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Abstract

The ability to recognize places on the basis of visual perceptual information is a funda-
mental property of human beings, and thus determines the way we communicate and alter
our surroundings. Consequently, it becomes indispensable to provide similar capabilities
for machines aiming to interact with humans and man-made environment. In this thesis we
address the problem of visual indoor place recognition. We propose a solution based on Sup-
port Vector Machines employing both global and local image descriptors. Since robustness
and efficiency are crucial for every recognition system aiming to work in real-world settings,
we put special emphasis on these properties. We build a database comprising several sets of
pictures acquired in five rooms of different functionality, under various conditions. We then
use it in order to evaluate the performance of our system, and achieve very good results in
presence of variations that occur in real environments. Additionally, for sake of efficiency,
we implement an algorithm allowing for an exact simplification of support vector solutions
[19]. We further extend the original algorithm so that it could provide higher efficiency
gain by means of approximation. The results reported in the thesis show great potential of
our method in a wide range of computer vision applications and prove that support vector
solutions can be successfully applied to the place recognition problems.
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Chapter 1

Introduction

The ability to acquire, represent, and match the perceptual information to the
memories of places stored in an internal cognitive map is a fundamental property of
human beings and numerous animals. Although this task is performed in a variety
of ways, it is always a complex process involving numerous perfectly cooperating
mechanisms. In this thesis we address the problem of visual indoor place recognition.
We put special emphasis on the robustness and efficiency, as these are the key
properties of every recognition system aiming to be used in real-world applications.

The most successful visual place recognition system was designed by nature.
Humans are one of the beneficiaries of this invention and therefore are highly ef-
fective in exploring the surrounding environment. Our visual recognition system is
extremely robust to changing illumination conditions and variations in the environ-
ment as well as to noise and occlusions. We can easily recognize a familiar place
when it is crowed in the middle of the day, even if we saw it for the first time empty
during the night. In the recognition process, we make use of contextual information
according to our experience. Moreover, our internal representation of the place is
constantly updated due to continuous learning. As a result, we are able to recognize
and understand complex scenes in less than 100 ms.

Inability to recognize places would prevent us from performing many basic tasks,
as they require topographical orientation. Nowadays, more and more tasks are
performed by robots which need efficient and robust localization algorithms so as
to become mobile. Despite the fact that numerous non-visual localization methods
has been developed (e.g. laser-based SLAM), utilization of visual-based methods
is indispensable in order to perform real-world tasks. This is due to the fact that
human perception is primarily visual, and understanding and making use of visual
information is essential to provide human-robot interaction. Visual properties of
a place can be used to determine its functional category (e.g. kitchen, office), and
visual landmarks are commonly used by humans to plan paths and describe places.
All this motivated many researchers to employ visual information in mobile robot
localization. However, it is still an open issue how to make the algorithms efficient
and provide robustness to variability of the environment and changing illumination
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2 CHAPTER 1. INTRODUCTION

conditions.
Although, topological localization of mobile robots is the most natural applica-

tion for visual place recognition, it may have many other uses. Place recognition
systems can be, inter alia, a valuable source of contextual information for content-
based image retrieval systems. Today, Internet technologies such as World Wide
Web give access to huge amounts of data, large percentage of which are images.
Consequently, the ability to retrieve images on the basis of a description of their
content becomes indispensable. In case of pictures, the information about location
is one of the most fundamental.

Place recognition may be also coupled with other computer vision algorithms.
Such problems as object or action recognition may be greatly simplified by exploiting
the knowledge about context in which they occur. We can also imagine place
recognition systems cooperating with mobile devices. We could, for instance, create
electronic guides giving information about the place observed through the lens of
our digital camera. All these examples show that there are numerous applications
for which the ability to recognize places can be extremely valuable.

The visual place recognition system described in this thesis was built around
the Support Vector Machine classifier. Both global and local image features were
employed in order to find the image representation that is best suited for the place
recognition purposes. As it was already stated, special emphasis has been placed
on the robustness and efficiency. Therefore, the system was tested under various
conditions, and a support vector reduction algorithm was used in order to increase
the recognition speed and decrease the memory requirements. More detailed infor-
mation about the contribution of this thesis can be found in Section 1.2.

1.1 Related Work

The research on place recognition has been mostly conducted in the mobile
robotics community, where the problem is referred to as topological localization.
The use of visual cues for this purpose has increased in popularity, as the visual
algorithms became more sophisticated, and constantly increasing computational
power allowed many operations to be performed in real-time. As a result, several
approaches to the vision-based topological localization have been proposed. These
methods employ either regular cameras ([76, 73]) or omni-directional sensors [51]
([27, 77, 8, 46, 2]) in order to acquire images (Figure 2.3 contains comparison of
images acquired using cameras of both types).

The main differences between the approaches relate to the way the scene is
perceived, and thus the method used to extract characteristic features of the scene.
Landmark localization techniques make use of either artificial or natural landmarks
in order to extract information about position. An interesting approach to the
problem was presented by Mata et al. [44, 45]. The system uses information signs
as landmarks, and interprets them through its ability to read text and recognize
icons. Local image features may also be regarded as natural landmarks. The SIFT
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descriptor invented by Lowe [41] was successfully used for that purpose by Se et al.
[69] and Andreasson et al. [2] (with modifications), while Tamimi and Zell [73]
employed Kernel PCA to extract features from local patches. Global features are also
commonly used for place recognition. Torralba [74] suggested to use a representation
called the “gist” of the scene (used with modifications in [76, 75, 49]), which is a
vector of principal components of outputs of a filter bank applied to the image.
Several other approaches use color histograms [77, 8], eigenspace representation of
images [27], Fourier coefficients of low frequency image components [46], or statistics
of “textons” [65].

As it was already mentioned, the place recognition systems may also be cou-
pled with other computer vision algorithms in order to achieve mutual performance
improvement. Examples of a successful utilization of the information about place
(derived from holistic representation of an image) to provide contextual priors for
object detection and recognition are presented in works by Torralba [74], Murphy
et al. [49], and Torralba et al. [75]. Their approach allows to simplify the object de-
tection task by penalizing locations (and scales) where the objects are not expected
to be found. On the same basis, during object recognition, the information about
place is exploited to determine which types of objects are more likely to appear.

Another field of research which may benefit from developing robust place recog-
nition algorithms is content-based image retrieval. Although, place recognition may
be considered as a special case of global image annotation, it is still of interest to
provide the ability to retrieve pictures imaging particular place (e.g. the office in-
stead of an office). Detailed information about semantic description and modeling
of natural scenes can be found in [81]. The interested reader is also referred to [71]
for a review of 200 references in the content-based image retrieval.

Many of the previously mentioned approaches derive inspiration from studies
on human scene perception. Human scene perception and recognition is studied in
Section 2.4 which constitutes a review of a selection of publications on the subject.

1.2 Contribution of the Thesis

The presented thesis, as its primary contribution, provides a description of a
visual indoor place recognition system aiming to work in real-world settings. During
the design process of the system, the strongest emphasis has been placed on the
robustness to the illumination conditions and variations in the environment, as well
as, on the efficiency of the solution. The system determines the location on the
basis of the analysis of one picture acquired using a regular camera. As no prior
knowledge is required in order to determine the position, the system may be useful
to solve variety of problems such as global 1 topological localization of mobile robots
or content-based image retrieval. It may also be employed as a source of contextual
information for other recognition systems.

1The adjective global indicates that no prior knowledge about the initial position of a robot is
required in order to determine its current position.
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The SVM algorithm [78, 17] was used in order to perform classification. To the
knowledge of the authors, this is the first attempt to employ the Support Vector
Machines for visual place recognition. Both local and global features of the scene
were used and the performance of the algorithm was evaluated in each case. The
SIFT descriptor [41], which has been shown to perform well for localization problems
[69, 2], was used in order to represent the local image features. The local features
could be combined with the SVM classifier thanks to the local kernel function pre-
sented in [82]. The experimental results with local features were then compared to
those obtained using Composed Receptive Field Histograms [38] as global features.
This type of features was previously used for object recognition problems [38], and
was found to perform very well also for place recognition.

The presented system was extensively tested to achieve robustness to condition
changes, which may occur in real environment. For the purpose of these experi-
ments, a database comprising pictures of an indoor environment was created. The
database was acquired using a regular camera within multi-room indoor environ-
ment over the span of two months, and contains pictures taken under three illumi-
nation and weather conditions. Detailed description of the database can be found
in Chapter 3 and in [62].

The place recognition system introduced in this thesis, was designed in a man-
ner allowing it to be implemented on a mobile robot in the future. For this reason,
the employed algorithms must be efficient and low resource consuming. In order
to achieve these goals, a method presented by Downs et al. [19] was used. The
method allows for reducing the number of support vectors of a trained classifier on
the basis of the fact, that the set of support vectors is usually not linearly indepen-
dent in the feature space. This thesis contributes to this method by implementing
the algorithm proposed in [19] using QR Factorization [28, 29] and introducing a
threshold parameter which can be used to trade classification performance for the
speed of the classifier. The modified method enables to achieve greater reduction,
keeping the classification performance intact. Depending on the application, it is
possible to reduce the solution even further by means of approximation.

1.3 Outline

The thesis is organized as follows. Chapter 2 defines the problem of place recog-
nition, discusses several aspects of human scene perception, and finally presents an
architecture of a typical visual recognition system. Chapter 3 gives a description of
the KTH-INDECS database, which besides being a part of the contribution of this
thesis, was used during all experiments with the place recognition.

More specific details about all parts of the system can be found in Chapters
4, 5, and 6. Chapter 4 presents the methods used to extract characteristic image
features, based on which the images are classified using the SVM classifier (described
in Chapter 5). The Support Vector Reduction algorithm is explained in Chapter 6.

The results of experiments with the place recognition system and Support Vector
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Reduction algorithm are given in Chapters 7 and 8. The thesis concludes with a
summary and suggestions for further research in Chapter 9.

List of publications Part of the work presented in this thesis has appeared in
the following papers:

1. A. Pronobis and B. Caputo. The KTH-INDECS database. Technical Report
297, KTH, CVAP, 2005.

2. A. Pronobis and B. Caputo. The More you Learn, the Less you Store:
Memory-Controlled Incremental SVM. In Proceedings of the 9th European
Conference on Computer Vision (ECCV06), Graz, Austria, 2006. (Submit-
ted).





Chapter 2

Visual Indoor Place Recognition

The introductory Chapter 1 gave a brief overview of the place recognition prob-
lem and underlined the most important issues in designing place recognition sys-
tems. In this chapter we will study the subject in more detail. First in Section 2.1,
we will try to define the objects of our interest - a place and a scene. We will study
the properties of a coherent scene and present several constraints that have to be
satisfied for a view to be called a scene. Such knowledge can be exploited in de-
signing a place recognition system as well as psychophysical experiments on human
perception. Then in Section 2.2, we will formulate the problem of visual indoor
place recognition and define several key terms. In Section 2.3, we will present the
structure of a typical pattern recognition system, based on which, we will describe
the place recognition system being the subject of this thesis. Finally in Section 2.4,
we will discuss how humans perceive scenes, and how the visual data is processed
by human brain. This section constitutes a review of a selection of publications on
the subject.

2.1 Places and Scenes

We start our considerations about place recognition with definitions of the terms
scene and place. According to Henderson and Hollingworth [35], scene is a seman-
tically coherent (and often nameable) human-scaled view of a real-world environ-
ment comprising background elements with multiple discrete objects arranged in
a spatially licensed manner. Background is considered to consist of larger-scale
immovable structures and surfaces, whereas objects are smaller-scale manipulable
entities. This definition is, however, somewhat unspecific. First of all, it is difficult
to precisely determine the boundaries of human scale. The distinction between the
background and the objects is also arbitrary. A desk viewed from a distance can
be regarded as an object; however, it may also constitute a background for such
objects as a pen, a keyboard, or a cup. This problem is a consequence of the hier-
archical properties of a scene. Finally, the objects must be arranged in a spatially
licensed manner to form a coherent scene. Again we might ask: How to understand

7



8 CHAPTER 2. VISUAL INDOOR PLACE RECOGNITION

Figure 2.1. Picture of an incoherent scene illustrating violations of the five relations
introduced by Biederman [6]: support - the laptop is floating; interposition - the
background appears through the briefcase; probability - the hydrant is mounted in
the kitchen; position - the tap is mounted on a table; size - the chair appears to be
larger than a table.

the word licensed? Does the picture presented in Figure 2.1 constitute a coherent
scene? Can we define a set of rules that a scene must follow? An attempt to define
several constraints, which must be satisfied for a scene to be regarded as coher-
ent, was made by Biederman [6]. He introduced five relations which can be used
to describe the difference between a well-formed scene and an array of unrelated
objects. They can be easily explained using a graphic illustration of their violations
(see Figure 2.1). The relations result from general physical (syntactic) constraints
(support and interposition) as well as from the semantics and function of objects
and the surrounding environment (probability, position, size).

We could try to formulate a definition of the term place on a similar basis.
Places have a hierarchical structure as well. Building can be considered as one
place; however, it may be decomposed into rooms such as offices or corridors which
in turn may comprise several sections e.g. printing area or help desk. Consequently,
it may be difficult to precisely determine the boundary between places. Different
places may fulfill different functions, may have different appearance, or may just
be separated by walls. As a result, a place can be regarded as a usually nameable
segment of a real-world environment distinguished due to different functionality,
appearance or artificial boundary.

Although both terms cannot be precisely defined, we may still draw several
important conclusions. First, we may expect a relation between the type of a
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place and objects that may occur within it. The fact that places usually differ
with functionality is also an important cue. We may observe that the elements
comprising the environment are related and must satisfy several constraints. The
recognition systems must be able to cope with the hierarchical structure of places
and scenes, as well as with situations when the boundary between places is not
obvious, or the places only slightly differ in appearance.

2.2 Problem Statement

Visual indoor place recognition can be considered as a special case of pattern
recognition constrained to visual representations of an indoor environment. To
quote from [30], pattern is a quantitative or structural description of an object or
some other entity of interest. According to this definition, a digital representation
of a picture of a place, acquired from a particular view-point, under particular
conditions, at a particular time, is also a pattern, as it constitutes a description
of a nameable entity, in this case - a place. Usually, we can group patterns into
pattern classes in respect of some common properties. These properties, also known
as features, allow us to create models of the patterns in different classes. A model
can be seen as a description of those features that are common within a class and
different between classes. In case of place recognition, classes correspond to places,
and we build models of places using their distinctive features, for example color.

Pattern recognition is a process aiming to assign class labels to sensed patterns
based on the information contained in the models. The whole process should be
automatic and should require as less human intervention as possible. The problem
can be formulated as finding the value of the function f : P → < given the sensed
pattern p ∈ P as an input argument. The value of the function z ∈ < determines
the membership of the pattern to one of the classes ω1 . . . ωc, that is, if z = i,
then the pattern belongs to class ωi. At this point, it is important to note, that
the recognition process can be divided into several stages (see Section 2.3), each
of which is a field of research itself. Typically, before the classification algorithm
(classifier) can be used, the distinctive features of the patterns need to be extracted.

Due to the complexity of the pattern recognition problem, it is usually not
possible to guess the parameters of the models. Instead, we may try to find a rep-
resentative set of samples (training set) and use it in order to train the classifier or
even find the features that are best suited for the task at hand. Typically, in case
of pattern recognition, the training samples are labeled, that is their membership
to one of the classes is defined by a teacher before training (the training set can be
denoted as {(pi, zi) : pi ∈ P, zi ∈ 〈1; c〉}n

i=1). Such approach is referred to as super-
vised learning, as opposed to unsupervised learning (also known as clustering), in
which the groupings of the input patterns are found by the training algorithm itself.
Supervised learning will be used to train the place recognition system described in
this thesis.

During the training process, the parameters of the models are chosen in a manner
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Figure 2.2. Structure and data flow of a typical pattern recognition system. The
yellow rectangles represent components of the system, and correspond to operations
being part of the training and recognition processes. Arrows show the direction of
the data flow. Finally, the blue rectangles describe the type of data at every stage
of the processes. The most fundamental operations, present in almost every pattern
recognition system, are framed with a solid line.

allowing for reduction of the error on the training set. However, we hope that after
training, the system will be able to properly recognize not only the training samples
but also novel patterns encountered in the future. This ability is known under the
name generalization, as the system is able to generalize its knowledge to classify
patterns not available during training. Consequently, the training algorithm should
not allow the situation when the classifier is adopted to the training set so well that
it loses its generalization abilities. Such phenomenon is called overfitting.

The generalization performance is a crucial issue for place recognition systems.
This is due to the fact that the environment and the conditions under which it is
observed change continuously. Moreover, places can be viewed from multiple view-
points. As a result, it is important to use such classification and learning techniques
that provide good generalization abilities. The training set should be also carefully
prepared in order to capture the variability of the environment.

2.3 Structure of a Typical Pattern Recognition System

In the previous section it was already mentioned that the pattern recognition
process can be divided into several stages. In fact, the whole recognition system
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can be seen as an assembly of specialized components cooperating by exchanging
information. Figure 2.2 presents a structure of a typical pattern recognition system
and shows how the data are passed between its components. The diagram was
divided into two parts representing the training and recognition processes. Several
components were marked with solid line, since they can be found in almost every
pattern recognition system.

Below, we will study each component of the system in a separate section. We will
also discuss how each part is implemented in the place recognition system presented
in this thesis. Three first operations are common for both training and recognition
processes and therefore will be described first.

2.3.1 Sensing

The wideness of the term pattern suggests how many kinds of stimuli can become
an input of a pattern recognition system. In order to be processed, this information
must be sensed and stored in a digital format. This is the task for various kinds of
sensors. Although the construction and principle of operation of such sensors highly
depend on the application, in most cases they can be regarded as analog to digital
converters or digital measurement devices. Some examples are digital cameras,
audio AD converters, laser scanners or sonar sensors. There are also applications
which do not require specialized sensors because the input data is already in a digital
format and can be directly processed by a feature extractor. Spam filtering is an
example of such application.

In most cases, sensors can be characterized by several parameters. However
the significance of these parameters depends on the problem and construction of
the sensor. Some examples are: resolution, bandwidth and latency (especially im-
portant for real-time systems), sensitivity or signal-to-noise ratio (SNR). It is also
desirable that the sensor is able to suppresses the within-class variability of the
patterns (e.g. caused by changing illumination conditions) to the advantage of the
between-class variability.

Two types of visual sensors are commonly used for visual place recognition.
These are: a regular digital camera and an omni-directional (catadioptric) cam-
era [51]. The regular camera is the most common visual sensor, and therefore a
recognition system using it can be universally applied (wearable place recognition
systems, topological localization for mobile robots, content-based image retrieval).
The advantage of the omni-directional sensors is that they provide a horizontal field
of view of 360◦ which simplifies the recognition task. However, cameras of this type
are applied almost exclusively for mobile robot localization. See Figure 2.3 for the
comparison of pictures acquired using cameras of both types. The visual indoor
place recognition system presented in this thesis was tested on a database acquired
using a regular camera. The database is described in detail in Chapter 3.
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Figure 2.3. Comparison of images acquired in similar places using regular and
omni-directional cameras (The picture acquired using the omni-directional camera
was kindly provided by Patric Jensfelt).

2.3.2 Segmentation and Pre-processing

It is often the case that the pattern to be recognized is not isolated. Instead, it
appears on some background or is partially overlapped by other elements. In such
situation, each individual pattern needs to be segmented before proceeding with the
recognition process. Another problem arises when the pattern consists of several
disconnected parts. In such a case, the segmented parts must be properly combined
in order to form a coherent entity. This operation is known as grouping.

Segmentation and grouping are challenging and complex problems in pattern
recognition. They are crucial for such applications as optical character recognition,
speech recognition or object recognition in real settings. The last example illustrates
how difficult the problem is, since the objects must be segmented from a cluttered
background. Segmentation is not necessary in case of visual place recognition sys-
tems. This is due to the fact that the whole picture acquired using a digital camera
constitutes a single pattern.

Additional processing of the input data may be also required. This includes
such operations as noise filtering or normalization.

2.3.3 Feature Extraction

The aim of the feature extraction is to provide a new representation of the input
pattern, that would result in simplification of the classification problem. The new
representation should be insensitive to the variability which can occur within a class
(within-class variability), and should emphasize pattern properties that are different
in different classes (between-class variability). In other words, it should consist of
the values of distinguishing features of the patterns.

It is difficult to precisely define the division between feature extraction and classi-
fication. In ideal case, the feature extraction process would produce a representation
making the classification problem trivial. In such case a separate classifier would be
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unnecessary. On the other hand, we may imagine a classifier coming to a decision
on the basis of the analysis of raw, unprocessed data. In practice, the algorithms
usually cooperate and the boundary is defined by their capabilities. Moreover, the
classifiers are usually more universal and can be used to solve various problems,
while the feature extraction algorithm serves as an adaptation layer and is usually
well-suited for one particular task.

The performance of the whole recognition system highly depends on the quality
of the feature extractor. For this reason, it is crucial to properly identify the distin-
guishing features of the pattern. For example, in case of place recognition we will
look for a descriptor that is invariant to translation, scale, as well as to variations in
illumination and effects of small changes in the environment. The descriptor that
performs best is usually chosen on the basis of experiments. The best features can
be also selected automatically by the learning algorithm ([80]). All these issues in
the context of visual place recognition are discussed in Chapter 4. The chapter also
presents the local and global descriptors employed in the place recognition system.

2.3.4 Classifying

The classifier is the element of the recognition system which performs the actual
recognition. Its task is to assign the input pattern, represented by the extracted
features, to one of the classes. The complexity of the classification problem depends
on how the feature values differ within each class in comparison to the differences
between classes. This results from several factors. First, the task may be difficult
itself. Place recognition is an example of a complicated problem due to its huge
within-class variability. Then, the input data may be contaminated with noise.
Finally, the complexity depends on the performance of the pre-processing operations
such as segmentation and feature extraction. The quality of sensor also plays an
important role as it may be more or less sensitive to unwanted variations (e.g. a
camera may be equipped with automatic brightness control).

Other important issues related to the classification problem, such as general-
ization, were already discussed in Section 2.2. The visual indoor place recognition
system presented in this thesis employs the Support Vector Machine classification
algorithm. The algorithm is described in detail in Chapter 5.

2.3.5 Post-processing

The decision made by a single classifier does not have to be the final decision
of a recognition system. In fact, in many cases, the performance and robustness of
the system can be greatly improved by introducing additional mechanisms. These
mechanisms can exploit other sources of information or just process the data pro-
vided by a single classification algorithm.

The pattern recognition system can make use of a priori constraints and infor-
mation about the context in which the recognition occurs, or may exploit a history
of previous results. The place recognition system mounted on a mobile robot can,
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for instance, take into account that the robot only turned around and did not change
its position. Consequently, the robot must be still in the same place and the decision
can be made using the current and previous data. Such a system may also make
use of the topological map of the environment. In such case, the robustness may
be improved by verifying possible transitions between places (e.g. the robot cannot
jump from the office to the kitchen without passing through the corridor).

The post-processing step is also required if the recognition system is built around
several classifiers. Additionally, each classification algorithm may suggest several,
most probable hypotheses. In such case, the classifiers can be regarded as experts
specialized in different fields. The place recognition system may use several clas-
sifiers to classify pictures using more than one type of features. It may be also
coupled with other algorithms such as object recognition.

In all presented cases, the final decision is made on the basis of multiple cues.
Experiments show that such approach can cause a significant decrease in the recog-
nition error (see e.g. [52]). First, additional information can be used to reduce the
search space making the recognition more efficient. Then, it may be used in order
to generate stronger cues and verify the result. In some cases this may lead to a
correct result even if all the cues are separately wrong. Finally, it makes the system
robust to the situations when not all cues are available. It is also motivated by the
study on human perception, as human performance is strongly decreased if only one
cue can be used (see e.g. [10]).

2.3.6 Training

The aim of the training, as well as the most important related issues, have been
already discussed in Section 2.2. Here, we will describe how the process proceeds.

According to the supervised learning scheme, the training is performed using a
selection of representative labeled patterns. The same procedure is followed during
pattern acquisition as in case of recognition. The input data is first sensed, and
the segmentation can be performed in order to isolate individual patterns. At this
point, the isolated samples should be labeled by a teacher.

The set of patterns prepared in this way is now ready to be used for training
the classifier as well as other parts of the system1. As it was already stated, it is
important to not only minimize the error on the training samples, but also provide
an ability to generalize to novel patterns. In order to achieve this goals the available
samples can be divided into two subsets: the training set and the test set. The
training algorithm will try to minimize the classification error on the training set,
and the generalization performance will be evaluated using the test set. The division
can be done several times, each time achieving different pair of subsets. This way
the final performance is evaluated on the basis of several observations. Such method
is known under the name cross-validation.

1The training process may be for example used to select the “best” subset of the distinguishing
features of the patterns.
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The simplest kind of cross-validation is hold out cross-validation. In this method
the set of samples is simply divided into two subsets, one of which becomes the
training set and the other is used for validation. Another method, called K-fold
cross-validation, assumes that the samples are divided into K subsets. In that case,
one of the subsets becomes the test set and the other subsets create the training set.
Training and validation can be repeated K times for various combinations of the
subsets. The value K may be equal to the number of available labeled patterns. In
other words, the test set may consists of only one element, and the operation may be
repeated for every pattern. Such variant is known as leave-one-out cross-validation,
and is used mainly if the number of available samples is severely limited.

So far, we have considered training as a process which is performed before the
recognition system is used. However, many applications could greatly benefit from
the ability to update the knowledge of a pattern recognition system. Place recogni-
tion is an example of such application, as places may significantly change over time,
and their models should be updated accordingly. This type of learning is known
under the name of incremental learning, since it allows for updating the knowledge
of the system incrementally without complete retraining.

2.3.7 Optimizing

Many applications require that the pattern recognition systems were not only
robust and reliable but also efficient and low resource consuming. This is a crucial
issue especially for systems aiming to work in real-time or performing continuous
learning. In order to achieve these goals the employed algorithms can be improved,
or additional optimization methods can be applied.

It is hard to indicate one part that is a bottleneck in every recognition system
and should be optimized. Instead, the optimization method should be tailored to
the particular algorithms. However, the position of this optimization operation in
the diagram in Figure 2.2 is not accidental, and it refers to the optimization of
the model for two reasons. First, the size of the model and the way it is stored
may influence the efficiency of the pattern recognition system based on many types
of classification algorithms. Second, it is definitely the case for Support Vector
Machines which are employed in the place recognition system described in this
thesis.

The Support Vector Machine classifier stores the model in the form of support
vectors (a selection of training feature vectors) and corresponding weight coefficients
(see Chapter 5 for a detailed description of SVMs). The time required to perform
classification in case of SVMs is directly proportional to the number of support vec-
tors. Storing a large number of support vectors may also require huge amounts of
memory if the feature vectors are big. This is a problem for complex tasks such as
visual place recognition. Such approach may also lead to reduction in the training
time if the incremental learning scheme is used. As a result, several approaches
were proposed ([11, 12, 57, 19]) for the optimization of the model produced by the
standard training algorithm. Chapter 6 of this thesis describes the idea presented
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by Downs et al. [19] and contributes to the method by introducing several exten-
sions. Experiments presented in Chapter 7 prove that presented approach allows
for significant decrease in the number of support vectors.

2.4 Human Perception of the Scene

Modern computer vision often exploits the knowledge of psychological and bio-
logical aspects of human (animal) perception and cognition. In fact, the research in
such fields as pattern detection and recognition is held in parallel to psychophysical
experiments with humans. This can be easily explained by the fact that in many
tasks humans still far outperform the best available algorithms. Moreover, if we
want to create machines that are able to interact with people and man-made en-
vironments, we need to learn the principles behind this interaction. As a result,
numerous solutions, already used in computer vision and machine learning, are mo-
tivated by psychological and biological research. It is worth mentioning that the
benefit in such case is mutual, as many problems can be better understood during
implementation.

Humans are also extremely proficient in recognizing places on the basis of visual
cues. For this reason, it is of particular interest to learn how do we process visual
data, what do we see when we look at a scene, how do we represent the spatial
knowledge, and finally how is it done so efficiently and robustly.

2.4.1 Scene Perception and Recognition

Numerous experiments report that humans are able to perceive and process
scenes very rapidly. The task of recognizing a scene, determining its semantic
category, extracting its general structural information, as well as recognizing some
basic objects requires only one eye fixation and can be completed in less than
100 ms. This kind of information is usually referred to as the gist of a scene. Early
experiments by Biederman et al. [7] indicate that during brief presentation of a
scene enough information is acquired to affect the response of the participants to
objects consistent and inconsistent with the scene. A different type of experiments
conducted by Potter [59] show that subjects were able to detect a picture described
by a label from a sequence of pictures presented at rates of 113 ms per picture.
Schyns and Oliva [68] also report that subjects were able to properly recognize the
type of scene (e.g. highway, city) after a very short presentation (150 or even 30 ms).
Additionally, people seem to fixate the eyes on the most informative parts of the
scene, which requires prior comprehension of the gist (see [34]).

The results of the experiments presented above show that the time required
to recognize the scene is definitely too short to allow detailed analysis of all its
elements. This raises the question of the features of a scene that people use during
the first glance. Several hypotheses have been proposed. First, a diagnostic object
(objects) could emerge and suggest a particular type of a scene ([26]). Another
explanation given by Biederman [7] is that the gist is based on some scene-level
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features. The hypothesis that global scene features are used in early recognition
has been confirmed by the experiments conducted by Schyns and Oliva [68] in
which they applied low-pass and high-pass filters to gray-scale images of scenes.
The results of this operation were further combined in order to achieve images in
which the low-frequency components originated from different scene than the high-
frequency components. Consequently, the image could be perceived as one of two
scenes depending on the spatial frequencies used to acquire the gist. Subjects were
presented the images for the duration of 30 ms and in most cases were able to
properly identify the scene represented by the low-frequency components, i.e. coarse
blobs. The scene represented by high-frequency components was preferred if the
images were presented for longer durations. Additional experiments [54] revealed
that people are also able to use high frequencies for early recognition. More recent
work by Oliva and Torralba [56] introduced a global scene representation called
spatial envelope. Spatial envelope is a low-dimensional representation of the shape
of a scene regarded as a single entity and encodes relations between its principal
contours.

The color or texture may also be a cue facilitating scene recognition. Oliva
and Schyns [55] present experiments in which participants were asked to name
scenes presented in normal colors, abnormal colors and gray-scale. In cases when
color was diagnostic of a scene category the presence of normal colors facilitated
recognition, whereas the presence of abnormal colors made the task more difficult.
No influence of color cues was found in cases when color was not diagnostic of the
category. Walker Renninger and Malik [65] tried to investigate whether the early
scene recognition can be explained with a texture recognition model. The authors
compared results of experiments with humans to the performance of their texture
recognition model and observed similar relationships.

The results of the experiments presented above indicate that coarse global in-
formation is used during the first glance at a scene and that details and local in-
formation are acquired later. Although people are able to extract high-frequency
components of a scene very fast (see [54]), most scientists agree that during recog-
nition the scene is decomposed, that is the more we look at a scene the more
information we extract (see e.g. [50]).

Another interesting issue is whether natural scenes are processed separately from
other stimuli such as faces or objects. This hypothesis is supported by the fact that
there are numerous cases described in the literature of patients who were unable
to recognize places although performed normally on test with objects and were
able to understand spatial relationships between different points (see [22] and the
references cited therein). The experiments conducted by Epstein and Kanwisher [24]
proved that there exist a distinct area within human parahippocampal cortex which
responds in functional magnetic resonance imaging (fMRI ) to images of indoor or
outdoor scenes as well as to landmarks ([22]). This region, named by the authors
the parahippocampal place area (PPA), does not respond or responds weakly when
the examined person views images of faces, objects, or other visual stimuli without
spatial context. Additional experiments ([22]) demonstrated that PPA responds to
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familiar and unfamiliar places in a similar way, and that it is activated stronger
by novel than by repeated views. The precise function of PPA is still unclear.
Current hypotheses postulate that it is either involved in scene perception or plays
role in encoding of topographical information into memory or both. Together, the
experiments suggest that there exist separate units in the brain dedicated for scene
processing.

2.4.2 Scene Representation

In previous section we have described experiments conducted by Potter [59]
demonstrating that people are able to detect and understand complex scenes pre-
sented in a sequence at rates of about 113 ms per picture. However, the same
experiments revealed that at this rates the subjects were unable to remember the
pictures and that additional delay is required for memory consolidation. Recent
research suggests that people do not encode much of what they see (such conclu-
sion can be drawn from the analysis of a phenomenon named change blindness, see
[70]). This raises the questions of what information about a scene is encoded in the
memory and how it is represented.

In order to answer the first question, Aginsky and Tarr [1] checked which of such
visual properties of a scene as color, object position and object presence require spe-
cial attention in order to be encoded and which of them are encoded automatically.
Subjects were told to detect changes in images with and without cuing about the
type of change. Changes always occurred in regions of marginal interest. The ex-
periments demonstrated that cuing did not have influence on the detection time
for position and presence changes, whereas the detection time was lower for color
changes if the cue was provided. This suggests that properties that help to de-
termine the spatial layout of a scene are better encoded than surface properties.
Using similar method, Rensink et al. [66] found that detecting changes in items of
marginal interest is much more difficult than in items of central interest, which are
automatically encoded.

The problem of scene representation in the memory was also studied in order
to discover whether it is viewpoint-specific or viewpoint-invariant. Experiments
performed by Christou and Bülthoff [16] showed that immediately after training
(passive or active), the representation is more likely viewpoint-specific. During
training, the subjects were presented a computer model of an indoor environment
from a limited set of directions. During test phase, the ability of the observers
to recognize the same environment from unfamiliar directions was checked. The
observers were able to recognize both familiar and novel views, however familiar
views were recognized faster and more often. Similar conclusions have been drawn
from experiments with fMRI and parahippocampal place area (PPA) [21]. However,
additional analysis ([23]) suggests that the viewpoint-specific representation may
evolve over time to become partially viewpoint-invariant.
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2.4.3 Scene Context in Object Recognition

While discussing the definition of a coherent scene in Section 2.1, we have pre-
sented several relations introduced in [6] which occur between the elements of the
scene and the scene itself. This raises the question of whether people make use of
the fact that in the majority of cases real-world scenes are coherent with respect to
these relations? Are such tasks as object recognition facilitated if the objects occur
in a proper context? There is no simple answer to these questions.

Numerous psychological experiments have been conducted over the past three
decades, and three competing models have been proposed by the scientists. The
difference between the models concerns the stage of the object recognition process
which the scene context is to influence. The perceptual schema model proposes that
the information about scene can facilitate the perception of objects, that is, the
object appearing in context is easier detected and its description is created more
efficiently. The experiments performed by Biederman et al. [7] and Boyce et al. [9]
indicate that the detection sensitivity is higher when the object is consistent with
the meaning of the scene.

The priming model model proposes that scene context activates schema which
facilitates the matching of the object description to the object representations in the
long-term memory. The experiments conducted by Friedman [26] indicate that the
eye fixation to the objects that are unexpected in the scene is longer which is claimed
to be a consequence of the fact that such objects require more analysis of local visual
details. More recent experiments performed by Bar and Ullman [4] confirm such
hypothesis. They report that proper spatial relations between elements of the scene
decreased response time and error rate during recognition. Additionally, occurrence
of clearly recognizable objects facilitated the recognition of ambiguous objects.

Different model has been proposed by Hollingworth and Henderson [36]. They
argue that the correlation between the existence of context and efficiency of object
recognition might have been a result of methodological problems in each of the
studies. Instead, they propose the functional isolation model in which object recog-
nition is isolated from scene context. However, recent experiments performed by
Auckland et al. [3] indicate that in spite of eliminating the methodological problems
the influence of context is still visible. The scientists point to the priming model as
an explanation.

2.5 Summary

In this Chapter, we discussed the main issues related to place recognition and
scene perception with respect to both artificial recognition systems and humans. We
started with defining the terms scene and place based on the literature on human
scene perception. Then, we studied the place recognition problem as well as the key
issues and terms related to designing and testing a place recognition system. We
presented place recognition as a special case of pattern recognition and showed the
complexity of this particular problem. Similarly, we used the structure of a typical



20 CHAPTER 2. VISUAL INDOOR PLACE RECOGNITION

pattern recognition system in order to demonstrate the position and role of each part
of our system within the recognition process. The parts will be described in detail
in the next chapters. Finally, we presented a review of a selection of publications
on human scene perception and recognition. The aim of this section was to present
the current state of knowledge about the most robust and efficient place recognition
system which becomes a motivation for many computer vision and machine learning
researchers.



Chapter 3

The KTH-INDECS Database

The following chapter contains a detailed description of the KTH-INDECS
database. The name INDECS is an acronym which stands for Indoor Environ-
ment under Changing conditionS. The database consists of several sets of pictures
taken in five rooms of different functionality under various conditions.

The motivation for creating the database was the need for a flexible testing
environment, which could be used to estimate the performance of the visual indoor
place recognition system presented in this thesis. Robustness is a key property for a
recognition system aiming to work in realistic settings, thus in building the database
special emphasis was placed on capturing the variability of the environment and its
intrinsic properties. For this purpose, pictures were taken under various illumination
and weather conditions at different periods of time. Each room was observed from
many viewpoints and angles (the need for multi-viewpoint representation during
human passive learning was explained in Section 2.4.2). All this ensures that the
response of the scene to the change of conditions was captured. Moreover, the
normal activity in the rooms was recorded: people appear in the rooms, pieces of
furniture are moved over time.

The database was acquired in a way that allows it to be used in experiments not
only with indoor place recognition, but also with object recognition. The database
may then be considered as a source of images containing objects in a cluttered scene.
Thus, it is of potential interest not only for benchmarking of scene recognition
systems, but also for context-based object recognition methods ([75, 49]) and visual
attention algorithms.

The next sections provide information about the indoor environment in which
the pictures were taken (Section 3.1), describe the acquisition procedure (Section
3.2), and present interesting examples illustrating several attributes of the database
(Sections 3.3, 3.4, and 3.5). A summary is given in Section 3.6. Additional details
such as precise maps of the environment can be found in the technical report [62].
The database is freely available on the Internet.

21
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Barbara’s office Corridor Elin’s office

Kitchen Surroundings of the printer

Figure 3.1. Pictures presenting the interior of each room.

3.1 Description of the Environment

The pictures included in the database were taken in the interior of The Com-
putational Vision and Active Perception Laboratory. The environment consists of
five rooms located on the same floor, performing various functions: the kitchen,
the corridor, the surroundings of the printer (in fact a part of the corridor), and
two offices (Barbara’s office and Elin’s office). Exemplary pictures of the rooms are
shown in Figure 3.1.

A general map of the environment is presented in Figure 3.2. Boundaries be-
tween the rooms that were used in building the database are marked with dashed
lines. Dotted lines were used to draw an outline of furniture. The map also con-
tains positions of the points in which the pictures were taken. Several points were
marked out and provided with arrows indicating the point and angle used to obtain
the pictures in Figure 3.1. Detailed maps of the environment and coordinates of
the points can be found in the technical report [62] describing the database.

As it was stated before, the rooms fulfill different functions that determine the
activity that is likely to occur. Places like the corridor or the kitchen can be regarded
as public, which implies that various people may be present and the furniture (e.g.
chairs) is moved more often. On the other hand offices were photographed usually
empty or with their owners at work.

The rooms are physically separated by a sliding glass door. However, the sur-
roundings of the printer, which is a continuation of the corridor, is an exception
to that rule, and was treated as a separate room due to its different functionality.
In conclusion the exact border between the corridor and the surroundings of the
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Surroundings of the printer

Part 1

Part 2

Part 3

Part 4

Corridor

Corridor

Kitchen

Elin's office

Barbara's office

Figure 3.2. A general map of the environment.
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Room Number of markers Total no. of pictures

Barbara’s office 9 324

Corridor 32 1152

Elin’s office 14 492

Kitchen 18 648

Surr. of the printer 18 648

Table 3.1. The number of markers and taken pictures for each room.

printer can be regarded as arbitrary.
The laboratory contains additional rooms which were not taken into considera-

tion while creating the database. However, because of the glass door some of them
can be visible in the pictures from the corridor.

3.2 Image Acquisition

The pictures were taken using an Olympus C-3030ZOOM digital camera moun-
ted on a tripod. The height of the tripod was constant and equal to 76 cm (in
order to imitate the perspective of a robot). All the images were acquired using the
following camera settings:

• The resolution was set to 1024x768 pixels.

• No image compression was used.

• The flash was disabled.

• The zoom was set to the wide-angle mode.

• The auto-focus mode was enabled.

The tripod was always placed exactly over the markers on the floor, which were
prepared in the beginning and kept in the same position during the whole acquisition
process (the markers may be visible on the pictures as a small red and green dots on
the floor). The markers were positioned approximately one meter from each other
in areas accessible to people or a robot. The rough position of all markers is shown
on the general map in Figure 3.2. Coordinates and detailed maps can be found in
the technical report [62].

After the camera was placed above the marker, twelve pictures from twelve
angles (every 30◦) were taken. The camera was always turned clockwise, starting
from the same direction. Each marker was assigned a unique number within the
room. Table 3.1 contains the number of markers in each room, together with the
total number of pictures of the room stored in the database.

The light used to illuminate the environment was not fixed or specially adjusted
before the acquisition process, which means that the light suitable for the users
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of the room was used. All the rooms have windows, however artificial light was
sometimes used even during the day, especially in cloudy weather.

3.3 Observing Environment from Multiple Viewpoints and

Angles

Due to the arrangement of the points where the camera was placed (markers),
and the fact that twelve pictures from different angles were taken in each point,
most parts of the environment were observed from multiple viewpoints. This en-
sures that the image of the scene was captured under illumination from various
directions, and three-dimensional objects were viewed from several sides. The need
for multi-viewpoint representation of the environment is also motivated by studies
on human learning. Experiments show that people seem to encode the knowledge
about places in a viewpoint-specific manner, and the viewpoint-invariant represen-
tation may evolve from the viewpoint-specific representation over time (see Section
2.4.2). Two exemplary sets of pictures are shown in Figures 3.3 and 3.4.

3.4 Capturing Variability of the Environment

The database comprises pictures taken over a span of two months, under three
different outdoor illumination and weather conditions: in cloudy weather, in sunny
weather, and at night. As a result, the database always contains three pictures
obtained from exactly the same viewpoint1. The following variations may be noticed
in the pictures:

• The illumination conditions change because of variation in the outdoor and
artificial light.

• Objects are moved and new objects appear.

• Furniture is moved.

• People appear in the rooms.

The most significant changes are caused by the illumination, as it can be ob-
served especially in the pictures taken in front of a window on sunny days. The
camera is equipped with an automatic exposure system, which, in this case, causes
the pictures to darken.

Examples of scenes photographed under different weather and illumination con-
ditions are presented in Figure 3.5.

1The pictures taken at one of the points in Elin’s office in the sunny weather are missing.
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Figure 3.3. One part of the environment observed from various viewpoints and
angles.

−90◦ −60◦ −30◦

0◦ 30◦ 60◦

Figure 3.4. Pictures taken from the same viewpoint and several angles.
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Barbara’s office

Cloudy Night Sunny

Corridor

Cloudy Night Sunny

Elin’s office

Cloudy Night Sunny

Kitchen

Cloudy Night Sunny

Surroundings of the printer

Cloudy Night Sunny

Figure 3.5. Examples of pictures taken under three different illumination and
weather conditions for each of the five rooms.
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Figure 3.6. Examples of non-informative pictures.

Figure 3.7. Examples of pictures taken near the edge of the corridor.

3.5 Difficult Examples

The database was created according to the assumption that pictures should be
taken in the marked points from every of the twelve angles, irrespective of the con-
tents of the picture. In result, several pictures can be regarded as non-informative,
since they contain very little clues about the place where they were taken (e.g. pic-
tures of blank walls). Figure 3.6 gives examples of non-informative pictures in the
database.

Another difficulty that a place recognition system may encounter is caused by
relatively narrow angle of view of the digital camera. The problem is observable
especially near the edge of the room, because some pictures contain information
coming only form the adjoining room. An example can be found in Figure 3.7,
which contains pictures taken near the edge of the corridor.

3.6 Summary

This Chapter provided a description of a database of pictures of five places within
an indoor environment. The database captures the variability of the environment
as each place was photographed multiple times under various conditions and from
multiple view-points. The database was created in order to evaluate the performance
of the place recognition system presented in this thesis, however due to high quality
of the pictures it may be used by any other place or object recognition system.
Additionally, it is freely available on the Internet.

Several extensions to the database are planned in the future. Currently, the
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database contains pictures taken on one floor of the laboratory under three weather
and illumination conditions. However, it would be of interest to extend the database
to other floors (which are similar) and acquire more data in the points used so far.

As it was mentioned before in Section 3.5, the pictures are of different significance
in respect of the amount of the position information they contain. The database
may therefore be filtered to exclude the non-informative pictures. To avoid using
any prior knowledge, the number of corners detected in the image may be used
as a measure of significance. Future work will also concentrate on recreating the
database using a camera mounted on a robot.





Chapter 4

Feature Extraction

In this chapter, we will provide a detailed description of the methods employed
in our visual place recognition system for extracting the distinguishing features from
the pictures of places. As it was already stated in Chapter 2, the feature extraction
process aims to provide a new representation of the input data that is less sensitive
to the within-class variability and emphasizes the differences that occur between
classes. In case of visual data, such representation can be derived from the whole
image or can be computed locally based on its salient parts. We speak then of global
or local features respectively.

Most of the currently available approaches to the place recognition and visual-
based topological localization make use of global features and a holistic represen-
tation of the input images. Consequently, several approaches have been proposed
employing different global descriptors. Color histograms [77, 8], eigenspace rep-
resentations [27], Fourier coefficients of low frequency image components [46], or
vectors of principal components of filter bank outputs [76, 75, 49] are just a few
examples. Local image features have also been tried on place recognition and local-
ization. Several authors propose: reading graphical landmarks containing text and
icons [44, 45] or using the Kernel PCA algorithm [73] or the SIFT descriptor [69, 2]
for local feature extraction.

In this thesis, we evaluate the performance of both global and local image de-
scriptors for place recognition. Our place recognition system employs the Composed
Receptive Field Histograms [38] as global features and the SIFT descriptor [41, 42]
in order to extract the features from local patches. In the second case, the Harris-
Laplace detector [47] is used to detect the interest points. The algorithms are
described in Sections 4.2 and 4.3. Two more image descriptors were used to extract
features from the pictures of textures in the experiments with Support Vector Re-
duction presented in Chapter 7: MR8 [79] and Local Binary Patterns (LBP) [53].
Due to the fact that they are texture descriptors, and that material categorization
is not directly related to the subject of this thesis, they will not be described in
more detail. Interested reader is directed to the references given above as well as to
[13] and the references cited therein.
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Before presenting the details of the image descriptors mentioned above, we will
introduce, in Section 4.1, the common theoretical framework.

4.1 Theoretical Framework

We will start our considerations about feature extraction with introducing the-
oretical framework required to explain both local and global image descriptors em-
ployed in our place recognition system. In Section 4.1.1 we will present a brief
description of scale-space theory - a framework for handling images at multiple
scales. Next, in Section 4.1.2, we will describe several basic image operators used
at an early stage of the feature extraction process.

4.1.1 Scale-Space Theory

While defining the terms scene and place in Section 2.1 we used the adjective
human-scaled. We also said that places and scenes have a hierarchical structure. If
we look at a building from a distance, we perceive it as a single entity. However,
if we take a closer look through the window, we will see a room containing many
objects such as tables or chairs appearing on a background of the walls and the
floor. If we looked even closer we would notice that there are several pens and a
cup on the table. We could now take a picture of the table from a distance of a few
centimeters or even use a microscope to analyze its surface. Would the results still
image a table, or maybe we would rather speak of the material the table is made
of or even molecules? This simple example illustrates an inherent property of all
real-world objects - they are meaningful entities only at a certain range of scales.
Consequently, they are perceived differently depending on the scale.

Scale-space theory is a framework for analyzing the images (or any other signal)
at multiple scales. Since no a priori information about the scale is usually available
it becomes necessary to create a multi-scale representation on the basis of the origi-
nal image, in which the fine-scale structures are successively suppressed as the scale
increases. The finest scale is represented by the original image and is influenced by
the parameters of the sensor (e.g. resolution). This idea is illustrated in Figure 4.1.

The problem has been formulated in variety of ways (see [39]), and several
constraints (scale-space axioms) have been introduced regarding the transformation
used to derive the images at a given scale from the original image. These are mainly
linearity and shift invariance as well as a rule that new structures should not be
created as a result of the transformation. Witkin [84] proposed using a convolution
with Gaussian kernel of increasing variance in order to smooth the images. Such
approach is consistent with the scale-space axioms and is motivated by the results
of neuropsychological research (see e.g. [85]).

Formally, the scale-space representation L : <D × <+ → < constructed from a
signal s : <D → < is given by

L(x, t) = g(x, t) ∗ s(x) (4.1)
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Figure 4.1. Multi-scale representation derived from the original image.

and

L(x, 0) = s(x), (4.2)

where t is the scale parameter, ∗ denotes the convolution operation, x ∈ <D, and
g : <D ×<+ \ {0} → < is the Gaussian kernel given by

g(x, t) =
1

(2πt)
D
2

e−
xT x

2t =
1

(2πt)
D
2

e−
PD

i=1 x2
i

2t . (4.3)

The scale parameter t can be expressed in terms of the variance of the Gaussian
kernel σ: t = σ2.

The interpretation of the scale-space can be obtained by solving the diffusion
equation describing the heat distribution over time t in a homogeneous medium
with uniform conductivity. The diffusion equation yields

∂L

∂t
=

1

2
∇2L (4.4)

with initial condition

L(x, 0) = s(x). (4.5)

Now, consider that the scale-space representation is created based on an image
s : <2 → <, which is a two-dimensional signal. In such case, Eq. 4.1 can be written
as

L(x, y, t) =
1

(2πt)
D
2

e−
x2+y2

2t ∗ s(x, y). (4.6)
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Figure 4.2. Impulse response of the Gaussian filter in the Fourier domain.

The convolution with the Gaussian kernel can be also expressed as a multipli-
cation in the Fourier domain:

L̂(u, v, t) = e−
t (u2+v2)

2 · ŝ(u, v) = e−
t W (u,v)2

2 · ŝ(u, v), (4.7)

where W (u, v) =
√

u2 + v2. This illustrates that convolving with the Gaussian
kernel is in fact filtering with the low-pass Gaussian filter and that the cut-off
frequency of the filter depends on the parameter t. The impulse response of the
filter in the Fourier domain is shown in Figure 4.2. It is important to notice, that
the Fourier transform of the Gaussian kernel is still a Gaussian function, and its
width decreases as t grows.

By filtering with the Gaussian filter, we lose information about the high-frequency
components. This corresponds to the blurring operation and simulates an effect of a
viewer moving away from the image. However, we may think of the higher-frequency
components as of noise contaminating the structures existing at higher scales. Thus,
the filtering operation allows us to analyze the structures characteristic for certain
scale. Additionally, the Gaussian filter suppresses the real noise which may occur
in the image.

4.1.2 Basic Image Operators

Computing more sophisticated image descriptors such as Composed Receptive
Field Histograms or SIFT requires applying several low-level operators to the an-
alyzed image. These are mainly derivatives and operators that can be expressed
in terms of derivatives e.g the Laplacian, the gradient, or the determinant of Hes-
sian. Additionally, the computations need to be performed at a certain scale in the
scale-space.

Let us consider each operator in turn.
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g gx gxx gxy gxxy Laplacian

Figure 4.3. Two-dimensional kernels for the Gaussian, Gaussian derivatives and the
Laplacian.

Gaussian derivatives In accordance with Eq. 4.1, the derivative computed from
the scale-space representation at a certain scale t can be denoted as:

L
x

d1
1 ···x

dD
D

(x, t) =
∂d1

∂xd1
1

· · · ∂dD

∂x
dD

D

L(x, t) =
∂d1

∂xd1
1

· · · ∂dD

∂x
dD

D

(g(x, t) ∗ s(x)) . (4.8)

Since differentiation is linear and shift invariant, there exists a kernel K∂(x) that
can be used in order to compute the derivative using convolution:

L
x

d1
1 ···x

dD
D

(x, t) = K∂(x) ∗ L(x, t) = K∂(x) ∗ g(x, t) ∗ s(x). (4.9)

As the convolution is commutative

L
x

d1
1 ···x

dD
D

(x, t) =

[
∂d1

∂xd1
1

· · · ∂dD

∂x
dD

D

g(x, t)

]

︸ ︷︷ ︸
Gaussian deriv. g

x
d1
1 ···x

dD
D

∗s(x)

= g(x, t) ∗
[

∂d1

∂xd1
1

· · · ∂dD

∂x
dD

D

s(x)

]
. (4.10)

We see from the Eq. 4.8 and 4.10 that the scale-space derivative can be computed
in three different ways. It is important to notice that it is possible to prepare a
kernel for the derivative of Gaussian and convolve it with the signal in order to
obtain its derivative at certain scale. Examples of 2D kernels for the derivatives of
Gaussian up to third order are presented in Figure 4.3.

In practice, the kernel K∂(x) is approximated e.g. using Taylor Series. The
most commonly used discrete derivative approximations are

• non-central operator
∂

∂xi
:
[

1 −1
]

(4.11)

• central operator
∂

∂xi
:
[

1 0 −1
]

(4.12)
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for the first order derivative and

∂2

∂x2
i

:
[

1 −1
]
∗
[

1 −1
]

=
[

1 −2 1
]

(4.13)

for the second order derivative. Kernels for higher order derivatives can be computed
by convolving the operators presented above.

One of the properties of the differentiation operation is that it amplifies high

frequencies (F
{

∂f
∂x1

}
= iω1F {f} ). For this reason it also emphasizes the high-

frequency noise which appears in the image. Due to its low-pass characteristics,
the Gaussian filter has the ability to suppress high-frequency noise, which makes
the Gaussian derivatives more stable. However, another consequence of this fact
is that the amplitude of the derivatives decrease with scale. This is a problem
for applications in which comparing derivatives of the scale-space representation
is essential. As a solution, Lindeberg [40] introduced the normalized derivative
operator :

∂d

∂ξd
i

= t
γd
2

∂d

∂xd
i

, (4.14)

where γ is a free parameter to be tuned to the task at hand (if γ = 1, the derivatives
are perfect scale-invariant). The definition presented in Eq. 4.14 constitutes a basis
for the automatic scale selection method presented by Lindeberg [40].

In this thesis we are interested in analyzing images, which are two-dimensional
signals. For this reason, we will restrict ourselves to the two-dimensional represen-
tation of the scale-space derivative given by

Lxdxydy (x, y, t) =
∂dx

∂xdx

∂dy

∂ydy
g(x, y, t) ∗ s(x, y)

Gradient The gradient is a linear, first-order differential vector operator defined
as follows:

∇ =
[

∂
∂x1

· · · ∂
∂xD

]T
. (4.15)

The gradient can be computed from the scale-space representation, and in the two-
dimensional case yields:

(∇L)(x, y, t) =
[

Lx(x, y, t) Ly(x, y, t)
]T

. (4.16)

It is widely used in edge detection as it provides information about the direction
and strength of edges in the image. The gradient magnitude

|∇L|(x, y, t) =
√

L2
x(x, y, t) + L2

y(x, y, t) (4.17)

is an isotropic non-linear operator which gives a measure of the amount of difference
between neighboring pixels. The direction of the greatest difference can be obtained
by calculating the gradient orientation

φ(∇L)(x, y, t) = tan−1 Ly(x, y, t)

Lx(x, y, t)
. (4.18)
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Hessian The Hessian is a matrix of second derivatives defined as follows:

∇∇T =




∂2

∂x1∂x1
· · · ∂2

∂x1∂xD

...
. . .

...
∂2

∂xD∂x1
· · · ∂2

∂xD∂xD


 . (4.19)

The operator trace(∇∇T ) is known as Laplacian, and det(∇∇T ) is a non-linear
rotationally invariant operator. The determinant of the Hessian applied to the
scale-space representation of an image can be denoted as

det(∇∇T L)(x, y, t) = Lxx(x, y, t)Lyy(x, y, t) − L2
xy(x, y, t). (4.20)

Normalized trace of the Hessian and normalized determinant of the Hessian are
commonly used for automatic scale selection.

Laplacian The Laplacian is a linear, isotropic, second-order differential operator
defined as

∇2 =
D∑

i=1

∂2

∂x2
i

(4.21)

Again, it can be computed from the scale-space representation of an image as follows:

(∇2L)(x, y, t) = Lxx(x, y, t) + Lyy(x, y, t). (4.22)

Since the convolution is associative, it is possible to combine the Gaussian kernel
with the Laplacian operator:

(∇2L)(x, y, t) =

[
∂2

∂x2
g(x, y, t) +

∂2

∂y2
g(x, y, t)

]

︸ ︷︷ ︸
Laplacian of Gaussian

∗s(x, y) = (∇2g)(x, y, t) ∗ s(x, y)

(4.23)
The resulting operator is referred to as the Laplacian of Gaussian and its zero-
crossings are widely used as an edge detector.

4.2 Global Features - Composed Receptive Field

Histograms

The Composed Receptive Fields Histograms of Higher Dimensionality (CRFH )
[38] have been used as global features during the experiments presented in this
thesis. This multi-dimensional histogram representation has been so far applied
mainly for object recognition problems (see e.g. [38, 67]); however, in Chapter 8 we
will show that it performs very well also for place recognition.

CRFH is a multi-dimensional statistical representation of the occurrence of re-
sponses of several image descriptors applied to the image. This idea is illustrated
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Figure 4.4. The process of generating multi-dimensional receptive field histograms
shown on the example of the first-order derivatives computed at the same scale t = 4.

in Figure 4.4. Each dimension corresponds to one descriptor and the cells of the
histogram count the pixels sharing similar responses of all descriptors. Such ap-
proach allows to capture various properties of the image as well as relations that
occur between them.

Multi-dimensional histograms can be extremely memory consuming and com-
putationally expensive if the number of dimensions grows. For example, a 9-
dimensional histogram with 16 quantization levels per dimension contains approx-
imately 7 · 1010 cells. In [38] Linde and Lindeberg suggest to exploit the fact that
most of the cells are usually empty and store only those that are non-zero. Such
approach is consistent with the sparse format used by the libSVM library [14] –
the implementation of the SVM classifier used in experiments in Chapter 8. The
histogram can be stored as an array [c1, v1, c2, v2, . . . , cn, vn], where ci denotes the
index of the cell containing the non-zero value vi. The index ci for a D-dimensional
histogram with the quantization levels q1, . . . , qD can be computed as follows:

ci =
D∑

k=1


mik

k−1∏

j=1

qj


 , (4.24)

where the values mi1, . . . , miD, 0 ≤ mik < qk denote the coordinates of the cell.
Such representation of the histogram allows not only to reduce the amount of re-
quired memory, but also to perform such operations as histogram accumulation and
comparison in an efficient way.
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In the experiments presented in Chapter 8 we built multi-dimensional histograms
using combinations of the following image descriptors applied to the scale-space
representation at various scales:

• Intensity L

• R, G, B color channels

• Chromatic cues:
C1 = R−G

2 and C2 = R+G
2 − B

• First-order, normalized Gaussian derivatives:
Lx,norm =

√
tLx and Ly,norm =

√
tLy,

• Second-order, normalized Gaussian derivatives:
Lxx,norm = tLxx, Lyy,norm = tLyy, and Lxy,norm = tLxy

• Normalized gradient magnitude

|∇normL| =
√

t(L2
x + L2

y)

• Normalized Laplacian
∇2

normL = t(Lxx + Lyy)

• Normalized determinant of the Hessian
det(∇norm∇T

normL) = t2(LxxLyy − L2
xy)

4.3 Local Features

The idea behind local features is to represent the appearance of the image only
around a set of characteristic points known as the interest points. In order to
determine the resemblance between two images using such representation, the local
descriptors from both images are matched. Consequently, the degree of resemblance
is usually a function of the number of properly matched descriptors. Local features
are known to be robust to occlusions, as the fact that some of the interest points
are not available do not affect the features extracted from other local patches.

The process of local features extraction consists of two stages: interest point
detection and description. The interest point detector aims to identify a set of
characteristic points in the image that could be re-detected even in spite of various
transformations (e.g. rotation and scaling) and variations in illumination conditions.
The role of the descriptor is to extract robust features from the local patches located
at the detected points.

The place recognition system presented in this thesis employs the Harris-Laplace
detector [47], described in Section 4.3.1, and the SIFT descriptor [41, 42], discussed
in Section 4.3.2. Comparisons of local descriptors and interest point detectors con-
ducted by Mikolajczyk and Schmid [48] show that both algorithms are highly reli-
able. Moreover, the SIFT descriptor was shown to perform well for object classifi-
cation ([18]) and geometric mobile robot localization ([69, 2]).
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Figure 4.5. Interest points detected using the Harris-Laplace detector. The radius
of the circles illustrate the scale at which the points were detected.

4.3.1 Harris-Laplace Interest Point Detector

The Harris-Laplace detector [47] is a scale, rotation, and translation (and par-
tially affine) invariant interest point detection algorithm that was also shown to
be robust to illumination changes ([48]). The algorithm employs the scale-adopted
Harris detector [32] in order to identify the interest points in the scale-space and
the Laplacian measure for automatic scale selection. Examples of points detected
by the Harris-Laplace detector are shown in Figure 4.5.

The original Harris function is based on the second moment matrix. It has
shown a good performance in presence of image rotations, illumination changes
and perspective deformations; however, it is sensitive to variations in the image
resolution. In order to cope with this problem, the scale-adopted second moment
matrix is used:

µ(x, y, tI , tD) = tDg(x, y, tI) ∗
[

L2
x(x, y, tD) LxLy(x, y, tD)

LxLy(x, y, tD) L2
y(x, y, tD)

]
, (4.25)

where tI = σ2
I is the integration scale, and tD = σ2

D is the differentiation scale.
The Gaussian derivatives are computed at the scale tD and the result is smoothed
with the Gaussian window g(x, y, tI) of width σI as defined in Eq. 4.3. The scale
parameters are usually related by the equation σD = sσI , where s is a constant
factor.

The scale-adopted Harris interest function yields

det(µ)(x, y, tI , tD) − α(trace(µ)(x, y, tI , tD))2. (4.26)

The function can be seen as a measure of cornerness at the point (x, y) and the
scale tD. As a result, the interest points corresponding to corners can be detected
by finding its local maxima.

In order to locate the interest points in the scale-space, the Harris-Laplace detec-
tor computes the Harris function at multiple scales and searches for local maxima.
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Gradients Descriptor

Figure 4.6. The SIFT local descriptor consisting of a 2 × 2 array of histograms
(from Lowe [42]).

The maxima are thresholded in order to reject those of small cornerness. Finally,
the algorithm checks whether the detected points correspond to the extremum of
the Laplacian of Gaussian computed over scale. Those points for which the LoG
attains no maximum and for which it is below some threshold are rejected. Conse-
quently, according to the automatic scale selection theory [40], the interest points
always correspond to the characteristic scale determined by the extremum of the
Laplacian measure.

4.3.2 SIFT Descriptor

The Scale-Invariant Feature Transform (SIFT ) descriptor invented by Lowe [41,
42] represents the features of local patches characterized by coordinates in the scale-
space in the form of histograms of gradient directions. The gradient magnitudes and
gradient directions used for further computations are obtained using pixel differences
according to the equations

|∇L|(x, y, t) =
√

(L(x + 1, y, t) − L(x − 1, y, t))2 + (L(x, y + 1, t) − L(x, y − 1, t))2

φ(∇L)(x, y, t) = tan−1

(
L(x, y + 1, t) − L(x, y − 1, t)

L(x + 1, y, t) − L(x − 1, y, t)

)
, (4.27)

where L(x, y, t) is the scale-space representation of an image and t denotes the scale
at which the interest point was detected.

The first step of the algorithm is to assign a characteristic orientation to the
interest point. This is done by detecting peaks in a gradient direction histogram.
The histogram is computed in such way that the contribution of each pixel belonging
to the local patch is weighted by the gradient magnitude and a Gaussian window
of width equal to 1.5 times the scale of the interest point. Finally, the highest
peak in the histogram determines the orientation of the point. Additionally, any
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other peak of height of at least 80% of the highest peak is used to generate a new
interest point. All further measurements are stored relatively to this orientation
which provides invariance to rotation.

As it was already mentioned, the local descriptor consists of a set of gradient
direction histograms. The histograms are computed on a 4× 4 neighborhood using
the same procedure as in case of orientation detection. Figure 4.6 illustrates the
process for a 2 × 2 descriptor array. In practice, the best results are obtained for
a 4 × 4 array of histograms with 8 bins in each. Consequently, the local descriptor
consists of a vector of 4 × 4 × 8 = 128 elements.

In order to increase the robustness to illumination variations, the feature vector
is post-processed. It is normalized and large values in the vector are rejected by
thresholding. Such approach is motivated by the fact that illumination changes are
more likely to largely influence the relative magnitude of some gradients than the
gradient orientation.

4.4 Summary

In this chapter, we described two image descriptors used in our experiments
presented further: global - Composed Receptive Field Histograms, and local based
on the Harris-Laplace interest point detector and SIFT descriptor. The same the-
oretical background is required in order to explain the algorithms. In view of this
fact, we first presented the fundamentals of the scale-space theory, and several basic
image operators commonly used during the feature extraction process.

Both global and local descriptors presented here have proved to perform very
well for such tasks as object detection and recognition; however, to the knowledge
of the authors, they have not been tried for place recognition. In Chapter 8 we
will show that they can be successfully applied to this difficult problem, giving very
good results in spite of presence of huge variations in viewpoint and illumination
conditions.



Chapter 5

Classification Using Support Vector

Machines

It was stated in Chapter 2 that a classifier is an algorithm that performs the
actual recognition on the basis of the feature vectors extracted from the input pat-
terns. Consequently, classification together with feature extraction are essential
stages of the recognition process that have the largest influence on the performance
and robustness of the system. In this chapter we will show how to solve the clas-
sification problem using the Support Vector Machines (SVM ) [78, 17, 33]. Due
to their superior performance and well developed theoretical background, in the
recent years, the Support Vector Machines classifier attracted considerable atten-
tion and was successfully applied to numerous applications from computer vision to
computational biology. As most of the general issues connected with classification
have already been discussed in Chapter 2, here we will focus on the details of this
particular method.

The wide variety of the available classification algorithms can be roughly divided
into two categories depending on the method employed for representing the model.
The first group is constituted by generative classifiers which aim at computing the
probability that a pattern belongs to a certain class by estimating the probability of
observing a pattern in a certain class. In contrast, discriminative classifiers avoid
this intermediate step by forming discriminant functions mapping input patterns
to class labels directly. The Support Vector Machines constitute an example of a
discriminant classifier inspired from the Vapnik’s statistical learning theory [78].
Details will be given in successive sections of this chapter.

In Section 5.1 we will present the principles of discriminative classification. On
this basis, we will describe the linear Support Vector Machines. In Section 5.2
we will show how the classification problem can be solved in a high-dimensional
feature space. Next, in Section 5.3 we will present several multi-class extensions to
the SVM. We will conclude with a summary in Section 5.4.
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Figure 5.1. The linear discriminative function f(x) dividing the feature space into
two half-spaces by a hyperplane decision surface.

5.1 Support Vector Machines as a Linear Discriminative

Classifier

This section aims to describe the Support Vector Machines as a linear, binary,
large-margin, discriminant classifier. For this reason, the fundamentals of discrim-
inative classification are given in Section 5.1.1. This knowledge is then used in
Section 5.1.2 to explain the algorithm finding the optimal separating hyperplane for
a linearly separable case. Finally, Section 5.1.3 extends this method to non-linearly
separable problems by presenting the idea of the soft margin hyperplane.

5.1.1 Linear Discriminative Classifier

In case of supervised learning the classifier is built upon a set of labeled training
samples. For a two-class problem, the set can be denoted as {(xi, yi)}n

i=1, where
xi ∈ <N is a feature vector, and yi ∈ {−1, 1} determines the membership of the
vector to one of the two classes. An assumption is made that the positive value
indicates the class ω1 and the negative value indicates the class ω2.

Every feature vector can be considered as a point in an N -dimensional feature
space. Consequently, in classification the aim is to find a discriminant function
f : <N → < distinguishing between the points belonging to the different classes. If
f(x) > 0, then the point x is classified to the class ω1, and if f(x) < 0, it is classified
to the class ω2. The problem is illustrated in Figure 5.1.
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The linear discriminant function is given by

f(x) = wT x + b, (5.1)

where w is the weight vector and b is the bias. The function divides the feature
space into two half-spaces by a hyperplane decision surface

f(x) = 0 = wT x + b. (5.2)

On the basis of the Eq. 5.1 we may say that the training set is linearly separable
if the following equations hold:

wT xi + b ≥ 0 for yi = +1
wT xi + b < 0 for yi = −1

(5.3)

We will now study several basic properties of the discriminant function that will
be helpful in understanding the theory of the SVMs. Consider the two points xa

and xb visible in Figure 5.1. As both points lie exactly on the hyperplane

f(xa) = f(xb) = 0
wT xa + b = wT xb + b

wT (xa − xb) = 0.
(5.4)

This shows that every vector parallel to the hyperplane is normal to the weight
vector w. The discriminant function f(x) can be also regarded as a measure of
the distance of the point x to the hyperplane [20]. Consider the point xo and its
normal projection to the hyperplane xp, both shown in Figure 5.1. We may express
the coordinates of the point xo using the point xp and the unit vector w

‖w‖ :

xo = xp + d
w

‖w‖ , (5.5)

where d is the algebraic distance between the point xo and the hyperplane. Since
f(xp) = 0 it follows that

f(xo) = wT

(
xp + d

w

‖w‖

)
+ b = f(xp) + d

wT w

‖w‖ = d‖w‖, (5.6)

and

d =
f(xo)

‖w‖ . (5.7)

The algebraic distance is positive if the point lies on the positive half-space and
negative if it lies on the negative half-space. In order to obtain a measure that is
always positive the algebraic distance may be multiplied by the class label yi.

On the same basis, we may express the distance between the origin and the
separating hyperplane as

f(0)

‖w‖ =
b

‖w‖ . (5.8)
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Figure 5.2. The optimal separating hyperplane maximizing the margin. The sup-
port vectors are marked in red.

5.1.2 Optimal Separating Hyperplane

As it was already mentioned, in classification the problem is to find the form
of the discriminant function f : <N → <. Since in linear case the function f(x) is
defined as a linear combination of the elements of the vector x (see Eq. 5.1 and
5.2), the problem is reduced to finding the parameters of the separating hyperplane.
The Support Vector Machines belong to the group of the so-called large-margin
classifiers. This is due to the fact that in the linearly separable case SVMs obtain
the optimal separating hyperplane with maximal distance to the samples from both
classes. This distance is referred to as margin ρ, as it is shown in Figure 5.2.

The margin ρ can be defined as the distance between the hyperplane and the
nearest of the points x1, x2, . . . , xn. Then, it follows that

ρ =

min
i=1,...,n

yif(xi)

‖w‖ =

min
i=1,...,n

yi(w
T xi + b)

‖w‖ . (5.9)

We see that the margin may be maximized by either maximizing the absolute value
of the discriminant function at the nearest point (mini=1,...,n yif(xi)) or by mini-
mizing the length of the weight vector ‖w‖. Consequently, some constraint must be
imposed in order to find a unique solution. This is usually done by assuming that
the value of the function at the nearest point is equal to 1. In that case, the linear
separability condition can be written as

wT xi + b ≥ +1 for yi = +1, i = 1, 2, . . . , n
wT xi + b ≤ −1 for yi = −1, i = 1, 2, . . . , n,

(5.10)
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or
yi(w

T xi + b) ≥ 1 for i = 1, 2, . . . , n. (5.11)

The feature vectors for which the the inequalities become equations for the optimal
separating hyperplane are known under the name of support vectors.

As a result, we can formulate the following optimization problem [33]: Given the
labeled training samples {(xi, yi)}n

i=1, find the optimal value of the weight vector
wo and the bias bo such that they satisfy the constraints

yi(w
T
o xi + bo) ≥ 1 for i = 1, 2, . . . , n. (5.12)

and the weight vector wo minimizes the cost function:

φ(w) =
1

2
‖w‖2 =

1

2
wT w (5.13)

This is a constrained optimization problem called the primal problem. It may be
solved by constructing the Lagrangian function [64]

J(w, b, α) =
1

2
wT w −

n∑

i=1

αi

[
yi(w

T xi + b) − 1
]
, (5.14)

where αi are called Lagrange multipliers. The solution of the optimization problem
corresponds to the saddle point of the Lagrangian, which has to be minimized with
respect to w and b and maximized with respect to αi. Consequently, the following
conditions can be defined:

∂J(w, b, α)

∂w
= 0 (5.15)

and
∂J(w, b, α)

∂b
= 0. (5.16)

Differentiating the Lagrangian function gives

w =
n∑

i=1

αiyixi (5.17)

and
n∑

i=1

αiyi = 0. (5.18)

It is important to note that according to the Karush-Kuhn-Tucker theorem [64, 33],
the following equation is satisfied at the saddle point of the Lagrangian:

αio

[
yi(w

T
o xi + bo) − 1

]
= 0 for i = 1, 2, . . . , n (5.19)

This shows that αio 6= 0 only for those feature vectors xi for which yi(w
T
o xi+bo) = 1,

i.e. for the support vectors.
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The primal optimization problem can be transformed into dual problem. This
can be done by substituting Eq. 5.17 and 5.18 into the Lagrangian function pre-
sented in Eq. 5.14. The resulting equation yields

Q(α) =
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyjx
T
i xj . (5.20)

Similarly to the primal problem, we may now formulate the following dual op-
timization problem [33]: Given the labeled training samples {(xi, yi)}n

i=1, find the
Lagrange multipliers {αi,o}n

i=1 that maximize the objective function presented in
Eq. 5.20 subject to the constraints

1.

n∑

i=1

αi,oyi = 0

2. αi,o ≥ 0 for i = 1, 2, . . . , n.

At this point it is important to notice that the only operation that is performed on
the feature vectors is the inner product. In Section 5.2 we will show how to exploit
this fact to perform classification in a very high-dimensional feature space.

The Lagrange multipliers determined as a result of the optimization process can
be used in order to compute the optimal weight vector

wo =
n∑

i=1

αi,oyixi. (5.21)

The optimal bias can be computed using any support vector xs according to Eq.
5.12, that is

yi(w
T
o xs + bo) = 1

bo = 1 − wT
o xs for ys = 1.

(5.22)

Finally, we can use the optimal parameters wo and bo to formulate the discrimi-
nant function defining the optimal separating hyperplane. Since αi,o for non-support
vectors equals to 0, the discriminant function can be expressed only in terms of sup-
port vectors

f(x) =
m∑

i=1

αi,oyix
T
i x + bo, (5.23)

where x1, x2, . . . , xm are the support vectors and αi,o are the corresponding La-
grange multipliers. Again, we see the only operation that is performed on the
feature vectors is the inner product. We may also notice that the knowledge of
the classifier (model) is represented in form of a subset of the training samples, the
corresponding Lagrange multipliers and the bias.
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Figure 5.3. Illustration of the soft margin hyperplane. Two points cross the bound-
ary of the margin but are located on the right side of the hyperplane. Other two
points are located on the wrong side. The variables ei denote the errors. The sup-
port vectors are marked in red.

5.1.3 Soft Margin Hyperplane

In this section we consider the non-linearly separable case, very common in
practical applications. Although the training samples cannot be discriminated using
a hyperplane, we may try to formulate the optimization problem in a way that will
allow to minimize the classification error on the training set.

The problem can be illustrated as in Figure 5.3. The hyperplane roughly sep-
arates the points belonging to different classes; however, several points violate the
rule of linear separability for SVMs given in Eq. 5.11. The violation can either cause
a misclassification of a training sample, or the sample may just cross the boundary
of the margin but be still located on the correct half-space. Since it is impossible
to eliminate the errors completely, the optimization problem should be formulated
in such a way that it leads to a solution for which the errors are minimized. We
start by redefining the condition presented in Eq. 5.11 so that it makes allowance
for the errors explicitly. It follows that

yi(w
T xi + b) ≥ 1 − ξi for i = 1, 2, . . . , n, (5.24)

where the variables ξi are non-negative and are referred to as the slack variables.
The slack variables can be seen as a measure of the violation of the margin. If
0 < ξi < 1, then the point crosses the boundary of the margin; however it is still
properly classified. The value greater than 1 means that the point falls on the wrong
side of the hyperplane.
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The slack variables can be used to state the goal of minimizing the average error
on the training set in formal way [33]. For this reason, we introduce a functional

φ(ξ) =
n∑

i=1

ξi, (5.25)

which should be minimized with respect to w. It may be incorporated into the cost
function defined in Eq. 5.13 as follows:

φ(w, ξ) =
1

2
wT w + C

n∑

i=1

ξi, (5.26)

where C is a parameter controlling the trade-off between the complexity of the
classifier and the amount of errors and it has an influence on the generalization
performance. The parameter is adjusted by the user.

We can now reformulate the primal optimization problem [33]: Given the labeled
training samples {(xi, yi)}n

i=1, find the optimal value of the weight vector wo and
the bias bo such that they satisfy the constraint presented in Eq. 5.24 for non-
negative values of the ξi variables and such that the vector w and the slack variable
ξi minimize the cost function given in Eq. 5.26. The Lagrangian function for this
problem is given by

L(w, b, α, u, ξ) =
1

2
wT w + C

n∑

i=1

ξi −
n∑

i

µiξi −

n∑

i=1

αi

[
yi(w

T xi + b) − 1 + ξi

]
, (5.27)

where µi are Lagrangian multipliers introduced to enforce the non-negativity of the
slack variables.

The corresponding dual problem does not depend on the slack variables and the
only difference lies in the second constraint which is replaced by:

0 ≤ αi,o ≤ C for i = 1, 2, . . . , n. (5.28)

The optimal weight vector as well as the optimal bias are computed using the same
algorithm as in the previous case. It is important to note that the definition of
the support vectors is also the same as before. As a result, the final discriminant
function in both cases is defined by Eq. 5.23.

It should be pointed out that the idea presented in this section is usefull not only
for non-linearly separable problems. Another advantage is that it is now possible
to avoid situations in which the hyperplane is optimal with respect to the errors on
the training set but does not generalize well to the novel samples (overfitting). This
ability can be controlled by the user by adjusting the value of the variable C.
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Figure 5.4. Non-linear mapping allowing the non-linearly separable points to be
separated by a hyperplane in a very high-dimensional feature space.

5.2 Non-linear Support Vector Machines

The previous section showed how to find the optimal separating hyperplane in
the linearly separable and non-separable case. In this section we will describe a
method allowing for making the SVM classifier non-linear by non-linearly mapping
the input vectors to a very high-dimensional feature space and constructing the
linear decision surface in that space. This can be done efficiently by exploiting
the fact that it is possible to compute the inner product of the input vectors in
the feature space using the so called kernel functions (kernels) without explicitly
determining the high-dimensional representation of the vectors. This idea is referred
to as the kernel trick.

Section 5.2.1 shows how to perform classification in the high-dimensional fea-
ture space using linear Support Vector Machines. Several commonly used kernel
functions are described Section 5.2.2. The section contains a description of the lo-
cal kernel function used to combine the local feature representation with the SVM
classifier.

5.2.1 The Kernel Trick

Let us consider a simple example of a non-linearly separable classification prob-
lem: Find a decision surface separating 4 samples in a two-dimensional space located
on the corners of a rectangle in such way that the samples connected by a diag-
onal belong to the same class. Such problem is commonly referred as the XOR
problem. Naturally, it is not possible to separate the samples using a hyperplane
in two dimensions (a line). However, if we imagine that the rectangle is a sheet of
paper we can easily fold it along the diagonal and separate by a hyperplane in three
dimensions (e.g. another sheet of paper). This shows that a non-linearly separa-
ble problem may become linearly separable after mapping to a higher-dimensional
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space. In general, it is possible to increase the separability of the points in <N by
mapping them to some space H through a non-linear function φ as illustrated in
Figure 5.4. From now on the term feature space will be used to refer to the space
H in which the classification is performed.

The function φ can be defined as follows:

φ : <N → H. (5.29)

It can be used to define the discriminant function of the SVM classifier in the feature
space H:

f(x) =
m∑

i=1

αiyiφ(xi)
T φ(x) + b, (5.30)

where all the parameters are defined as in Eq. 5.23. We see that such representation
required computing the inner product of the vectors in the feature space. However,
performing computations in such space could be extremely costly due to its high
dimensionality. This problem can be solved by exploiting the so-called kernel trick.

It was already stated in the previous section that the only operation that is
performed on the feature vectors is the inner product. This is true for both the
optimization process and classification. Consequently, it is possible to avoid de-
termining the feature space representation of the vectors by introducing the kernel
function defined by

K(x, y) = φ(x)T φ(y). (5.31)

We may now substitute Eq. 5.31 into Eq. 5.30 obtaining

f(x) =
m∑

i=1

αiyiK(xi, x) + b. (5.32)

The same substitution should be made in Eq. 5.20 defining the objective function
of the dual optimization problem.

The kernel function K(x, y) can be seen as a similarity measure between the
vectors x and y. However, in order to ensure that there exist a space in which this
measure corresponds to an inner product, the function must satisfy the Mercer’s
theorem, that is, the kernel matrix K given by

K =




K(x1, x1) · · · K(x1, xn)
...

. . .
...

K(xn, x1) · · · K(xn, xn)


 (5.33)

must by positive semi-definite. In other words it must have only non-negative
eigenvalues. The subject is comprehensively studied in [17]. Practical examples
show that it is still possible to use kernels that do not satisfy the Mercer’s condition
for Support Vector Machines. Although, in that case, it is not guaranteed that there
exist a space in which the kernel function is an inner product, the performance of a
classifier employing such function may still be very good. Examples of commonly
used kernel functions are presented in the next section.
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5.2.2 Kernel Functions

It was already mentioned that the kernel functions can be considered as a sim-
ilarity measure between two vectors. For this reason, numerous specialized kernels
have been proposed in order to classify various kinds of data (see e.g. [82, 15, 5]).
There are, however, several widely known kernel functions that perform well in a
variety of applications. These are inter alia:

• Polynomial kernel

K(x, y) =
(
xT y + p

)d
(5.34)

A special case K(x, y) = xT y is referred to as the linear kernel.

• Gaussian kernel

K(x, y) = e
−
‖x−y‖

2σ2 = e−γ‖x−y‖ (5.35)

• Sigmoid kernel

K(x, y) = tanh
(
κxT y + θ

)
(5.36)

The Mercer’s theorem for the sigmoid kernel is satisfied only for some values
of κ and θ.

The parameters of the kernels are specified by the user, usually experimentally.
In the experiments in Chapters 7 and 8, we employed two kernels specialized in

a particular type of input data: the χ2 kernel [15, 5] for classifying the Composed
Receptive Field Histograms, and the local kernels [82] performing matching of the
local image features. The χ2 kernel is given as follows:

K(x, y) = e−γχ2(x, y), (5.37)

where the χ2 measure is given by

χ2(x, y) =
N∑

i=1

(xi − yi)
2

xi + yi
(5.38)

The χ2 kernel is proved to be a Mercer’s kernel [5] and was shown to be effective in
experiments with multi-dimensional histograms [38, 15].

As it was stated in Chapter 4, comparing image representations based on local
features is usually done by matching, i.e. each local descriptor extracted from
the first image is compared to the descriptors extracted from the second image.
Such approach requires using a specialized kernel with the SVMs. In experiments
presented in this thesis the local kernels proposed by Wallraven et al. [82] were
employed. The local kernel function is given by

K(Lh, Lk) =
1

2

[
K̃(Lh, Lk) + K̃(Lk, Lh)

]
, (5.39)
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with

K̃(Lh, Lk) =
1

nh

nh∑

i=1

max
j=1,...,nk

Kl(lh,i, lk,j), (5.40)

where Lh = {lh,i}nh

i=1 is a vector of local features extracted from one image, and
Kl(x, y) is a kernel used as a measure of similarity between the local descriptors x

and y. In our experiments we used the Gaussian kernel given in Eq. 5.35 as Kl.
This is due to the fact that the Gaussian kernel employs the Euclidean distance
which is the most commonly used measure for comparing the SIFT descriptors.
The kernel presented above is an example of a non-Mercer’s kernel which, however,
performs very well in practice.

5.3 Multi-class Extensions to Support Vector Machines

Support Vector Machines were designed for binary classification. However, in
many practical applications the number of classes is greater than two. For this rea-
son, several extensions of SVMs allowing for multi-class classification were proposed
in the literature. In general, they can be divided into two groups: the “all-together”
methods (see e.g. [83]) which try to solve the multi-class problem in one step by re-
formulating the optimization problem discussed in Section 5.1, and the binary-based
methods which employ several binary SVM classifiers for this purpose. According
to the comparison presented in [37] the accuracy of all algorithms is very similar;
however, the usage of the all-together methods is currently limited to small data
sets as they require solving a much larger optimization problem. In this section we
present two algorithms belonging to the second group of methods: the one-against-
one and the one-against-all methods. Let us describe each algorithm in turn. We
will consider a c-class problem for classes {ωi}c

i=1.

One-against-all The one-against-all method employs c classifiers. The i-th clas-
sifier is trained to discriminate between the class ωi and all the other classes. During
the test phase, the sample is classified using all classifiers and the final decision is
made on the basis of the values of the discriminant functions as follows:

c = arg max
i=1,...,c

fi(x) (5.41)

One-against-one In the case of the one-against-one approach, c(c−1)
2 classifiers

are trained to discriminate between each pair of classes. In order to make the final
decision, each classifier votes on one class depending on the sign of its discriminant
function. Consequently, the class which collects the highest number of votes is
selected.
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C = 1 C = 100 C = 10000

Figure 5.5. A simple two-dimensional non-linearly separable classification problem
solved using the SVMs with the Gaussian kernel (γ = 5) for three different values
of the parameter C. The color saturation depends on the value of the discriminant
function. Support vectors are marked with circles.

5.4 Summary

In this chapter we provided a detailed description of the Support Vector Ma-
chines classifier, as well as the fundamentals of the discriminative classification in
general. First, we studied the optimization techniques used to obtain the optimal
separating hyperplane in a linearly separable case. As a consequence, we derived
the discriminant function of the SVM classifier. Then, we extended the problem to
the non-linearly separable case and showed how to find the soft margin hyperplane
minimizing the errors on the training set. The same method applies to the cases
when the optimal hyperplane defined in a standard way could lead to overfitting.
Finally, we showed how a non-linear mapping may increase the separability of the
data and how to perform the mapping using the inner-product kernels. This lead
us to the definitions of several commonly used kernel functions as well as of those
used in our experiments to classify pictures based on the global histogram repre-
sentation or local descriptors. It is worth mentioning that we omitted the issue of
the efficiency of the classifier purposely. In the next chapter, which we devote to
this subject, we will show a method for improving the efficiency and decreasing the
memory requirements of the Support Vector Machines.

In the end, we would like to illustrate the concepts discussed in this chapter by
a simple real example of a classification problem solved using the Support Vector
Machines. Figure 5.5 presents a two-dimensional non-linearly separable case and
three solutions obtained for a Gaussian kernel and different values of the parameter
C. We see that C can be used to control the generalization ability of the classifier.





Chapter 6

Support Vector Reduction

This chapter provides a detailed description of a method for improving the effi-
ciency and decreasing the memory requirements of the Support Vector Machines. In
numerous cases, these are crucial parameters of a classifier that determine its useful-
ness for certain types of applications. Consider the example of a place recognition
system. Due to the high complexity of the problem (large within-class variability,
constantly changing environment) the system may require huge amounts of mem-
ory in order to store its knowledge. On the other hand, it is likely to be mounted
either on a robot or on another mobile platform that usually have limited resources.
Moreover, it may be necessary to deliver real-time performance which makes the
efficiency of the classifier of utmost importance. The Support Vector Machines are
known to provide excellent generalization capabilities and in many domains are rec-
ognized as state-of-the-art (see e.g. [13]); however can be considerably slower in test
phase than other classification methods. As it was shown in the previous chapter,
the discriminant function of the SVMs is parametrized by a subset of the training
vectors - the support vectors. Consequently, the number of support vectors is a
crucial factor influencing the speed1 and the amount of memory required by the
classifier.

Several authors suggested that the solution generated by the standard SVC
learning algorithm is not always minimal ([12, 11, 63]), that is, it is possible to gen-
erate another solution offering identical generalization performance while having a
smaller number of support vectors. On the other hand, experiments performed by
Syed et al. [72] showed that rejecting even a small number of randomly selected
support vectors may cause a strong decrease in performance. This raises the ques-
tion of whether the complexity of the support vector solution can be reduced while
preserving its optimal performance.

The phenomenon described above can be observed in a simple example in Fig-
ure 6.1, upper left. The illustration presents the solution of a two-dimensional
classification problem obtained using a linear kernel and the Sequential Minimal

1In case of incremental learning, the number of support vectors may affect not only the speed
in the test phase but also the training time (see [63]).

57
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Linear kernel

Before reduction (49 SVs) After reduction (2 SVs)

Gaussian kernel (γ = 0.5)

Before reduction (39 SVs) After reduction (5 SVs)

Figure 6.1. Simple examples illustrating the result of applying the Support Vec-
tor Reduction algorithm presented in this thesis to the classifiers trained using two-
dimensional data. In each case, training was performed using the SMO algorithm and
C = 100. The color saturation depends on the value of the discriminant function,
and the support vectors are marked with circles.

Optimization (SMO) [58, 14] training algorithm. In such a case, the support vec-
tors can be regarded as basis vectors used to transform the input vector into new
coordinates before it is multiplied by the αi coefficients. Intuitively, in order to
uniquely represent any point in a two-dimensional space, it is enough to provide
two linearly independent basis vectors. As we see in the example, the standard
algorithm found 49 support vectors, whereas any two linearly independent vectors
should be enough.
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The idea that the standard learning algorithm may generate a set of support
vectors that is not linearly independent in the space in which the linear classifica-
tion is performed was first proposed and experimentally evaluated by Downs et al.
[19]. Their method allows to reduce the number of support vectors of a trained
classifier by eliminating those that can be expressed as a linear combination of the
others in the feature space. The weights αi are updated accordingly, which ensures
that the decision function is exactly the same as the original one. This results in
a reduction of the complexity of the classifier, without any loss in performance.
Experiments presented in [19] show that the algorithm can be successfully applied
to the polynomial and Gaussian kernels.

In this chapter we present the theoretical background of the method proposed
by Downs et al. [19] as well as our implementation employing the QR factorization
with column pivoting [28, 29] as a method for selecting the linearly dependent
support vectors. We further extend the original reduction algorithm by introducing
a threshold value, which can be used to find the optimal trade-off between the
complexity of the classifier (and thus the memory requirements and the speed in
the test phase) and the classification performance. The method is thoroughly tested
on visual data for multi-class problems of different complexity drawn from two
domains: material categorization and place recognition. The results of experiments
are reported in Chapters 7 and 8. Simple examples are presented in Figure 6.1. We
see that the algorithm leads substantial reduction in the number of support vectors
while keeping the solution unchanged.

Several other approaches aiming to decrease the complexity of the SVM classifier
were proposed in the literature. Burges [11] and Burges and Schölkopf [12] describe
a method for approximating the solution using smaller number of vectors, which,
however, are not support vectors. Additionally, this method seems to be computa-
tionally expensive. Another approach by Osuna and Girosi [57] employs Support
Vector Regression in order to approximate the discriminant function. These meth-
ods are generally approximate methods and only the algorithm proposed by Downs
et al. [19] guarantees to keep the solution intact.

The rest of this chapter is organized as follows: Section 6.1 provides a description
of the original method proposed by Downs et al.. Section 6.2 presents the algorithm
of the QR factorization with column pivoting. Finally, Section 6.3 shows how to
use the QR factorization in order to identify the linearly dependent support vectors,
and how to control the trade-off between the complexity of the classifier and the
classification performance. The chapter concludes with a summary in Section 6.4.

6.1 Linear Dependence in the Feature Space

The idea behind the algorithm by Downs et al. [19] is that the set of support
vectors is not guaranteed to be linearly independent in the feature space. Recall
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the standard discriminant function of the SVM classifier given by

f(x) =
m∑

i=1

αiyiK(xi, x) + b, (6.1)

where {xi}m
i=1 is the set of support vectors. Let us suppose that the linearly depen-

dent supports vectors were already identified and sorted so that the first r support
vectors are linearly independent, and the remaining m− r depend linearly on those
in the feature space:

∀
j=r+1,...,m

: φ(xj) ∈ span{φ(xi)}r
i=1. (6.2)

Then for all xj , j = r + 1, . . . , m, it holds

φ(xj) =
r∑

i=1

cijφ(xi), (6.3)

and

K(x, xj) =
r∑

i=1

cijK(x, xi). (6.4)

Eq. 6.4 can now be substituted into Eq. 6.1. This leads to the discriminant
function of the form

f(x) =




r∑

i=1

αiyiK(x, xi) +
m∑

j=r+1

αjyj

r∑

i=1

cijK(x, xi) + b


 . (6.5)

We see that the function is not anymore parametrized by the linearly dependent
support vectors. If we define the coefficients γij , such that αjyjcij = αiyiγij and
γi =

∑m
j=r+1 γij , then Eq. 6.5 can be written as

f(x) =




r∑

i=1

αiyiK(x, xi) +
r∑

i=1

αiyi

m∑

j=r+1

γijK(x, xi) + b




=

(
r∑

i=1

αiyiK(x, xi) +
r∑

i=1

αiyiγiK(x, xi) + b

)

=

(
r∑

i=1

αi(1 + γi)yiK(x, xi) + b

)

=

(
r∑

i=1

α̃iyiK(x, xi) + b

)
, (6.6)

where

α̃i = αi(1 + γi) = αi


1 +

m∑

j=r+1

αjyjcij

αiyi


 (6.7)
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The αi coefficients can be pre-multiplied by the class labels α′
i = αiyi which results

in a simple equation that can be used to obtain the weights of the reduced classifier:

α̃′
i =

{
α′

i +
∑m

j=r+1 α′
jcij for i = 1, 2, . . . , r

0 for i = r + 1, r + 2, . . . , m.
(6.8)

In conclusion, the resulting discriminant function (Eq. 6.6) requires now m− r less
kernel evaluations than the original one (Eq. 6.1).

6.2 QR Factorization

The previous section provided a simple expression for computing the weights
of the SVM classifier after reducing multiple linearly dependent support vectors
at once. However, it is necessary to first identify the linearly dependent support
vectors and to determine the coefficients cij . We employ the QR factorization with
column pivoting [28, 29] for this purpose.

The QR factorization with column pivoting algorithm is a widely used method
for selecting the independent columns of a matrix. The algorithm allows to reveal
the numerical rank of the matrix with respect to a parameter τ , which acts as a
threshold in defining the condition of linear dependence. Additionally, it performs
a permutation of the columns of the matrix so that they are ordered according to
the degree of their relative linear independence. Consequently, if for a given value
of τ the rank of the matrix is r, then the linearly independent columns will occupy
the first r positions.

The QR factorization with column pivoting of a matrix K ∈ <n×m, n ≥ m is
given by

KΠ = QR, (6.9)

where Π ∈ <m×m is a permutation matrix, Q ∈ <n×n is orthogonal, and R ∈ <n×m

is upper triangular. If we assume that the rank of the matrix K with respect to the
parameter τ equals r, then the matrices can be decomposed as follows:

[
K1 K2

]
=
[

Q1 Q2

] [ R11 R12

0 R22

]
, (6.10)

where the columns of K1 ∈ <n×r create a linearly independent set, the columns
of K2 ∈ <n×m−r may be expressed as a linear combination of the columns of
K1, Q1 ∈ <n×r is orthogonal, Q2 ∈ <n×n−r is orthogonal, R11 ∈ <r×r is upper
triangular, R12 ∈ <r×m−r, and R22 ∈ <n−r×m−r.

The products of the QR factorization can be used to obtain the coefficients
determining how the linearly dependent columns depend on the independent ones:

{
K1C = K2

K1 = Q1R11

{
C = K−1

1 K2

K1 = Q1R11
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C = (Q1R11)
−1K2 = R−1

11 Q−1
1 K2. (6.11)

Since Q1 is orthogonal

C =




c1,r+1 . . . c1,m

...
. . .

...
cr,r+1 . . . cr,m


 = R−1

11 QT
1 K2, (6.12)

where C ∈ <r×m−r and cij is a coefficient determining how the j-th column depends
on the i-th one.

The algorithm computing the QR factorization with column pivoting employed
during experiments presented in this thesis utilizes the Householder transformations
[29]. Consequently, the matrix Q can be seen as a product of the Householder
matrices that were used to transform the matrix K into the upper triangular matrix
R as follows:

QT KΠ = Hm Hm−1 · · ·H1 KΠ︸︷︷︸
P

(1)

︸ ︷︷ ︸
P

(2)

︸ ︷︷ ︸
P

(m)

︸ ︷︷ ︸
P

(m+1)
=R

= R. (6.13)

At the k-th stage of the algorithm P (k+1) = HkP
(k), and the matrix Hk ∈ <n×n

is given by

Hk =

[
Ik−1 0

0 H̃k

]
, (6.14)

where Ik ∈ <k is an identity matrix, and H̃k ∈ <n−k+1×n−k+1 denotes the House-
holder matrix given by

H̃k = In−k+1 −
2

vT
k vk

vkv
T
k . (6.15)

The vector vk ∈ <n−k+1 is the Householder vector given by

vk = p
(k)
k,k − ‖p(k)

k,k‖2en−k+1, (6.16)

where ek is the first column of the identify matrix Ik, and p
(k)
i,j ∈ <n−i+1 is a vector

of elements of the matrix P (k) such that

P (k) =




p
(k)
1,1 · · · p

(k)
1,j · · · p

(k)
1,m

...
. . .

...
. . .

...

p
(k)
i,1 · · · 

 p
(k)
i,j




· · · 
 p

(k)
i,m


...

p
(k)
n,1 · · · · · ·




, (6.17)
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and P (k) ∈ <n×m. Each multiplication by the matrix H (i) zeroes all the elements
below the diagonal in the i-th column which in consequence leads to the triangular
matrix R. Before the k-th step the algorithm searches for the column corresponding

to the maximal Euclidean norm of the vectors p
(k)
k,j , j = k, . . . , m:

l = arg max
j=k,...,m

‖p(k)
k,j‖2, (6.18)

and then the k-th and l-th columns of P (k) are interchanged. This operation gen-
erates the permutation matrix Π.

The algorithm requires 4nmr − 2r2(n + m) + 4r3 floating point operations.
Additional details about the method as well as pseudocodes for the algorithms can
be found in [29].

6.3 QR Factorization for Support Vector Reduction

The linearly independent subset of the support vectors as well as the coefficients
cij can be found by applying the QR factorization with column pivoting to the
support vector matrix given by

K =




K(y1, x1) · · · K(y1, xm)
...

. . .
...

K(yn, x1) · · · K(yn, xm)


 , (6.19)

where {xi}m
i=1 are the support vectors and {yi}n

i=1 are all the training samples. The
computations are performed for a given value of the threshold parameter τ . This
results in the permutation matrix Π ∈ <m×m, the matrix of coefficients C ∈ <r×m−r

presented in Eq. 6.12, and the number of the linearly independent support vectors
r ∈ N (The rank of the matrix K with respect to the parameter τ). Consequently,
we can express Eq. 6.8 using matrix notation as follows:

Πα′ =

[
α′

1

α′
2

]
α′

1 =




α′
1
...

α′
r


 α′

2 =




α′
r+1
...

α′
m




and {
α̃′

1 = α′
1 + Cα′

2

α̃′
2 = 0

, (6.20)

where α′ is the vector of unsorted weights pre-multiplied by the class labels, the
vector α′

1 contains the weights corresponding to the linearly independent support
vectors, and α′

2 is a vector of weights corresponding to the dependent support
vectors. The permutation matrix Π is used to sort the α′

i coefficients according to
the degree of linear independence of the support vectors. Naturally, the columns of
the matrix K and the support vectors are permuted in exactly the same way.
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By substituting Eq. 6.12 into Eq. 6.20 we obtain the final equation which can
be used to compute the weights of the reduced classifier:

{
α̃′

1 = α′
1 + R−1

11 QT
1 K2α

′
2

α̃′
2 = 0

(6.21)

Additional normalization step can be performed before the QR factorization is com-
puted. Namely, the matrix K can be normalized so that the Euclidean norm of each
column is equal to one. This influences the column pivoting strategy. Naturally,
the result of the factorization must be scaled afterwards in order to provide correct
values of the cij coefficients.

As it was already stated, the parameter τ of the factorization algorithm can
be seen as a measure of the linear independence between the first r columns of
the matrix. Consequently, if applied to the support vector matrix K presented
in Eq. 6.19 it allows to control the number of support vectors regarded as linearly
independent in the feature space, and thus stored in the memory after the reduction.
Clearly, as the value of τ grows, Eq. 6.6 becomes more and more an approximation
of the exact solution. However, it is important to underline that the informative
content of the discarded support vectors {xi}m

i=r+1 is not completely lost, as their
weights {αi}m

i=r+1 are used to compute the updated value of the weights α̃i for the
remaining support vectors. This should result in a graceful decrease of classification
performance compared to the optimal solution. Thus, the parameter τ can be used
as an effective way to trade performance for memory requirements and speed during
classification, depending on the task at hand.

A simple example illustrating the issues discussed above is shown in Figure 6.2.
We see that the algorithm is able to provide considerable reduction (∼ 90%) without
any loss in generalization performance (compare Figure 6.2 upper left and upper
right). Further reduction can be achieved by increasing the value of the threshold
parameter τ . Although, in that case, it is possible to notice small variations of the
decision surface, the reduction rate can be increased up to ∼ 97%.

6.4 Summary

In this chapter, we described a method for exact simplification of the support
vector solutions based on the fact that the set of support vectors is usually not
linearly independent in the feature space [19]. We also showed that the QR fac-
torization with column pivoting algorithm can be used to identify the linearly de-
pendent support vectors. Finally, we extended the original simplification method
by Downs et al. by introducing a parameter allowing to effectively trade the per-
formance of the classifier for memory requirements and speed during classification.
This extended version can be seen as an alternative approach to approximate SVM
methods like [57, 12, 11] and is still able to provide an exact solution if desired.
We will show in the next chapter that this can be exploited to achieve greater re-
duction without any loss in classification rate. Additional experiments presented in
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Not reduced (64 SVs) Reduced τ = 0.01 (6 SVs)

Reduced τ = 0.02 (5 SVs) Reduced τ = 0.04 (4 SVs)

Reduced τ = 0.6 (3 SVs) Reduced τ = 0.6 (2 SVs)

Figure 6.2. The result of applying the support vector reduction algorithm, with
various values of threshold τ , to the classifier trained using two-dimensional data.
The experiment was performed for the Gaussian kernel (γ = 0.5), and C = 100. The
support vectors are marked with circles.
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[63] revealed that the algorithm may also be used as a good selector for “the most
important” support vectors.



Chapter 7

Experiments with Support Vector

Reduction

In this chapter we present the results of an experimental evaluation of the sup-
port vector reduction algorithm described in detail in Chapter 6. The experiments
reported here were conducted on the KTH-TIPS2 database [43] which was pre-
viously used for experiments with material categorization [13]. Additionally, the
algorithm was evaluated in the domain of place recognition on the KTH-INDECS
database described in Chapter 3. These results are, however, reported in Chap-
ter 8. In every experiment, before the reduction was applied, the classifier was
trained using the Sequential Minimal Optimization (SMO) [58, 14] algorithm.

The databases used in the experiments are of different complexity and contain
visual data divided into multiple classes. In both cases, two different kinds of
features were extracted from the images: MR8 [79] and Local Binary Patterns
(LBP) [53] in case of the TIPS2 database and Composed Receptive Field Histograms
(CRFH) [38] and local features (SIFT [41]) in case of the INDECS database (details
about these descriptors can be found in Chapter 4). Moreover, various kernel types,
multi-class SVM algorithms, and training parameters were tested. To the best of
our knowledge, the original reduction algorithm proposed by Downs et al. [19] has
been so far tried mainly on two-class problems1 and non-visual data.

This chapter is organized as follows: Section 7.1 provides a brief description of
the KTH-TIPS2 database used in experiments reported in succeeding sections. The
experimental procedure is explained in detail in Section 7.2. In Section 7.3 we study
several properties of the algorithm as well as the role of the threshold parameter in
controlling the trade-off between the reduction rate and classification rate. Then,
in Section 7.4, we examine the influence of the kernel parameters and the value of
the parameter C on the performance of the reduction algorithm. Finally, in Section
7.5, we evaluate the algorithm on classifiers trained using various kernel types and
multi-class methods. A summary is given in Section 7.6.

For space reasons, this chapter contains only a small selection of the available

1The Contraceptive Method Choice database is divided into three classes.
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Cork Wool Lettuce
leaf

Alumin.
foil

Corduroy Linen Cotton Brown
bread

White
bread

Wood Cracker

Figure 7.1. The variations within each category of the KTH-TIPS2 database (from
Caputo et al. [13]). Each row shows one example image from each of four samples
of a category. In addition, each sample was imaged under varying pose, illumination
and scale conditions.

experimental results. The interested reader is referred to [60] for the complete set
of results. The reduction algorithm was implemented on top of a modified version
of the libSVM library [14]. This resulted in a new executable file that can be used
in order to reduce a previously trained classifier.

7.1 The KTH-TIPS2 Database

The KTH-TIPS2 database [43, 13] contains images of 4 planar samples of each of
11 materials (see Figure 7.1 for examples). Many of these materials have 3D struc-
ture, implying that their appearance can change considerably as pose and lighting
are changed. TIPS2 contains images at 9 scales equally spaced logarithmically over
two octaves. At each scale, materials were imaged under 3 poses (frontal, rotated
22.5◦ left and 22.5◦ right) and 4 illumination conditions (frontal, 45◦ from the top
and 45◦ from the side, all taken with a desk-lamp with a Tungsten light bulb; the
fourth illumination condition consisted of fluorescent lights). In total there are
9 × 3 × 4 = 108 images per sample.

Two types of rotationally invariant descriptors were used in the experiments
reported in succeeding sections: the MR8 descriptor [79] and Local Binary Patterns
(LBP) [53]. The parameters of the descriptors were set to the same values as in the
experiments with material categorization described in [13].

7.2 Experimental Setup

All the experiments reported in this chapter followed the same procedure, which
can be divided into two steps. First, the classifier was trained using the SMO
algorithm [58, 14] on certain training set. The support vectors were counted and the
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classifier was evaluated on a test set in order to obtain the initial classification rate.
Then, starting from the obtained discriminant functions, the reduction algorithm
was applied for increasing values of the threshold parameter τ and the normalization
turned on or off. The same value of threshold was always used for all discriminant
functions of a multi-class classifier. This led to a progressive reduction in the number
of support vectors and, after reaching certain threshold value, in the classification
rate. After each reduction, the support vectors were counted and the performance
of the classifier was evaluated on the test set. The process was stopped when the
classification rate dropped below 70% of its initial value.

The reduction algorithm was evaluated on a classifiers trained using four dif-
ferent kernel types and several values of the kernel parameters: the χ2 kernel
(γ = 10−3, 10−2, . . . , 103), the Gaussian kernel (γ = 10−3, 10−2, . . . , 103), the poly-
nomial kernel for p = 0 (K(x, y) = (xT y)d, d = 1, 2, . . . , 5), and the polynomial
kernel for p = 1 (K(x, y) = (xT y + 1)d, d = 1, 2, . . . , 5). Additionally, four differ-
ent values of the C parameter were tested: 1, 10, 100, and 1000. The results for
which the initial classification rate was lower than 30% were rejected. The exper-
iments were also performed for two multi-class SVM algorithms: one-against-one
and one-against-all.

For every experiment, the TIPS2 database was divided into a training and test
set. The training set consisted of one, two, or three samples per material, while
the test set was created from the remaining samples. In each case, four possible
splittings were considered. As it was already mentioned, every experiment was
repeated for both MR8 and LBP features. As a result, we performed (2 × 7 + 2 ×
5)× 4× 2× 3× 4× 2 = 4608 experiments in total. Naturally, this chapter presents
only a small representative selection of the results. The remaining can be found in
[60]. In particular, in the succeeding sections we will report only those results that
were obtained for three samples per material in the training set.

As we consider multi-class problems, it is important to underline that the sup-
port vectors are counted in such way that each vector is taken into account only
once, even if it is used by several discriminant functions. Consequently, the reported
number of support vectors always correspond to the amount of memory needed to
store the vectors and the number of required kernel evaluations in the test phase.

In most cases the results reported here (as well as in [60]) were averaged over
all four possible splittings into the training and test sets. Consequently, they are
presented in the form of the mean value accompanied by the uncertainty which is
always one standard deviation.
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7.3 Parameters of the Support Vector Reduction

Algorithm

The support vector reduction algorithm is parametrized by the threshold τ .
Additionally, as it was mentioned in Chapter 6, the support vector matrix can be
normalized before the reduction process begins. This section studies the influence
of the increasing value of threshold to the amount of reduction and the performance
of the classifier.

Figure 7.2 presents the relationships between the reduction rates and the classi-
fication rates as well as between the value of the threshold and the reduction rates
obtained during experiments conducted for two feature types and two different ker-
nels. It can be observed from Figure 7.2, left, that in case of the polynomial kernel,
reducing ∼ 40% percent of the support vectors did not cause any variations in
the classification rate. We also see from Figure 7.2, right, that these vectors were
considererd as linearly dependent with respect to the threshold nearly equal to 0.
Thus, this part of the reduction process can be regarded as an exact simplification.
On the same basis, in case of the χ2 kernel, it would be possible to achieve the
reduction rates of only ∼ 5% (LBP) or even less (MR8). We can also observe that
relatively bigger threshold is required in order to reduce even small amount of sup-
port vectors. This suggests that the set of vectors is in this case “more” linearly
independent. This is consistent with the results published by Downs et al. [19].
They report lower reduction rates for the Gaussian kernel than for the polynomial
kernel.

Figure 7.2 indicates that it is possible to achieve much higher reduction rates
without any loss in classification rate, even if the χ2 kernel was used in order to
train the classifier (∼ 50% and ∼ 40% for the χ2 kernel, and ∼ 70% for the poly-
nomial kernel). However, we need to modify the condition of linear dependence
by increasing the threshold value. In that case, the resulting classifier can be seen
as an approximation of the initial solution. It will be shown in the next sections
that this way it is possible to achieve similar reduction rates for all kernel types.
What is more, if the aim is to meet certain requirements regarding the memory
requirements or the speed in the test phase, the number of support vectors can be
further decreased.

Additional conclusions can be drawn from the plots in Figure 7.2. First of all,
there usually exist a point where the classification rate is higher than the initial
value. This may suggest that the simplification process may lead to a classifier of
better generalization performance. Irregular variations can also be seen in the plots.
This can be explained by the fact that a multi-class classifier is built from several
discriminant functions which may react differently to the reduction. In spite of that,
the experiments reported in the next sections prove that the reduction algorithm
can be successfully applied to multi-class problems.
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Figure 7.2. Relationship between the reduction rate and classification rate (left) as
well as between the value of the threshold parameter τ and the reduction rate (right)
for various feature and kernel types. The plots on the right were obtained with the
normalization turned off.



72 CHAPTER 7. EXPERIMENTS WITH SUPPORT VECTOR REDUCTION

7.4 Experiments with Kernel and Training Parameters

As it was already stated, the experiments were conducted for various values of
the kernel parameters and the parameter C. Tables 7.1 and 7.2 show all the results
obtained for the MR8 features, the Gaussian kernel, and the one-against-one multi-
class extension. The results were averaged over the four possible splittings into the
training and test sets, as it was described in Section 7.2. The tables present the
classification rates that are guaranteed to be preserved and the maximal reduction
rates which can be achieved under such constraint. These dependencies between
the classification rates and the number of support vectors are illustrated in the form
of plots in Figures 7.3 and 7.4

First of all, it can be seen that the reduction rate depends strongly on the
parameters of the kernel and decreases as γ grows. The same property holds for
the χ2 kernel and the polynomial kernel for growing d. Similar results were also
reported by Downs et al. [19].

It can be observed from the plots, that the smallest number of support vectors
is usually obtained as a result of reduction of the best trained classifier. In other
words, even if the aim is to achieve large reduction not high classification rate, it
is better to use the strongest classifier as a starting point. This suggests that the
classifiers that are more sensitive to the reduction also suffer from overfitting (see
the plot for γ = 10). Similar behavior was also observed for other kernel types.
Although, this property may not always hold exactly, in general it is a better choice
to perform the reduction starting from the best trained classifier. Consequently, in
the next section we will report the results obtained for the classifier with the highest
initial classification rate.

7.5 Experiments with Kernel Type and Multi-class SVM

Algorithms

Tables 7.3 and 7.4 presents the results of the evaluation of the reduction algo-
rithm applied to the classifier trained on two feature types using various kernels
and the one-against-one multi-class algorithm. Corresponding results obtained for
the one-against-all multi-class extension are given in Tables 7.5 and 7.6. In both
cases, C was equal 100 and the best kernel parameters were determined by cross
validation.

First, the algorithm was able to provide the reduction rates up to ∼ 83% without
affecting the classification rate of the resulting classifier. In general, about half of
the vectors were excluded from the final solution. Additional 5 to 10 percent of
reduction can be achieved if a 2 percent loss in the classification rate is accepted.

It is difficult to find any stable relationship between the kernel type and the
amount of reduction. Consequently, we can repeat after [19] that this value is both
kernel and problem dependent and does not appear to be predictable a priori. In-
teresting observation can be made on the basis of the results obtained for the LBP
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γ
Perc. of init.

Class. rate [%] Red. rate [%] No. of SVs
class. rate [%]

0.001

ORIGINAL 58.86 ± 3.07 — 2957 ± 54

R
E
D.

100 58.85 ± 3.07 78.07 ± 2.30 649 ± 76
98 57.68 ± 3.01 82.16 ± 2.97 528 ± 98
95 55.92 ± 2.91 85.69 ± 1.19 422 ± 29
90 52.97 ± 2.76 88.24 ± 1.25 346 ± 35
80 47.09 ± 2.45 90.87 ± 1.35 269 ± 37

0.01

ORIGINAL 69.62 ± 5.37 — 2001 ± 61

R
E
D.

100 69.61 ± 5.37 54.32 ± 12.80 918 ± 271
98 68.23 ± 5.26 69.67 ± 3.46 608 ± 85
95 66.14 ± 5.10 74.55 ± 3.84 511 ± 88
90 62.66 ± 4.83 78.93 ± 3.09 423 ± 71
80 55.70 ± 4.30 82.87 ± 1.80 343 ± 41

0.1

ORIGINAL 69.35 ± 5.99 — 1383 ± 55

R
E
D.

100 69.34 ± 5.99 50.28 ± 6.42 689 ± 109
98 67.97 ± 5.87 55.44 ± 5.19 618 ± 95
95 65.89 ± 5.69 60.83 ± 2.92 542 ± 61
90 62.42 ± 5.39 68.82 ± 4.24 432 ± 72
80 55.48 ± 4.79 73.36 ± 3.88 369 ± 64

1

ORIGINAL 69.32 ± 6.67 — 1518 ± 34

R
E
D.

100 69.30 ± 6.67 46.95 ± 7.03 805 ± 111
98 67.93 ± 6.54 50.98 ± 3.31 744 ± 56
95 65.85 ± 6.34 59.43 ± 4.65 616 ± 77
90 62.39 ± 6.01 64.46 ± 5.13 539 ± 82
80 55.45 ± 5.34 71.82 ± 5.24 428 ± 83

10

ORIGINAL 62.36 ± 8.40 — 2655 ± 33

R
E
D.

100 62.35 ± 8.39 22.44 ± 5.71 2061 ± 175
98 61.12 ± 8.23 36.75 ± 7.09 1681 ± 209
95 59.25 ± 7.98 45.67 ± 1.93 1442 ± 69
90 56.13 ± 7.56 57.21 ± 5.08 1136 ± 135
80 49.89 ± 6.72 76.93 ± 6.00 611 ± 159

Table 7.1. Average results of the evaluation of the reduction algorithm on the MR8
features. The classifier was trained using the one-against-one multi-class algorithm,
the Gaussian kernel with various values of γ and C = 100.
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Figure 7.3. Illustration of the results given in Table 7.1.
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C
Perc. of init.

Class. rate [%] Red. rate [%] No. of SVs
class. rate [%]

1

ORIGINAL 40.09 ± 3.15 0.00 ± 0.00 3436 ± 53

R
E
D.

100 40.08 ± 3.15 82.77 ± 18.78 589 ± 638
98 39.29 ± 3.09 92.44 ± 3.30 260 ± 113
95 38.09 ± 2.99 94.27 ± 2.68 196 ± 91
90 36.08 ± 2.84 95.80 ± 1.03 144 ± 35
80 32.07 ± 2.52 96.94 ± 0.60 105 ± 22

10

ORIGINAL 58.84 ± 3.09 0.00 ± 0.00 2959 ± 53

R
E
D.

100 58.82 ± 3.09 75.35 ± 3.25 730 ± 104
98 57.66 ± 3.03 82.34 ± 2.56 523 ± 85
95 55.89 ± 2.94 86.28 ± 1.17 405 ± 29
90 52.95 ± 2.78 87.97 ± 1.34 355 ± 37
80 47.07 ± 2.47 91.10 ± 1.14 262 ± 31

100

ORIGINAL 69.62 ± 5.37 0.00 ± 0.00 2001 ± 61

R
E
D.

100 69.61 ± 5.37 54.32 ± 12.80 918 ± 271
98 68.23 ± 5.26 69.67 ± 3.46 608 ± 85
95 66.14 ± 5.10 74.55 ± 3.84 511 ± 88
90 62.66 ± 4.83 78.93 ± 3.09 423 ± 71
80 55.70 ± 4.30 82.87 ± 1.80 343 ± 41

1000

ORIGINAL 69.12 ± 5.96 0.00 ± 0.00 1366 ± 49

R
E
D.

100 69.10 ± 5.96 48.84 ± 3.53 698 ± 60
98 67.74 ± 5.84 58.82 ± 6.15 563 ± 93
95 65.66 ± 5.66 63.00 ± 4.48 506 ± 73
90 62.21 ± 5.36 68.79 ± 4.76 427 ± 78
80 55.29 ± 4.77 73.82 ± 4.64 359 ± 75

Table 7.2. Average results of the evaluation of the reduction algorithm on the MR8
features. The classifier was trained using the one-against-one multi-class algorithm,
the Gaussian kernel with γ = 0.01 and various values of C.
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Figure 7.4. Illustration of the results given in Table 7.2.
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descriptor and both multi-class algorithms. We see that although the initial num-
ber of support vectors is much larger in the case of the one-against-all method,
the reduction leads to solutions containing similar number of vectors for both algo-
rithms. Other experiments indicate that in general the reduction rate is higher for
the one-against-all method.

7.6 Summary

In this chapter we presented a selection of results of a comprehensive experimen-
tal evaluation of the support vector reduction algorithm described in Chapter 6. The
results were carefully chosen so that they were representative and led to conclusions
that are true also for experiments not reported here.

First of all, we showed how the parameters of the algorithm influence the reduc-
tion process. Then, we presented a series of results proving that our method can be
successfully applied to classifiers trained on multi-class visual data, and it performs
well for various kernel types and multi-class algorithms. In each case, the algorithm
provided substantial reduction in the number of support vectors. The threshold
parameter can be used to tune the trade-off between the amount of reduction and
the classification rate. This can be exploited to either reduce the complexity of the
classifier without any loss in its performance or to make it compatible with certain
requirements regarding the number of support vectors. Moreover, the results indi-
cate that small decrease in performance may lead to much larger reduction in the
number of support vectors.

In conclusion, the algorithm evaluated in this chapter can be a powerful and
flexible method for decreasing the memory requirements and increasing the speed
in the test phase of the Support Vector Machine classifier.
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Kernel
Perc. of init.

Class. rate [%] Red. rate [%] No. of SVs
class. rate [%]

χ2

γ = 0.01

ORIGINAL 72.28 ± 6.10 — 1525 ± 36

R
E
D
U
C
E
D

100 72.27 ± 6.09 45.69 ± 21.25 833 ± 340
98 70.83 ± 5.97 53.77 ± 10.94 708 ± 180
95 68.67 ± 5.79 60.38 ± 6.70 606 ± 114
90 65.05 ± 5.49 68.89 ± 4.64 475 ± 80
80 57.82 ± 4.88 78.01 ± 3.73 336 ± 62

Gaussian
γ = 0.01

ORIGINAL 69.62 ± 5.37 — 2001 ± 61

R
E
D
U
C
E
D

100 69.61 ± 5.37 54.32 ± 12.80 918 ± 271
98 68.23 ± 5.26 69.67 ± 3.46 608 ± 85
95 66.14 ± 5.10 74.55 ± 3.84 511 ± 88
90 62.66 ± 4.83 78.93 ± 3.09 423 ± 71
80 55.70 ± 4.30 82.87 ± 1.80 343 ± 41

Polynomial
p = 0
d = 4

ORIGINAL 68.85 ± 7.62 — 1719 ± 30

R
E
D
U
C
E
D

100 68.84 ± 7.62 38.19 ± 7.99 1064 ± 150
98 67.47 ± 7.47 45.56 ± 7.10 935 ± 125
95 65.41 ± 7.24 50.13 ± 7.09 856 ± 122
90 61.97 ± 6.86 59.69 ± 6.86 692 ± 118
80 55.08 ± 6.10 69.38 ± 5.40 526 ± 95

Polynomial
p = 1
d = 5

ORIGINAL 69.09 ± 6.87 — 1543 ± 31

R
E
D
U
C
E
D

100 69.08 ± 6.87 43.60 ± 7.30 870 ± 115
98 67.71 ± 6.74 50.15 ± 6.68 768 ± 103
95 65.64 ± 6.53 56.58 ± 4.95 670 ± 79
90 62.18 ± 6.19 62.26 ± 5.49 582 ± 89
80 55.27 ± 5.50 71.35 ± 5.67 442 ± 91

Table 7.3. Average results of the evaluation of the reduction algorithm on the MR8
features. The classifier was trained using the one-against-one multi-class algorithm,
various kernel types and C = 100.
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Kernel
Perc. of init.

Class. rate [%] Red. rate [%] No. of SVs
class. rate [%]

χ2

γ = 1

ORIGINAL 71.05 ± 2.16 — 1105 ± 27

R
E
D
U
C
E
D

100 71.03 ± 2.16 36.66 ± 12.37 698 ± 125
98 69.63 ± 2.11 45.31 ± 4.43 604 ± 59
95 67.50 ± 2.05 53.10 ± 4.68 517 ± 47
90 63.94 ± 1.94 59.28 ± 4.18 449 ± 45
80 56.84 ± 1.73 66.87 ± 5.72 364 ± 57

Gaussian
γ = 10

ORIGINAL 71.67 ± 2.78 — 1077 ± 9

R
E
D
U
C
E
D

100 71.65 ± 2.78 44.51 ± 11.71 598 ± 131
98 70.23 ± 2.72 53.85 ± 1.94 497 ± 23
95 68.08 ± 2.64 57.16 ± 2.14 461 ± 26
90 64.50 ± 2.50 61.07 ± 2.98 419 ± 34
80 57.33 ± 2.22 66.40 ± 3.21 361 ± 35

Polynomial
p = 0
d = 3

ORIGINAL 70.45 ± 1.74 — 1823 ± 17

R
E
D
U
C
E
D

100 70.44 ± 1.74 68.03 ± 5.30 581 ± 91
98 69.04 ± 1.70 73.08 ± 3.25 490 ± 55
95 66.93 ± 1.65 78.01 ± 2.52 400 ± 43
90 63.41 ± 1.56 79.78 ± 2.00 367 ± 33
80 56.36 ± 1.39 83.19 ± 2.05 305 ± 35

Polynomial
p = 1
d = 5

ORIGINAL 71.54 ± 3.04 — 896 ± 8

R
E
D
U
C
E
D

100 71.53 ± 3.04 42.64 ± 10.23 513 ± 91
98 70.11 ± 2.97 49.73 ± 4.20 450 ± 37
95 67.97 ± 2.88 54.25 ± 2.91 409 ± 28
90 64.39 ± 2.73 57.54 ± 3.71 379 ± 34
80 57.23 ± 2.43 63.66 ± 2.61 325 ± 25

Table 7.4. Average results of the evaluation of the reduction algorithm on the LBP
features. The classifier was trained using the one-against-one multi-class algorithm,
various kernel types and C = 100.
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Kernel
Perc. of init.

Class. rate [%] Red. rate [%] No. of SVs
class. rate [%]

χ2

γ = 0.01

ORIGINAL 72.88 ± 6.86 0.00 ± 0.00 1733 ± 48

R
E
D
U
C
E
D

100 72.87 ± 6.86 44.97 ± 25.51 962 ± 452
98 71.42 ± 6.73 54.03 ± 20.21 804 ± 361
95 69.24 ± 6.52 66.57 ± 13.02 583 ± 231
90 65.59 ± 6.18 75.03 ± 8.89 434 ± 157
80 58.30 ± 5.49 86.12 ± 2.60 241 ± 50

Gaussian
γ = 0.1

ORIGINAL 69.95 ± 6.14 0.00 ± 0.00 1665 ± 53

R
E
D
U
C
E
D

100 69.93 ± 6.14 52.18 ± 7.03 795 ± 118
98 68.55 ± 6.02 61.94 ± 3.42 634 ± 69
95 66.45 ± 5.84 68.70 ± 5.13 521 ± 90
90 62.95 ± 5.53 76.62 ± 3.35 389 ± 59
80 55.96 ± 4.92 83.57 ± 3.27 274 ± 62

Polynomial
p = 0
d = 2

ORIGINAL 69.53 ± 7.40 0.00 ± 0.00 1447 ± 40

R
E
D
U
C
E
D

100 69.52 ± 7.40 50.39 ± 9.83 721 ± 158
98 68.14 ± 7.25 57.75 ± 8.82 613 ± 140
95 66.06 ± 7.03 67.26 ± 11.30 477 ± 173
90 62.58 ± 6.66 78.29 ± 6.78 316 ± 104
80 55.63 ± 5.92 85.94 ± 5.45 205 ± 83

Polynomial
p = 1
d = 4

ORIGINAL 69.50 ± 7.01 0.00 ± 0.00 1489 ± 34

R
E
D
U
C
E
D

100 69.48 ± 7.00 44.61 ± 11.07 826 ± 173
98 68.11 ± 6.87 52.06 ± 6.67 715 ± 109
95 66.02 ± 6.66 63.86 ± 4.42 538 ± 73
90 62.55 ± 6.31 77.58 ± 7.93 335 ± 123
80 55.60 ± 5.60 83.30 ± 7.17 250 ± 110

Table 7.5. Average results of the evaluation of the reduction algorithm on the MR8
features. The classifier was trained using the one-against-all multi-class algorithm,
various kernel types and C = 100.
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Kernel
Perc. of init.

Class. rate [%] Red. rate [%] No. of SVs
class. rate [%]

χ2

γ = 1

ORIGINAL 72.89 ± 4.80 ± 0.00 1579 ± 69

R
E
D
U
C
E
D

100 72.88 ± 4.79 45.98 ± 15.46 853 ± 249
98 71.43 ± 4.70 61.17 ± 4.41 611 ± 64
95 69.25 ± 4.56 69.19 ± 4.82 483 ± 59
90 65.60 ± 4.32 76.14 ± 1.13 377 ± 31
80 58.31 ± 3.84 82.33 ± 1.86 279 ± 38

Gaussian
γ = 10

ORIGINAL 72.85 ± 4.24 0.00 ± 0.00 1658 ± 57

R
E
D
U
C
E
D

100 72.83 ± 4.24 64.98 ± 4.63 579 ± 74
98 71.39 ± 4.15 71.01 ± 3.41 480 ± 59
95 69.20 ± 4.03 74.56 ± 3.51 420 ± 56
90 65.56 ± 3.82 78.44 ± 3.08 357 ± 53
80 58.28 ± 3.39 82.88 ± 2.62 283 ± 43

Polynomial
p = 0
d = 5

ORIGINAL 71.66 ± 4.67 0.00 ± 0.00 2422 ± 47

R
E
D
U
C
E
D

100 71.64 ± 4.66 83.03 ± 5.27 410 ± 127
98 70.22 ± 4.57 87.39 ± 1.99 305 ± 50
95 68.07 ± 4.43 89.55 ± 1.40 253 ± 35
90 64.49 ± 4.20 90.68 ± 0.85 225 ± 22
80 57.32 ± 3.73 92.14 ± 0.49 190 ± 13

Polynomial
p = 1
d = 5

ORIGINAL 72.52 ± 4.65 0.00 ± 0.00 1671 ± 74

R
E
D
U
C
E
D

100 72.50 ± 4.65 65.22 ± 5.74 576 ± 70
98 71.07 ± 4.55 71.20 ± 3.90 478 ± 46
95 68.89 ± 4.41 76.58 ± 2.71 389 ± 39
90 65.27 ± 4.18 81.12 ± 2.60 315 ± 46
80 58.01 ± 3.72 86.04 ± 1.63 232 ± 23

Table 7.6. Average results of the evaluation of the reduction algorithm on the LBP
features. The classifier was trained using the one-against-all multi-class algorithm,
various kernel types and C = 100.





Chapter 8

Experiments with Place Recognition

Previous chapters presented the structure of our visual indoor place recognition
system as well as provided details about each of its parts. In this chapter we report
the results of an extensive experimental evaluation of the system on the KTH-
INDECS database, specially designed for this purpose. Moreover, we show that
the support vector reduction algorithm introduced in this thesis may provide an
efficiency gain even for complex problems such as place recognition.

Our place recognition system is built around the Support Vector Machine clas-
sifier [78, 17]. We evaluate both local and global descriptors in order to find the
image representation that is best suited for the place recognition purposes. We use
the Composed Receptive Field Histograms [38] as global image representation and
the combination of the Harris-Laplace detector [47] and the SIFT descriptor [42] to
extract local features. Various parameters of the descriptors were modified in the
experiments. In particular, several different receptive fields and their combinations
have been tested. The descriptors are coupled to the SVM classifier using special-
ized kernel functions: the χ2 kernel [79] and the local kernels introduced in [82].
Finally, we employ our support vector reduction algorithm in order to improve the
efficiency of the system. Since the local kernels do not satisfy the Mercer’s theory,
this chapter provides an answer to the question of whether the reduction algorithm
can be successfully applied for non-Mercer’s kernels.

In designing the system, special emphasis has been placed on the robustness to
variations that may occur in real-world environments. This motivated the creation
of the KTH-INDECS database, on which the system was tested (the database is
described in detail in Chapter 3). In short, the database contains pictures of five
rooms of different functionality imaged from various viewpoints and locations. For
each room, the pictures were acquired at different times of the day, under various
weather conditions, across a span of time of more than two months. All this ensures
that the performance of the system was evaluated in the presence of illumination
variations and normal activity that occur in the rooms (people appear in the rooms,
pieces of furniture and objects are moved over time). Moreover, the experiments
were designed in a way allowing to test the robustness and generalization abilities of
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the system, since training and testing were always performed on pictures acquired
under different illumination conditions.

The experiments reported in this chapter were divided into two parts depending
on the type of descriptor used to extract the features from the pictures of places.
The chapter starts with a description of those parts of the experimental procedure
that were common for all experiments. Then, in Section 8.2, the performance of
the system is evaluated for local features. The results of experiments with global
features are presented in Section 8.3. This chapter concludes with a summary in
Section 8.4.

For space reasons, this chapter presents only a summary of the available exper-
imental results. Detailed results can be found in [61].

8.1 Experimental Setup

All the experiments reported in this chapter were performed on the pictures
included in the KTH-INDECS database resampled to the resolution of 512x384
pixels. The database was divided into training and test sets with respect to the
room in which the pictures were taken as well as to the illumination conditions. For
every experiment, the system was trained using all the pictures acquired under one
illumination condition and tested using the remaining pictures divided into 10 test
sets. Table 8.1 presents the combinations of the training and test sets used in the
experiments. The fact that the test data is divided into subsets allowed to evaluate
the performance of the system separately for each room and illumination condition.
In order to calculate a single measure of performance, all the results obtained for
one training set were averaged with equal weights. Consequently, each room was
equally important independently of the number of pictures used for testing.

A modified version of the libSVM library [14] extended to the one-against-all
multi-class algorithm, implementation of the local kernels1, and the support vec-
tor reduction algorithm was used in the experiments. The library implements the
Sequential Minimal Optimization (SMO) [58] training algorithm.

Since, the experimental process differs for the local and global features, it will
be described in detail in the following sections.

8.2 Experiments with Local Descriptors

As it was already mentioned, the local image features were obtained using the
Harris-Laplace interest point detector [47] and the SIFT descriptor [41] (both algo-
rithms are described in Section 4.3). The SIFT descriptor is widely used for object
classification and recognition (see e.g. [18]) and was also shown to perform well for
geometric mobile robot localization ([69, 2]). The image representation based on

1The modified version of the libSVM library extended to the one-against-all multi-class algo-
rithm and implementation of the local kernels was kindly provided by Barbara Caputo.
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Training set Test sets

Illumination No. of
Room

Illumination No. of
conditions pictures conditions pictures

Cloudy 1092

Barbara’s office (BO)
Night 108
Sunny 108

Corridor (CR)
Night 384
Sunny 384

Elin’s office (EO)
Night 168
Sunny 168

Kitchen (KT)
Night 216
Sunny 216

Surr. of the printer (PR)
Night 216
Sunny 216

Night 1092

Barbara’s office (BO)
Cloudy 108
Sunny 108

Corridor (CR)
Cloudy 384
Sunny 384

Elin’s office (EO)
Cloudy 168
Sunny 168

Kitchen (KT)
Cloudy 216
Sunny 216

Surr. of the printer (PR)
Cloudy 216
Sunny 216

Sunny 1080

Barbara’s office (BO)
Cloudy 108
Night 108

Corridor (CR)
Cloudy 384
Night 384

Elin’s office (EO)
Cloudy 156
Night 156

Kitchen (KT)
Cloudy 216
Night 216

Surr. of the printer (PR)
Cloudy 216
Night 216

Table 8.1. Training and test sets used in the experiments with place recognition.

local descriptors requires using a specialized kernel with the Support Vector Ma-
chines. In our experiments, we employed the local kernels proposed by Wallraven
et al. [82] (see Section 5.2). The kernel compares two feature vectors by performing
matching of the local descriptors, and the sum of Euclidean distances between the
descriptors determine the value of the kernel function.

The experiments with local features consisted of two parts. First, the optimal
kernel parameters and the value of the parameter C were estimated using the cross-
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Training set Cloudy Night Sunny

Parameters γ = 2.585 γ = 2.585 γ = 2.239
C = 100 C = 100 C = 100

Test set

BO
Cloudy — 48.98 % 30.61 %
Night 52.58 % — 34.02 %
Sunny 28.87 % 27.84 % —

CR
Cloudy — 97.53 % 96.70 %
Night 97.53 % — 93.41 %
Sunny 97.24 % 93.65 % —

EO
Cloudy — 83.44 % 76.43 %
Night 88.31 % — 76.62 %
Sunny 73.79 % 73.79 % —

KT
Cloudy — 68.39 % 78.76 %
Night 77.08 % — 63.54 %
Sunny 84.97 % 70.47 % —

PR
Cloudy — 63.03 % 67.30 %
Night 69.67 % — 52.13 %
Sunny 66.51 % 48.80 % —

Avg. classification rate 73.65 % 67.59 % 66.95 %

Table 8.2. Final results of the experiments with indoor place recognition and local
descriptors.

validation technique. The results are given in Section 8.2.1. Then, the support
vector reduction algorithm was applied to the obtained solution. This part of the
experiments is discussed in Section 8.2.2.

8.2.1 Evaluation of the Performance of the System

In order to test the robustness and generalization abilities of the system, train-
ing was always performed on all the pictures acquired under similar illumination
conditions and testing was done on the remaining pictures (see Table 8.1 and Sec-
tion 8.1 for a description of the three splits into the training and test sets used in
the experiments). Additionally, the pictures containing less than 5 interest points
were rejected from all the training and test sets.

The optimal parameters of the local kernel as well as the value of the parameter
C were estimated using the hold out cross-validation method separately for each
training set. The average over the classification rates obtained for each test subset
was used as a measure of performance, as it was described in Section 8.1. The final
results of the experiments, together with the parameters used during training, are
presented in Table 8.2.

The results indicate that the highest classification rates were obtained for the
cloudy training set (73.65%). The explanation for this is straightforward: the illu-
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Perc. of init.
Class. rate [%] Red. rate [%] No. of SVs

class. rate [%]

ORIGINAL 69.40 ± 3.70 — 968 ± 17

R
E
D
U
C
E
D

100 69.40 ± 3.70 3.90 ± 6.55 929 ± 56
99 68.71 ± 3.66 10.07 ± 4.26 870 ± 38
98 68.01 ± 3.62 16.74 ± 4.57 805 ± 46
97 67.32 ± 3.59 24.79 ± 1.56 728 ± 28
96 66.62 ± 3.55 27.47 ± 1.80 702 ± 28
95 65.93 ± 3.51 31.50 ± 2.10 663 ± 23
90 62.46 ± 3.33 49.16 ± 5.71 492 ± 63
85 58.99 ± 3.14 59.63 ± 2.16 390 ± 26
80 55.52 ± 2.96 70.63 ± 3.39 284 ± 35

Table 8.3. Average results of the experiments with support vector reduction al-
gorithm applied to the classifier trained on the local features extracted from the
KTH-INDECS database. The uncertainties are given as one standard deviation.

mination conditions on a cloudy day can be seen as intermediate between those at
night (only artificial light) and on a sunny day (direct natural light dominates). The
same conclusion can be drawn from the analysis of the classification rates for other
training sets. It can be observed that the system trained on the night or sunny
training data usually performs best on the pictures acquired on a cloudy day.

There are large differences between the classification rates for individual rooms.
In particular, the corridor can be seen as an attractor, while Barbara’s office was
relatively rarely recognized properly. This is not only a consequence of an unbal-
anced training set (384 pictures in case of the corridor, and 108 pictures in case of
the Barbara’s office), but also results from the complexity of the problem. Since
the rooms are physically separated by sliding glass doors, and in case of the sur-
roundings of the printer and the corridor the boundary has been chosen arbitrarily,
many pictures labeled as the corridor in fact image another room.

8.2.2 Experiments with Support Vector Reduction

The experiments with support vector reduction were conducted in a similar
manner to those described in Chapter 7. First, the classifier was trained on a
training set using the optimal settings determined in experiments reported in the
previous section. The support vectors were counted and the classifier was evaluated
on a test set in order to obtain the initial classification rate. Then, the reduction
algorithm was applied for increasing values of the threshold parameter τ and the
normalization turned on or off. After each reduction, the support vectors were
counted and the performance of the classifier was evaluated on the test sets. The
process was stopped when the classification rate dropped below 70% of its initial
value.

Table 8.3 presents the obtained relationship between the reduction rate and
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the classification rate that was guaranteed to be preserved after the reduction.
The results were averaged over the three training sets: cloudy, night, and sunny.
Comparing the results to those reported in Chapter 7, we see that lower reduction
rates were obtained if the aim was to preserve the initial classification rate. In
other words, the support vectors were “less” linearly dependent. However, the
algorithm was still able to provide substantial reduction at a cost of small decrease
in the performance of the classifier. Additionally, the experiments revealed that the
support vector reduction algorithm can be successfully applied to classifiers trained
using a non-Mercer’s kernel.

8.3 Experiments with Global Descriptors

Most of the currently available approaches to the place recognition problem make
use of global descriptors (see Chapter 4 for more information). This is consistent
with the results of studies on human scene perception which suggest that people
prefer to use coarse global information during the first glance at a scene. In this
section we evaluate the performance of an indoor place recognition system based on
multi-dimensional histograms of responses of several basic image descriptors (CRFH
[38]). We built the histograms using various combinations of descriptors applied to
the scale-space representation of an image at various scales. The χ2 measure was
used in order to calculate the distance between the histograms.

The experiments with global features were organized as follows: first, various
combinations of image descriptors and scales were tested. Additionally, the optimal
number of histogram quantization levels was determined for several descriptors (see
Section 8.3.1). The best performing combination of descriptors was chosen and the
values of the γ and C parameters were precisely estimated by cross-validation (see
Section 8.3.2). Finally, the support vector reduction algorithm was applied to the
resulting solution (see Section 8.3.3).

8.3.1 Experiments with Descriptor Parameters

As it was already stated, the Composed Receptive Field Histograms used in
the experiments were built on the basis of several combinations of basic image
descriptors. The complete list of these combinations is presented in Table 8.4. All
derivative-based descriptors were normalized; more details can be found in Chapter
4. The descriptors were applied to the scale-space representation of an image at
various scales; however, the same scales were always used for all the descriptors
used to build one histogram. We tried all the combinations of one, two, three, and
four scales from the following set: {1, 2, 3, 4, 5}. Each experiment was repeated for
13 values of the γ parameter (10−3, 10−2.5, . . . , 103), C = 100, and three splits into
the training and test sets. The best results for each combination of descriptors are
presented in Table 8.4.

Similarly to the experiments with local features, the highest classification rate
was obtained for the cloudy training set. It can be observed that using histograms
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Descriptors Scales Dim.
Class. rate / tr. set [%] Average

class. rate [%]Cloudy Night Sunny

L 1,2,3,5 4 55.26 49.08 52.50 52.28 ± 3.10

Lx, Ly 1,2,4 6 76.33 65.73 67.91 69.99 ± 5.60

Lxx, Lxy, Lyy 1,4 6 72.77 65.94 68.13 68.95 ± 3.49

Lx, Ly, Lxy 1,4 6 75.10 67.24 68.93 70.42 ± 4.14

Lx, Ly,
Lxx, Lyy

1,5 8 77.20 69.61 70.40 72.40 ± 4.17

Lx, Ly,
Lxx, Lxy, Lyy

2 5 74.20 65.12 65.82 68.38 ± 5.05

C1, C2 1 2 34.11 36.93 34.99 35.34 ± 1.45

C1,x, C1,y,
C2,x, C2,y

1,2 8 56.29 50.15 50.84 52.42 ± 3.36

C1,xx, C1,xy,
C1,yy, C2,xx,
C2,xy, C2,yy

2 6 48.93 43.11 43.02 45.02 ± 3.38

C1,x, C1,y,
C2,x, C2,y,

Lx, Ly

2 6 68.28 62.27 61.51 64.02 ± 3.71

R, G, B 1 3 40.52 36.10 34.14 36.92 ± 3.27

Rx, Ry, Gx,
Gy, Bx, By

5 6 66.49 59.16 61.78 62.48 ± 3.72

|∇L| 1,2,3,5 4 50.11 43.29 45.79 46.39 ± 3.45

|∇L|,
Lxx, Lxy, Lyy

1,5 8 76.42 67.92 69.55 71.29 ± 4.51

|∇C1|, |∇C2| 1,4 4 37.43 39.95 36.79 38.05 ± 1.67

∇2L 1,2,4,5 4 66.20 59.32 57.77 61.09 ± 4.49

∇2L, Lx, Ly 1,4 6 76.89 67.68 70.58 71.71 ± 4.71

∇2L, |∇L| 1,2,4,5 8 69.98 62.77 60.47 64.40 ± 4.96

∇2C1, ∇2C2 1,2,4,5 8 52.70 48.91 47.86 49.82 ± 2.54

det(∇∇T L) 1,3,5 3 58.65 55.07 52.32 55.35 ± 3.17

det(∇∇T C1),

det(∇∇T C2)
1,2,3,5 8 38.15 36.82 36.12 37.03 ± 1.03

Table 8.4. Results of experiments with descriptors and scales. Each row presents
classification rates obtained using one combination of descriptors for the most optimal
scales and value of the γ kernel parameter. Additionally, the dimensionality of the
resulting histogram is given. The marked rows correspond to the combinations of
descriptors resulting in the highest average classification rate. The uncertainties are
given as one standard deviation.
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Descriptors Scales Bins
Class. rate / tr. set [%] Average

class. rate [%]Cloudy Night Sunny

Lx, Ly 1,2,4 35 78.35 68.92 73.90 73.72 ± 4.72

Lxx, Lxy, Lyy 1,4 28 81.01 71.76 73.57 75.44 ± 4.90

Lx, Ly, Lxy 1,4 27 78.50 69.86 73.23 73.86 ± 4.35

Lx, Ly,
Lxx, Lyy

1,5 15 77.20 69.61 70.40 72.40 ± 4.17

Lx, Ly,
Lxx, Lxy, Lyy

2 39 75.70 65.87 70.86 70.81 ± 4.91

|∇L|,
Lxx, Lxy, Lyy

1,5 18 77.84 73.39 71.08 74.10 ± 3.44

∇2L, Lx, Ly 1,4 21 79.04 68.12 72.19 73.12 ± 5.52

Table 8.5. Results of experiments with the number of quantization levels of the
histograms. Each row presents classification rates obtained using one combination
of descriptors for the most optimal scales, number of bins, and value of the γ kernel
parameter. The marked row corresponds to the combination of descriptors resulting
in the highest average classification rate. The uncertainties are given as one standard
deviation.

based on chromatic cues results in poor performance. This can be explained by
the fact that the environment consists of places for which color is not a distinctive
feature (two offices, two parts of the corridor). The studies on human scene per-
ception indicate that chromatic cues can facilitate recognition only in cases when
color is diagnostic of a scene category. In general, the highest performance was
achieved using a derivative-based descriptors applied to the illumination channel.
However, it is apparent that histograms based on rotation invariant descriptors re-
sult in lower classification rates than those built from responses of single Gaussian
derivative filters of the same order (compare Laplacian and second order derivatives
as well as gradient magnitude and first order derivatives). This suggests that spatial
orientation can be an important cue facilitating place recognition.

Several best performing combinations of descriptors and scales were selected
(corresponding to the marked rows in Table 8.4), and further experiments were con-
ducted only for these combinations. The second part of the experiments aimed to ob-
tain the optimal number of histogram quantization levels (bins) per dimension. We
built histograms with minimum 5 and maximum 40 quantization levels. Again, the
experiments were repeated for 13 values of the γ parameter (10−3, 10−2.5, . . . , 103),
C = 100, and three splits into the training and test sets. The results are given in
Table 8.5.

It can be observed that the histogram with 28 quantization levels per dimension,
computed from normalized second order Gaussian derivatives at scales 1 and 4,
performed best. Consequently, further experiments were conducted using only this
combination of descriptors.
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Training set Cloudy Night Sunny

Parameters γ = 11.092 γ = 16.788 γ = 10.839
C = 100 C = 100 C = 100

Test set

BO
Cloudy — 64.82 % 49.07 %
Night 82.41 % — 44.44 %
Sunny 44.44 % 48.15 % —

CR
Cloudy — 94.79 % 95.31 %
Night 94.53 % — 87.50 %
Sunny 95.05 % 89.84 % —

EO
Cloudy — 87.50 % 90.48 %
Night 91.67 % — 84.52 %
Sunny 85.26 % 82.05 % —

KT
Cloudy — 71.76 % 92.13 %
Night 80.56 % — 83.80 %
Sunny 93.52 % 64.82 % —

PR
Cloudy — 62.04 % 67.13 %
Night 59.72 % — 43.06 %
Sunny 83.80 % 56.02 % —

Avg. classification rate 81.10 % 72.18 % 73.74 %

Table 8.6. Final results of the experiments with indoor place recognition and global
descriptors.

8.3.2 Evaluation of the Performance of the System

The final performance evaluation in case of global descriptors was performed
in an identical manner to the experiments with local features. The optimal kernel
parameters as well as the value of the parameter C were estimated using the hold
out cross-validation technique separately for each of the training sets: cloudy, night,
and sunny. The histograms were computed from normalized second order Gaussian
derivatives at scales 1 and 4 and contained 28 bins per dimension (286 ≈ 5 ∗ 108

bins in total). Detailed results together with the parameters used during training
are presented in Table 8.2.

It is apparent that the system performs better than in case of local descriptors.
In particular, the classification rates obtained for pictures acquired in Barbara’s
office are considerably higher. The system is thus more reliable. Is important
to point out that all the pictures in the database were taken into account in the
experiments. As a result, the system was forced to classify even non-informative
pictures such as those imaging only blank walls (walls in different places have the
same texture). Examples of non-informative pictures in the database are shown in
Figure 3.6.
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Perc. of init.
Class. rate [%] Red. rate [%] No. of SVs

class. rate [%]

ORIGINAL 75.67 ± 4.76 — 1000 ± 29

R
E
D
U
C
E
D

100 75.67 ± 4.76 0.99 ± 0.57 990 ± 31
99 74.92 ± 4.71 2.40 ± 0.74 976 ± 35
98 74.16 ± 4.67 4.70 ± 1.09 953 ± 38
97 73.40 ± 4.62 7.19 ± 0.60 928 ± 32
96 72.65 ± 4.57 12.66 ± 0.65 873 ± 25
95 71.89 ± 4.52 17.65 ± 2.44 823 ± 37
90 68.11 ± 4.29 32.28 ± 3.95 677 ± 53
85 64.32 ± 4.05 47.48 ± 3.59 526 ± 50
80 60.54 ± 3.81 59.43 ± 2.35 406 ± 36

Table 8.7. Average results of the experiments with support vector reduction al-
gorithm applied to the classifier trained on the global features extracted from the
KTH-INDECS database. The uncertainties are given as one standard deviation.

8.3.3 Experiments with Support Vector Reduction

The standard experimental procedure was used in case of experiments with sup-
port vector reduction applied to the classifier trained on global features. Table 8.7
presents the obtained relationship between the reduction rate and the classification
rate that was guaranteed to be preserved after the reduction. As in case of local
features, the results were averaged over the three training sets.

It can be observed that the reduction rates are smaller than in case of local
features. Still, they are similar in comparison to those obtained in Chapter 7. As
a result, we can conclude that the amount of reduction is more problem dependent
and the influence of the kernel type is smaller.

8.4 Summary

In this chapter we presented the results of experimental evaluation of our visual
indoor place recognition system. We compared the performance of the system for
both global and local descriptors. Additionally, we tested our support vector reduc-
tion algorithm on classifiers trained on both types of features extracted from the
pictures of places.

The experiments were conducted on the KTH-INDECS database. The database
can be regarded as demanding since the pictures were acquired under changing
illumination conditions and capture the natural variability of the environment. Ad-
ditionally, due to, inter alia, relatively narrow angle of view of the digital camera,
it may happen that either the labeling is inconsistent with the contents of a picture
or a picture contains little diagnostic information. In spite of that and the fact that
training and testing were always performed on pictures acquired under different
illumination conditions, the system provides the average classification rate of up
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to 81%. Consequently, we achieved high robustness to variations that may occur in
real-world environments.

The results indicate that global descriptors (CRFH) perform better for visual
place recognition than local features. The performance of the latter might how-
ever improve if the affine invariant interest point detector was used. Additionally,
the experiments revealed that in case of global descriptors, the most valuable fea-
tures can be extracted using non-isotropic derivative-based descriptors applied to
illumination channel, and that chromatic cues should not be used if they are not
diagnostic of a scene category. It may be concluded that the results are consistent
with the findings of studies on the human scene perception. On the whole, both
Composed Receptive Field Histograms and local features extracted using Harris-
Laplace detector and SIFT descriptor show great potential in the domain of place
recognition.

This chapter also includes a report of experiments with support vector reduction.
We showed that our algorithm may provide a substantial efficiency gain even for
complex problems such as visual place recognition. Additionally, the results show
that it can be successfully applied to classifiers employing non-Mercer’s kernels. In
conclusion, the experiments proved the usefulness of the algorithm in two different
computer vision applications.





Chapter 9

Summary

Variability of the environment as well as presence of noise generated by changing
illumination conditions make visual place recognition an extremely difficult task. In
spite of that, humans are able to efficiently perform topological localization on the
basis of exclusively visual perceptual information. Consequently, as designers of
machines aiming to help people in performing everyday tasks, we need to provide
similar capability.

In this thesis we proposed a visual indoor place recognition system built around
the Support Vector Machine classifier. We reported the results of an extensive
evaluation of the system conducted on the KTH-INDECS database. The database
constitutes another contribution of the thesis and was acquired in a way allowing to
capture the variability that may occur in a real-world indoor environments. During
the design process as well as in the experiments, we placed the strongest emphasis
on the robustness and efficiency of the system. Our experiments were conducted on
both global and local features extracted from the pictures of places. In both cases
the system performed very well, achieving higher classification rates for the global
descriptors. The experimental procedure, as well as complexity of the database,
ensure that the obtained results vouch for the high robustness of the system. In
conclusion, the experiments proved that the excellent generalization abilities of the
Support Vector Machines can be exploited also in the domain of place recognition.

As it was previously mentioned, efficiency was another important issue addressed
in this thesis. We implemented and thoroughly tested an algorithm allowing for an
exact simplification of the support vector solutions exploiting the linear dependence
of the support vectors [19]. We showed how the algorithm can be extended in order
to provide higher efficiency gain and the ability to trade the performance for the
number of support vectors in the final solution. We tested the algorithm on visual
data in two domains: material categorization and place recognition. In both cases
our method provided substantial reduction in the number of support vectors proving
its usefulness in a wide range of computer vision applications.
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9.1 Future Work

The work presented in this thesis can be extended in a number of directions:

• The place recognition system can be implemented on a mobile robot platform.
The system has been extensively tested under laboratory conditions on the
KTH-INDECS database. The successful results suggest that it may be applied
to the problem of global topological localization of mobile robots. This creates
new challenges but also provides a flexible testing environment for future
experiments.

• The ability of the system to generalize its knowledge to novel places should
be tested. A system able to categorize places can be extremely useful in many
applications. This task may however be difficult due to large differences in
appearance between places belonging to the same category.

• A cue-integration scheme can be incorporated into the system. The exper-
iments reported in this thesis were conducted separately for two types of
features robust to different types of noise. Moreover, additional cues can be
available for the system during recognition e.g. derived from the context or
from the type of objects or actions recognized in the scene. For this reason, it
becomes important to provide an ability to base the final decision on multiple
cues. Such approach is also motivated by the results of studies on human
perception showing that the great robustness of our visual system is partly
due to the use of several cues.

• We said that the place recognition system may exploit information provided
by other recognition systems. On the same basis, information about location
can become a valuable cue and serve as a context for e.g. object recognition.
Since the database was acquired with sufficient resolution, it is possible to use
it for experiments with context-based object recognition.

• Incremental learning techniques can be used in order to update the internal
knowledge representation of the system. The ability to learn from experience
is particularly important in case of place recognition. This is due to the fact
that places evolve over time (or the conditions change unpredictably), and it
may be impossible to provide training data that will remain representative in
the future.

• The support vector reduction algorithm can be coupled with incremental
learning techniques in order to provide means for continuous learning with
limited memory resources. Experiments in this field have already been per-
formed (see [63]).

• Several extensions are planned to the KTH-INDECS database. Currently, the
database contains pictures taken on one floor of a multi-floor laboratory under
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three weather and illumination conditions. It would be of interest to extend
the database to other similar floors and acquire more data in the locations
used so far. Such an extended data set could be used in experiments with
place categorization.

• Number of additional questions arose in designing the experiments: How many
training data must be provided in order to achieve robustness to variations
in viewpoint and illumination conditions. Is it possible to determine salient
viewpoints within the rooms that should be always used for training? Will
using affine invariant interest point detectors improve the performance of local
features significantly?

All these issues demonstrate that although considerable amount of work has been
done, still the majority of questions remain unanswered.
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