρ = 100.

SoAR Scaleup

Figure 8.9 shows the observed SoAR scaleup as we increase the number of nodes of a base configu-
ration consisting of 3 nodes to 6, 9, and 12 nodes. Similar to the discussions of Section 8.3, we used
a 100K social graph with the 3 node base configuration. The size of the social graph is increased
to 200K with 6 nodes, 300K with 9 nodes, and 400K with 12 nodes. The number of friends and
resources per member is fixed at 100. Figure 8.9 shows the scaleup characteristics of MongoDB
is better than linear. This is because the network card of the nodes is 100% utilized with the base
configuration. As we increase the number of nodes, the number of networking cards increases to
enhance the performance better than linear. With all configurations, the networking cards of all
nodes were 100% utilized.

8.3.1 Discussion

Today, there is no explicit metric to compare the alternative scalable data stores with one another.
And for two systems with improved scalability one cannot decide if a system scales better than
another for a given workload. One approach to solve this problem is to develop a scalability metric
with a score (Scalability Score) that is both data store and workload dependent. With a workload,
one may use this score to reason about the scalability characteristics of a data store and compare
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different data stores with one another. A data store with the highest single node SoAR/Socialites
rating and the highest Scalability Score is most desirable.

Scalability Score Model
The Scalability Score is a numeric measurement of horizontal and vertical scalability for a sys-

tem. Consider an initial load or data set size,D1, defined by the social network characteristics such
as the number of members, number of friends per member and number of resources per member
loaded onto anN1 node data store. The peak throughput of this data store is the SoAR rating for it.
Let’s denote this rating asSD1,N1 . This system scales up ifSD1,N1 ≤ SD2,N2 . In other words, if we
increase the data set size by a factor ofk and increase the number of physical nodes hosting the data
store by a factor ofk, and if the new configuration results in an equal or higher SoAR rating, then
that system scales up. We can use this information to decide if a system is more scalable compared
to the other by computing the Scalability Score (SS) of the systems for a given workload as follows:

SS =
SD2,N2

SD1,N1

(8.1)

A system with a higherSS has better scaleup characteristics and may scale to a larger number
of nodes when compared to another system with a lowerSS score. For example, assume single
node data storesA andB provide the same SoAR rating on the same hardware platform for a given
workload and data set size. Increasing the data set size and the number of nodes hosting the data
store by a factor of two forA results in a SoAR 1.2 times higher than before. On the other hand,
increasing the data set size and the number of nodes hosting the data store by a factor of two for
B results in a SoAR 2.5 times higher than before. For these two systems,B results in a higher
Scalability Score and has better scale up characteristics.

The same discussion can be extended and applied for speedup analysis and vertical scalability.
For example, assume single node data storesA andB provide the same SoAR for a fixed workload
and data set size. When we double the amount of memory on the node hosting the data stores,A’s
SoAR rating improves by a factor of two butB’s SoAR rating improves by a factor of 1.5. In this
scenario, the Scalability Score computed for vertical scalability analysis ofA is higher than that of
B, soA provides better vertical scalability characteristics. In addition, this metric canbe used to
identify the cost effectiveness of a solution.
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8.4 Feed Following

Social networks are highly dynamic. They may grow and evolve quickly with additional members,
communication edges and appearance of new social interactions in the underlying social graph.
These services are valuable as long as they are popular among their members. This motivates
developers to constantly improve the overall user experience by introducing new social networking
actions. Examples include “Personalized Recommendations”, “Top and Hot”and “News Feed” as
described below.

• Personalized Recommendations: Personalized recommender systems help members identify
items of interest. “People You May Know” feature of Facebook suggests people on Facebook
that a user is likely to know. These may be chosen based on mutual friends,work and edu-
cation information, networks a user is a part of, contacts they have importedand many other
factors [42]. “Suggested Communities” feature of Google+ recommends communities that a
user might want to participate in [119]. These are decided based on various factors such as
communities that are related to the ones a user has created or previously joined. YouTube’s
“Recommended for You” videos suggests videos a member might like based onher previous
viewing history and its related videos [120].

These recommendations are generally made in two ways. First, by computing thesimilarity
between items (friendships, videos, communities, etc.) and recommending items related to
what the user has expressed interest or interacted with. Second, by calculating the similarity
between members in the system and recommending items that are interesting for similar
members [50].

• Top and Hot: The “Top and Hot” feature usually shows selected exemplaryand interesting
content that are spreading across the social networking system. Thesemay be breaking news,
beautiful photos, unexpected videos, etc. Examples of this feature are YouTube’s Trends dis-
playing latest trending topics and videos on YouTube and a resource fordaily insight into
what’s happening in web video [121], Google+’s Hot and Recommended feature which
helps members find and interact with popular content outside their circles shared within
Google+ [52] and Twitter’s Top Tweets which selects and re-tweets some ofthe most in-
teresting tweets spreading across Twitter [109]. These contents are generated algorithmically
derived from common metadata (similar keywords in the title, tags, description, comments
and etc.) within a set of items that are currently rising in popularity because a significant
number of people view or interact with them.

• Feed Following: In a social networking system such as Facebook, Google+ and Twitter, a
member’s “News Feed” captures the most recent events(activities) of her friends or those she
is following. In Facebook, news feed displays the latest headlines generated by the events
of a user’s friends and the pages she follows [26]. The home activity tabof Twitter [21] is
similar to Facebook’s news feed. It contains a list of the recent activity bythose members
she follows, including their tweets and whom they have chosen to follow recently. Similarly,
the Home Stream of Google+ [51] displays posts that have been shared witha member. The
displayed content might be shared specifically with the member, shared with thecircle the
member is in, or shared publicly.

Some of these actions require time consuming computations and, in some cases, use of AI
techniques while processing a large amount of data.
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We have maintained BG up to date by extending it with additional social networking actions as
they become popular. This section focuses on “Feed Following” a popularsocial action offered in
social networking systems. This action seems radically different comparedto the others offered in
a social networking system and is considered as a challenging big data application [99].

Many social networking systems allow their users to follow the events produced by other mem-
bers or entities (e.g. pages) in social networks and produce a personalized feed consisting of these
events for them. The “follow” relationship may be symmetric such as the friendship relationship in
Facebook where if MemberA and MemberB are friends, MemberA (consumer) follows/observes
the events produced by MemberB (producer), e.g., status messages and comments posted by Mem-
berB. Similarly, MemberB follows and consumes the events produced by MemberA7. This rela-
tionship is asymmetric with Twitter where MemberA may follow the tweets produced by Member
B whereas MemberB may not follow the tweets produced by MemberA [99]. The events dis-
played in the news feed for MemberA may be classified into two categories: First, events produced
by MemberB such as MemberB becoming friends with MemberC, MemberB posting a comment
on a picture uploaded by MemberD, and others. Second, events (say a comment) produced on a
content (say an image), owned by a MemberB. For example, MemberD posting a comment on a
picture uploaded by MemberB.

News Feed is personalized for each member, and there are three key factors that must be consid-
ered to produce it: What to show, in what order and when? Social networking systems must ensure
that the events available in a member’s feed are relevant, interesting and timely.For this purpose,
algorithms are designed [60, 59, 34, 35] that process thousands of potential events to identify those
that a member is most likely to engage with by viewing the event or interacting with it by liking,
sharing or commenting on it. One approach to realize this is to assign an engagement metric to each
event related to a member’s personalized feed displaying the topk most recent events with the high-
est overall engagement value for the member in some order specified by themember. Computing
a single engagement value is challenging as different types of events may have different levels of
importance. For example, posted comments may be more important compared to member likes. In
addition, members may also be more interested in events by some of the members they follow more
than those produced by others. For example, MemberA may be more interested in events produced
by her top friends. Thus, if one of her non top friend’s event production rate is significantly higher
than that of her top friends (say for the last one hour), the calculation ofthe engagement metrics
should ensure MemberA’s feed displays her top friends’ events and not only her non top friend’s
events.

The term “Social Graph” usually refers to the connections between people who participate in
a social networking service. The social graphs pertaining to social networks are massive in scale8.
In every system, there are a group of members considered asSocial members who have a high
consumption rate and retrieve their news feed frequently. On the other hand, there are a group of
members who are considered asPowermembers [57]. These members contribute significantly more
events than a typical member (higher production rate). For example, they mayproduce more friend-
ships/follower relationships, post more comments and upload more photos. Typically the Power
members constitute 20% of the members and produce approximately 80% of the events in a social
networking system [57, 55]. Thus, the Power members skew the averagelevel of event production
by members. As Power members are involved in more friendship events they are associated with a

7In Facebook users can customize their feed to not show eventsproduced by a specific user [40], they can
also edit their privacy settings to stop the display of events generated by them on a specific user’s feed [41].

8Facebook, for example, boasts (as of May 2011) 500 million unique users, each with an average of 130
friends [99].
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higher level of social support from the social network. This increases the probability of members
interacting with the events produced by them and increases the likelihood of their events appearing
on other’s news feeds9.

The performance of feed following actions (producing an event by a producer and consuming
news feed by a consumer) depends on the producer fan-in, consumerfan-out,producers’ production
rates and consumers’ consumption rates, see Section 8.4.1. And due to combination of dense con-
nection networks, skewed number of producers followed by a member10, low-latency requirements
(tens of milliseconds) for the feed following actions, extremely high event production and news feed
query rates and skewed consumption and production rates for members11, computing the news feed
for members is complicated and deciding to pre-compute or re-compute it for each member requires
complicated strategies. For example, studies show the median number of friends for a member in
Facebook is 100, the average number of photos uploaded or liked by a member is 300 [101], the
average number of comments per post is 9 [65] and the average number ofcomments on posts in
fan pages is 300 [107]. Hence, the average size for the news feed for every member is large. These
characteristics argue that re-computing the news feed query every time a member accesses it may
not always be efficient, motivating use of materialized views, caches and novel feed computing
architectures [99].

The news feed is tolerant for missing content [99]. For example, lets assume MemberA fol-
lows 100 Power members. Each Power member produces at least 1 event every three minutes.
MemberA may tolerate not seeing the last event produced by each of the producers in the last three
minutes in her feed. This means even though MemberA encounters an unpredictable read (see
Chapter 6) which can be mapped to 100 unpredictable reads (one for the event produced by each
Power producer), the application can tolerate the missing events. Thus computing the percentage of
unpredictable reads may not be a good metrics when evaluating alternative implementations of news
feed with solutions that result in unpredictable data. A better metric might be the elapsed time from
when an event is produced by a producer till the event is available for display by the consumers (in-
consistency window), see Chapter 6. When considering different members, one may aggregate this
metric as the probability of reading the freshest event (freshness confidence)t units of time after the
event was produced. This probability can be added as a new SLA requirement for the applications
and used while rating architectures, see Chapter 7. An example SLA requirement can be as follows:
95% (α = 95%) of requests observe a response time equal to or faster than 100 (β = 100 msecs)
milliseconds while at least 80% (freshness confidence) of reads observe the freshest value at most 1
minute (∆ = 1 minute) after the update.

The rest of this section describes the social graph used by BG to model thefeed following
actions discussed in Section 4.1. The objective of this section is to use BG to explore different
paradigms for feed following actions. We will mainly look into two different approaches named

9One challenge here is that studies show that a member’s friends always have more friends than the mem-
ber herself and only 10% of members have friends who on average have smaller network than theirs arguing
that member’s tend to be friends with members who are as active as them or more active in event produc-
tion (i.e. friendship) [57]. So Non-Power members who don’tproduce much events are most likely to have
friends similar to themselves making the computation of engagement metrics more challenging. And simi-
larly, Power members are most likely friends with other Power members and as event production by members
increases, there is more competition for what makes it into news feed and that makes the computation of the
engagement metrics even more challenging

10On Facebook some consumers follow over 1000 producers; others follow a few.
11Some consumers visit the social networking site constantly, triggering requests for their feed query each

time, while others visit it once a week or less often.
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PushandPull with SQL and NoSQL systems, and use BG to understand their unique characteristics
and tradeoffs in terms of throughput and response time.

8.4.1 Social Graph Characteristics and News Feed Analytical Model

Benchmarking graph-oriented applications are increasingly becoming relevant in Big Data applica-
tions, such as social networks. These applications can be representedusing aSocial Graph. The
term Social Graph is an abstract representation of the relationships between people who participate
in a social networking system. It can be illustrated by drawing a graphG(V,E), where members
are represented by vertices (V ), and their relationships are represented by directed edges (E) drawn
between the vertices which determine the fan-out and fan-ins for the vertices. In Facebook an edge
may imply a friendship (both friends consume the events produced by one another) or a following
relationship (members follow pages and consume the events produced by those pages). With the first
the consumer-producer relationship is symmetric. With the second, the relationship is asymmetric.
Twitter’s follow relationship is another example of the asymmetric relationships.

The news feed for every member only displays thek most recent events related to those a
member is following. Ideally, thesek are most relevant to the member. The news feed can be
modeled as an abstraction that assumes every news feed request for MemberA (RA), retrieves all
the recent12 events produced (C) by those members followed by MemberA in the related social
graph and then applies other filters to decide the final events displayed in MemberA’s news feed.
Assuming a directed edge from vertexA to vertexB, EA,B, indicates that MemberA follows
MemberB, news feed of MemberA is defined as:

RA =
⋃

∀EA,B∈G

CB (8.2)

WhereCB is the recent events produced by MemberB.
So when MemberA retrieves her feed all events produced by each producer that MemberA

is following is gathered and a subset of relevant events is presented to themember. With feeds,
members don’t expect to see all events from their followed producers, so a feed retrieval paradigm
can use this to drop some events and return feed query results with lower latency. In addition, as
shown in Figure 8.10, member behavior in a social networking system can bedivided based on four
criteria that further impact the development of a feed retrieval architecture. These criteria are as
follows (see Table 8.7):

• Consumption rate: which is computed as the number of times a member retrieves herfeed in
t units of time. A member who accesses her feed infrequently is referred to asa Non-Social
member and one who retrieves her feed very frequently is referred to asa Social member.

• Production rate: which is computed as the number of events produced by a member in t
units of time i.e., frequency at which friendships are formed and thawed by amember. A
member who produces events at a high rate is termed as a Power member and onewho does
not produce events frequently is termed as a Non-Power member.

• Number of producers followed (fan-out): which is computed by summing the number of
member’s friends (in a symmetric relationship) and the number of producers such as pages

12Recency may have different definitions, i.e. the last 10 events generated by a producer.
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Term Definition
Consumer Members who retrieve their news feed.
Producer Members or Pages who share resources with their followers.

These resources will be posted on their followers’ news feed.
Social Members with a high consumption rate who access their news

feed frequently.
Non-Social Members with a low consumption rate who do not access their

news feed frequently.
Power Members and Pages with a high production rate who share resources with their

followers frequently.
Non-Power Members and Pages with a low production rate who do not

share resources with their
followers frequently.

Fan-out Number of producers followed by a member.
Fan-in Number of members following a member or a page.
Super-Follower Members following more than 1,000 producers (members or pages).
Celebrity Pages with more than 1,000,000 followers.
Active Members with both a high production and high consumption rate.

Table 8.7: Terms describing members of a social network.

that she is following(in an asymmetric relationship). Members following a large number of
other members/pages (> 1, 000) are referred to as Super-Followers13.

• Number of followers (fan-in): which is computed by summing the number of member’s
friends (in a symmetric relationship) and the number of members which are following this
member (in an asymmetric relationship). Members followed by a large number of members
(> 1, 000, 000) are considered as Celebrities14.

So for a consumer with a low consumption rate the feed paradigm may predict when the member
may retrieve her feed and delay delivering events to her feed for all other times.

8.4.2 Two Feed Following Architectures

In this section we emphasize on two alternative architectures for feed following actions (View News
Feed action and Share Resource action of BG). We demonstrate that the structure of the social graph,
member activity level (exponentθ in D-Zipfian) and percentage of updates (i.e., Share Resource
action) impact the performance results. One can use the results provided inthis section to develop a
new architecture which targets each of these dimensions for an improved performance. For example
an architecture may retrieve the resources shared by a producer with a high production rate at View
News Feed query time, while the resources shared by a producer with a lowproduction rate are
pushed to members in advance [100].

13The average Facebook consumer follows 130 producers [99].
14The most popular producer on Twitter as of May 2011 is the singer Lady Gaga, with over 10 million

followers [99].
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Figure 8.10: Dimensions used for characterizing member behavior in a social networking
system.

Pull Approach

A trivial implementation of displaying a feed is to re-compute it every time a member invokes a
View News Feed (VNF) action. Every time a producer generates an eventusing the Share Resource
(SR) action of BG, its attributes such as the time of creation and list of recipients(with public
sharing, this is -1, and for private sharing the list contains the memberids ofthose members the
resource is shared with) are stored into the data store, see Figure 8.11.

When a member retrieves her feed using BG’s View News Feed action, firsta list of all producers
followed by her is queried, next the topk resources shared by them (either publicly or specifically
with this member) are retrieved and displayed in the member’s news feed (topk may be thek recent
events, or thek most relevant events and etc.).

With the pull approach, modifications to friendship relationships incur no additional overhead.
For example, assume MemberA stops following MemberB. With Pull the next time Member
A retrieves her news feed, a list of producers followed by her is retrieved. This list will no longer
contain MemberB. Next all resources shared by these producers, either publicly or specifically with
MemberA, are queried. As MemberB is no longer in the list of producers followed by MemberA,
the resources shared by MemberB will not be displayed in MemberA’s feed.

In addition, with social networking applications that allow modification to generated events
such as shared resources, once a producer updates an event produced previously (e.g. edit her status
message), the next time her followers access their feed, the updated version of the event will be
retrieved and displayed on their feed.
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8.11.a : MongoDB’s JSON-like data model

8.11.b : SQL-X’s relational data model

Figure 8.11: BG’s logical data model for feed following actions with a pull approach.

With a Pull approach, for a workload consisting of only feed following actions (SR and VNF
actions), a higher percentage of SR action, reduces the performance of the data store. This is because
higher percentage of SR actions (writes) results in a larger database as the workload executes. This
may result in a higher response time for View News Feed actions, as now the related queries are
issued on a larger data set size, see Figure 8.12. In addition, the number of members/pages followed
by a member impacts the performance of the View News Feed action with the Pull paradigm. For
members with a large fan-out (following a large number of members/pages), the VNF action will
observe a higher service time as it will retrieve a larger number of shared resources.

Figure 8.12, shows that the member activity distribution (identified by exponent θ of the D-
Zipfian distribution, see Section 4.3.1) also has an impact on the performanceof Pull. With a more
skewed distribution, the feed for the follower’s of Power producers willconsist of a larger number
of shared resources. As the VNF action retrieves the topk most recent shared resources for a
member, sorting a larger number of events for these members becomes more expensive and reduces
the performance of the system.

Push Approach

An alternative to the Pull is the Push approach. In this approach the feed for every member is pre-
computed and stored in the data store and maintained up to date upon all Share Resource actions.
So every time a producer generates an event by invoking BG’s Share Resource action, the list of

111



10 20 30 50 70 90 100 110 120 130 150

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

T

Throughput(Actions/Sec)

θ = 0.99

θ = 0.27

θ = 0.01

8.12.a : 1% Share Resource Action, 99% View News Feed Action
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8.12.c : 80% Share Resource Action, 20% View News Feed Action

Figure 8.12: Impact of member activity distribution (θ in D-Zipfian) on MongoDB’s perfor-
mance for three different workloads using a Pull architecture whenM = 10, 000, P = 100,
ι = 1, 000, ̺ = 10, φ = 100, ρ = 10. For all workloads 1% of the SR actions are issued by
pages.
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8.13.a : MongoDB’s JSON-like data model

8.13.b : SQL-X’s relational data model

Figure 8.13: BG’s logical model for feed following actions with a Push approach.

members following that producer is queried, and the shared resource is pushed (added) to these
members’ feed. Now the feed for a member is always constructed, up to dateand available for
her upon request without any additional queries. The disadvantage ofthis approach is obvious
when the relationships between consumers and producers change. Nowif a consumer decides to
stop following a producer, all the events generated by that producer need to be removed from the
consumer’s feed. On the other hand if the consumer decides to follow a newproducer, the events
generated by that producer need to be retrieved and merged with the events already present in the
member’s news feed. For example, if the friendship between Member A and Member B is thawed,
all resources shared by B should be removed from A’s feed and vice versa. And if Member B and
Member C become friends, all resources shared by B should be added toC’s feed and vice versa.

The Push approach is more effective for Social members who constantly retrieve their feed by
invoking VNF actions. For these members, using a Pull approach which recomputes the member’s
feed upon every request is not ideal. However, for Non-Social members who do not follow many
producers, reconstructing the feed upon every Share Resource action may be wasteful work and
reduce the performance of the system.

There are two alternatives for the Push approach (Figure 8.13 shows the data model used for
both alternatives with MongoDB and SQL-X). In the first alternative, the resource shared by the
producer along with all its attributes is pushed into the consumers’ feed (Push Content). In the
second approach, the reference for the shared resource by the producer is added to the consumers’
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Figure 8.14: Comparing the average response time of MongoDB for BG’s feed following
actions with two Push alternatives: Push Content and Push Reference. T = 1, M =
10, 000, P = 100, φ = 100, ρ = 10,ι = 1, 000, ̺ = 10, θ = 0.99.

feed (Push Reference). As shown in Figure 8.14 the average response time for generating events
(BG’s Share Resource action) with the Push Content is higher than the thatwith Push Reference with
MongoDB. On the other hand the average response time for retrieving feed for the Push Content
is lower than that of the Push Reference. This is because with Push Reference, upon a View News
Feed action a list of references to all shared resources that need to bedisplayed on the consumer’s
feed is retrieved. But then the actual content of each of the resourcesalso needs to be queried which
increases the average response time for the View News Feed action.

With social networking workloads that allow modifications to the events generated, the imple-
mentation that pushes the entire event to the member’s feed will perform worse as it will need to
update the event in every following consumer’s feed. In order to support applications which provide
this functionality we will use Push Reference in the rest of this document andfor our evaluations
and would refer to it as Push for simplicity.

With the Push approach and a workload that has a higher percentage of SR actions, the size of
the database as well as the size of the feed for every member increase with timeas the workload ex-
ecutes. This increase depends on the exponentθ of D-Zipfian distribution which decides members’
activity. For social graphs with very skewed distribution, where some members have both a very
high production and consumption rate,Active members, consumers following the Active members
will have a larger feed size compared to consumers not following the Activemembers (as the Active
members will share more resources and produce more data).
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Workload θ = 0.01 θ = 0.27 θ = 0.99
1% Share Resource, 99% View News Feed 347 209 17
10% Share Resource, 90% View News Feed 762 272 37
80% Share Resource, 20% View News Feed 805 679 50

Table 8.8: Impact of skewness in member activity level (exponentθ in D-Zipfian) on the
maximum number of events pushed to a member’s feed for three workloads and three
different values ofθ: 0.01, 0.27 and 0.99, whereθ=0.01 is a very skewed distribution and
θ=0.99 is considered as uniform distribution.M = 10, 000, P = 100, ι = 1, 000, ̺ = 10,
φ = 100, ρ = 10. For all workloads 1% of the SR actions are issued by pages.

In BG, each member’s activity is characterized by the D-Zipfian distribution’s exponent,θ. The
member with the highest probability of reference has both the highest production and consumption
rate. With a single BG client, BG constructs friendships such that Active members are friends
with other Active members and Non-Active members are mostly friends with otherNon-Active
members, see Chapter 5. Table 8.8 shows the impact of D-Zipfian’s exponent θ on the number of
shared resources added to the feed for the most Active member (this memberis more likely to be
friends with other active members because of the way BG constructs friendships, so is one of the
members with the largest number of shared resources in her feed).

As shown in Table 8.8 for all workloads, the more skewed the distribution is thehigher is
the maximum number of shared resources pushed into the most Active member’s feed. This is
because with a fixed number of members (i.e.M = 100) and a fixed number of Share Resource
actions (i.e. 100), with a skewed distribution, Active members will generate more events (assume
one Active member issues 80 Share Resource actions) compared to the Non-Active members (20
Share Resource actions will be issued by the remaining Non-Active members). So those members
following the Active members will have larger number of shared resourcesin their feed (maximum
of 80 events). But with a uniform (less skewed) distribution, and the same number of members and
Share Resource actions, the Share Resource actions will be divided evenly across all the members
and the number of events pushed into each member’s feed will be fewer thanthe skewed distribution
scenario. The figure also shows that with a higher percentage of ShareResource actions the number
of shared resources pushed into the most Active member’s feed will increase. This is because a
higher percentage of Share Resource action results in higher number oftotal shared resources.

With BG and MongoDB, there are two alternative implementations for the Push client referred
to asPushandSorted Insert Push. With the former, every time a Share Resource action is invoked
by a producer, the shared event is pushed to the news feed for all the followers of that producer.
When a View News Feed action is invoked by a member, the entire news feed for the member is
retrieved by the application and the topk is computed and displayed to the member. With the latter,
every time a Share Resource action is invoked by a producer, the sharedresource is pushed into the
news feed for all her followers in a sorted manner (depending on the ordering required by the View
News Feed action). Now when a member tries to view her news feed, the topk shared resources
from her feed are retrieved and displayed in her news feed. When compared with Push, Sorted Insert
Push results in a higher average response time for BG’s Share Resource action and a lower average
response time for BG’s View News Feed action.

The skewness of member activity distribution has an impact on the performance of a data store
for various workloads for both the Push alternatives. Figure 8.15 and 8.16 show the performance of
MongoDB as a function of number of simultaneous threads (T ) issuing requests against MongoDB,
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Figure 8.15: Impact of member activity distribution (exponent θ in D-Zipfian) on Mon-
goDB’s performance for three different workloads using a Push architecture whenM =
10, 000, P = 100, ι = 1, 000, ̺ = 10, φ = 100, ρ = 10. For all workloads 1% of the SR
actions are issued by pages.
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BG Mixed Very Low Mixed High
Social Type (0.2%) (11%)
Actions Write Write
View Profile Read 0% 0%
List Friends Read 0% 0%
View Friend Requests Read 0% 0%
Invite Friend Write 0.04% 4%
Accept Friend Request Write 0.02% 2%
Reject Friend Request Write 0.02% 2%
Thaw Friendship Write 0.02% 2%
View Top-K Resources Read 0% 0%
View Comments on a Resource Read 0% 0%
Post Comment on a Resource Write 0% 0%
Delete Comment from a ResourceWrite 0% 0%
Share Resource Write 0.1% 1%
View News Feed Read 99.8% 89%

Table 8.9: Two mixes of social networking actions includingfeed following actions.

with different member activity distributions, for three different workloads. For Push, with all three
workloads, the increase in the skewness of the distribution, decreases the performance of the system
and the percentage of reduction increases as the percentage of ShareResource action increases.
This is because with a more skewed distribution constructing the feed for the consumers’ following
Active producers becomes more expensive.

For Sorted Insert Push, with lower than 10% write actions, the skewness of member activity
distribution does not impact the performance of the system. This is because with lower percent-
age of updates, the news feed for members, including those following Active members, consists
of a smaller number of items and the insertion sort is performed quickly with minimal overhead.
But as we increase the percentage of writes to 80%, the observed performance decreases with a
more skewed member activity distribution. This is because the news feed for members following
Active members contains a larger number of shared resources which slows down the insertion sort
performed while Share Resource action is invoked.

Evaluation

We now describe the experimental results we gathered by comparing the Pull,Push and Sorted
Insert Push approaches described in Section 8.4.2. We examine the behavior of these models by
modifying the workload characteristics as well as the member activity distribution(exponentθ for
D-Zipfian). The metric we focus on is the throughput (actions/second) instead of the SoAR for the
system. This is because with workloads involving feed following actions the size of the database and
the SoAR of the system change depending on the duration of the rating experiment, see Section 7.3.
For this kind of workloads understanding the trends for the data store fora given workload seems
more relevant and appropriate. All experiments are executed using one BGClient and is ensured
that the benchmarking framework does not become the bottleneck.

In the first experiment we studied the performance of Pull versus Push and Sorted Insert Push
with MongoDB for two workloads consisting of both feed following actions and other BG actions
such as actions that modify friendship relationships: IF, AFR, RFR, TF, see Table 8.9. As mentioned
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Figure 8.16: Impact of member activity distribution (exponent θ in D-Zipfian) on Mon-
goDB’s performance for three different workloads using a Sorted Insert Push architecture
whenM = 10, 000, P = 100, ι = 1, 000, ̺ = 10, φ = 100, ρ = 10. For all workloads 1%
of the SR actions are issued by pages.
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Figure 8.17: Performance of Pull vs. Push and Sorted Insert Push with MongoDB for a
High (11% Write) Mixed workload of Table 8.9 for two differentmember activity distri-
butions (exponentθ of D-Zipfian). M = 10, 000, P = 100, ι = 1, 000, ̺ = 10, φ = 100,
ρ = 10. For all workloads 1% of the SR actions are issued by pages.

in Section 8.4.2 changes in friendship impact the feed for members. The firstworkload we look into
consists of 10% friendship modification actions, 1% Share Resource actionand 89% View News
Feed action.

For this workload withθ = 0.27 and a low load (T < 50) Pull performs better than Push,
see Figure 8.17.a. This is because Push needs to construct the feed forevery member upon every
update which introduces an additional overhead. With medium load (50 < T < 110) Push performs
better than Pull. This is because Push constructs the feed for every memberand as the percentage of
View News Feed action is higher than the Share Resource action, Push results in a better response
time for retrieving feed for consumer’s following Active producers and abetter overall performance
compared to Pull. With a high load (T > 110), once again Pull performs better than Push as with an
increased number of updates the overhead of constructing member feed increases (as Push retrieves
the entire feed and then computes the topk). With the same workload and a uniform distribution
(θ = 0.99) Pull performs better than Push. This is because now all members have the same activity
level and pre-computing the news feed for members will be less efficient compared to re-computing
it, see Figure 8.17.b.

As shown in Figure 8.17, the performance of Sorted Insert Push is both lower than Pull and
Push for different member activity distributions. This is because every time an update occurs (SR
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Figure 8.18: Performance of Pull vs. Push with MongoDB for a Very Low (0.2% Writes)
Mixed workload of Table 8.9 for two different member activity distributions (exponentθ
of D-Zipfian). M = 10, 000, P = 100, ι = 1, 000, ̺ = 10, φ = 100, ρ = 10. For all
workloads 1% of the SR actions are issued by pages.

action is invoked or BG’s friendship modification actions are invoked), the resources displayed for
a member’s feed need to be recomputed and sorted which reduces its performance.

We also compared the performance of Pull, Push and Sorted Insert Pushwith MongoDB for a
workload consisting of a low percentage of BG’s friendship modification actions, see Table 8.9. This
workload consists of 0.1% BG’s friendship modification actions (IF, AFR, RFR, TF), 0.1% Share
Resource action and 99.8% View News Feed action. As shown in Figure 8.18, for this workload
both with a skewed and a uniform member activity distribution, Pull results in a better performance
compared to Push and Sorted Insert Push. This is because the percentage of Share Resource action
is so low that the database size and feed size for members do not increase quickly. Also, Push
and Sorted Insert Push need to reconstruct member feeds when friendships are modified which
introduces additional overhead and reduces their performance compared to Pull.

In our next set of experiments we set the number of friends per member to 10, 100 and 1,000 and
evaluated the performance of Pull, Push and Sorted Insert Push architectures for a fixed workload
with MongoDB.φ = 1000 emulates Super-Follower members, see Table 8.7. For all values ofφ,
Pull performs better than Push and Sorted Insert Push as it eliminates the overhead of pre-computing
member’s feed. But as shown in Figure 8.19 the difference between the alternatives decreases as the
value ofφ increases. This is because with a larger value forφ, a member follows a larger number of
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Figure 8.20: Impact of modifying the number of followers perpage (ι) on the performance
of Pull and Push with MongoDB for a workload consisting of 1% Share Resource action
and 99% View News Feed Action.M = 10, 000, P = 100, φ = 100, ρ = 10 andθ = 0.27.
For all workloads 1% of the SR actions are issued by pages.

producers and the resources shared by them need to be retrieved andsorted to compute the member’s
feed which reduces Pull’s performance.

In addition, we looked at the impact of having 100, 1,000 and 10,000 followers per page (ι) on
the performance of Pull and Push architectures for a fixed workload withMongoDB. In BG with
a fixed value ofM andP , an increase in the value ofι results in members following 1, 10 and
100 pages (values of̺) respectively. As shown in Figure 8.20, as we increase the value ofι, the
performance of all three approaches decreases. With Push and Sorted Insert Push, this is because
every time a Share Resource action by a page is issued, the shared resource needs to be pushed into
the news feed for a larger number of followers. In addition each member follows a larger number
of members/pages, so her feed will contain a larger number of events. Computing topk for a larger
number of events is more time consuming, reducing the performance of the ViewNews Feed actions
for the members.
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Figure 8.21: Performance of MongoDB and SQL-X with Push and Sorted Insert Push for
three different workloads.M = 100, 000, P = 100, φ = 100, ρ = 10, ι = 10, 000, ̺ = 10
andθ = 0.99. For all workloads 1% of the SR actions are issued by pages.
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Figure 8.22: Performance of MongoDB and SQL-X with Pull for three different workloads.
M = 100, 000, P = 100, φ = 100, ρ = 10, ι = 10, 000, ̺ = 10 andθ = 0.99. For all
workloads 1% of the SR actions are issued by pages.
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The same trend holds true for the Pull architecture as with a fixed number of members, increase
in the number of followers per page will result in an increase in the number ofpages followed by
each member. Hence, a larger list of producers is queried to construct amember’s feed.

As show in Figure 8.20, as we increaseι from 1,000 to 10,000, the performance of Sorted Insert
Push becomes superior to that of Push. This is because with an increase inthe value ofι the number
of producers followed by each member and the size of the member’s news feed increases. With
Push every time a VNF action is invoked the entire feed is retrieved by the application, sorted and
displayed to the member. With a low percentage of updates, this introduces an overhead which is
larger than the overhead introduced by sorted insertion required for Sorted Insert Push.

Finally in the last set of experiments we studied the behavior of MongoDB andSQL-X, a re-
lational data store for three different workloads with Push, Sorted Insert Push (Figure 8.21) and
Pull (Figure 8.22) architectures. As shown in these figures for almost allexperiments, the perfor-
mance of MongoDB is superior to that of SQL-X. With SQL-X and both alternatives, the disk of
the node hosting the data store becomes the bottleneck. For Push, Sorted Insert Push and Pull, with
MongoDB the CPU of the node hosting the data store becomes the bottleneck.
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Chapter 9

Future Work

Social networks are emerging in diverse applications that strive to provide a sense of community for
their users. These diverse applications range from financial web sitessuch as online trading system
to academic institutions [1]. BG is the foundation of a benchmark to evaluate the performance of a
data store for processing social networking actions such as viewing a member’s profile, extending
a friendship request to a member, accepting a friendship request, and others as shown in Table 1.1.
BG’s current implementation is used on a daily basis to evaluate the performance of novel architec-
tures that enable high throughput, low latency data stores and provides uswith insights that enable
introduction of novel designs and implementations.

We plan to maintain BG as a state of the art benchmark. This chapter focuses on future research
directions that shape our activities towards this end. We categorize these into two: those that impact
the core design decisions of BG and those that extend it for use with other actions, applications, and
systems.

9.1 BG’s Design Decisions

9.1.1 Closed versus Open Simulation Model

BGClients generate requests using a fixed number of threadsT . Each thread emulates a random
member of a social networking site performing one of BG’s thirteen actions. The randomly selected
member is conditioned using the D-Zipfian distribution. This is termed a closed emulation model
because a thread does not emulate a new member generating a new action untilits emulation of a
current member completes. This model may include a think time between emulation of different
members issuing actions. Historically, this is a model of a financial institution with a fixed number
of tellers (ATM machines) withT concurrent customers (threads) performing financial transactions
simultaneously [54]. Example transactions might include checking account balance, withdrawing
and depositing money into an account, transferring funds between accounts, and others. These and
others are the standard OnLine Transaction Processing (OLTP) workloads emulated by the TPC-C
benchmark [54].

An open emulator is a more realistic model of a social networking site [96] (andweb sites in
general). With this model, the emulator generates requests based on a pre-specified arrival rate,
λ. This model is depicted in Figure 9.1 where a factory generates members whoissue a social
networking action independently. (A member who is performing an action is termed a socialite.)
The factory does not wait for the data store to service a request issuedby a socialite. Instead, it
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Figure 9.1: Closed and open emulation of socialites issuing actions to a data store.

generatesλ requests per unit of time using a distribution such as random, uniform, or Poisson. A
Poisson distribution results in a pattern of requests that is bursty. This meansλ is an average and
the number of simultaneous requests at an instance in time might be higher thanλ.

While the open emulator is more realistic, its design and implementation requires a careful
study. This is because today’s data stores service requests at such a high rate that the emulator
must supportλ values in the order of a million without exhausting its CPU resources. In addition
the emulator must generate requests in a burst consistent with the Poisson distribution. Evaluating
the feasibility of such an open emulator and its implementation in BG is one other future research
direction for BG.

9.1.2 Decentralized BG

BG employs a shared-nothing architecture and scales to a large number of nodes, preventing either
the CPU, network, or memory resources of a single node from limiting its request generation rate.
Its software architecture consists of one coordinator andN clients, termed BGCoord and BGClient,
respectively. In our experiments with an 8 core CPU, a multi-threaded BGClient is able to utilize
all cores fully as long as the client component of a data store does not suffer from the convoy
phenomena [20]. When the client component of a data store limits vertical scalability, as long as
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Figure 9.2: A data intensive architecture using KOSAR.

there is a sufficient amount of memory, one may execute multiple instances of BGClients on a single
node to utilize all cores. BG scales horizontally by executing multiple BGClients across different
nodes. BGCoord is responsible for initiating the BGClients, monitoring their progress, gathering
their results at the end of an experiment, and aggregating the obtained results to compute the SoAR
of a data store.

Once the BGClient instances are started, they generate requests independently with no synchro-
nization. This is made possible using the following two concepts. First, a BGClient implements
a decentralized partitioning strategy that declusters a benchmark social graph intoN disjoint sub-
graphs whereN is the number of BGClients. A BGClient is assigned a sub-graph to generate
requests referencing members of its assigned sub-graph only. While the data store is not aware of
this partitioning, the data generated and stored in the data store does correspond to theN disjoint
graphs. One may conceptualize each sub-graph as a province whose citizens may perform BG’s ac-
tions with one another only. This means citizens of different provinces may not view one another’s
profile or perform friendship actions with one another.

Second, BG employs a novel decentralized implementation of the Zipfian distribution, named
D-Zipfian [13, 63], that ensures the distribution of requests to the different members and resources
is independent ofN . Thus, the distribution of access with one node is the same as that with several
nodes. D-Zipfian in combination with partitioning of the social graph enables BG to utilizeN nodes
to generate requests without requiring coordination until the end of the experiment, see [12, 15, 13]
for details.

While BG scales to a large numbers of nodes, its two concepts may fail to evaluate some data
stores objectively. As an example, consider the architecture of Figure 9.2where an application is
extended with a cache such as KOSAR or EhCache [47]. This caching framework consists of a
coordinator that maintains which application server has cached a copy of adata item in its KOSAR
JDBC. When one application server updates a copy of the data item, its KOSARJDBC informs
the coordinator of the impacted data item. In turn, the coordinator invalidates a copy of this data
item that resides in the KOSAR JDBC of other application servers. With a skewed pattern of
access to members and a workload that exhibits a low read to write ratio, a centralized coordinator
may become the bottleneck and dictate the overall system performance. The aforementioned two
concepts employed by BG fail to cause the formation of such a bottleneck. To elaborate, each
application server references data items that are unique to itself since its assigned sub-graph is
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unique and independent of the other sub-graphs. Hence, once an application server updates a cached
data item, BG does not exercise the coordinator informing KOSAR JDBC of another application
server.

To address the above limitation, we are extending BG to employN BGClients with one social
graph. The key concept is to hash partition pages, members and resources across theN BGClients.
Each BGClient is aware of the hash function and employs the original Zipfiandistribution (instead
of D-Zipfian) to generate member ids/page ids. When a BGClientBGCi references a data item that
does not belong to its assigned partition, it contacts the BGClient that owns thereferenced data (say
BGCj) to lock that data item for exclusive use byBGCi and to determine if its intended action is
possible.BGCj grants the lock request if there is no existing lock on the referenced data item and
the action is possible, enablingBGCi to proceed to generate a request with the identified data item
to the data store. Once the request is serviced,BGCi contactsBGCj to release the exclusive lock
on the referenced data item to make it available for use by other BGClients. This design raises the
following interesting questions:

• WhenBGCj fails to grant an exclusive lock to the referenced data item due to an existing
lock, how should the framework handle the conflict? Three possibilities are as follows. First,
it may block BGClient A until the referenced data item becomes available. Second, it may
return an error to BGClient A to generate a different member/resource id and try again. Third,
it may simply abort this action and generate a new action all together. We intend toquantify
the tradeoff associated with these two possibilities and their impact on both the distribution
of requests and the benchmarking framework.

• What is the scalability characteristic of the proposed technique? The proposed request gen-
eration technique requires different BGClients to exchange messages to lock and unlock data
items and to determine the feasibility of actions. We plan to quantify this overhead and its
impact on the scalability of this request generation technique. This intuition should enable
us to propose refinements to enhance scalability.

• How different are the obtained results withN disjoint social graphs (current version of BG)
and one social graph (the proposed change)? This question applies to those systems that may
use the current version of BG. We intend to repeat our published experiments such as those
reported in [14] to quantify differences if any.

An investigation of these questions shape another research direction forBG.

9.2 Extensions And Use Cases

9.2.1 Actions

A social networking system is identified by two kind of workloads:

1. Interactive workloads that read or write a small amount of data from bigdata, and

2. decision support and business intelligence workloads consisting of analytical queries that
read a large amount of data from big data and involve complex and resource intensive queries
such as those analyzing online behavior of users for marketing purposes [76, 92].

Thus far, BG has captured the essential features of the first workloads by focusing on thirteen
interactive social actions. These are an abstraction of actions performed by a member in a social
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networking system, see Table 1.1. A similar study must be conducted for the second workload. This
would extend BG with new actions such as friend/follower suggestions, product recommendations,
sentiment analysis and etc. A challenge is to identify the appropriate performance metric to measure
and report. The metric should be objectively measurable and allow for meaningful trend or statistical
analysis of the performance of alternative systems and design decisions.We envision generating
social graphs with a set of well known results for a complex action, prioritized based on their
quality. Given an experimental data store, BG would analyze the quality of responses provided
for an action in this workload. It may compute the amount of time required for a data store to
approximate the different responses based on their quality1. A challenge is to generate social graphs
that are realistic, model analytics that are a relevant abstraction of those performed by different
social networking sites, and reduce meaningful data to compare alternative choices with one another.
With the second workload, another metric that might be of interest is the amountof time required
to load database [49]. An option is to aggregate (weighted aggregate) the amount of time to load a
fixed amount of data into a data store with BG’s other performance metrics (i.e.SoAR and Socialites
rating) and introduce a new combined metric indicating a data store’s performance.

9.2.2 Applications

Most social networking systems also provide media access and retrieval services for their members.
Examples include, displaying images and streaming audio/video. For such applications, apart from
the timeliness of the action, the quality of the response is also important. An obvious future re-
search direction is to extend BG to evaluate these metrics and provide insights for developing new
algorithms for multimedia access and retrieval.

In addition, as BG is an extensible benchmark (see Chapter 4), it can easilybe adapted to eval-
uate the performance of data stores used for other big data applications such as healthcare or space
related scientific applications. Identifying these applications and their characteristics, and extend-
ing BG to support them is an interesting future research direction. This motivates the benchmark
generator detailed in the next section.

9.2.3 Benchmark Generator

Although BG is an extensible benchmarking framework and a new action can easily be added as a
module, yet some actions require accessing multiple entities with a specific relationship and logging
relevant information. This is important in order for BG to create valid actions and perform an error-
free validation. For example, BG’s Accept Friend Request action (AFR), requires two member
entities, invitor and invitee, and there should exist a pending friend request initiated from the invitor
to the invitee. So in order for BG to emulate a valid AFR action by Member A, it needs to find a
Member B who has initiated a friend request to Member A and accept that invitation. In addition, the
appropriate log records for the change in the two members’ friendship andpending friend requests
need to be generated for the action.

BG maintains all relationships between different entities (friendship: members-members, pend-
ingRequests: members-members, following: members-pages, own: members-resources and post:
comments-resource) in its internal in-memory data structures. Currently when extending BG with a
new action, the developer must author software to select appropriate entities (i.e. members), access
the appropriate data structures (pendingRequests:members-members) andmodify them accordingly.

1This effort would be different than simply extracting a social graph from a site such as Twitter and using
it for evaluating an algorithm in that the social graph is created with a pre-specified set of known answers.
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For example with the Accept Friend Request action by Member A, the pendingRequests:members-
members structure is queried to find a Member B that has initiated a friend request to Member A.
Next, the AFR action is issued against the data store, the entry related to the pending request is
removed from the data structure maintaining the pending requests, and the new friendship is added
to the data structure maintaining the friendship relationships. The code for allof this is provided
by the developer. The developer also needs to provide code to generatethe appropriate log records.
With the previous example, this includes two log records for the two members’ friendships: one
indicating that A has been added as B’s new friend and the other indicating that B has been added
as A’s new friend. And one log record for the invitee’s pending request relationships indicating that
A no longer has a pending invitation from B.

A future research direction for BG is to convert it to a Benchmark Generator framework [67].
The main objective of this research will be to develop a general frameworkthat inputs the actions
and their meta data and extends BG with the appropriate modules for the new actions with minimal
(hopefully no) additional software from the developer. This frameworkmay be provided with a
specification file from the developer that provides a high-level description of the new action. For
each action the description is split into four distinct parts:

1. The particular entity sets and their number involved in an action. For example, Thaw Friend-
ship action involves two entities of the Member entity set.

2. The dependencies between the entities for an action. With Thaw Friendship, the second
member must be friends of the first member).

3. The action behavior. For example, the second member is selected using a random distribution
from among the friends of the first members.

4. Log record information. For example, a log record indicating that the second member’s
invitation is removed from the first member’s pending friend requests, a log record indicating
the the first member is added as the second member’s friend and a log recordindicating that
the second member is added as the first member’s friend.

This framework will consist of interfaces which allow developers to introduce new entity types,
dependencies, behaviors and log record types. And it will use the descriptions provided by the
developers in the configuration files to create and add the new action module toBG automatically.
This effort is justified by the fact that there are an increasing number of big data applications with
many different set of actions, see Section 9.2.2 .

9.2.4 End System Design

Another future research direction is to use BG to explore topics that are ofinterest for today’s social
networking applications. There are several topics that warrant further exploration such as elasticity,
and availability and fault tolerance.

Scalability has always been an important aspect of distributed data store designs (see Sec-
tion 8.3); and with the continuous drop at the cost of computers, scaling datastores to larger number
of nodes continues to rise. Today one of the main challenges with distributed data stores is to pro-
vide scalability and fault tolerance without sacrificing performance. And as with a larger number of
data store nodes, the probability of failure is higher, affecting the performance of the system, differ-
ent distributed data stores strive to impalement a quick and efficient technique for failure detection
and recovery.
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Designing a system with a desired degree of fault tolerance is difficult andrequires understand-
ing factors affecting data store’s availability characteristics. In this study we will use BG to study
the different fault tolerance techniques used in distributed data stores, their recovery mechanisms,
the amount of time it takes for the systems to recover and the system parametersimpacting these.
The results of this study can:

• help a designer to understand important trade-offs and choose an appropriate system architec-
ture and fault tolerance technique which allows for greater scalability and robustness without
significantly sacrificing functionality and performance,

• help an application developer to pick the data store which results in a higher performance and
availability,

• provide researchers from both industry and academia with interesting challenges in this area
and a way to objectively compare the effectiveness and efficiency of new and existing tech-
niques in this area.

The challenge with performing this study is that there are many different kindof faults and
introducing all of them is almost impossible [29]. The simplest way to perform this study is to start
a BG workload, kill one or more data store nodes while BG is issuing the workload against the data
store, and observe any resulting errors and performance impact. killing the data store can represent
various data store failure scenarios including software, hardware andenvironmental failures. A
similar approach is to use tools such as NISTNet [24], ModelNet [111] orEmulab [115] to emulate
network layer faults.

9.2.5 Introducing Skewness in Social Graph

With today’s BG, the structure of the social graph is dictated by a uniform distribution. For in-
stance, all pages have the same number of followers, all members follow the same number of pages,
the profile and thumbnail image sizes for all members are the same and all created resources and
comments posted on the resources have the same size in bytes.

Data skewness may change the performance of the system especially in extreme cases. For
example the performance of the system when a set of larger size resources are retrieved will be
different from when a set of smaller size resources are retrieved. Orretrieving the news feed for
a member following a large number of pages may be slower than retrieving it forone following a
smaller number of pages2.

In addition while evaluating a data store using BG, the change in the size of the data store may
impact its performance. For this kind of data stores one may come up with symmetricworkloads
which try to maintain the data store state as constant, see Section refsec:mix. Introducing skewness
into BG’s data results in identifying symmetric workloads more challenging.

A research direction for BG is to modify its design to address the described data skewness.

2A simple approach is to use a random number generator to decide the size of the data to be inserted.
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Appendix A

Survey’s Used to Evaluate BG’s
Extensibility

We used the following three surveys to evaluate BG’s usability and extensibility.These surveys
were filled anonymously.

A.1 Survey 1

Data Store: Date:

1. How would you rate yourself on a scale of 1-5, with 5 being the most familiarand 1 being
the least familiar with each of the following topics?

1 2 3 4 5
Performance benchmarking � � � � �

ER-Diagrams and conceptual schema� � � � �

Social networks � � � � �

Assigned data store � � � � �

2. On a scale of 1-5 how comfortable are you with the following:

1 2 3 4 5
Understanding benchmarking � � � � �

Understanding BG’s actions � � � � �

Working with you assigned data store� � � � �

3. How many hours did you spend on the following:

<1 hr 1-5 hrs 5-10 hrs >10 hrs
Understanding BG’s conceptual schema � � � �

Understanding BG’s actions � � � �

Learning about your assigned data store � � � �

Developing a logical schema with
your data store for BG � � � �

Modifying the logical schema you
designed in support of BG’s actions � � � �
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4. Which of the following did you use to do your homework?
� BGBenchmark.org
� BG’s Google forum
� BG Presentation slides
� BG’s Paper
� BG’s source code
� Other:

A.2 Survey 2

Data store: Date:
Please take a few moments to complete our BG usability survey. Your responses will help us address
any issues that you may have and improve our software.

1. How would you rate yourself on a scale of 1-5, with 5 being the most familiarand 1 being
the least familiar with each of the following topics?

1 2 3 4 5
Java � � � � �

Any Java IDE Tool � � � � �

BG � � � � �

Databases (client/server architecture)� � � � �

Assigned data store � � � � �

2. Based on completing this homework on a scale of 1-5 how comfortable are you with the
following (5 being the most comfortable and 1 being the least comfortable):

1 2 3 4 5
Understanding BG’s objective � � � � �

Installing BG � � � � �

Resolving installation issues � � � � �

Using BG with sample clients � � � � �

Using BG to connect to your data store� � � � �

Using BG to create schema for your
data store � � � � �

Using BG to load your data store � � � � �

Understanding BG’s input parameters � � � � �

Resolving BG related runtime errors
and exceptions � � � � �

3. How many hours did you spend on the following:
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<1 hr 1-5 hrs 5-10 hrs >10 hrs
Designing the logical model for your
data store (overall hours
including hours spent for part1) � � � �

Implementing creation of connection
to the data store � � � �

Testing creation of connection to your
data store (-testdb) � � � �

Implementing the schema creation phase
for your data store � � � �

Understanding the parameters required for the
schema creation � � � �

Testing the schema creation code for
your data store � � � �

Setting up BG to create the schema for
your data store � � � �

Implementing the load phase for your data store � � � �

Understanding the parameters required for the
loading phase � � � �

Testing the load phase for your data store � � � �

Setting up BG to load your data store � � � �

Understanding BG’s output parameters � � � �

4. Please respond to the following:

Not Not Very
At Very Often Often N/A
All Often

How often did you access the bgbenchmark.org
when using/extending BG? � � � � �

How often did you read the postings on
the BG Google Group? � � � � �

How often did you post in the BG Google group? � � � � �

How often were your problems solved using
the bgbenchmark.org or the BG Google group? � � � � �

How often did you contact the TA for help? � � � � �

5. Please rate the following criteria for BG.
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Poor Fair Neutral Good Excellent
Ease of installation � � � � �

Software dependency � � � � �

Installation or first use experience � � � � �

Repeated usage experience � � � � �

Timeliness of the installation � � � � �

Compatibility with hardware/software � � � � �

Quality of documentation for
schema creation and load phase � � � � �

Appropriateness of the documentation
for schema creation and load phase � � � � �

Usability of the documentation
for schema creation and load phase � � � � �

Usability of BG to create schema
for your data store � � � � �

Timeliness of schema creation � � � � �

Usability of BG to load your data store � � � � �

Timeliness of loading � � � � �

Feedback provided by BG during load � � � � �

Informative errors � � � � �

Overall Usage/Experience � � � � �

6. How long have you used BG for?

7. What do you dislike about BG so far?

8. What suggestions do you have to improve BG?

A.3 Survey 3

Data store: Date:

Please take a few moments to complete our BG usage survey. Your responses will help us
address any issues that you may have as well to improve our software.

1. Based on completing this homework on a scale of 1-5 how comfortable are you with the
following (5 being the most comfortable and 1 being the least comfortable):

1 2 3 4 5
Understanding BG’s objective � � � � �

Using BG’s command line interface � � � � �

Implementing BG’s actions for your data store � � � � �

Understanding BG’s input parameters � � � � �

Resolving BG related runtime errors and exceptions� � � � �

Understanding BG’s output � � � � �

2. How many hours did you spend on the following:
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<1 hr 1-5 hrs 5-10 hrs >10 hrs
Designing the logical model for your data store
(overall hours including hours spent for
part1 and part2) � � � �

Understanding BG’s actions
(requirements and functionality) � � � �

Implementing BG’s actions � � � �

Testing all the actions implemented � � � �

Understanding how to use BG’s
command line interface � � � �

Setting up BG to issue a workload
against the data store � � � �

Understanding BG’s output parameters � � � �

3. Please respond to the following:

Not Not Very
At Very Often Often N/A
All Often

How often did you access the bgbenchmark.org
when using/extending BG? � � � � �

How often did you read the postings on
the BG Google Group? � � � � �

How often did you post in the BG Google
group? � � � � �

How often were your problems solved using
the bgbenchmark.org or the BG Google group?� � � � �

How often did you contact the TA for help? � � � � �

4. Please rate the following criteria for BG.

Poor Fair Neutral Good Excellent
Repeated usage experience � � � � �

Quality of documentation for BG’s
actions � � � � �

Appropriateness of the documentation
for BG’s actions � � � � �

Usability of the documentation for
implementing BG’s actions � � � � �

Usability of BG to issue actions
against the data store � � � � �

Feedback provided by BG during
issuing actions against the data store � � � � �

Informative errors � � � � �

Intuitive output � � � � �

Overall Usage/Experience � � � � �
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Appendix B

BG’s Visualization Deck

One may obtain invalid ratings from a data store for a variety of reasons ranging from invalid
parameter settings to BGClients becoming fully utilized. We use the termbottleneck nodeto refer
to a node of the system with either a fully utilized CPU, network bandwidth, or mass storage device
(disk or flash). BG’s interface empowers its users to visualize each participating node and utilization
of its resources to detect bottlenecks, see Figure B.1. In addition, it enables its users to perform the
following tasks: specify values for parameters used to populate a data store, start loading the data
store, specify values for parameters used to initiate a multi-node BGClient experiment, start rating a
data store and monitor its progress. This tool is useful for analyzing the SoAR and Socialites rating
of a data store and detecting when the obtained ratings are invalid.

Figure B.1: BG’s Visualization Deck.
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Appendix C

Loading of BG Using MySQL’s InnoDB

With MySQL, we use its InnoDB as it provides ACID properties using row-level locking and im-
poses foreign key constrains, see http://dev.mysql.com/doc/refman/5.1/en/storage-engines.html for
details. We use MySQL Server 5.0 for our experiments.

BG specifies the primary key and foreign key constraints while creating the database schema,
prior to loading the data. To load the data effectively, we changed several settings. First, we in-
creased its communication packet (maxallowedpacket, see https://dev.mysql.com/doc/refman
/4.1/en/packet-too-large.html), and its connection and result buffer (netbuffer length, see
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvarnet buffer length).
Second, we disabled InnoDB’s ACID and constraint check features.We re-enable these features
once the benchmark database is created and prior to rating MySQL. In addition, BG creates the
index structures after the loading of the database is completed using statementssimilar tocreate
index friendship inviteeID on Friendship(inviteeID).

With the above modifications, loading of data is improved dramatically. For example, the time
required to load a 10,000 member BG database with 100 friends and 100 resources per member is
improved from 913 minutes to 15 minutes.

To disable InnoDB’s ACID transactional properties and constraint checking capabilities, we
issued the following commands:

SET FOREIGN_KEY_CHECKS = 0;
SET UNIQUE_CHECKS = 0;
SET SESSION tx_isolation=’READ-UNCOMMITTED’;

To re-enable them, we issued the following commands:

SET UNIQUE_CHECKS = 1;
SET FOREIGN_KEY_CHECKS = 1;
SET SESSION tx_isolation=’REPEATABLE-READ’;

Moreover, we modified BGClient’s init() function for MySQL to set autocommit tofalse. Its
cleanup method commits pending transactions by invoking conn.commit() and sets autocommit to
true.
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