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Abstract. We exhibit examples of almost periodic Verblunsky coefficients
for which Herman’s subharmonicity argument applies and yields that the as-
sociated Lyapunov exponents are uniformly bounded away from zero. As an
immediate consequence of this result, we obtain examples of almost periodic
Verblunsky coefficients for which the associated probability measure on the
unit circle is pure point.

1. Introduction

The study of probability measures on the real line or the unit circle via the
associated orthogonal polynomials and the recursions these polynomials obey is a
classical topic. On the other hand, it has only recently been fully realized that the
two cases, the real line and the unit circle, are intimately related. While connections
of this flavor have been known for some time, a systematic investigation has been
carried out only in the past eight years. This is particularly pronounced in part
two of Barry Simon’s recent monograph [6, 7]. Another recent development in
the area of orthogonal polynomials, which is also an important theme in [6, 7], is
that spectral theory methods may yield useful insights into orthogonal polynomial
questions.

In particular, it is a natural question how the coefficients that appear in the
recursions for the orthogonal polynomials are related to the measure under consid-
eration. These coefficients are called Jacobi coefficients in the real line case and
Verblunsky coefficients in the unit circle case. Certain classes of coefficients are
well understood. For example, there is an exhaustive study of the case of periodic
coefficients; see [7, Chapter 11] for the unit circle case. It is known that for periodic
Jacobi or Verblunsky coefficients, the associated measure consists of an absolutely
continuous piece and a discrete point piece. One often says that “the essential
spectrum is purely absolutely continuous.”

Interesting classes of coefficients that generalize the periodic case are given by
decaying perturbations of periodic sequences and by almost periodic sequences.
We will focus here on the almost periodic case; decaying perturbations of periodic
coefficients are studied in depth in [3].

In the real line case, there is a huge literature on almost periodic recursion
coefficients; the interested reader may use [1] and references therein as a starting
point. On the other hand, much less is known in the unit circle case. A central
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role in the Jacobi case is played by Herman’s subharmonicity estimate from [5]. It
may be used to exhibit examples of almost periodic Jacobi coefficients for which
the associated measure is pure point. No analogues of this were known in the unit
circle case and our purpose here is to present a class of almost periodic Verblunsky
coefficients whose associated measure is pure point. Given the existing theory, it
suffices to find examples whose associated Szegő cocycles have uniformly positive
Lyapunov exponents.

Consequently, we will recall the definition of Szegő cocycles and Lyapunov ex-
ponents in Section 2, exhibit almost periodic examples with uniformly positive
Lyapunov exponents in Section 3, and explain in Section 4 how the existing theory
then yields pure point measures.

2. Szegő Cocycles and Lyapunov Exponents

Suppose that (Ω, µ) is a probability measure space and T : Ω → Ω is ergodic
with respect to µ. A measurable map A : Ω → GL(2, C) gives rise to a so-called
cocycle, which is a map from Ω×C2 to itself given by (ω, v) 7→ (Tω,A(ω)v). This
map is usually denoted by the same symbol. When studying the iterates of the
cocycle, the following matrices describe the dynamics of the second component:

An(ω) = A(Tn−1ω) · · ·A(ω).

Assuming log ‖A‖ ∈ L1(µ) and

inf
n≥1

1
n

∫
Ω

log ‖An(ω)‖ dµ(ω) > −∞,

then, by Kingman’s subadditive ergodic theorem, the following limit exists,

(1) γ = lim
n→∞

1
n

∫
Ω

log ‖An(ω)‖ dµ(ω),

and we have

γ = lim
n→∞

1
n

log ‖An(ω)‖

for µ-almost every ω ∈ Ω. The number γ is called the Lyapunov exponent of A.
We will be interested in the particular case of Szegő cocycles, which arise as

follows. Denote the open unit disk in C by D. For a measurable function f : Ω → D
with ∫

Ω

log(1− |f(ω)|) dµ(ω) > −∞

and z ∈ ∂D, the cocycle Az : Ω → GL(2, C) is given by

(2) Az(ω) = (1− |f(ω)|2)−1/2

(
z −f(ω)

−f(ω)z 1

)
.

The Lyapunov exponent of Az will be denoted by γ(z). The complex numbers
αn(ω) = f(Tnω), n ≥ 0, appearing in Az(Tnω) are called Verblunsky coefficients.

Szegő cocycles play a central role in the analysis of orthogonal polynomials on
the unit circle with ergodic Verblunsky coefficients; compare [6, 7] (see in particular
[7, Section 10.5] for more information on Lyapunov exponents of Szegő cocycles).
As pointed out in the introduction, one of the major themes of [6, 7] is to work
out in detail the close analogy between the spectral analysis of Jacobi matrices, or
more specifically discrete one-dimensional Schrödinger operators, and that of CMV
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matrices. Indeed, a large portion of the second part, [7], is devoted to carrying over
results and methods from the Schrödinger and Jacobi setting to the OPUC setting.

Sometimes the transition is straightforward and sometimes it is not. As discussed
in the remarks and historical notes at the end of [7, Section 10.16], one of the results
that Simon did not manage to carry over is Herman’s result on uniformly positive
Lyapunov exponents for a certain class of almost periodic Schrödinger cocycles [5]
(see also [2, Section 10.2]), which is proved by a beautiful subharmonicity argument.

In the next section we present one-parameter families of almost periodic Szegő
cocycles for which we prove uniformly positive Lyapunov exponents using Herman’s
argument for an explicit region of parameter values.

3. Examples with Uniformly Positive Lyapunov Exponents

Consider the 1-torus T = R/Z equipped with Lebesgue measure and Z2 equipped
with the probability measure that assigns the weight 1

2 to each of 0 and 1. Let
Ω = T× Z2 be the product space and µ the product measure. Fix some irrational
α ∈ T. The transformation T : Ω → Ω is given by T (θ, j) = (θ + α, j + 1). It is
readily verified that T is ergodic with respect to µ.

For ε ∈ (0, 1) and k ∈ Z \ {0}, we define f : Ω → D by

(3) f(θ, j) =

{
(1− ε2)1/2e2πikθ j = 0,

(1− ε2)1/2e−2πikθ j = 1.

Clearly, f is a measurable function from Ω to D and satisfies log[(1 − |f |2)−1/2] ∈
L1(µ). Thus, the Lyapunov exponents γ(z), z ∈ ∂D exist and we wish to bound
them from below.

Theorem 1. For (Ω, µ, T ) as above and f given by (3), we have the estimate

inf
z∈∂D

γ(z) ≥ log
(1− ε2)

1
2

ε
.

In particular, if ε ∈ (0, 1√
2
), the Lyapunov exponent γ(·) is uniformly positive on

∂D.

Proof. We consider the case k > 0; the case k < 0 is completely analogous. Fix
any z ∈ ∂D. By the definition (2) of Az and the definition (3) of f , we have

Az(θ, j) =


ε−1

(
z −(1− ε2)1/2e−2πikθ

−(1− ε2)1/2e2πikθz 1

)
j = 0,

ε−1

(
z −(1− ε2)1/2e2πikθ

−(1− ε2)1/2e−2πikθz 1

)
j = 1.

Let us conjugate these matrices as follows (cf. [4, Equation (4.10)]). Define

Cz(θ, j) =



(
0 1
1 0

)
j = 0,(

z1/2 0
0 z−1/2

)
j = 1.
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For j = 0, we have

εCz(θ, j)Az(θ, j)Cz(θ, j − 1)−1 =

=
(

0 1
1 0

)(
z −(1− ε2)1/2e−2πikθ

−(1− ε2)1/2e2πikθz 1

)(
z−1/2 0

0 z1/2

)
=
(
−(1− ε2)1/2e2πikθz 1

z −(1− ε2)1/2e−2πikθ

)(
z−1/2 0

0 z1/2

)
=
(
−(1− ε2)1/2e2πikθz1/2 z1/2

z1/2 −(1− ε2)1/2e−2πikθz1/2

)
,

while for j = 1, we have

εCz(θ, j)Az(θ, j)Cz(θ, j − 1)−1 =

=
(

z1/2 0
0 z−1/2

)(
z −(1− ε2)1/2e2πikθ

−(1− ε2)1/2e−2πikθz 1

)(
0 1
1 0

)
=
(

z1/2 0
0 z−1/2

)(
−(1− ε2)1/2e2πikθ z

1 −(1− ε2)1/2e−2πikθz

)
=
(
−(1− ε2)1/2e2πikθz1/2 z3/2

z−1/2 −(1− ε2)1/2e−2πikθz1/2

)
,

Thus,
(4)

Cz(θ, j)Az(θ, j)Cz(θ, j − 1)−1 =
z1/2

ε

(
−(1− ε2)1/2e2πikθ zj

z−j −(1− ε2)1/2e−2πikθ

)
.

We have Az
n(θ, j) = Az(θ + (n− 1)α, j + n− 1) · · ·Az(θ, j), which, by (4), is equal

to

Cz(θ, j+n−1)−1
0∏

m=n−1

(
z1/2

ε

(
−(1− ε2)1/2e2πik(θ+mα) z(j+m mod 2)

z−(j+m mod 2) −(1− ε2)1/2e−2πik(θ+mα)

))
Cz(θ, j−1).

Since Cz(θ, j) is always unitary and w = e2πiθ and z1/2 both have modulus one,
we find that

‖Az
n(θ, j)‖ = ε−n

∥∥∥∥∥
0∏

m=n−1

(
−(1− ε2)1/2e2πik(θ+mα) z(j+m mod 2)

z−(j+m mod 2) −(1− ε2)1/2e−2πik(θ+mα)

)∥∥∥∥∥
= ε−n

∥∥∥∥∥
0∏

m=n−1

(
−(1− ε2)1/2e2πik(2θ+mα) z(j+m mod 2)e2πikθ

z−(j+m mod 2)e2πikθ −(1− ε2)1/2e−2πikmα

)∥∥∥∥∥
= ε−n

∥∥∥∥∥
0∏

m=n−1

(
−(1− ε2)1/2e2πikmαw2k z(j+m mod 2)wk

z−(j+m mod 2)wk −(1− ε2)1/2e−2πikmα

)∥∥∥∥∥ .

The w-dependence of the matrix in the last expression is analytic and hence the
log of its norm is subharmonic. Therefore,∫

Ω

log ‖Az
n(θ, j)‖ dµ(θ, j) =

1
2

∫
T

log ‖Az
n(θ, 0)‖ dθ +

1
2

∫
T

log ‖Az
n(θ, 1)‖ dθ

≥ n log
(1− ε2)

1
2

ε
.
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Since

γ(z) = lim
n→∞

1
n

∫
Ω

log ‖Az
n(θ, j)‖ dµ(θ, j),

the result follows. �

In Theorem 1 we considered functions given by simple exponentials. Since we
obtained explicit terms which bound the Lyapunov exponents uniformly from be-
low, it is possible to add small perturbations to the function and retain uniform
positivity of the Lyapunov exponents. For example, given an integer k ≥ 1 and
λ, a−k, . . . , ak−1 ∈ C, we set

(5) fλ(θ, j) =

(1− ε2)1/2
(
e2πikθ + λ

∑k−1
l=−k ale

2πilθ
)

j = 0,

(1− ε2)1/2
(
e−2πikθ + λ

∑k−1
l=−k ale

−2πilθ
)

j = 1.

Since we need fλ to take values in D, we have to impose an upper bound on the
admissible values of λ. Clearly, once ε ∈ (0, 1), k ≥ 1 and the numbers al ∈ C are
chosen, there is λ0 > 0 such that for λ with modulus bounded by λ0, the range of
fλ is contained in D.

Theorem 2. Let (Ω, µ, T ) be as above. For every ε ∈ (0, 1√
2
), k ∈ Z+, and

{al}k−1
l=−k ⊂ C, there is λ1 > 0 such that for every λ with |λ| < λ1, there is γ− > 0

for which the Lyapunov exponent γ(·) associated with fλ given by (5) satisfies

inf
z∈∂D

γ(z) ≥ γ−.

Proof. The smallness condition |λ| < λ1 needs to address two issues. First, the
range of the function fλ must be contained in D, so we need λ1 ≤ λ0. Second, the
explicit strictly positive uniform lower bound obtained in the proof of Theorem 1
for the case λ = 0 changes continuously once the perturbation is turned on. Thus, it
remains strictly positive for |λ| small enough. Notice that the degree requirements
for the perturbation in (5) are such that the subharmonicity argument from the
proof of Theorem 1 goes through without any changes. �

4. Discussion

In the previous section we proved a uniform lower bound for the Lyapunov
exponents associated with strongly coupled almost periodic sequences of Verblunsky
coefficients. A few remarks are in order.

The Verblunsky coefficients take values in the open unit disk and the unit circle
has to be regarded as the analogue of infinity in the Schrödinger case. Thus, just
as the coupling constant is sent to infinity in the application of Herman’s argument
in the Schrödinger case, the coupling constant is sent to one in our study. Notice
that we need a rather uniform convergence to the unit circle, whereas one may have
zeros in the Schrödinger case. In particular, while Herman’s argument applies to
all non-constant trigonometric polynomials in the Schrödinger case, we only treat
small perturbations of simple exponentials.

Another limitation of our proof is that it requires the consideration of the prod-
uct T × Z2. It would be nicer to have genuine quasi-periodic examples (with
inf |z|=1 γ(z) > 0), that is, generated by minimal translations on a finite-dimensional



6 D. DAMANIK AND H. KRÜGER

torus. Our attempts to produce such examples have run into trouble with ana-
lyticity issues. It would be of interest to produce quasi-periodic examples or to
demonstrate why inf |z|=1 γ(z) = 0 for all of them.

As explained by Simon in [7, Theorem 12.6.1], as soon as one knows that γ(z)
is positive for (Lebesgue almost) every z ∈ D, one can immediately deduce that for
µ-almost all elements of Ω, Lebesgue almost all Aleksandrov measures associated
with the sequence of Verblunsky coefficients in question are pure point. This is
applicable to our examples for ε ∈ (0, 1√

2
) and |λ| small enough.

Acknowledgments. We wish to thank Kristian Bjerklöv and Russell Johnson for
useful and illuminating discussions on the applicability of Herman’s argument in
the context of Szegő cocycles.
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