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ABSTRACT

Time-scale transformations of audio signals have traditionally
relied exclusively upon manipulations of tempo. We presenta
novel technique for automatic mixing and synchronization between
two musical signals. In this transformation, the original signal as-
sumes the tempo, meter, and rhythmic structure of the model sig-
nal, while the extracted downbeats and salient intra-measure in-
frastructure of the original are maintained.

1. INTRODUCTION

Rhythm is comprised of regular or irregular pulses around the tac-
tus that when taken together, provide a sense of movement within
a piece. Automated rhythmic extraction seeks to computationally
detect this structure within a musical recording, first by localiz-
ing measure boundaries, and then by characterizing intra-measure
events within these boundaries. In this paper, we incorporate rhyth-
mic extraction into a framework for the automated rhythmic syn-
chronization of two musical signals.

Manual transformations of this type are time-intensive and
usually performed with the use of an audio editor. First, theorig-
inal waveform is sliced at rhythmically relevant points. Second,
each segment is relocated to a new position based on the rhythmic
pattern of a model signal. Finally, each segment is individually
time-scaled to maintain continuity. The popularization ofloop-
based music production and mixing applications has provided the
impetus for several softwares, such asAbleton Live[1] and FX-
Pansion GURU[2], to offer automated tools for rhythmic con-
tour adjustment. While these methods are designed for use with
monophonic orlimited polyphonic audio, no technique currently
addresses the difficulties inherent within transformations of more
complex musical audio.

Time-scaling is often utilized in an attempt towards automated
synchronization. However, if the ratio between the new and origi-
nal tempi (scalar ratio) is increased or reduced by too greata factor,
then transient regions may become smeared or artificial, resulting
in a perceptual loss of audio quality. As a secondary consequence,
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rhythmic structures within the original and model pieces are not
guaranteed to coincide, as these structures are independently pre-
served and proportionally affected during time-scaling.

A partial solution is suggested by Duxbury [3], followed by
Ravelli et al [4], which presents anadaptive phase vocodertime-
scaling approach that preserves attacks following detected onsets
via incorporation of a local scaling factor and phase-locking pro-
cess. The result of this adaptive method is a dramatic increase in
the acceptable range of global scalar ratios and thus an increase in
the range of tempi for a given transformation.

This multi-scalar approach lends itself to the adjustment of
swing within musical excerpt. In Gouyon et al [5] both tactus
locations and subdivisions are automatically extracted, creating
eighth-note sections which are then modified by an input-defined
syncopation. Although this process creates a metrically-informed
representation of an audio signal, the dynamism of the transform
is limited by the lack of a more precise rhythmic representation.

In a technique conceptually similar to ours, Ravelli et al [6]
perform an automatic rhythm modification of percussive audio, in
which note events are extracted by discrete onset detectionand
classified as eitherlow, mid, or high-pitched sounds. A pattern
matching algorithm then selects a best-path sequence to match
segments from the first signal to those of the second. Transient
regions within the initial portion of each segment are preserved
as in [4]. Although the method is well-suited for percussiveau-
dio, the extraction of discrete segment times and categorization of
slices make it unsuitable for polyphonic audio, where such clear
demarcation is neither guaranteed, nor likely.

Another related method is thecross-matchingtechnique pre-
sented by Jehan [7], in which synchronization of musical audio
signals is achieved through two stages. First, beat tracking and
downbeat detection is performed to determine the tempo and mea-
sure boundaries of each signal. The two signals are then aligned by
time-scaling the regions between detected downbeats. The result-
ing transformation provides a metrically aligned signal, however
no attempt is made to adjust the timing of intra-measure compo-
nents that comprise the signal.

Our modification model seeks not only to combine the down-
beat alignment of [7] with the aforementioned phase-locking tran-
sient preservation of [4], but further, to incorporate intra-measure
rhythmic structural changes towards a more intricate matching of
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two arbitrary polyphonic signals.
This automatic rhythmic synchronization is achieved through

the following series of signal processing steps: First, foreach sig-
nal we extract beat locations and downbeats, from which bar length
predominant rhythmic patterns are generated. Next, rhythmic pat-
tern events are assessed for both signals, and a comparativeprocess
is undertaken to identify structurally relevant intra-measure com-
ponents of the original signal that coincide with the model signal.
These points are then realigned to those of the model. Finally,
regions within the structurally relevant points of the original sig-
nal are adaptively time-scaled to fit the length of those within the
model, while preserving transient regions at the presence of de-
tected onsets in each segment.

The remainder of this paper is structured as follows. In §2
we outline the rhythmic analysis. In §3 we present the rhythmic
pattern matching approach and an overview of the time-scaling
algorithm in §4. Results are given in §5 with discussion in §6.

2. RHYTHMIC SEGMENTATION

To modify the rhythmic properties of a musical audio signal we
must first localize the start points of musical events. Towards this
end, the process of discrete onset detection [8] might first be con-
sidered appropriate, as it has been used both within time-scaling
[4] and existing rhythm modification techniques [5, 7]. Onset de-
tection provides atemporalsegmentation of the input signal. How-
ever, in our method, it is not mandatory to detect every onset. Fur-
ther, an accurate representation of discrete onsets is improbable
within musical audio due a random density of note events in the
input signal. Instead, we wish only to locate those onsets that con-
tribute to an underlying rhythmic pattern present in the input. Our
aim then is to produce arhythmicsegmentation, for which we turn
to existing work within beat tracking, downbeat detection and es-
timation of predominant rhythm patterns. We now provide a brief
overview of this analysis (for a complete derivation see [9]).

The first stage in our analysis is to transform the incoming au-
dio signal into a mid-level representation more suited to rhythmic
analysis. In this case the mid-level signal should exhibit peaks
at note onset locations where higher peaks represent metrically
stronger events. For this purpose we use the complex spectral
difference onset detection functionΓ(m) [8], where each detec-
tion function (DF) samplem represents 11.6ms. While many such
mid-level features exist, this detection function has beenshown to
outperform many other features for the task of beat tracking[9].
The next stage is to identify beat locationsγb. Again we make
use of our existing beat tracking algorithm [9], however anybeat
tracking algorithm could be employed.

The beats are extracted from a two-stage process. First, the
beat period (the time between beats) is given by comb filtering the
autocorrelation ofΓ(m). Secondly the beat alignment is estimated
by comb filteringΓ(m) given the beat period.

Once beat locations have been found, the downbeatsγd are
then extracted by measuring the spectral dissimilarity between beat
synchronous spectral frames, i.e. one spectral frame per beat. The
beat transitions consistently leading to most spectral change are
identified as the downbeats.

To extract the predominant rhythmic patternΓP(m), we re-
analyze the onset detection functionΓ(m) given the beatsγb and
downbeatsγd. We then partition the onset detection functionΓ(m)
into individual bars,Γd(m)

Figure 1: Overview of rhythmic analysis (top) onset detection
function Γ(m) with downbeatsγd (solid lines) and beat loca-
tionsγb (dashed lines); (bottom-left) cluster of bar-length patterns;
(bottom-right) predominant rhythmic patternΓP(m).

Γd(m) = Γ(m) γd ≤ m < γd+1. (1)

To account for variable bar lengths, we follow the approach
of Dixon et al [10] and resample each onset detection function
barΓd(m) to have normalized length,L (whereL=144 detection
function (DF) samples). TheΓd(m) are then clustered together
using k-means (where k=3), and the predominant patternΓP(m)
is extracted as the temporal average of the largest cluster.

To find the rhythmic pattern eventsp within the bar length pat-
tern, we peak-pickΓP(m) using the approach from [8]. The final
stage is then to associate these pattern events with the extracted
downbeats,γd, which we achieve through linear interpolation,

γd,p = γd + p
“

γd+1−γd

L

”

d = 1, . . . , D − 1. (2)

An overview of the rhythmic analysis is shown in figure 1.

3. RHYTHMIC PATTERN MATCHING

Our eventual aim is to associate the rhythmic pattern eventsof an
original signalA to those of a model signalB, and adaptively scale
the regions demarcated by these pattern points (rhythmic slices).
As such, the aforementioned rhythmic segmentation is performed
on bothA and B. As the implementation is designed to oper-
ate upon arbitrary signals, there is often an unbalanced number of
intra-measure pattern segments betweenA andB. Thus, prior to
modification of the temporal locations of pattern points, itis imper-
ative to address the number of intra-measure pattern eventswithin
the two signals. If, for example, a given measure ofA containsn
more rhythm pattern events than doesB, and no modifications are
made to absolve this disparity, then pattern points will become
the first series of events within the subsequent measure. This un-
desirablewrappingeffect will then cause the transformed bars of
A to have a different length than those of the target signalB, as
the downbeats of the original sequence will not be preserved.

Validity of a metrically synchronized transformation is height-
ened by extending the rhythmic pattern to include metrical and
tactus-level events, as the output should ideally contain apulse
similar to the model. Beat locations are determined as periodic,
strong events within the detection function, and as such, itis highly
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Figure 2: Rhythmic pattern matching. Beat events are alwayspre-
served. Where there are more pattern events per beat in one signal
compared to the other, the weakest excess events are removed.

probable that beat times are already embedded within the rhyth-
mic pattern. Incorporation of beat times also permits us to remove
the metrical component from the matching stage, simplifying our
model by instead focusing our analysis upon the beat level and
pattern events per beat. Finally, to assure downbeat synchroniza-
tion, audio signals are truncated such that bothA andB begin with
the start of a bar and terminate with the end of a bar. We modify
the notation from equation (2) to refer to the individual inter-beat
segments. For each beat inA there will beQ pattern events per
beat, where theqth pattern event in thebth beat ofA is referred
to asAb,q , and similarly, givenR pattern events per beat inB, the
rth pattern event in thebth beat ofB is notated asBb,r. The beat
locations exist as the first pattern event per beat, e.g.Ab,1.

As mentioned, within each beatb in A andB, there is no guar-
antee that there will be an equal number of pattern events (i.e.
R 6= Q). We contend with this mismatch by selectively ignor-
ing excess pattern events in terms of their relative strength. Our
measure of strength is determined by sampling the onset detection
functionΓ(m), with the excess number of pattern events per beat
at each pattern eventγb,p. Theweakesteventspx are then itera-
tively removed once located using

p
x = arg min

p
Γ(γb,p). (3)

In figure 2, we observe the process of removing the weak-
est pattern positions from each inter-beat interval, and subsequent
alignment of residual salient events. Beat locations are preserved
without exception, as shown by the vertical lines which are present
in both patternsA andB, while excess pattern events, calculated
from equation (3) are marked as terminating in ‘x’.

Once the pattern events per beat have been balanced we change
our notation to reflectP pattern events per beat in bothA andB
where we now refer toAb,p and Bb,p and proceed to the time-
scaling stage, to implement the rhythmic transform.

4. TIME-SCALING

We now iteratively extract each rhythmic segment as defined by
the rhythmic pattern events inA, and time-scale it to match the
duration of the corresponding segment inB. To perform this time-
scaling, we utilize the adaptive phase-locking method of Ravelli et
al [4].

Temporal masking is performed as a pre-processing step to
separate the transient and non-transient regions of the input signal.

A discrete onset detection of the input audio signal is performed,
and transient regions are defined as the first 1/3rd of each inter-
onset-interval (IOI), under the condition that the minimumtran-
sient region is always greater than 11.6ms, and always less than
50ms. Time-scaling is then only applied during the steady-state
regions of the input, to prevent smearing of the transients.

Given the rhythmic segmentation described in §2 we do not
require a discrete onset detection stage, as in [4]. Each rhythmic
slice has a defined onsetAb,p and a defined offset, found as either
the next pattern event for the current beatAb,p+1, or the next beat
Ab+1,1. Within each slice we calculate linear scaling factorF1 as
the ratio of the durations between current pattern events inA and
those inB

F1 =

8

>

<

>

:

Ab,p+1−Ab,p

Bb,p+1−Bb,p
p < P

Ab+1,1−Ab,p

Bb+1,1−Bb,p
otherwise

(4)

The non-linear scaling factorF2 which accounts for the tem-
poral masking is calculated as

F2 =
Wnt

Wt
(F1 − 1) + F1 (5)

whereWnt is the width of the non-transient region, andWt is the
width of the transient region. Each time-scaled rhythmic slice is
then concatenated with the previous slices to form the eventual
transformed signal.

5. RESULTS

Since both the rhythmic pre-processing and time-scaling aspects
have been evaluated previously [9, 4] we only evaluate the rhythm
transformation aspect. Our evaluation centers on the task of au-
tomatic rhythmic genre classification. We explore whether our
rhythm transform technique can force themisclassificationof mu-
sical genre, e.g. transforming a Samba into a QuickStep and deter-
mining whether the output would be classified as the input genre
(Samba) or target (QuickStep).

We employ an existing technique [11] which uses a bar-length
periodicity pattern to characterize the rhythmic properties of the
input signal so as to maximize the similarity between excerpts of
the same genre but minimize the cross-similarity between different
genres. The feature calculated is the autocorrelation function of
the onset detection function (described in §2). This is truncated at
the bar-level periodicity (defined by the tempo and the number of
beats per bar) and resampled to a fixed duration (144 DF samples
[10]). Each excerpt in the test database is given a genre label and
passed to the open source data mining software, WEKA [12] to
perform the classification. For further details see [11].

As training data we use an existing database comprised of 523
ballroom dance excerpts across 6 genres: Jive, QuickStep, Tango,
Samba, ChaCha and Rumba. This constitutes a subset of the full
698 test database [10] where the 3/4 time-signature Waltz and
Viennese-Waltz categories (those which are beyond the scope of
our techniques) have been removed. From the training set we ex-
tract a subset of 120 (20 x 6 genres) test excerpts for which we
annotate beats and downbeats. For each genre in turn, we pick
a random input signal and a random target signal. We perform 20
transformations from each of the 30 distinct genre pairs giving 600
total transformations. To prevent any potential innaccuracies in the
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Evaluation Accuracy

Data (%)

CFV (training set) 87.0

XB→A → GA 51.5

XB→A → GB 13.5

Table 1: Summary of classification accuracy. CFV – 10 fold cross-
validation on the 523 excerpt training data.XB→A – transformed
signals,GA – target genre,GB – input genre.

Genre Jive Quick Tango Samba Cha Rumba

Jive n/a 19 12 8 13 5

Quick 7 n/a 10 3 1 2

Tango 7 14 n/a 14 10 7

Samba 13 16 5 n/a 15 8

Cha 12 9 14 17 n/a 9

Rumba 13 6 9 14 16 n/a

Total % 53 64 50 56 55 31

Table 2: Rhythmic genre classification results (XB→A → GA)
for 1-NN classifier. In each case 20 transformations are attempted.
Quick is short for QuickStep.

rhythmic pre-processing we provide the transformation algorithm
with the metrical annotations.

We label genre of the transformed signals (XB→A) in two dif-
ferent ways: first with those of the target genres (GA), and sec-
ondly (as a control), with the labels of the input signal genres
(GB). We then pass this data to WEKA [12] and use the near-
est neighbor classifier (1-NN) to perform the classification. To
gauge the performance of the genre classification method without
rhythm transformation we perform a 10-fold cross-validation on
the 523 excerpt training data. The overall results are summarized
in Table 1 with a genre-dependent breakdown in Table 2.

The classification accuracy of the transformed signals withthe
target genre labels (51.5%) is considerably higher than when us-
ing the input genre labels (13.5%), i.e. the transformed signals are
closer to the target genres than those before they were transformed.
The 51.5% accuracy is still well below the 87.0% performanceof
the genre classification on the unmodified data. Examinationof
Table 2 reveals the hardest target genre to be Rumba, with Quick-
Step as the most suitable target. This latter finding is most likely
due to theswing inherent within the QuickStep genre, which was
not as prevalent in other genres tested.

6. DISCUSSION

The challenge for our method lies in the preliminary rhythmic
analysis. In cases where the rhythmic analysis is successful, the
resulting transformations sound surprisingly coherent and inten-
tional1, not least in part to the high quality of the time-scaled audio.
This is especially encouraging given the implicit complexity of the
task. If, however, the initially extracted beat times are inaccurate,

1 www.music.mcgill.ca/∼hockman/projects/ARTMA

then the subsequent analysis is likely to fail. If downbeatsare cal-
culated incorrectly, a coherent rhythmic transformation may still
be produced, however the phase difference between signals will
become apparent when mixed together.

Both problems could be remedied by a semi-automatic version
of the transform, which would allow a user to manually correct
beat times and downbeats, leaving the remaining processingto be
performed automatically. Used as a post-processing tool for music
production, this would not impose a significant burden on theuser.

We also intend to investigate a real-time version of our rhyth-
mic transformation algorithm. Although our current implementa-
tion processes the musical excerpts in an offline fashion, a causal
version of the rhythmic pattern analysis has been implemented
which can be used to predict future rhythmic segmentation points
within a consistent underlying rhythmic pattern [9]. As well as po-
tential applications within production and composition, areal-time
version could provide transformation of recorded accompaniment
to follow the rhythmic structure of a live musical performance.
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