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Abstract. Recovering missing data from its partial samples is a fundamental problem in mathematics and it has wide
range of applications in image and signal processing. While many such algorithms have been developed recently, there are very
few papers available on their error estimations. This paper is to analyze the error of a frame based data recovery approach
from random samples. In particular, we estimate the error between the underlying original data and the approximate solution
that interpolates (or approximates with an error bound depending on the noise level) the given data that has the minimal ℓ1
norm of the canonical frame coefficients among all the possible solutions.

1. Introduction. Recovering missing data from its partial samples is a fundamental problem in math-
ematics and it has wide range of applications in image and signal processing. The problem is to recover the
underlying image or signal 𝒑 from its partial observations given by

𝒈[𝑘] =

{
𝒑[𝑘] + 𝜽[𝑘], 𝑘 ∈ Λ,
unknown, 𝑘 ∈ Ω∖Λ, (1.1)

where 𝜽 is the i.i.d. Gaussian noise. Here the set Ω (see also (1.2)) is the domain where the underlying data
is defined and Λ is a subset of Ω where we have the observed data. The observed data could be part of sound,
images, time-varying measurement values and sensor data. The task is to recover the missing data on Ω∖Λ.
There are many methods to deal with this problem under many different settings, e.g., [3, 4, 10, 25, 35] for
image inpainting, [11,14,15] for matrix completion, [27,49] for regression in machine learning, [8,9,20,23,24]
for framelet-based image deblurring, [38,42] for surface reconstruction in computer graphics, and [16,22,26]
for miscellaneous applications. We forgo to give a detailed survey on this fast developing area and the
interested reader should consult the references mentioned above for the details. Instead, the focus of this
paper is to establish the approximation properties of a frame based data recovery method.

Let

Ω = {𝑘 = (𝑘1, . . . , 𝑘𝑑) : 𝑘 ∈ ℤ𝑑, 0 ≤ 𝑘𝑖 < 𝑁, 𝑖 = 1, . . . , 𝑑}, (1.2)

where 𝑁 is a given positive integer. Let Λ be a subset of Ω that is uniformly randomly drawn from Ω with
cardinality 𝑚 := ⌈𝜌 ⋅ ∣Ω∣⌉, where ∣Ω∣ is the cardinality of Ω, 𝜌 (0 < 𝜌 ≤ 1) is the density of the known
pixels, and ⌈𝑥⌉ is the smallest integer bigger or equal to 𝑥. One of the most important examples is image
recovery from random sampled pixels, which occurs when part of the pixel is randomly missing due to, e.g.,
the unliable communication channel [7, 26] or the corruption by a salt-and-pepper noise [12, 22]. One of
such examples is shown in Figure 1.1. The task of image recovery is to restore the missing region from the
incomplete pixels observed. Ideally, the restored image should possess shapes and patterns consistent with
the given image in human vision. Therefore, we need to extract information such as edges and textures
from the observed data to replace the corrupted part in such a way that it would look natural for human
eyes. For this, it is often useful to restore images in a transform domain (e.g. tight frame transform) where
the underlying image has a sparse approximation. This leads to a few frame based methods for image
restorations as given in e.g. [10, 12,35,36].

In this paper, we give the error estimation for a frame based recovery method to solve (1.1). For this,
we first introduce the concept of tight frame. Let ℋ be a Hilbert space. A sequence {𝒂𝑛}𝑛∈Γ ⊂ ℋ is a tight
frame of ℋ if for an arbitrary element 𝒇 ∈ ℋ

∥𝒇∥2 =
∑
𝑛∈Γ

∣⟨𝒇 ,𝒂𝑛⟩∣2,

or, equivalently,

𝒇 =
∑
𝑛∈Γ

⟨𝒇 ,𝒂𝑛⟩𝒂𝑛. (1.3)
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(a) The 512× 512 “peppers” image. (b) 50% pixels are randomly missing. (c) Recovered by (1.7). The algorithm
employed is the split Bregman method
in [13].

Fig. 1.1: Images

For a given tight frame, the analysis operator 𝒜 is defined as

𝒜𝒇 [𝑛] = ⟨𝒇 ,𝒂𝑛⟩, ∀𝑛 ∈ Γ. (1.4)

The sequence {⟨𝒇 ,𝒂𝑛⟩}𝑛∈Γ is called the canonical coefficients of the tight frame {𝒂𝑛}𝑛∈Γ. For recovery
problem (1.1) with Ω defined by (1.2), we are working on the finite dimensional space ℋ = ℓ2(Ω). In this
case, 𝒂𝑛 is a sequence in ℓ2(Ω) and Γ is a finite set.

To measure the regularity of the underlying image or signal, one can employ the weighted ℓ1 norm of
the canonical frame coefficient. This is commonly used in image and signal processing literature. In this
paper, we will use the weighted ℓ1 norm of the canonical frame coefficient ∥𝒜𝒇∥ℓ1(𝛽,Υ) for a given 𝛽 in the
form of the following

∥𝒜𝒇∥ℓ1(𝛽,Υ) =
∑
𝑛∈Γ

2𝛽Υ(𝑛)∣⟨𝒂𝑛,𝒇⟩∣, (1.5)

where Υ is a function mapping from Γ to ℕ satisfying

max{Υ(𝑛) : 𝑛 ∈ Γ} ≤ 1

𝑑
log2 ∣Ω∣. (1.6)

Here the parameter 𝛽 is to control the regularity of 𝒇 , and the function Υ is to make the weight more flexible
so that it allows group weighting. It will be seen in Section 3.1 the usefulness and the explicit form of Υ
in the case of framelet. As we know, signals and images are usually modeled by discontinuous functions,
and the discontinuity processes important information. Therefore, our assumption for 𝛽 is always small in
order to reflect the low regularity of the underlying signal. That is, we are only interested in signals of low
regularity in this paper.

The focus of this paper is to study one of the analysis based approach using tight frame. We assume 𝒑
satisfies ∥𝒜𝒑∥ℓ1(𝛽,Υ) <∞ and ∥𝒑∥∞ ≤𝑀 , where 𝑀 is a given constant. The first condition is the regularity
of 𝒑 and the second condition is the boundedness of each pixel of 𝒑. In our model, the approximate solution
𝒇Λ of the problem (1.1) is defined by:

𝒇Λ = argmin
{
∥𝒜𝒇∥ℓ1(𝛽,Υ) :

1

∣Λ∣
∑
𝑘∈Λ

(𝒇 [𝑘]− 𝒈[𝑘])2 ≤ 𝜎2, ∥𝒇∥∞ ≤𝑀
}
. (1.7)

In other words, 𝒇Λ is the solution that has a minimal weighted ℓ1 norm of the canonical coefficient subject
to reasonable constraints. Here, the constraint 1

∣Λ∣
∑

𝑘∈Λ(𝒇 [𝑘] − 𝒈[𝑘])2 ≤ 𝜎2 is a data fitting term to (1.1)
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and the original signal 𝒑 naturally satisfies this constraint. The constraint ∥𝒇∥∞ ≤𝑀 is to ensure that the
recovered signal values are bounded by a preassigned number 𝑀 . This constraint is usually inactive, i.e.,
solving (1.7) with or without this constraint gives the same solution in most numerical simulations as long
as the original signal 𝒑 also satisfies this constraint. When there is no noise, i.e. 𝜎 = 0, the problem (1.1)
reduces to the problem of interpolation. As we will see, our analysis applies to this special case by taking
𝜎 = 0. Figure 1.1 shows an example of the recovered image by (1.7), and the algorithm employed for solving
(1.7) is the split Bregman method in [13].

As for the energy ∥𝒜𝒇∥ℓ1(𝛽,Υ) in (1.7), at top of the fact that it connects to the regularity of the
underlying function where the data comes from, it can be interpreted as follows that links to the prior
distribution of 𝒇 . In fact, we implicitly assume that the prior distribution of 𝒇 satisfying

Prob{𝒇} = 𝐶𝑜𝑛𝑠𝑡 ⋅ exp
{
− 𝜆∥𝒜𝒇∥ℓ1(𝛽,Υ)

}
.

Hence, minimizing ∥𝒜𝒇∥ℓ1(𝛽,Υ) is equivalent to maximizing the probability that the data occurs.
An efficient frame based algorithm is developed for some applications to solve (1.7) in [13]. The algorithm

is implicitly based on the fact that 𝒇 has a sparse approximation under the tight frame system used. A
sparse approximation means majority of the canonical coefficients 𝒜𝒇 are small and negligible. In this
sense, (1.7) gives a sparse approximate solution of (1.1). However, there are big differences between the
approach (1.7) here and compressed sensing (see e.g. [16–18,30]) — one of the hottest research topics based
on sparsity. Firstly, the requirement of sparsity here is much weaker than in compressed sensing. We do not
require explicitly the sparsity of either 𝒇 or its canonical frame coefficient. Instead, we assume the decay of
the canonical frame coefficient in the sense that the weighted ℓ1 norm (1.5) is bounded. Secondly, in basis
pursuit of compressed sensing, the signal is synthesized by a sparse coefficient, hence it is a synthesis based
approach. However, as mentioned before, the model (1.7) is an analysis based approach — the analyzed
coefficient has a sparse approximation. There is a gap between the analysis and synthesis based approaches
as pointed out in, e.g., [13, 34]. Last and most importantly, the matrix here does not satisfy the restricted
isometry property (RIP) required in the theoretic analysis in compressed sensing. If we use a synthesis based
approach instead of the analysis based approach (1.7), then the sensing matrix will be 𝒫Λ𝒜𝑇 , where 𝒫Λ is
an operator satisfying 𝒫Λ𝒇 [𝑘] = 𝒇 [𝑘] for 𝑘 ∈ Λ and 𝒫Λ𝒇 [𝑘] = 0 for 𝑘 ∈ Ω∖Λ. Since usually each vector 𝒂𝑖

(each row of 𝒜) is locally supported, by a simple calculation, one finds that 𝒫Λ𝒜𝑇 has at least one column
being the zero vector with a high probability. In turn, the sensing matrix does not satisfy the RIP with
high probability. The matrix 𝒫Λ also does not satisfy the concentration inequality in [47]. Moreover, due
to the compact support property of the frame elements 𝒂𝑖, the incoherence conditions (see [31] for instance)
between the column vectors of matrix 𝒫Λ and the row vectors of 𝒜 may not hold. This causes that there
contains no enough information in the observed pixels for exact signal recovery. Therefore, the compressed
sensing theory cannot be applied here, even the synthesis based approach is used.

This paper is to bound the error between the underlying unknown data 𝒑 and the approximate solution
𝒇Λ given by (1.7). It will be shown in this paper that, under some mild assumptions, with probability 1− 𝛿
(here 0 < 𝛿 < 1), the error between 𝒑 and 𝒇Λ satisfies

1

∣Ω∣ ∥𝒇
Λ − 𝒑∥2ℓ2(Ω) ≤ 𝐶𝜌−

1
2

√
log2 ∣Ω∣(∣Ω∣)−𝑏 log

1

𝛿
+

4

3
𝜎2, (1.8)

where 𝑏 is a positive constant and will be given explicitly in Theorem 2.2, and 𝐶 is a positive constant
independent of 𝜌, ∣Ω∣, 𝛿 or 𝜎 when the tight framelets are used . Roughly, it says that as long as the data
set is sufficiently large, one has a pretty good chance to derive a good approximation of the original data by
solving (1.7).

The main difficulty here is that the underlying solution has a low regularity. The analysis here is based
on the combination of the uniform law of large numbers, which is standard in classical empirical processes
and statistical learning theory, and an estimation for its involved covering number. The covering number
estimation given here is new involved, since the standard estimation for it is too large so that it is not good
enough to derive the desired convergence rate. Our estimation for the covering number uses the special
structure of the set and the max-flow min-cut theorem in graph theory. The error analysis here can be easily
extended into more analysis base approaches, e.g. total variation method for imaging restorations.
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The paper is organized as follows. In Section 2, we give our main results of approximation analysis for
the frame based signal recovery method (1.7). Error estimations are given. Then, in Section 3, an application
of our main results is illustrated. More precisely, we estimate the error of framelet based image recovery
algorithms from random samples. Based on this, we further link the discrete approximation of solution to
the function approximation of it in the content of multiresolution analysis and its associated tight frammlets
given by [46]. Finally, the technical proofs of the critical lemmas and theorems are given in Section 4.

2. Error Analysis. In this section, we give the error analysis of the model (1.7) for a given tight frame
analysis operator 𝒜. That is, we study the asymptotic property of ∥𝒇Λ−𝒑∥ℓ2(Ω) with respect of ∣Ω∣. Here Λ
is a data set with each element i.i.d drawn from uniform distribution of Ω and ∣Ω∣ denotes the cardinality of
the set Ω. Such problem is well known in classical empirical processes [48] and statistical learning theory [49].
The most powerful tool used there is the uniform law of large numbers and our analysis is along this direction.
To employ the uniform law of large numbers, the key issue is the capacity of the involved set. There are
many tools to characterize the capacity of a set in the literature, e.g. 𝑉 𝐶-dimension [49], 𝑉𝛾-dimension,
𝑃𝛾-dimension [1], Rademacher complexities [2,43] and covering number [27]. As covering number is the most
convenient and very powerful for metric space, we choose it to characterize the capacity of the involved set

ℳ =
{
𝒇 ∈ ℓ∞(Ω) : ∥𝒜𝒇∥ℓ1(𝛽,Υ) ≤ ∥𝒜𝒑∥ℓ1(𝛽,Υ),

1

∣Λ∣
∑
𝑘∈Λ

(𝒇 [𝑘]− 𝒈[𝑘])2 ≤ 𝜎2, ∥𝒇∥∞ ≤𝑀
}
. (2.1)

Here, the constants 𝑀 and 𝜎 are fixed. Notice that, with high probability, the underlying true solution 𝒑 is
in the set ℳ. Furthermore, according to the definition of 𝒇Λ by (3.15), we have ∥𝒜𝒇∥ℓ1(𝛽,Υ) ≤ ∥𝒜𝒑∥ℓ1(𝛽,Υ)

and obviously 𝒇Λ ∈ ℳ. Thus, the set ℳ defined in (2.1) is the set we concerned.
To further illustrate our idea, we give the concept of the covering number, which is adapted to the

settings of this paper.
Definition 2.1. Let ℳ ⊂ ℝ∣Ω∣ and 𝜂 > 0 be given. The covering number 𝒩 (ℳ, 𝜂) is the minimal

number of the ℓ∞ balls with radius 𝜂 in ℳ that cover ℳ.
The main difficulty of this paper is to give a tight estimate of the covering number 𝒩 (ℳ, 𝜂) of the set

ℳ defined in (2.1). At first glance, ℳ is a subset of
{
𝒇 ∈ ℓ∞(Ω) : ∥𝒇∥∞ ≤ 𝑀

}
, which is a ball in finite

dimensional Banach space ℓ∞(Ω). We have a simple bound for the covering number of this set, that is,

𝒩 (ℳ, 𝜂) ≤
(
𝑀

𝜂

)∣Ω∣
, (2.2)

see the details in [27]. However, this estimation is not tight enough to derive a convergence rate of the error
∥𝒇Λ − 𝒑∥ℓ2(Ω). We need to find a much tighter bound of 𝒩 (ℳ, 𝜂) by further exploiting the conditions of
the set ℳ. As mentioned before, ∥𝒜𝒇∥ℓ1(𝛽,Υ) is a measure of regularity of 𝒇 , it is reasonable to get a much
tighter bound by exploiting the condition ∥𝒜𝒇∥ℓ1(𝛽,Υ) ≤ ∥𝒜𝒑∥ℓ1(𝛽,Υ). However, things are becoming more
complicated as this regularity condition is quite low from the functional point of view and any known results
can not help us to achieve desired results. If we view the condition ∥𝒜𝒇∥ℓ1(𝛽,Υ) ≤ ∥𝒜𝒑∥ℓ1(𝛽,Υ) discretely
and not connect it to its underlying function, it is too complicated to analyze because of the complicated
structure of the frame operator 𝒜. This motivates us to assume that the tight frame system 𝒜 in (1.7)
satisfy a mild regularity property — the discrete total variation has to be small. More specifically, we first
give the definition of the discrete difference operator 𝒟. For any 𝒇 ∈ ℓ∞(Ω), we define

𝒟𝒇 =
{
𝒇 [𝑘1, . . . , 𝑘𝑖−1, 𝑘𝑖 + 1, 𝑘𝑖+1 . . . , 𝑘𝑑]− 𝒇 [𝑘1, . . . , 𝑘𝑑]

}
1≤𝑖≤𝑑,(𝑘1,...,𝑘𝑑),(𝑘1,...,𝑘𝑖+1...,𝑘𝑑)∈Ω

. (2.3)

From the constraints 1 ≤ 𝑖 ≤ 𝑑, (𝑘1, . . . , 𝑘𝑑), (𝑘1, . . . , 𝑘𝑖 + 1 . . . , 𝑘𝑑) ∈ Ω, we know that 𝒟𝒇 is a vector with

total number of 𝑑(∣Ω∣ − ∣Ω∣ 𝑑−1
𝑑 ) entries. The ℓ1 norm of vector 𝒟𝒇 is

∥𝒟𝒇∥1 =
𝑑∑

𝑖=1

∑
(𝑘1, . . . , 𝑘𝑑) ∈ Ω,

(𝑘1, . . . , 𝑘𝑖 + 1 . . . , 𝑘𝑑) ∈ Ω

∣𝒇 [𝑘1, . . . , 𝑘𝑖−1, 𝑘𝑖 + 1, 𝑘𝑖+1 . . . , 𝑘𝑑]− 𝒇 [𝑘1, . . . , 𝑘𝑑]∣. (2.4)
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We call ∥𝒟𝒇∥1 a discrete total variation. In particular, when 𝑑 = 2, it becomes

∥𝒟𝒇∥1 =
∑

(𝑘1, 𝑘2) ∈ Ω
(𝑘1 + 1, 𝑘2) ∈ Ω

∣𝒇 [𝑘1 + 1, 𝑘2]− 𝒇 [𝑘1, 𝑘2]∣+
∑

(𝑘1, 𝑘2) ∈ Ω
(𝑘1, 𝑘2 + 1) ∈ Ω

∣𝒇 [𝑘1, 𝑘2 + 1]− 𝒇 [𝑘1, 𝑘2]∣.

For a given frame system {𝒂𝑛}𝑛∈Γ of ℓ2(Ω), we say that it satisfies the bounded condition of the discrete
total variation if there exists a positive constant 𝐶𝑑 such that

∥𝒟𝒂𝑛∥1 ≤ 𝐶𝑑2
𝛼Υ(𝑛), 𝑛 ∈ Γ, 𝛼 ≤ 𝑑− 1, (2.5)

where Υ is defined by (1.6). This condition links to the regularity of tight frame systems and most tight
frame systems satisfy (2.5) with certain 𝛼. This condition is also verifiable in many cases, and straightforward
sometimes.

Under the condition (2.5), we can relax the set ℳ to the set

ℳ̃ = {𝒇 ∈ ℓ∞(Ω) : ∥𝒟𝒇∥1 ≤ 𝐶𝑑∣Ω∣
max{𝛼−𝛽,0}

𝑑 ∥𝒜𝒑∥ℓ1(𝛽,𝛾), ∥𝒇∥∞ ≤𝑀} (2.6)

by simple calculation and ℳ ⊂ ℳ̃. Then we exploit the features of the set ℳ̃ and use the famous max-flow
min-cut in graph theory to derive the desired estimate of the covering numbers, see Section 4 for more details.

With all these notations, we can give the explicit form of our main result.
Theorem 2.2. Let 𝒇Λ be defined as (1.7), and 𝒜 as (1.4). Assume that the frame {𝒂𝑛}𝑛∈Γ satisfies

(2.5) and ∥𝒜𝒑∥ℓ1(𝛽,Υ) ≤ 𝐶𝒑∣Ω∣ 12 with 𝛼 − 𝑑
2 ≤ 𝛽 ≤ 𝛼 + 𝑑

2 . Then for an arbitrary 0 < 𝛿 < 1, the following
inequality

1

∣Ω∣ ∥𝒇
Λ − 𝒑∥2ℓ2(Ω) ≤ 𝑐̃𝜌−

1
2 ∣Ω∣−min{ 𝑑+2(𝛽−𝛼)

4𝑑 , 14}
√
log2 ∣Ω∣ log

1

𝛿
+

4

3
𝜎2,

where 𝑐̃ = 256
3 𝑀2 + 32𝑀

√
𝑀(2𝑀 + 2(𝑑+ 1)𝐶𝑑𝐶𝒑), holds with confidence 1− 𝛿.

Note that the condition used in this theorem is quite general and only some low regularity condition for
the frame 𝒜 and original data 𝒑 is required. The results is exciting as mentioned in the introduction. For
fixed 𝜌, as long as the cardinality of Ω is large enough, 𝒇Λ gives a good approximation of the original data 𝒑.
Furthermore, for fixed Ω, if we let 𝜌 become larger, then we can get smaller error. This result is consistent
with our common sense as we are given more data for fixed Ω with larger 𝜌.

In the following, we prove Theorem 2.2 — the main theorem of this paper. Following the same line
as the technique used in statistical learning theory [49], instead of estimating the error 1

∣Ω∣∥𝒇Λ − 𝒑∥2ℓ2(Ω)

directly, we first calculate the probability that the error 1
∣Ω∣∥𝒇Λ − 𝒑∥2ℓ2(Ω) is smaller than a fixed number by

using the theorem of uniform law of large numbers. This leads to the following theorem, which estimates
the probability of event 1

∣Ω∣∥𝒇Λ−𝒑∥2ℓ2(Ω) ≤ 𝜖+ 4
3𝜎

2 for an arbitrary given 𝜖 in terms of the covering numbers

with its radius related to 𝜖. We leave the proof in Section 4.
Theorem 2.3. Let ℳ be defined by (2.1) and 𝒇Λ by (1.7). Then for an arbitrary given 𝜖 > 0, the

inequality

Prob

{
1

∣Ω∣ ∥𝒇
Λ − 𝒑∥2ℓ2(Ω) ≤ 𝜖+

4

3
𝜎2

}
≥ 1−𝒩 (ℳ,

𝜖

∞∈ℳ ) exp

{
− 3𝑚𝜖

256𝑀2

}
holds for an arbitrary 𝑚. (Recall that 𝑚 is the number of samples.)

Proof. See Section 4.1.
In order to give the explicit convergence rate of ∥𝒇Λ − 𝒑∥ℓ2(Ω), we need an explicit estimate of the

covering number 𝒩 (ℳ, 𝜂). The following theorem concerns an upper bound of 𝒩 (ℳ, 𝜂). As its proof is
too complicated, we leave it in Section 4 for the reader more easy to understand the idea of this paper.
The main difficulty we overcome is the low regularity of the sequence in the set ℳ as 𝛽 is not large enough
here. We overcome it by using the powerful tool of discrete total variation and max-flow min-cut theorem.
It should be noted that only discrete total variation is used to measure the regularity of the sequence in ℳ
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for covering number estimation, so our analysis is still true for more general case such as similar 𝑇𝑉 based
algorithms, see Section 4 for more details.

Theorem 2.4. Let ℳ be defined as (2.1) and 𝒜 as (1.4). Assume that the frame {𝒂𝑛}𝑛∈Γ satisfies

(2.5) and ∥𝒜𝒑∥ℓ1(𝛽,Υ) ≤ 𝐶𝒑∣Ω∣ 12 with 𝛽 ≤ 𝛼+ 𝑑
2 , then for any 𝜂 ≥ ∣Ω∣max{ 𝑑+2(𝛼−𝛽)

2𝑑 , 12}−1,

log𝒩 (ℳ, 𝜂) ≤ 𝐶 ′
𝑑∣Ω∣max{ 𝑑+2(𝛼−𝛽)

2𝑑 , 12} log2 ∣Ω∣
𝜂

,

where 𝐶 ′
𝑑 = 2𝑀 + 2(𝑑+ 1)𝐶𝑑𝐶𝒑.

Proof. See Section 4.2.

With all of these, we are now ready to prove Theorem 2.2. The technique used for the proof is somewhat
similar to the one used in statistical learning theory [27]. The main difference is that we have some constraint
for 𝜂 in our bound for covering number given in Theorem 2.4, so we need to verify that this constraint will
not influence the proof of Theorem 2.2.

Proof of Theorem 2.2. First, by Theorem 2.3, for an arbitrary given 𝜖 ≥ 12𝑀 ∣Ω∣max{ 𝑑+2(𝛼−𝛽)
2𝑑 , 12}−1,

and 𝜂 = 𝜖
12𝑀 the inequality

1

∣Ω∣ ∥𝒇
Λ − 𝒑∥2ℓ2(Ω) ≤ 𝜖+

4

3
𝜎2

holds with the confidence at least

1−𝒩 (ℳ,
𝜖

12𝑀
) exp

{
− 3𝑚𝜖

256𝑀2

}
≥ 1− exp

{
12𝑀𝐶 ′

𝑑∣Ω∣max{ 𝑑+2(𝛼−𝛽)
2𝑑 , 12} log2 ∣Ω∣

𝜖

}
exp

{
− 3𝑚𝜖

256𝑀2

}
.

The last inequality follows from Theorem 2.4. Next, choosing a special 𝜖∗ to be the unique positive solution
of the following equation

12𝑀𝐶 ′
𝑑∣Ω∣max{ 𝑑+2(𝛼−𝛽)

2𝑑 , 12} log2 ∣Ω∣
𝜖

− 3𝑚𝜖

256𝑀2
= log 𝛿, (2.7)

we have 1
∣Ω∣∥𝒇Λ−𝒑∥2ℓ2(Ω) ≤ 𝜖∗+ 4

3𝜎
2 with confidence 1−𝛿 if we can prove that 𝜖∗ ≥ 12𝑀 ∣Ω∣max{ 𝑑+2(𝛽−𝛼)

2𝑑 , 12}−1.

However, solving the equation (2.7) yields

𝜖∗ =
32𝑀

3𝑚

(
4𝑀 log

1

𝛿
+

√
16𝑀2 log2

1

𝛿
+ 9𝑚𝑀𝐶 ′

𝑑∣Ω∣max{ 𝑑+2(𝛼−𝛽)
2𝑑 , 12} log2 ∣Ω∣

)
(2.8)

≤ 32𝑀

3𝑚

(
8𝑀 log

1

𝛿
+ 3

√
𝑚𝑀𝐶 ′

𝑑∣Ω∣max{ 𝑑+2(𝛼−𝛽)
2𝑑 , 12} log2 ∣Ω∣

)
≤ 𝑐̃𝜌−

1
2

√
log2 ∣Ω∣∣Ω∣−min{ 𝑑+2(𝛽−𝛼)

4𝑑 , 14} log
1

𝛿
,

where 𝑐̃ = 256
3 𝑀2 + 32𝑀

√
𝑀𝐶 ′

𝑑. Also, from (2.8), we know that

𝜖∗ ≥ 32𝑀√
𝑚

√
𝑀𝐶 ′

𝑑∣Ω∣max{ 𝑑+2(𝛼−𝛽)
2𝑑 , 12} log2 ∣Ω∣ ≥ 16𝑀

√
𝑀𝐶 ′

𝑑𝜌
− 1

2

√
log2 ∣Ω∣∣Ω∣max{ 𝑑+2(𝛼−𝛽)

4𝑑 , 14}− 1
2 ,

which implies that 𝜖∗ ≥ 12𝑀 ∣Ω∣max{ 𝑑+2(𝛼−𝛽)
2𝑑 , 12}−1. This concludes the proof.
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3. Image Recovery from Random Samples by Framelet. Before going to the proofs of the tech-
nical theorems in the previous section, we apply Theorem 2.2 to framelet based image recovery from random
samples in this section. Various algorithms of framelet based image recovery algorithms have been developed
in [9, 10, 13, 35, 36]. Especially, an efficient algorithm for framelet based image recovery by using splitting
Bregman iteration is given in [13]. For this framelet based image recovery algorithm, we are able to link the
approximation property of the algorithm to the regularity of the underlying function (in terms of the decay
of its canonical coefficients of given tight frames) where the pixels come from. We start with discussions
of the approximation of the framelet based recovery. It is then followed by the link of this analysis to the
function space. We restrict our discussions here for two variable functions, since the images can be viewed as
a set of data sampled from two variable functions. For more general multi-variable functions, the discussions
are the same.

3.1. Framelet. A wavelet (or affine) system 𝑋(Ψ, 𝜙) derived from the multiresolution analysis gener-
ated by a refinable function 𝜙 is defined to be the collection of dilations and shifts of a finite set Ψ = {𝜓ℓ :
ℓ = 1, 2, . . . , 𝐿} ⊂ 𝐿2(ℝ2), i. e.,

𝑋(Ψ, 𝜙) = {𝜓ℓ
𝑗,𝑘 := 2𝑗𝜓ℓ(2𝑗𝑥− 𝑘) : 𝑗 ∈ ℤ, 𝑘 ∈ ℤ2, ℓ = 1, 2, . . . , 𝐿}.

The elements in Ψ are called the generators. When 𝑋(Ψ, 𝜙) is also a tight frame for 𝐿2(ℝ2), then 𝜓 ∈ Ψ
are called (tight) framelets, following the terminology used in [29]. Recall that 𝑋(Ψ, 𝜙) is a tight frame for
𝐿2(ℝ2) if, for any 𝑓 ∈ 𝐿2(ℝ2),

𝑓 =
𝐿∑

ℓ=1

∑
𝑗∈ℤ

∑
𝑘∈ℤ2

⟨𝑓, 𝜓ℓ
𝑗,𝑘⟩𝜓ℓ

𝑗,𝑘.

To construct compactly supported framelet systems, one starts with a compactly supported refinable
function 𝜙 ∈ 𝐿2(ℝ2) with a refinement mask (low-pass filter) 𝒉0 such that 𝜙 satisfies the refinement equation:

𝜙(𝑥) = 4
∑
𝑘

𝒉0[𝑘]𝜙(2𝑥− 𝑘). (3.1)

Let 𝑉0 be the closed shift invariant space generated by {𝜙(⋅−𝑘) : 𝑘 ∈ ℤ2} and 𝑉𝑗 := {𝑓(2𝑗 ⋅) : 𝑓 ∈ 𝑉0, 𝑗 ∈ ℤ}.
It is known that when 𝜙 is compactly supported, the sequence {𝑉𝑗}𝑗∈ℤ forms a multiresolution analysis.
Recall that {𝑉𝑗}𝑗∈ℤ is said to generate a multiresolution analysis (MRA) if (a) 𝑉𝑗 ⊂ 𝑉𝑗+1, (b) ∪𝑗𝑉𝑗 is dense
in 𝐿2(ℝ2), (c) ∩𝑗𝑉𝑗 = {0}, see [41,46] for more details.

In this paper, we assume that the refinable function 𝜙 satisfy the following conditions:
Assumption 1.
(a) 𝜙 : ℝ2 7→ ℝ2 is compactly supported with

∫
𝜙 = 1.

(b) 𝜙 is Hölder continuous with exponent 1, i.e. there exists a constant 𝐶 such that for any 𝑥, 𝑦 ∈
ℝ2, ∣𝜙(𝑥)− 𝜙(𝑦)∣ ≤ 𝐶∥𝑥− 𝑦∥, where ∥ ⋅ ∥ is the Euclidean norm in ℝ2.

(c) {𝜙(⋅ − 𝑘)}𝑘∈ℤ2 is a Riesz Basis in the space 𝑉0.
There are many refinable functions satisfy the above assumptions, e.g. the tensor product pseudo splines

(see e.g. [29, 32], or simply three directional box splines see e.g. [5]). The Riesz basis requirement is not so
crucial. For example, it is not required in applying the unitary extension principle for the construction of
tight framelets.

The compactly supported framelets Ψ are defined by

𝜓ℓ(𝑥) = 4
∑
𝑘

𝒉ℓ[𝑘]𝜙(2𝑥− 𝑘)

for some compactly supported sequence 𝒉ℓ in ℓ∞(ℤ2). When the filters {𝒉𝑖, 𝑖 = 0, . . . , 𝐿} satisfy the following
conditions

𝐿∑
ℓ=0

∣𝒉ℓ(𝜔)∣2 = 1 and
𝐿∑

ℓ=0

𝒉ℓ(𝜔)𝒉ℓ(𝜔 + 𝜋) = 0, a.e. 𝜔 ∈ [−𝜋, 𝜋], (3.2)
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where 𝒉ℓ(𝜔) :=
∑

𝑘∈ℤ2 𝒉ℓ[𝑘]𝑒
−𝑖𝑘𝜔, then the wavelet system 𝑋(Ψ, 𝜙) is a tight wavelet frame by the unitary

extension principle (UEP) in [46]. The corresponding mask 𝒉0 is refinement mask which is a low pass filter
and {𝒉ℓ : 1 ≤ ℓ ≤ 𝐿} are framelet masks which are high pass filters.

The advantage of framelet is that the discrete tight frame system for the computation is easy to derive
by framelet decomposition and reconstruction algorithms of [29]. First, we construct

𝒂̃0 = 2𝐽 𝒉0∗ ↑ . . .𝒉0∗ ↑︸ ︷︷ ︸
𝐽

𝜹 (3.3)

and

𝒃̃ℓ𝑗 = 2𝐽−𝑗 𝒉0 ∗ . . . ↑ 𝒉0∗ ↑︸ ︷︷ ︸
𝐽−𝑗−1

𝒉ℓ∗ ↑ 𝜹, (3.4)

where 𝜹 is a sequence with each component 𝜹[𝑘] = 1 when 𝑘 = (0, 0) and 𝜹[𝑘] = 0 otherwise, and 𝒉0∗ ↑ is
an upsampling operator, i.e., for a sequence 𝒄 ∈ ℓ2(ℤ2),

𝒉0∗ ↑ c =
∑
𝑘

𝒉0[𝑛− 2𝑘]𝒄[𝑘].

Using these sequences, one can derive the standard framelet decomposition algorithm as suggested in [29].
Let 𝒇 ∈ ℓ2(Ω) be an image with

Ω = {𝑘 = (𝑘1, 𝑘2) : 0 ≤ 𝑘1, 𝑘2 < 2𝐽}. (3.5)

To make a suitable tight frame analysis, one needs to impose proper boundary conditions. Periodic boundary
conditions are imposed here. We still use ℓ2(Ω) to denote the space of sequences defined on ℓ2(Ω) with periodic
boundary conditions. Other boundary conditions can be discussed similarly, we forge the discussion here
and the interested reader should consult [8,23] for more details. Let 𝒫 be an operator that maps a vector in
ℓ2(ℤ2) into ℓ2(Ω)

𝒫(𝒗)[𝑘] =
∑

𝑘′
1,𝑘

′
2∈ℤ

𝒗[𝑘1 + 𝑘′12
𝐽 , 𝑘2 + 𝑘′22

𝐽)], ∀𝑘 = (𝑘1, 𝑘2) ∈ Ω.

Let

𝒂0 = 𝒫(𝒂̃0) (3.6)

and

𝒃ℓ,𝑘𝑗 = 𝒫(𝒃̃ℓ𝑗 [⋅ − 𝑘]), (3.7)

where 𝒂̃0 is defined by (3.3) and 𝒃̃ℓ𝑗 by (3.4). Then, the sequence {𝒂0} ∪ {𝒃𝑘,ℓ𝑗 }0≤𝑘1,𝑘2<2𝑗 ,0≤𝑗<𝐽,1≤ℓ≤𝐿 is a
tight frame system for the space ℓ2(Ω) with periodic boundary condition by the tight framelet theory (see
e.g. [20]). With this tight frame system, the analysis operator 𝒜 is defined as

∀𝒇 , 𝒜𝒇 =
{{⟨𝒂0,𝒇⟩

}
,
{⟨𝒃ℓ,𝑘𝑗 ,𝒇⟩}

0≤𝑘1,𝑘2<2𝑗 ,0≤𝑗<𝐽,1≤ℓ≤𝐿

}
. (3.8)

Denote the adjoint of 𝒜 by 𝒜∗. By the fact that filters {h𝑖}𝐿𝑖=0 form a tight frame system, we have

𝒇 = 𝒜∗𝒜𝒇 = ⟨𝒂0,𝒇⟩𝒂0 +
𝐽−1∑
𝑗=0

2𝑗−1∑
𝑘1,𝑘2=0

𝐿∑
ℓ=1

⟨𝒃ℓ,𝑘𝑗 ,𝒇⟩𝒃ℓ,𝑘𝑗 . (3.9)

The operator 𝒜∗ is also called synthesis operator. Once we have the analysis operator 𝒜, we define the
weighted norm ∥𝒜𝒇∥ℓ1(𝛽) for a given 𝛽 by

∥𝒜𝒇∥ℓ1(𝛽) = ∣⟨𝒂0,𝒇⟩∣+
∑

0≤𝑗<𝐽

2𝑗𝛽
∑
𝑘,ℓ

∣⟨𝒃ℓ,𝑘𝑗 ,𝒇⟩∣. (3.10)
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Note that the tight frame system {𝒂0} ∪ {𝒃𝑘,ℓ𝑗 }0≤𝑘1,𝑘2<2𝑗 ,0≤𝑗<𝐽,1≤ℓ≤𝐿 is indexed by (𝑗, 𝑘, ℓ), where 𝑘 =

(𝑘1, 𝑘2) ∈ ℤ2. The same weight is used for the same subscript 𝑗 in the above definition of ∥𝒜𝒇∥ℓ1(𝛽). More
explicitly, using the notation in (1.5), we have chosen Γ = {0} ∪ {(𝑗, 𝑘, ℓ) : 0 ≤ 𝑘1, 𝑘2 < 2𝑗 , 0 ≤ 𝑗 < 𝐽, 1 ≤
ℓ ≤ 𝐿} and the sequence Υ is defined as

Υ(0) = 0, and Υ(𝑗, 𝑘, ℓ) = 𝑗.

Since 𝑗 < 𝐽 := 1
2 log2 ∣22𝐽 ∣, the condition (1.6) naturally holds under this definition of Υ.

This weighted norm (3.10) links to regularity of the underlying function where the pixel 𝒇 derived from,
see [6, 37,45] and Section 3.3 for more discussions.

3.2. Approximation by Framelet. Let 𝒑 be a given sequence defined on ℓ2(Ω) satisfying ∥𝒜𝒑∥ℓ1(𝛽) <
∞ and ∥𝒑∥∞ ≤ 𝑀 for some preassigned constants 𝛽 and 𝑀 . Then, the approximation solution 𝒇Λ defined
by (1.7) becomes

𝒇Λ = argmin

{
∥𝒜𝒇∥ℓ1(𝛽) :

1

∣Λ∣
∑
𝑘∈Λ

(𝒇 [𝑘]− 𝒈[𝑘])2 ≤ 𝜎2, ∥𝒇∥∞ ≤𝑀

}
. (3.11)

This section gives an error analysis for 1
22𝐽

∥𝒇Λ − 𝒑∥2ℓ2(Ω) for the framelet based image recovery. To apply

Theorem 2.2, we only need to verify (2.5). In fact, we have the following lemma which states that the
condition (2.5) is satisfied with 𝛼 = 0 for 𝒜 derived from 𝑋(Ψ, 𝜙) satisfying Assumption 1.

Lemma 3.1. Assume that refinable function 𝜙 satisfies Assumption 1. Let 𝒜 be defined as (3.8) by the
compactly supported tight framelet system 𝑋(Ψ, 𝜙) with compactly supported high-low filters derived by the
unitary extension principle from the refinable function 𝜙. Then

max{∥𝒟𝒂0∥1, sup
𝑗,ℓ

∥𝒟𝒃ℓ,𝑘𝑗 ∥1} ≤ 𝐶𝑑 (3.12)

for some constant 𝐶𝑑 ≥ 1, which is independent of 𝐽 . Furthermore, for each 𝒇 ∈ ℳ, we have

∥𝒟𝒇∥1 ≤ 𝐶𝑑∥𝒜𝒇∥1. (3.13)

Proof. See Section 4.3.
Using Theorem 2.3 and Lemma 3.1, we can easily derive the following corollary.
Corollary 3.2. Let 𝒜 be defined as (3.8) by the compactly supported tight framelet system 𝑋(Ψ, 𝜙)

with compactly supported high-low filters derived by the unitary extension principle from refinable function 𝜙
that satisfies Assumption 1. Let 𝒇Λ be defined in (3.11). Assume that ∥𝒜𝒑∥ℓ1(𝛽) ≤ 𝐶𝒑2

𝐽 and −1 < 𝛽 < 1.
Then for any 0 < 𝛿 < 1, with confidence 1− 𝛿,

1

22𝐽
∥𝒇Λ − 𝒑∥2ℓ2(Ω) ≤ 𝑐̃𝜌−

1
2

√
𝐽2−𝐽 min{ 1+𝛽

2 , 12} log
1

𝛿
+

4

3
𝜎2,

where 𝑐̃ = 256
3 𝑀2 + 32𝑀

√
𝑀(2𝑀 + 6𝐶𝑑𝐶𝒑).

Proof. By applying lemma 3.1, we know that the condition (2.5) satisfies with 𝛼 = 0. Then the corollary
can be deduced directly from Theorem 2.2 by letting ∣Ω∣ = 22𝐽 and 𝛼 = 0.

3.3. Connection to Function Approximation. This section is to link the estimate given before to
the function approximation if we assume that the data is obtained by sampling a function which converts
analog signal to digital signal. For example, for the image, the pixels are well modeled by local weighted
averages of some underlying function 𝑝 that closely fits the physics of CCD cameras. Furthermore, the
pixel values of an image can be viewed as the inner product of 𝑝 and some refinable function without much
loss [21]. More specifically, let 𝜙 be a refinable function satisfying

∫
𝜙 = 1, and denote the scaled functions

by 𝜙𝐽,𝑘 := 2𝐽𝜙(2𝐽 ⋅ −𝑘) for 𝑘 ∈ Ω. Then, each pixel value is obtained by

𝒑[𝑘] = 2𝐽⟨𝑝, 𝜙𝐽,𝑘⟩, 𝑘 ∈ Ω. (3.14)
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With 𝒑[𝑘], implicitly, we use function

𝑝𝐽 =
∑
𝑘∈Ω

𝒑[𝑘]𝜙(2𝐽 ⋅ −𝑘) =
∑
𝑘∈Ω

⟨𝑝, 𝜙𝐽,𝑘⟩𝜙𝐽,𝑘

to approximate 𝑝. The approximation order of 𝑝𝐽 to 𝑝 has been studied extensively. Roughly, as long as 𝜙
meets the Strang and Fix condition of a certain order and the Fourier transform of 𝜙 is flat enough at the
origin, then 𝑝𝐽 will have a good approximation to 𝑝. For example, assume that 𝜙 satisfies the Strang and Fix
condition with certain order, and 1−∣𝜙(0)∣2 has the same order of zeros, where 𝜙 is the Fourier transform of
𝜙, and 𝑝 is sufficiently smooth, then 𝑝𝐽 provides this order of approximation to 𝑝. Interested reader should
consult [29] for details. However, this requires the underlying function has a high order of smoothness. In
this case, minimizing the ℓ2 norm of the canonical coefficients of the framelet system will work and the error
analysis can be done similarly as that of [42]. In this paper, the underlying function we are interested in
does not meet certain order of smoothness. Instead, we require here some decay condition of the wavelet
system 𝑋(Ψ, 𝜙) to analyze the approximation order of 𝑝𝐽 to 𝑝. The decay condition here is so mild that the
implicit assumption of the regularity of the underlying function is very weak.

Let 𝒇Λ be the solution of (3.11). We take the function

𝑓Λ𝐽 :=
∑
𝑘∈Ω

𝒇Λ[𝑘]𝜙(2𝐽 ⋅ −𝑘) (3.15)

to approximate the underlying function 𝑝 and find the error of ∥𝑝− 𝑓Λ𝐽 ∥𝐿2(𝐼). Note that

∥𝑝− 𝑓Λ𝐽 ∥𝐿2(𝐼) ≤ ∥𝑝𝐽 − 𝑓Λ𝐽 ∥𝐿2(𝐼) + ∥𝑝− 𝑝𝐽∥𝐿2(𝐼) ≤
𝐶𝜙

2𝐽
∥𝒇Λ − 𝒑∥ℓ2(Ω) + ∥𝑝− 𝑝𝐽∥𝐿2(𝐼). (3.16)

The second inequality follows from the fact that {𝜙(⋅ − 𝑘)}𝑘∈ℝ2 is a Bessel system in 𝐿2(ℝ2), i.e.

∥𝑝𝐽 − 𝑓Λ𝐽 ∥𝐿2(𝐼) ≤
𝐶𝜙

2𝐽
∥𝒇Λ − 𝒑∥ℓ2(Ω),

where 𝐶𝜙 is a constant independent of 𝐽 .
Hence, to estimate ∥𝑝𝐽 − 𝑓Λ𝐽 ∥𝐿2(𝐼), we need to apply Corollary 3.2 to derive the estimate of 1

22𝐽
∥𝒇Λ −

𝒑∥2ℓ2(Ω). For this, we need a condition on 𝑝, so that ∥𝒜𝒑∥ℓ1(𝛽) ≤ 𝐶𝒑2
𝐽 will be satisfied. Recall that 𝑋(Ψ, 𝜙)

is a tight framelet system and the intensity function 𝑝 can be represented as

𝑝 =
∑
𝑗∈ℤ

∑
𝑘∈ℤ2

𝐿∑
ℓ=1

⟨𝑝, 𝜓ℓ
𝑗,𝑘⟩𝜓ℓ

𝑗,𝑘. (3.17)

The decay condition we assume here is that there is a 𝛽 ≥ −1 such that

𝐶𝑝 :=
∑
𝑘

∣⟨𝑝, 𝜙0,𝑘⟩∣+
∑
𝑗≥0

2𝛽𝑗
∑
𝑘,ℓ

∣⟨𝑝, 𝜓ℓ
𝑗,𝑘⟩∣ <∞. (3.18)

This decay condition links to the regularity of the underlying function 𝑝 when the framelet satisfy some
mild conditions. We refrain to further discussion in this direction and interested reader should consult [6,37]
for the details. Under this mild decay condition of the canonical framelet coefficients, the approximation of
underlying function can be stated below:

Corollary 3.3. Let 𝒜 be defined as (3.8) by the compactly supported tight framelet system 𝑋(Ψ, 𝜙)
with compactly supported high-low filters derived by the unitary extension principle from refinable function
𝜙 that satisfies Assumption 1. Assume that the underlying function 𝑝 satisfies (3.18) with −1 < 𝛽 < 1 and
the samples {𝒑[𝑘]}𝑘∈Ω are obtained by (3.14). Then, for an arbitrary 0 < 𝛿 < 1, the inequality

1

22𝐽
∥𝒇Λ − 𝒑∥2ℓ2(Ω) ≤ 𝑐̃𝜌−

1
2

√
𝐽2−𝐽 min{ 1+𝛽

2 , 12} log
1

𝛿
+

4

3
𝜎2 (3.19)
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holds with confidence 1− 𝛿, where 𝑐 is a constant independent of 𝐽 (i.e. independent of cardinality of Ω), 𝜌,
𝛿 or 𝜎. Furthermore, let 𝑓Λ𝐽 be defined by (3.15). If ∥𝑝∥∞ <∞, then

∥𝑝− 𝑓Λ𝐽 ∥2𝐿2(𝐼)
≤ 𝐶1𝜌

− 1
2

√
𝐽2−𝐽 min{ 1+𝛽

2 , 12} log
1

𝛿
+ 𝐶2𝜎

2 + 𝐶32
−(𝛽+1)𝐽 (3.20)

with confidence 1− 𝛿, where 𝐶1, 𝐶2, 𝐶3 are three constants independent of 𝐽 , 𝜌, 𝛿 or 𝜎.
Proof. Inequality (3.19) can be derived directly from Corollary 3.2, as long as ∥𝒜𝒑∥ℓ1(𝛽) ≤ 𝐶𝒑2

𝐽 is

verified under the assumption (3.18). In fact, the tight frames {𝒂0} ∪ {𝒃𝑘,ℓ𝑗 }0≤𝑘1,𝑘2<2𝑗 ,0≤𝑗<𝐽,1≤ℓ≤𝐿 for the
space ℓ2(Ω) are designed according to the standard framelet decomposition algorithm given in [29] with

periodic boundary conditions. This observation leads to the fact that for any 𝑝 ∈ 𝐿2(ℝ2), ⟨𝒃𝑘,ℓ𝑗 ,𝒑⟩ =

2𝐽⟨𝜓ℓ
𝑗,𝑘, 𝑝⟩, ⟨𝒂0,𝒑⟩ = 2𝐽⟨𝜙0,𝑘, 𝑝⟩, where 𝒑 is defined as (3.14). Hence, ∥𝒜𝒑∥ℓ1(𝛽) ≤ 𝐶𝒑2

𝐽 follows from (3.18)
by setting 𝐶𝒑 = 𝐶𝑝. This leads to (3.19). Furthermore, as 𝐶𝑝 and 𝐶𝑑 are independent of 𝐽 (i.e. the

cardinality of Ω), 𝑐̃ = 256
3 𝑀2 + 32𝑀

√
𝑀(2𝑀 + 6𝐶𝑑𝐶𝑝) is independent of 𝐽 , 𝜌, 𝛿 or 𝜎.

For (3.20), we need to estimate ∥𝑝− 𝑝𝐽∥𝐿2(𝐼) by (3.16). A standard tight framelet decomposition leads
to (see e.g. [29])

𝑝𝐽 =
∑
𝑘

⟨𝑝, 𝜙0,𝑘⟩𝜙0,𝑘 +
∑

0≤𝑗<𝐽

∑
𝑘,ℓ

⟨𝑝, 𝜓ℓ
𝑗,𝑘⟩𝜓ℓ

𝑗,𝑘.

This, together with (3.17) and the Bessel property of the tight frame system 𝑋(Ψ, 𝜙), we have

∥𝑝− 𝑝𝐽∥22 ≤
∑
𝑗≥𝐽

∑
𝑘,ℓ

∣⟨𝑝, 𝜓ℓ
𝑗,𝑘⟩∣2.

Note that

∣⟨𝑝, 𝜓ℓ
𝑗,𝑘⟩∣ ≤ ∥𝑝∥∞∥𝜓ℓ

𝑗,𝑘∥𝐿1(𝐼) = ∥𝑝∥∞2−𝑗∥𝜓ℓ∥𝐿1(𝐼).

This further leads to

∥𝑝− 𝑝𝐽∥22 ≤ ∥𝑝∥∞ max
ℓ

∥𝜓ℓ∥𝐿1(𝐼)

∑
𝑗≥𝐽

∑
𝑘,ℓ

2−𝑗 ∣⟨𝑝, 𝜓ℓ
𝑗,𝑘⟩∣

≤ ∥𝑝∥∞ max
ℓ

∥𝜓ℓ∥𝐿1(𝐼)

∑
𝑗≥𝐽

∑
𝑘,ℓ

2−𝑗 2
(𝛽+1)𝑗

2(𝛽+1)𝐽
∣⟨𝑝, 𝜓ℓ

𝑗,𝑘⟩∣

≤ 𝐶𝑝∥𝑝∥∞ max
ℓ

∥𝜓ℓ∥𝐿1(𝐼)2
−(𝛽+1)𝐽 . (3.21)

Thus, inequality (3.20) follows by setting 𝐶1 = 2(𝐶𝜙)
2𝑐̃, 𝐶2 = 2(𝐶𝜙)

2 and 𝐶3 = 2𝐶𝑝∥𝑝∥∞ maxℓ ∥𝜓ℓ∥𝐿1(𝐼).
This corollary says that as long as the data set is sufficiently dense, one has a pretty good chance to derive

a good approximation of the underlying true solution 𝒑 by solving (1.7). Furthermore, the approximation
of the function constructed from the recovered data gives a good approximation of the underlying function
where the original data comes from with high probability.

4. Proof of Critical Lemmas and Theorems. This section is devoted to the technical details we
left in the pervious sections. In particular, this section gives the proofs of Theorem 2.3, Theorem 2.4 and
Lemma 3.1.

4.1. Proof of Theorem 2.3. It requires several lemmas and propositions to prove Theorem 2.3. The
idea follows the same line as in statistical learning theory [27]. However, the setting is somewhat different
and we still give the proof for the completeness. We start with the following ratio probability inequality
concerning only one random variable. It can be deduced from Bernstein inequality directly, see [27, 49] for
more details.

Lemma 4.1. Suppose a random variable 𝜉 on 𝑍 satisfies 𝐸𝜉 = 𝜇 ≥ 0, and ∣𝜉−𝜇∣ ≤ 𝐵 almost everywhere.
Assume that 𝐸𝜉2 ≤ 𝑐𝐸𝜉. Then for any 𝜖 > 0 and 0 < 𝛾 ≤ 1, we have

Prob𝑧∈𝑍𝑚

{
𝜇− 1

𝑚

∑𝑚
𝑖=1 𝜉(𝑧𝑖)√

𝜇+ 𝜖
> 𝛾

√
𝜖

}
≤ exp

{
− 𝛾2𝑚𝜖

2𝑐+ 2
3𝐵

}
.
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Next, let 𝜉 = (𝒇 [𝜁] − 𝒑[𝜁])2 where 𝒇 ∈ ℳ and 𝜁 is a random variable i. i. d drawn from the uniform
distribution on Ω. Then 𝜉 is a random variable satisfying 0 ≤ 𝜉 ≤𝑀2. Define

ℰ(𝒇) := 𝐸𝜉 = 𝐸(𝒇 [𝜁]− 𝒑[𝜁])2 =
1

∣Ω∣
∑
𝑘∈Ω

(𝒇 [𝑘]− 𝒑[𝑘])2 (4.1)

and

ℰΛ(𝒇) = 1

∣Λ∣
∑
𝑘∈Λ

(𝒇 [𝑘]− 𝒈[𝑘])2. (4.2)

We have the following lemma:
Lemma 4.2. Let ℳ be defined by (2.1) and 𝒇1,𝒇2 ∈ ℳ. Then,

∣ℰ(𝒇1)− ℰ(𝒇2)∣ ≤ 2𝑀∥𝒇1 − 𝒇2∥∞, ∣ℰΛ(𝒇1)− ℰΛ(𝒇2)∣ ≤ 2𝑀∥𝒇1 − 𝒇2∥∞.

Proof. Note that∑
𝑘∈Ω

(𝒇1[𝑘]− 𝒑[𝑘])2 −
∑
𝑘∈Ω

(𝒇2[𝑘]− 𝒑[𝑘])2 ≤ ∣𝒇1[𝑘]− 𝒇2[𝑘]∣∣𝒇1[𝑘]− 𝒑[𝑘] + 𝒇2[𝑘]− 𝒑[𝑘]∣.

Hence,

∣ℰ(𝒇1)− ℰ(𝒇2)∣ =
∣∣∣∣∣ 1

∣Ω∣
∑
𝑘∈Ω

(𝒇1[𝑘]− 𝒑[𝑘])2 − 1

∣Ω∣
∑
𝑘∈Ω

(𝒇2[𝑘]− 𝒑[𝑘])2

∣∣∣∣∣
≤ 2𝑀

∣Ω∣ ∥𝒇1 − 𝒇2∥1 ≤ 2𝑀∥𝒇1 − 𝒇2∥∞.

The second inequality can be proved similarly by replacing Ω with Λ.
Now we give a ratio probability inequality involving the space ℳ. For this, we recall that 𝒩 (ℳ, 𝜂) is

the covering number of ℳ with respect to the metric ℓ∞(Ω).
Proposition 4.3. Let ℳ, ℰ(𝒇) and ℰΛ(𝒇) be defined by (2.1), (4.1) and (4.2) respectively. Then for

every 𝜖 > 0 and 0 < 𝛾 < 1, we have

Prob

{
sup
𝒇∈ℳ

ℰ(𝒇)− ℰΛ(𝒇)√ℰ(𝒇) + 𝜖
> 4𝛾

√
𝜖

}
≤ 𝒩 (ℳ,

𝛾𝜖

2𝑀
) exp

{
−3𝛾2𝑚𝜖

8𝑀2

}
.

Proof. Let {𝒇𝑗}𝐾𝑗=1, where 𝐾 = 𝒩 (ℳ, 𝛾𝜖
2𝑀 ), be a sequence such that ℳ is covered by ℓ∞ balls in ℳ

centered at 𝒇𝑗 with radius 𝛾𝜖
2𝑀 . For each 𝑗, consider the random variable 𝜉 = (𝒇𝑗 [𝜁]− 𝒑[𝜁])2, where 𝜁 is an

i.i.d random variable drawn from the uniform distribution on Ω. Then

𝐸𝜉2 = 𝐸(𝒇𝑗 [𝜁]− 𝑝[𝜁])4 ≤𝑀2𝐸(𝒇𝑗 [𝜁]− 𝑝[𝜁])2 =𝑀2𝐸𝜉,

and ∣𝜉 − 𝐸𝜉∣ ≤𝑀2. Applying Lemma 4.1 to 𝜉 with 𝐵 = 𝑐 =𝑀2, we have

Prob

{
ℰ(𝒇𝑗)− ℰΛ(𝑓𝑗)√ℰ(𝒇𝑗) + 𝜖

> 𝛾
√
𝜖

}
≤ exp

{
−3𝛾2𝑚𝜖

8𝑀2

}
. (4.3)

For an arbitrary 𝒇 ∈ ℳ, there is some 𝑗 ∈ {1, . . . ,𝐾} such that ∥𝒇 − 𝒇𝑗∥∞ ≤ 𝛾𝜖
2𝑀 . This, together with

Lemma 4.2, yields

∣ℰΛ(𝒇)− ℰΛ(𝒇𝑗)∣ ≤ 2𝑀∥𝒇 − 𝒇𝑗∥∞ ≤ 𝛾𝜖, ∣ℰ(𝒇)− ℰ(𝒇𝑗)∣ ≤ 2𝑀∥𝒇 − 𝒇𝑗∥∞ ≤ 𝛾𝜖.
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Therefore,

∣ℰΛ(𝒇)− ℰΛ(𝒇𝑗)∣√ℰ(𝒇) + 𝜖
≤ 𝛾

√
𝜖 and

∣ℰ(𝒇)− ℰ(𝒇𝑗)∣√ℰ(𝒇) + 𝜖
≤ 𝛾

√
𝜖.

The latter implies that

ℰ(𝒇𝑗) + 𝜖 = ℰ(𝒇𝑗)− ℰ(𝒇) + ℰ(𝒇) + 𝜖 ≤ 𝛾
√
𝜖
√

ℰ(𝒇) + 𝜖+ ℰ(𝒇) + 𝜖

≤ √
𝜖
√
ℰ(𝒇) + 𝜖+ ℰ(𝒇) + 𝜖 ≤ 2(ℰ(𝒇) + 𝜖).

This leads to
√ℰ(𝒇𝑗) + 𝜖 ≤ 2

√ℰ(𝒇) + 𝜖 for any 𝒇 ∈ {𝒇 : ∥𝒇 − 𝒇𝑗∥∞ ≤ 𝑟𝜖
2𝑀 }.

Next, assume that ℰ(𝒇)−ℰΛ(𝒇)√
ℰ(𝒇)+𝜖

> 4𝛾
√
𝜖, then

ℰ(𝒇𝑗)− ℰΛ(𝒇𝑗)

2
√ℰ(𝒇) + 𝜖

≥ ℰ(𝒇)− ℰΛ(𝒇)
2
√ℰ(𝒇) + 𝜖

− ℰ(𝒇)− ℰ(𝒇𝑗)

2
√ℰ(𝒇) + 𝜖

− ℰΛ(𝒇𝑗)− ℰΛ(𝒇)
2
√ℰ(𝒇) + 𝜖

> 2𝛾
√
𝜖− 𝛾

√
𝜖

2
− 𝛾

√
𝜖

2
= 𝛾

√
𝜖.

This together with the fact
√ℰ(𝒇𝑗) + 𝜖 ≤ 2

√ℰ(𝒇) + 𝜖 implies that for any 𝒇 ∈ {𝒇 : ∥𝒇 − 𝒇𝑗∥∞ ≤ 𝛾𝜖
2𝑀 }, if

the condition ℰ(𝒇)−ℰΛ(𝒇)√
ℰ(𝒇)+𝜖

> 4𝛾
√
𝜖 holds, then the following inequality

ℰ(𝒇𝑗)− ℰΛ(𝒇𝑗)√ℰ(𝒇𝑗) + 𝜖
≥ ℰ(𝒇𝑗)− ℰΛ(𝒇𝑗)

2
√ℰ(𝒇) + 𝜖

> 𝛾
√
𝜖

holds. Hence, for each fixed 𝑗, 1 ≤ 𝑗 ≤ 𝐾,

Prob

{
sup

𝒇∈{𝒇 :∥𝒇−𝒇𝑗∥∞≤ 𝛾𝜖
2𝑀 }

ℰ(𝒇)− ℰΛ(𝒇)√ℰ(𝒇) + 𝜖
> 4𝛾

√
𝜖

}
≤ Prob

{
ℰ(𝒇𝑗)− ℰΛ(𝒇𝑗)√ℰ(𝒇𝑗) + 𝜖

> 𝛾
√
𝜖

}
.

Since ℳ ⊆ ∪𝑗{𝒇 : ∥𝒇 − 𝒇𝑗∥∞ ≤ 𝛾𝜖
2𝑀 }, we have

Prob

{
sup
𝒇∈ℳ

ℰ(𝒇)− ℰΛ(𝒇)√ℰ(𝒇) + 𝜖
> 4𝛾

√
𝜖

}
≤

𝐾∑
𝑗=1

Prob

{
sup

𝒇∈{𝒇 :∥𝒇−𝒇𝑗∥∞≤ 𝛾𝜖
2𝑀 }

ℰ(𝒇)− ℰΛ(𝒇)√ℰ(𝒇) + 𝜖
> 4𝛾

√
𝜖

}
.

Therefore,

Prob

{
sup
𝒇∈ℳ

ℰ(𝒇)− ℰΛ(𝒇)√ℰ(𝒇) + 𝜖
> 4𝛾

√
𝜖

}
≤

𝐾∑
𝑗=1

Prob

{
ℰ(𝒇𝑗)− ℰΛ(𝒇𝑗)√ℰ(𝒇𝑗) + 𝜖

> 𝛾
√
𝜖

}
.

The right hand side can be further bounded by 𝒩 (ℳ, 𝛾𝜖
2𝑀 ) exp{− 3𝛾2𝑚𝜖

8𝑀2 } by using the fact 𝐾 = 𝒩 (ℳ, 𝑟𝜖
2𝑀 )

and (4.3).
Finally, we give the proof of Theorem 2.3.
Proof of Theorem 2.3: By Proposition 4.3, for every 𝜖 > 0 and 0 < 𝛾 ≤ 1, the inequality

sup
𝒇∈ℳ

ℰ(𝒇)− ℰΛ(𝒇)√ℰ(𝒇) + 𝜖
≤ 4𝛾

√
𝜖

holds with probability at least

1−𝒩 (ℳ,
𝛾𝜖

2𝑀
) exp

{
−3𝛾2𝑚𝜖

8𝑀2

}
.
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Therefore, for all 𝒇 ∈ ℳ, the inequality

ℰ(𝒇)− ℰΛ(𝒇) ≤ 4𝛾
√
𝜖
√
ℰ(𝒇) + 𝜖 (4.4)

holds with the same probability. Since the original data 𝒑 satisfies the constraint

1

∣Λ∣
∑
𝑘∈Λ

(𝒇 [𝑘]− 𝒈[𝑘])2 ≤ 𝜎2 and ∥𝒇∥∞ ≤𝑀,

and 𝒇Λ is the solution of (1.7), we have

∥𝒜𝒇Λ∥ℓ1(𝛽,Υ) ≤ ∥𝒜𝒑∥ℓ1(𝛽,Υ).

Therefore, 𝒇Λ ∈ ℳ. Taking 𝛾 =
√
2/8 and 𝒇 = 𝒇Λ in (4.4), we know that

ℰ(𝒇Λ)− ℰΛ(𝒇Λ) ≤ 1

2

√
2𝜖(ℰ(𝒇Λ) + 𝜖) (4.5)

holds with probability at least 1−𝒩 (ℳ, 𝜖
8
√
2𝑀

) exp{− 3𝑚𝜖
256𝑀2 }. Furthermore, since ℰΛ(𝒇Λ) ≤ 𝜎2, (4.5) yields

ℰ(𝒇Λ) ≤ 1

2

√
2𝜖(ℰ(𝒇Λ) + 𝜖) + 𝜎2.

This together with the fact 𝒩 (ℳ, 𝜖
8
√
2𝑀

) ≤ 𝒩 (ℳ, 𝜖
12𝑀 ) implies ℰ(𝒇Λ) ≤ 4

3𝜎
2 + 𝜖 with probability at least

1−𝒩 (ℳ, 𝜖
12𝑀 ) exp{− 3𝑚𝜖

256𝑀2 }. Thus we get the conclusion of Theorem 2.3.

4.2. Proof of Theorem 2.4. Theorem 2.4 is to estimate the covering number. As pointed out in
Section 2, it is not easy to analyze ℳ directly because of the complexity of the frame operator 𝒜. Note that
𝒟 is a linear operator. If we assume 𝒜 satisfy the condition (2.5), then together with the definition of ℳ
and (1.3), we have

∥𝒟𝒇∥1 ≤
∑
𝑛∈Γ

∣⟨𝒇 ,𝒂𝑛⟩∣∥𝒟𝒂𝑛∥1 ≤ 𝐶𝑑

∑
𝑛∈Γ

∣⟨𝒇 ,𝒂𝑛⟩∣2𝛼Υ(𝑛) (4.6)

which can be further bounded by

𝐶𝑑2
max{𝛼−𝛽,0}max{Υ(𝑛):,𝑛∈Γ}∑

𝑛∈Γ

2𝛽Υ(𝑛)∣⟨𝒇 ,𝒂𝑛⟩∣.

Recall that Υ is a function mapping from Γ to ℕ satisfying (1.6). Thus, for any 𝒇 ∈ ℳ, we have

∥𝒟𝒇∥1 ≤ 𝐶𝑑∣Ω∣
max{𝛼−𝛽,0}

𝑑 ∥𝒜𝒇∥ℓ1(𝛽,Υ) ≤ 𝐶𝑑∣Ω∣
max{𝛼−𝛽,0}

𝑑 ∥𝒜𝒑∥ℓ1(𝛽,Υ).

Therefore, ℳ ⊂ ℳ̃ and 𝒩 (ℳ, 𝜂) ≤ 𝒩 (ℳ̃, 𝜂), where ℳ̃ is defined by (2.6). Now we only need to bound

the covering number 𝒩 (ℳ̃, 𝜂).

By the definition of covering number 𝒩 (ℳ̃, 𝜂), it is easy to see that when there is a finite set 𝐹 ⊆ ℳ̃
such that ℳ̃ ⊆ ∪𝒒∈𝐹 {𝒇 : ∥𝒇 − 𝒒∥∞ ≤ 𝜂}, then 𝒩 (ℳ̃, 𝜂) ≤ ∣𝐹 ∣, where ∣𝐹 ∣ is the number of elements in set

𝐹 . What we need now is to construct a good set 𝐹 by exploiting the specific structure of ℳ̃, so that ∣𝐹 ∣
has a good upper bound that gives a good estimate of the covering number 𝒩 (ℳ̃, 𝜂), and further the one
of 𝒩 (ℳ, 𝜂). To do so, we need the following lemma. First, we introduce the set 𝑅. Let 𝑟 = ⌈ 2𝑀

𝜂 ⌉, i.e. 𝑟 is

the smallest integer greater than 2𝑀
𝜂 . Define

𝑅 = {−𝑟𝜂/2,−(𝑟 − 1)𝜂/2, . . . , 𝑟𝜂/2}. (4.7)
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Lemma 4.4. Let ℳ̃ be defined as (2.6) and 𝑅 as (4.7). Then for each 𝒇 ∈ ℳ̃, there exists a vector
𝑄(𝒇) taking values in 𝑅 and satisfying ∥𝒇 −𝑄(𝒇)∥∞ ≤ 𝜂

2 and ∥𝒟𝑄(𝒇)∥1 ≤ ∥𝒟𝒇∥1, where 𝒟 is the discrete
total variation (DTV) operator defined by (2.3).

This lemma is vital in constructing the set 𝐹 , as shown in the following proof of Theorem 2.4. The proof
of Lemma 4.4 is delayed to the end of this subsection.

Proof of Theorem 2.4: As shown in the above discussion that 𝒩 (ℳ, 𝜂) ≤ 𝒩 (ℳ̃, 𝜂), we only need to

bound the covering number 𝒩 (ℳ̃, 𝜂). The major part of the proof is to construct a set 𝐹 ⊆ ℳ̃ such that

ℳ̃ ⊆ ∪𝒒∈𝐹 {𝒇 : ∥𝒇 − 𝒒∥∞ ≤ 𝜂} and a good upper bound of the total number of elements in 𝐹 provides a

desired upper bound of the covering number 𝒩 (ℳ̃, 𝜂).

Lemma 4.4 says that for each 𝒇 ∈ ℳ̃, there exists a vector 𝑄(𝒇) whose range is 𝑅 and satisfying
∥𝒇 −𝑄(𝒇)∥∞ ≤ 𝜂

2 and ∥𝒟𝑄(𝒇)∥1 ≤ ∥𝒟𝒇∥1. Let
𝐹 = {𝒒 ∈ ℓ∞(Ω) : 𝒒 = 𝑄(𝒇), for some 𝒇 ∈ ℳ̃}.

This is a subset of the set of sequences defined on Ω and whose range is 𝑅. For each fixed element 𝒒 in 𝐹 ,
there may have more than one element in ℳ̃ satisfying 𝒒 = 𝑄(𝒇).

For each fixed 𝒒 ∈ 𝐹 , choose a vector 𝒇𝒒 ∈ ℳ̃ such that ∥𝒇𝒒 − 𝒒∥∞ ≤ 𝜂
2 and define 𝐹 = {𝒇𝒒 : 𝒒 ∈ 𝐹}.

Then, 𝐹 is a subset of ℳ̃. For an arbitrary given 𝒇 ∈ ℳ̃, there exists a function 𝒒 ∈ 𝐹 such that
∥𝒇 − 𝒒∥∞ ≤ 𝜂

2 which implies

∥𝒇 − 𝒇𝒒∥∞ ≤ ∥𝒇 − 𝒒∥∞ + ∥𝒒 − 𝒇𝒒∥∞ ≤ 𝜂

by the definition of 𝒇𝒒. Therefore,

ℳ̃ ⊂ ∪𝒇𝒒∈𝐹 {𝒇 : ∥𝒇 − 𝒇𝒒∥∞ ≤ 𝜂} and 𝒩 (ℳ̃, 𝜂) ≤ ∣𝐹 ∣ ≤ ∣𝐹 ∣.
Thus, the upper bound of ∣𝐹 ∣ will give an upper bound of ∣𝐹 ∣, hence the covering number 𝒩 (ℳ̃, 𝜂) is

bounded by any upper bound of ∣𝐹 ∣. Note that for an arbitrary vector 𝒒 ∈ 𝐹 , it is uniquely determined by

the sequence 𝒟𝒒 and 𝒒[1, . . . , 1]. Therefore, in order to bound the number of elements in set 𝐹 , we only
need to bound the number of the choices of the sequence 𝒟𝒒 and 𝒒[1, . . . , 1]. As the range of 𝒒 is the set
𝑅 defined as (4.7), we have 2𝑟 + 1 choices of 𝒒[1, . . . , 1]. What left is to count the number of choices of the
vector 𝒟𝒒. Define

𝒟𝐹 = {𝒟𝒒 : 𝒒 ∈ 𝐹}.
Then, we need to estimate an upper bound of ∣𝒟𝐹 ∣, i.e., an upper bound of the total number of elements in

𝒟𝐹 . To do that, we first find a uniform bound of ∥𝒟𝒒∥1 for 𝒒 ∈ 𝐹 .

By the definition of 𝐹 and lemma 4.4, for a fixed 𝒒 ∈ 𝐹 , there exists a function 𝒇 ∈ ℳ̃ such
that ∥𝒟𝒒∥1 ≤ ∥𝒟𝒇∥1. Since ∥𝒜𝒑∥ℓ1(𝛽,Υ) ≤ 𝐶𝒑∣Ω∣ 12 by assumption, ∥𝒟𝒒∥1 can be further bounded by

𝐶𝑑𝐶𝒑∣Ω∣max{2(𝛼−𝛽)+𝑑,𝑑}
2𝑑 . With this bound, we now can estimate the number of choices of the sequence 𝒟𝒒,

𝒒 ∈ 𝐹 . Let

𝐾 =

⌈
2𝐶𝑑𝐶𝒑∣Ω∣max{2(𝛼−𝛽)+𝑑,𝑑}

2𝑑

𝜂

⌉
.

Hence for an arbitrary element 𝒒 ∈ 𝐹 , ∥𝒟𝒒∥1 ≤ 𝐾𝜂. Furthermore, since the range of 𝒒 is 𝑅, the range of

the vector 𝒟𝒒 is the set {−𝐾𝜂,−(𝐾 − 1)𝜂, . . . ,𝐾𝜂}. Recall that there are 𝑑(∣Ω∣ − ∣Ω∣ 𝑑−1
𝑑 ) entries in vector

𝒟𝒒. Therefore, the bound of ∣𝒟𝐹 ∣ can be estimated as the total number of the following events: Consider

𝑑(∣Ω∣ − ∣Ω∣ 𝑑−1
𝑑 ) ordered balls, we choose 𝐾 balls from them with replacement. After this, assign each ball

with possible value either 0, 𝜂 or −𝜂. This implies that the ∣𝒟𝐹 ∣ can be bounded by

3𝐾𝐾!

(
𝑑(∣Ω∣ − ∣Ω∣ 𝑑−1

𝑑 ) +𝐾 − 1
𝐾

)
= 3𝐾(𝑑(∣Ω∣ − ∣Ω∣ 𝑑−1

𝑑 ) +𝐾 − 1) ⋅ (𝑑(∣Ω∣ − ∣Ω∣ 𝑑−1
𝑑 ) +𝐾 − 2) . . . (𝑑(∣Ω∣ − ∣Ω∣ 𝑑−1

𝑑 )− 1). (4.8)
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As 𝜂 ≥ ∣Ω∣max{ 𝑑+2(𝛼−𝛽)
2𝑑 , 12}−1 by the assumption, we have 𝐾 − 1 ≤ 2𝐶𝑑𝐶𝒑∣Ω∣. Hence, (4.8) can be further

bounded by (3(𝑑+ 2𝐶𝑑𝐶𝒑)∣Ω∣)𝐾 . Recall that the number of the choices of 𝒒[1, . . . , 1] is bounded by 2𝑟 + 1,
we have

∣𝐹 ∣ ≤ (2𝑟 + 1)(3(𝑑+ 2𝐶𝑑𝐶𝒑)∣Ω∣)𝐾 .
Therefore,

log𝒩 (ℳ, 𝜂) ≤ log𝒩 (ℳ̃, 𝜂) log ∣𝐹 ∣ ≤ (4𝑀 + 3(𝑑+ 2𝐶𝑑𝐶𝒑))
∣Ω∣max{ 2(𝛼−𝛽)+𝑑

2𝑑 , 12} log2 ∣Ω∣
𝜂

.

This leads to the desired inequality (2.7) by letting 𝐶 ′
𝑑 = 4𝑀 + 3(𝑑+ 2𝐶𝑑𝐶𝒑).

Next, we prove Lemma 4.4.
Proof of Lemma 4.4: We prove this lemma in a constructive way. Recall that 𝑟 = ⌈ 2𝑀

𝜂 ⌉ and

𝑅 = {−𝑟𝜂/2,−(𝑟 − 1)𝜂/2, . . . , 𝑟𝜂/2}. First, we note that for 𝒇 ∈ ℳ̃, if its range is in 𝑅, then we simply
choose 𝑄(𝒇) = 𝒇 .

For general 𝒇 ∈ ℳ̃, one can participate the domain Ω into 2𝑟 + 1 parts. Indeed, let 𝑈𝑖 = {𝑘 ∈ Ω :
(𝑖 − 1)𝜂/2 ≤ 𝒇 [𝑘] < 𝑖𝜂/2}, 𝑖 = −𝑟 + 1, . . . , 𝑟 + 1. Then 𝑈𝑖 ∩ 𝑈𝑗 = ∅ and ∪𝑖𝑈𝑖 = Ω, since ∣𝒇 [𝑘]∣ ≤ 𝑀

for 𝑘 = (𝑘1, . . . , 𝑘𝑑) ∈ Ω whenever 𝒇 ∈ ℳ̃. We observe that in order to make the range of 𝑄(𝒇) be in
𝑅 and ∥𝑄(𝒇) − 𝒇∥∞ ≤ 𝜂

2 , one needs to move the value of 𝒇 [𝑘], 𝑘 ∈ 𝑈𝑖 to either (𝑖 − 1)𝜂/2 or 𝑖𝜂/2. The
choice is finally determined by ∥𝒟𝑄(𝒇)∥1 ≤ ∥𝒟𝒇∥1, that is quite involved. We want to define 𝑄(𝒇) on each
{𝑈𝑖}−𝑟+1≤𝑖≤𝑟+1, however, it involves the behavior of 𝒇 on the whole Ω.

In order to overcome this difficulty, we define set

𝐵𝑖,𝑗,𝑛 = {(𝑘, 𝑘′) : 𝑘 ∈ 𝑈𝑖, 𝑘
′ ∈ 𝑈𝑗 , 𝑘𝑛 = 𝑘′𝑛 + 1, 𝑘𝑛′ = 𝑘′𝑛′ , 𝑛′ ∕= 𝑛}

for each −𝑟 + 1 ≤ 𝑖, 𝑗 ≤ 𝑟 + 1, 1 ≤ 𝑛 ≤ 𝑑. Here the vector (𝑘, 𝑘′) has 2𝑑 entries and the difference between
vector 𝑘 and 𝑘′ is the 𝑛th entry. Let 𝐵𝑖 = ∪𝑗 ∕=𝑖 ∪1≤𝑛≤𝑑 𝐵𝑖𝑗𝑛. Then,

𝐵𝑖 := {(𝑘, 𝑘′) : 𝑘 ∈ 𝑈𝑖, 𝑘
′ ∈ Ω∖𝑈𝑖, 𝑘, 𝑘

′ only differ by one entry and
𝑑∑

𝑛=1

𝑘′𝑛 − 𝑘𝑛 = 1}

For each (𝑘, 𝑘′) ∈ 𝐵𝑖,𝑗,𝑛, if 𝑓 [𝑘
′] ∕= 𝑖𝜂

2 , we add ∣𝑖 − 𝑗∣ new points between 𝑘 = (𝑘1, . . . , 𝑘𝑑) and 𝑘′ =
(𝑘′1, . . . , 𝑘

′
𝑑):

𝑥
(𝑘,𝑘′)
ℓ = (𝑘1, . . . , 𝑘𝑛−1, 𝑘𝑛 +

ℓ

∣𝑖− 𝑗∣+ 1
, 𝑘𝑛+1, . . . , 𝑘𝑑), ∀1 ≤ ℓ ≤ ∣𝑖− 𝑗∣.

Let

𝑋(𝑘,𝑘′) =

{
{𝑥(𝑘,𝑘′)

1 , . . . , 𝑥
(𝑘,𝑘′)
∣𝑖−𝑗∣ }, if 𝑓 [𝑘′] ∕= 𝑖𝜂

2 ,

∅, if 𝑓 [𝑘′] = 𝑖𝜂
2 .

and extend 𝒇 to 𝑋(𝑘,𝑘′) as follows:

𝒇 [𝑥
(𝑘,𝑘′)
ℓ ] = (𝑖+ ℓsign(𝑗 − 𝑖))𝜂/2, ∀1 ≤ ℓ ≤ ∣𝑖− 𝑗∣. (4.9)

This definition indicates that the sequence {𝒇 [𝑘],𝒇 [𝑥(𝑘,𝑘′)
1 ],𝒇 [𝑥

(𝑘,𝑘′)
2 ], . . . ,𝒇 [𝑥

(𝑘,𝑘′)
∣𝑖−𝑗∣ ],𝒇 [𝑘

′]} is monotoni-

cally increasing or decreasing. Therefore, for any (𝑘, 𝑘′) ∈ 𝐵𝑖,𝑗,𝑛, we have

∣𝒇 [𝑘]− 𝒇 [𝑘′]∣ = ∣𝒇 [𝑘]− 𝒇 [𝑥
(𝑘,𝑘′)
1 ]∣+ ∣𝒇 [𝑥(𝑘,𝑘′)

1 ]− 𝒇 [𝑥
(𝑘,𝑘′)
2 ]∣+ ⋅ ⋅ ⋅+ ∣𝒇 [𝑥(𝑘,𝑘′)

∣𝑖−𝑗∣ ]− 𝒇 [𝑘′]∣, (4.10)

which will be used later.
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Let Ω′ := ∪(𝑘,𝑘′)∈∪𝑖𝐵𝑖
𝑋(𝑘,𝑘′) ∪ Ω. While Ω is a subset of the lattice ℤ𝑑, Ω′ is more complicated. It is

a subset of a more dense lattice and it is nonuniform. Nevertheless, by (4.9) we have extended 𝒇 defined
on Ω to a sequence defined on Ω′. To avoid confusion, in what follows, we use 𝒇 ∣Ω to represent the original
sequence 𝒇 defined on Ω, when we write 𝒇 indicating the domain is Ω′. Let

𝐵 = {(𝑘, 𝑘′) ∈ Ω× Ω : 𝑘, 𝑘′ only differ by one entry and
𝑑∑

ℓ=1

𝑘′ℓ − 𝑘ℓ = 1}.

Then ∥𝒟𝒇 ∣Ω∥1 =
∑

(𝑘,𝑘′)∈𝐵 ∣𝒇Ω[𝑘
′]−𝒇Ω[𝑘]∣ by (2.4). One can extend the definition of discrete total variation

of (2.4) to the more complicated set Ω′, but we will not do it, since we do not need it. However, we need to
use the following number

𝑍 =
∑

(𝑘,𝑘′)∈𝐵∖(∪𝑖𝐵𝑖)

∣𝒇 [𝑘′]− 𝒇 [𝑘]∣

+
∑

(𝑘,𝑘′)∈∪𝑖𝐵𝑖

∣𝒇 [𝑘]− 𝒇 [𝑥
(𝑘,𝑘′)
1 ]∣+ ∣𝒇 [𝑥(𝑘,𝑘′)

1 ]− 𝒇 [𝑥
(𝑘,𝑘′)
2 ]∣+ ⋅ ⋅ ⋅+ ∣𝒇 [𝑥(𝑘,𝑘′)

∣𝑖−𝑗∣ ]− 𝒇 [𝑘′]∣. (4.11)

Then 𝑍 = ∥𝒟𝒇 ∣Ω∥1 by (4.10).
Next, we regroup the terms in 𝑍 so that 𝑍 can be written as a sum of 2𝑟 terms with each term only

involves the points in

𝑈𝑖 = {𝑥 ∈ Ω′ : (𝑖− 1)𝜂/2 ≤ 𝒇 [𝑥] ≤ 𝑖𝜂/2}.
For this, let 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ Ω′ and 𝑛 ∈ {1, . . . , 𝑑} be given. Define

𝑂𝑛
𝑥 = {𝑥′ ∈ Ω′ : 𝑥′𝑛 > 𝑥𝑛, 𝑥𝑛′ = 𝑥′𝑛′ , 𝑛′ ∕= 𝑛}, and 𝑁𝑛

𝑥 = {𝑦 ∈ Ω′ : 𝑦 = arg min
𝑥′∈𝑂𝑛

𝑥

∥𝑥′ − 𝑥∥1}.

Let

𝑁𝑥 := ∪𝑑
𝑛=1𝑁

𝑛
𝑥 and 𝑈 ′

𝑖 = {𝑥 ∈ Ω′ : (𝑖− 1)𝜂/2 ≤ 𝒇 [𝑥] < 𝑖𝜂/2}.
Then ∥𝒟𝒇 ∣Ω∥1 can be written as follows:

∥𝒟𝒇 ∣Ω∥1 = 𝑍 =
∑
𝑥∈Ω′

∑
𝑥′∈𝑁𝑥

∣𝒇 [𝑥′]− 𝒇 [𝑥]∣ =
𝑟∑

𝑖=−𝑟+1

∑
𝑥∈𝑈 ′

𝑖

∑
𝑥′∈𝑁𝑥

∣𝒇 [𝑥′]− 𝒇 [𝑥]∣. (4.12)

Note that the right hand side is a summation of 2𝑟 parts and each part only involves the points in 𝑈𝑖. This
property is important and it makes us feasible to deal with each part separately. In fact, the main purpose
of the extension of Ω to Ω′ is to insert sufficient points into Ω so that (4.12) holds.

Next, for each 𝑖 ∈ {−𝑟 + 1,−𝑟 + 2, . . . , 𝑟}, we construct a sequence 𝑓∗𝑖 defined on 𝑈𝑖 satisfying the

following three conditions: the range of 𝑓∗𝑖 is {(𝑖 − 1)𝜂/2, 𝑖𝜂/2}; 𝒇∗
𝑖 coincide with 𝒇 on the set {𝑥 ∈ 𝑈𝑖 :

𝒇 [𝑥] = 𝑖𝜂/2 or 𝒇 [𝑥] = (𝑖− 1)𝜂/2}; and∑
𝑥∈𝑈 ′

𝑖

∑
𝑥′∈𝑁𝑥

∣𝒇∗
𝑖 [𝑥

′]− 𝒇∗
𝑖 [𝑥]∣ ≤

∑
𝑥∈𝑈 ′

𝑖

∑
𝑥′∈𝑁𝑥

∣𝒇 [𝑥′]− 𝒇 [𝑥]∣. (4.13)

Then the desired result follows by letting

𝑄(𝒇 ∣Ω)[𝑘] = 𝒇∗
𝑖 [𝑘], 𝑘 ∈ Ω, 𝑖 = −𝑟 + 1,−𝑟 + 2, . . . , 𝑟. (4.14)

For each fixed 𝑖 ∈ {−𝑟+1,−𝑟+2, ⋅ ⋅ ⋅ , 𝑟}, we construct a simple graph 𝐺 = (𝑉,𝐸). Let the set of vertices

𝑉 = 𝑈𝑖 and we link 𝑥 ∈ 𝐸 and 𝑦 ∈ 𝐸 by 𝑒(𝑥, 𝑦), an edge connecting 𝑥 and 𝑦, if either 𝑥 ∈ 𝑁𝑦∩𝑈𝑖 or 𝑦 ∈ 𝑁𝑥∩𝑈𝑖

holds, i.e. the set of edges is 𝐸 = {𝑒(𝑥, 𝑦) : 𝑥 ∈ 𝑁𝑦 ∩ 𝑈𝑖 or 𝑦 ∈ 𝑁𝑥 ∩ 𝑈𝑖}. Obviously, graph 𝐺 = (𝑉,𝐸) is
connected.
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Consider the vertices 𝑃𝑖 := {𝑥 ∈ 𝑈𝑖 : 𝒇 [𝑥] = (𝑖− 1)𝜂/2} ⊂ 𝐸 and 𝑄𝑖 := {𝑥 ∈ 𝑈𝑖 : 𝒇 [𝑥] = 𝑖𝜂/2} ⊂ 𝐸. Let
𝐾1 be the minimum size of an edge set in 𝐸 whose removal disconnects 𝑃𝑖 and 𝑄𝑖 and 𝐾2 be the maximum
size of a family of pairwise edge disjoint paths from 𝑃𝑖 to 𝑄𝑖. By max-flow min-cut theorem [33], 𝐾1 = 𝐾2.

Let 𝑊 be a subset in 𝐸 whose removal disconnects 𝑃𝑖 and 𝑄𝑖 and satisfying ∣𝑊 ∣ = 𝐾1. We construct
a new graph 𝐺′ = (𝑉,𝐸′) with 𝐸′ = 𝐸∖𝑊 . Then the vertices of graph 𝐺′ can naturally be divided into
two parts according to their connection with 𝑃𝑖 and 𝑄𝑖 in graph 𝐺′. More specifically, choosing 𝑆𝑖 to be
the largest set satisfying that 𝑃𝑖 ⊆ 𝑆𝑖 and there exists a path in 𝐺′ connecting 𝑥 and 𝑃𝑖 for each vertex
𝑥 ∈ 𝑆𝑖∖𝑃𝑖, and 𝑇𝑖 be the largest set satisfying that 𝑄𝑖 ⊆ 𝑇𝑖 and there exists a path connecting 𝑦 and 𝑄𝑖 for

each vertex 𝑦 ∈ 𝑇𝑖∖𝑄𝑖, we have 𝑇𝑖 ∪ 𝑆𝑖 = 𝑈𝑖.
Define

𝒇∗
𝑖 [𝑥] =

{
(𝑖− 1)𝜂/2, if 𝑥 ∈ 𝑆𝑖,
𝑖𝜂, if 𝑥 ∈ 𝑇𝑖.

(4.15)

It is clear that ∑
𝑥∈𝑈 ′

𝑖

∑
𝑥′∈𝑁𝑥

∣𝒇∗
𝑖 [𝑥

′]− 𝒇∗
𝑖 [𝑥]∣ = 𝐾1𝜂/2. (4.16)

Consider a pairwise edge disjoint path in 𝐺 connecting 𝑃𝑖 to 𝑄𝑖 with ordered vertices {𝑥1, . . . 𝑥𝐾} for
some 𝐾 > 0 that satisfy 𝒇 [𝑥1] = (𝑖 − 1)𝜂/2,𝒇 [𝑥𝐾 ] = 𝑖𝜂/2 and {𝑒(𝑥1, 𝑥2), 𝑒(𝑥2, 𝑥3), . . . , 𝑒(𝑥𝐾−1, 𝑥𝐾)} ⊆ 𝐸.
Applying the triangle inequality, we have

𝐾−1∑
𝑛=1

∣𝒇 [𝑥𝑛+1]− 𝒇 [𝑥𝑛]∣ ≥
𝐾−1∑
𝑛=1

(𝒇 [𝑥𝑛+1]− 𝒇 [𝑥𝑛]) = 𝒇 [𝑥𝐾 ]− 𝒇 [𝑥1] = 𝜂/2.

This together with the definition of the graph 𝐺 and 𝐾2 yields∑
𝑥∈𝑈 ′

𝑖

∑
𝑥′∈𝑁𝑥

∣𝒇 [𝑥′]− 𝒇 [𝑥]∣ ≥ 𝐾2𝜂/2.

By applying the fact 𝐾1 = 𝐾2 and (4.16), inequality (4.13) follows with 𝒇∗
𝑖 defined by (4.15) and the desired

function 𝑄(𝒇 ∣Ω) can then be constructed by the equation (4.14).

Note that in our proof, the regularity of the sequence in ℳ̃ is measured by discrete total variation and
our estimation for the covering number 𝒩 (ℳ, 𝜂) is exactly done by estimating 𝒩 (ℳ̃, 𝜂). So our analysis
used here is also applicable for other general setting whose involved set is contained in a set of the form
{𝒇 ∈ ℓ∞(Ω) : ∥𝒟𝒇∥1 ≤ 𝐶 ′

𝒑} for some constant 𝐶 ′
𝒑 > 0. Obviously, some TV based algorithm is included.

4.3. Proof of Lemma 3.1. To apply Theorem 2.4 to the framelet case, we need to know 𝛼, explicitly,
in condition (2.5). In this section, we show Lemma 3.1 which states that the tight frame system defined in
(3.6) and (3.7) derived from filters of the tight framelets 𝑋(Ψ, 𝜙) satisfies (2.5) with 𝛼 = 0. For this, we
need some discussions of the convergent rate of a stationary subdivision algorithm.

Let 𝜙 : ℝ2 7→ ℝ2 be a compactly supported refinable function with mask {𝒉0[𝑘], 𝑘 ∈ ℤ2} and satisfies
refinement equation (3.1). For 𝒅 ∈ ℓ∞(ℤ2), we define subdivision operator 𝒮 as

(𝒮𝒅)[𝑘] = 4
∑
𝑖∈ℤ2

𝒉0[𝑘 − 2𝑖]𝒅[𝑖]. (4.17)

We say that the subdivision algorithm converges if

∥𝑓𝒅( ⋅
2𝑛

)− 𝒮𝑛𝒅∣∞ → 0

as 𝑛→ ∞, where

𝑓𝒅(𝑥) =
∑
𝑘∈ℤ2

𝒅[𝑘]𝜙(𝑥− 𝑘), 𝑥 ∈ ℝ2.
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The convergence of the subdivision algorithm is a very well studied subject. In fact, there is a complete
characterization of the convergence in terms of refinement mask. The interested reader should consult [39,44]
for details in this direction. It is even known earlier that when the refinable function 𝜙 and its shifts form a
Riesz system, the corresponding subdivision algorithm converges (see e.g. [19]). Here, we need a convergence
rate which is given below. The proof is standard and can be modified from that of Proposition 2.3 in [19].

Proposition 4.5. Assume the refinable function 𝜙 satisfies Assumption 1. Then the subdivision algo-
rithm defined by (4.17) satisfies

∥𝑓𝒅( ⋅
2𝑛

)− 𝒮𝑛𝒅∣∞ ≤ 𝐶𝒅2
−𝑛, (4.18)

where 𝐶𝒅 is a constant independent of 𝑛.
Proof. By a standard argument of the subdivision, one has that

∣(𝒮𝑛𝒅)[𝑘]− 𝑓𝒅(
𝑘

2𝑛
)∣ ≤ ∥𝒅∥∞

∑
𝑗∈ℤ2

∣(𝒮𝑛𝜹)[𝑘 − 2𝑛𝑗]− 𝜙(
𝑘

2𝑛
− 𝑗)∣, (4.19)

where 𝜹 is a vector with 𝜹[𝑘] = 1 for the case 𝑘 = (0, 0) and 𝜹[𝑘] = 0 otherwise.

Therefore, once one proves that there exists a constant 𝐶1 ≥ 0 such that

∥𝜙( 𝑘
2𝑛

)− 𝒮𝑛𝜹[𝑘]∥∞ ≤ 𝐶12
−𝑛, (4.20)

then (4.20) together with (4.19) yields that for all 𝑘 ∈ ℤ2,

∣(𝒮𝑛𝒅)[𝑘]− 𝑓𝒅(
𝑘

2𝑛
)∣ ≤ ∥𝒅∥∞𝐶1𝑁2−𝑛,

where 𝑁 is the number of non-zero terms in the sum on the right hand side of (4.19). Since 𝜙 is of compact
support and 𝑠𝑢𝑝𝑝𝒮𝑛𝜹 is contained in some ball of radius 2𝑛𝑟 with 𝑟 being a positive constant independent
of 𝑛, 𝑁 is a constant independent of 𝑛. This leads to the desired result, i.e.

∥𝑓𝒅( ⋅
2𝑛

)− 𝒮𝑛𝒅∥∞ ≤ 𝐶𝒅2
−𝑛

by choosing 𝐶𝒅 = ∥𝒅∥∞𝐶1𝑁 .
Finally, we prove (4.20). By using the fact 𝜙(𝑥) = 4

∑
𝑘∈ℤ2 𝒉0[𝑘]𝜙(2𝑥− 𝑘), one gets

𝜙(𝑥) =
∑
𝑘∈ℤ2

𝜹[𝑘]𝜙(𝑥− 𝑘) =
∑
𝑘∈ℤ2

𝒮𝑛𝜹[𝑘]𝜙(2𝑛𝑥− 𝑘). (4.21)

Since 𝜙 is Hölder continuity with exponent 1 and compactly supported, there exists a constant 𝐶2 independent
of 𝑛 such that

∣
∑
𝑘∈ℤ2

(𝜙(
𝑘

2𝑛
)− 𝜙(𝑥))𝜙(2𝑛𝑥− 𝑘)∣ ≤ 𝐶22

−𝑛, 𝑥 ∈ ℝ𝑠. (4.22)

Note that by the assumption of 𝜙, we have
∑

𝑘∈ℤ2 𝜙(⋅ − 𝑘) = 1 (see [28, 45]). This together with (4.21) and
(4.22) yields

∣
∑
𝑘∈ℤ2

(𝜙(
𝑘

2𝑛
)− 𝒮𝑛𝜹[𝑘])𝜙(2𝑛𝑥− 𝑘)∣ ≤ 𝐶32

−𝑛. (4.23)

Since 𝜙 is compactly supported and {𝜙(⋅ − 𝑘)}𝑘 is a Riesz basis in 𝐿2(ℝ2), according to Theorem 3.5 in [40],
the stability condition

∥𝒄∥∞ ≤ 𝐶∞∥
∑
𝑘∈ℤ2

𝒄[𝑘]𝜙(2𝑛𝑥− 𝑘)∥∞ (4.24)
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holds for some constant 𝐶∞ and all 𝒄 ∈ ℓ∞(ℤ2). Therefore, we obtain (4.20) from (4.23) and (4.24) by

letting 𝐶1 = 𝐶3𝐶∞. The desired result then follows.
Finally, we use the above proposition 4.5, to obtain the bounds of ∥𝒟𝒂0∥1 and ∥𝒟𝒃ℓ𝑗∥1.
Proof of Lemma 3.1: The definition 𝒂̃0 of (3.3) gives 2𝐽 𝒂̃0 = 𝑆𝐽𝜹. Denote Φ = (𝜙( 𝑘

2𝐽
))𝑘∈Ω. Then

(4.18) leads to, by taking 𝒅 = 𝜹,

∥Φ− 2𝐽 𝒂̃0∥∞ ≤ 𝐶𝜹2
−𝐽 . (4.25)

Let 𝐵 = {(𝑘, 𝑘′) = (𝑘1, . . . , 𝑘𝑑, 𝑘
′
1, . . . , 𝑘

′
𝑑) ∈ Ω × Ω : 𝑘, 𝑘′ only differ by one entry and

∑𝑑
𝑛=1 𝑘

′
𝑛 − 𝑘𝑛 = 1}.

Then the number of elements in 𝐵 is bounded by 2(22𝐽 − 2𝐽) and

∥𝒟𝒂̃0∥1 =
∑

(𝑘,𝑘′)∈𝐵

∣∣∣∣𝒂̃0

(
𝑘′

2𝐽

)
− 𝒂̃0

(
𝑘

2𝐽

)∣∣∣∣ . (4.26)

For any (𝑘, 𝑘′) ∈ 𝐵, using (4.25), we have

−𝐶𝜹2
−𝐽 ≤ 𝜙

(
𝑘

2𝐽

)
− 2𝐽𝒂0

(
𝑘

2𝐽

)
≤ 𝐶𝜹2

−𝐽 , −𝐶𝜹2
−𝐽 ≤ 𝜙

(
𝑘′

2𝐽

)
− 2𝐽𝒂0

(
𝑘′

2𝐽

)
≤ 𝐶𝜹2

−𝐽 .

Therefore, ∣∣∣∣𝒂0

(
𝑘′

2𝐽

)
− 𝒂0

(
𝑘

2𝐽

)∣∣∣∣ ≤ 2−𝐽

∣∣∣∣𝜙( 𝑘′2𝐽
)
− 𝜙

(
𝑘

2𝐽

)∣∣∣∣+ 2𝐶𝜹2
−2𝐽 .

The right hand side of the inequality can further be bounded by (𝐶 + 2𝐶𝜹)2
−2𝐽 by using the assumption

that 𝜙 is Hölder continuous with exponent 1, i.e. there exists a constant 𝐶 such that for any 𝑥, 𝑦 ∈
ℝ2, ∣𝜙(𝑥)− 𝜙(𝑦)∣ ≤ 𝐶∥𝑥− 𝑦∥. Together with (4.26) and the fact that ∣𝐵∣ ≤ 2(22𝐽 − 2𝐽), we have

∥𝒟𝒂̃0∥1 ≤
∑

(𝑘,𝑘′)∈𝐵

(𝐶 + 2𝐶𝜹)2
−2𝐽 ≤ 2𝐶 + 4𝐶𝜹.

Note that equation (3.4) for calculating 𝒃̃ℓ𝑗 can be seen as a subdivision with the mask {𝒉0[𝑘], 𝑘 ∈ ℤ2}
and 𝒅 = 𝒉ℓ∗ ↑ 𝜹. As done for 𝒂̃0, we can similarly prove that there exists a constant 𝐶3 independent of
𝑗 and ℓ such that ∥𝒟𝒃̃ℓ𝑗∥1 ≤ 𝐶3. Furthermore, using equations (3.6) and (3.7), there exists a constant 𝐶4

depending on the restriction operator 𝒫 such that

∥𝒟𝒂0∥1 ≤ 𝐶4∥𝒟𝒂̃0∥1, and ∥𝒟𝒃ℓ,𝑘𝑗 ∥1 ≤ 𝐶4∥𝒟𝒃̃ℓ𝑗∥1.

Thus, we get the first desired inequality (3.12) by letting 𝐶𝑑 = max{2𝐶4(𝐶 + 2𝐶𝜹), 𝐶3𝐶4, 1}.
Now we prove the second inequality (3.13). Equation (3.9) together with the linearity of the total

variation operator 𝒟 yields

∥𝒟𝒇∥1 ≤ ∣⟨𝒂0,𝒇⟩∣∥𝒟𝒂0∥1 +
𝐽−1∑
𝑗=0

2𝑗−1∑
𝑘1,𝑘2=0

𝐿∑
ℓ=1

⟨𝒃ℓ,𝑘𝑗 ,𝒇⟩∥𝒟𝒃ℓ,𝑘𝑗 ∥1.

This together with equations (3.12) yields

∥𝒟𝒇∥1 ≤ 𝐶𝑑(∣⟨𝒂0,𝒇⟩∣+
∑
𝑗,𝑘,ℓ

∣⟨𝒃ℓ,𝑘𝑗 ,𝒇⟩∣) = 𝐶𝑑∥𝒜𝒇∥1.

We get the desired estimate.
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