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Some legal stuff (sorry): Terms of Use

• The slides can used free of charge. All copyrights for the slides remain with  

Christof Paar and Jan Pelzl. 

• The title of the accompanying book “Understanding Cryptography” by 

Springer and the author’s names must remain on each slide.

• If the slides are modified, appropriate credits to the book authors and the 

book title must remain within the slides. 

• It is not permitted to reproduce parts or all of the slides in printed form 

whatsoever without written consent by the authors.
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Content of this Chapter

• Overview on the field of cryptology

• Basics of symmetric cryptography

• Cryptanalysis

• Substitution Cipher

• Modular arithmetic

• Shift (or Caesar) Cipher and Affine Cipher
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� Further Reading and Information

Addition to Understanding Cryptography . 

• A.Menezes, P. van Oorschot, S.  Vanstone, Handbook of Applied Cryptography. 

CRC Press, October 1996.

• H.v.Tilborg (ed.), Encyclopedia of Cryptography and Security, Springer, 2005

History of Cryptography (great bedtime reading)

• S. Singh, The Code Book: The Science of Secrecy from Ancient Egypt to 

Quantum Cryptography, Anchor, 2000.

• D. Kahn, The Codebreakers: The Comprehensive History of Secret 

Communication from Ancient Times to the Internet. 2nd edition, Scribner, 1996.

Software (excellent demonstration of many ancient a nd modern ciphers)

• Cryptool, http://www.cryptool.de
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� Classification of the Field of Cryptology

Cryptology

Cryptography Cryptanalysis

Symmetric Ciphers Asymmetric Ciphers Protocols 

Block Ciphers Stream Ciphers
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� Some Basic Facts

• Ancient Crypto: Early signs of encryption in Eqypt in ca. 2000 B.C. 

Letter-based encryption schemes (e.g., Caesar cipher) popular ever since.

• Symmetric ciphers: All encryption schemes from ancient times until 1976 were 

symmetric ones.

• Asymmetric ciphers: In 1976 public-key (or asymmetric) cryptography was openly 

proposed by Diffie, Hellman and Merkle.

• Hybrid Schemes: The majority of today‘s protocols are hybrid schemes, i.e., the 

use both

• symmteric ciphers (e.g., for encryption and message authentication) and

• asymmetric ciphers (e.g., for key exchange and digital signature).
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� Symmetric Cryptography

• Alternative names: private-key , single-key or secret-key cryptography.

Alice
(good)

Bob
(good)

Oscar
(bad guy)

x x

Unsecure 
channel 

(e.g. Internet)

• Problem Statement:

1) Alice and Bob would like to communicate via an unsecure channel (e.g., 

WLAN or Internet). 

2) A malicious third party Oscar (the bad guy) has channel access but should 

not be able to understand the communication.
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� Symmetric Cryptography

Alice
(good)

Bob
(good)

Oscar
(bad guy)

Encryption
e( )

Key Generator

Decryption
d( )

Secure Channel

K

x y

K

x

Unsecure 
channel 

(e.g. Internet)

• x is the. plaintext

• y is the ciphertext

• K is the key

• Set of all keys {K1, K2, ...,Kn} is the key space

Solution: Encryption with symmetric cipher. 

⇒ Oscar obtains only ciphertext y, that looks 

like random bits
y
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� Symmetric Cryptography

• Encryption equation y = eK(x)

• Decryption equation x = dK(y)

• Important: The key must be transmitted via a secure channel between Alice and Bob.

• The secure channel can be realized, e.g., by manually installing the key for the Wi-Fi 

Protected Access (WPA) protocol or a human courier.

• However, the system is only secure if an attacker does not learn the key K!

⇒ The problem of secure communication is reduced to s ecure transmission and 

storage of the key K.

• Encryption and decryption are inverse operations if the same key K is used on both 

sides:

dK(y) = dK(eK(x)) = x
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� Why do we need Cryptanalysis?

• There is no mathematical proof of security for any practial cipher

• The only way to have assurance that a cipher is secure is to try to break it (and fail) !

A cryptosystem should be secure even if the attacker (Oscar) 
knows all details about the system, with the exception of the secret 

key. 

Kerckhoff‘s Principle is paramount in modern cryptography:

• In order to achieve Kerckhoff‘s Principle in practice:

Only use widely known ciphers that have been crypta nalyzed for several years 

by good cryptographers! (Understanding Cryptography only treats such ciphers)

• Remark: It is tempting to assume that a cipher is „more secure“ if its details are kept 

secret. However, history has shown time and again that secret ciphers can almost 

always been broken once they have been reversed engineered. (Example: Content 

Scrambling System (CSS) for DVD content protection.)
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� Cryptanalysis: Attacking Cryptosystems

• Classical Attacks

• Mathematical Analysis

• Brute-Force Attack

• Implementation Attack : Try to extract key through reverese engineering or 

power measurement, e.g., for a banking smart card.

• Social Engineering : E.g., trick a user into giving up her password



15/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

• Treats the cipher as a black box

• Requires (at least) 1 plaintext-ciphertext pair (x0, y0)

• Check all possible keys until condition is fulfilled:

dK(y0)  = x0

• How many keys to we need ? 

� Brute-Force Attack (or Exhaustive Key Search) again st Symmetric Ciphers

Key length

in bit

Key space Security life time

(assuming brute-force as best possible attack)

64 264 Short term (few days or less)

128 2128 Long-term (several decades in the absence of 

quantum computers)

256 2256 Long-term (also resistant against quantum 

computers – note that QC do not exist at the 

moment and might never exist)

?

Important: An adversary only needs to succeed with one attack. Thus, a long key space 
does not help if other attacks (e.g., social engineering) are possible..
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� Substitution Cipher

• Historical cipher 

• Great tool for understanding brute-force vs. analytical attacks

• Encrypts letters rather than bits (like all ciphers until after WW II)

Idea: replace each plaintext letter by a fixed othe r letter.

Plaintext             Ciphertext
A      → k
B      → d
C      → w

....
for instance, ABBA would be encrypted as kddk

• Example (ciphertext): 

iq ifcc vqqr fb rdq vfllcq na rdq cfjwhwz hr bnnb  hcc 

hwwhbsqvqbre hwq vhlq

• How secure is the Substitution Cipher? Let‘s look at attacks…
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� Attacks against the Substitution Cipher

1. Attack: Exhaustive Key Search (Brute-Force Attack)

• Simply try every possible subsititution table until an intelligent plaintext appears 

(note that each substitution table is a key)..

• How many substitution tables (= keys) are there?

26 x 25 x … x 3 x 2 x 1 = 26! ≈ 288

Search through 2 88 keys is completely infeasible with today‘s computer s!

(cf.  earlier table on key lengths)

• Q: Can we now conclude that the substitution cipher is secure since a brute-

forece attack is not feasible?

• A: No! We have to protect against all possible attacks…
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� 2. Attack: Letter Frequency Analysis (Brute-Force Attack)

• Letters have very different frequencies in the English language

• Moreover: the frequency of plaintext letters is preserved in the ciphertext.

• For instanc, „e“  is the most common letter in English; almost 13% of all letters in a 

typical English text are „e“.

• The next most common one is „t“ with about 9%. 
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� Breaking the Substitution Cipher with Letter Freque ncy Attack

• Let‘s retun to our example and identify the most frequent letter: 

iq ifcc vqqr fb rdq vfllcq na rdq cfjwhwz hr bnnb hcc 

hwwhbsqvqbre hwq vhlq

• We replace the ciphertext letter q by E and obtain: 

iE ifcc vEEr fb rdE vfllcE na rdE cfjwhwz hr bnnb  hcc 

hwwhbsEvEbre hwE vhlE

• By further guessing based on the frequency of the remaining letters we obtain the 

plaintext:

WE WILL MEET IN THE MIDDLE OF THE LIBRARY AT NOON ALL 

ARRANGEMENTS ARE MADE
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� Breaking the Substitution Cipher with Letter Freque ncy Attack

• In practice, not only frequencies of individual letters can be used for an attack, 

but also the frequency of letter pairs (i.e., „th“ is very common in English), letter 

triples, etc.

• cf. Problem 1.1 in Understanding Cryptography for a longer ciphertext you can 

try to break!

Important lesson : Even though the substitution cipher has a sufficiently large key 

space of appr. 288, it can easily be defeated with analytical methods. This is an 

excellent example that an encryption scheme must withstand all types of 

attacks.
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� Short Introduction to Modular Arithmetic

Why do we need to study modular arithmetic? 

• Extremely important for asymmetric cryptography (RSA, elliptic curves etc.)

• Some historical ciphers can be elegantly described with modular arithmetic (cf. 

Caesar and affine cipher later on).
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� Short Introduction to Modular Arithmetic
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Generally speaking, most cryptosytems are based on sets of numbers that are

1. discrete (sets with integers are particularly useful)

2. finite (i.e., if we only compute with a finiely many numbers)

Seems too abstract?  --- Let‘s look at a finite set with discrete numbers we are quite familiar 

with: a clock.

Interestingly, even though the numbers are incremented every hour we never leave the set of 

integers:

1, 2, 3,  … 11, 12, 1, 2, 3,  … 11, 12, 1, 2, 3,  …:
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� Short Introduction to Modular Arithmetic

• We develop now an arithmetic system which allows us to compute in finite sets of 

integers like the 12 integers we find on a clock (1,2,3,  … ,12).

• It is crucial to have an operation which „keeps the numbers within limits“, i.e., after 

addition and multiplication they should never leave the set (i.e., never larger than 12).

Examples for modular reduction.

• Let a= 12 and  m= 9 : 12 ≡ 3 mod 9

• Let a= 37 and m= 9: 34 ≡ 7 mod 9

• Let a= -7 and m= 9: -7 ≡ 2 mod 9

(you should check whether the condition „m divides (r-a)“holds in each of the 3 cases) 

Definition: Modulus Operation

Let a, r, m be integers and m > 0. We write 

a ≡ r mod m

if (r-a) is divisable by m.

• “m” is called the modulus

• “r” is called the remainder
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� Properties of Modular Arithmetic (1)

• The remainder is not unique

It is somewhat surprising that for every given modulus m and number a, there are (infinitely) 

many valid remainders.

Example: 

• 12 ≡ 3 mod 9 → 3 is a valid remainder since 9 divides (3-12)

• 12 ≡ 21 mod 9 → 21 is a valid remainder since 9 divides (21-12)

• 12 ≡ -6 mod 9 → -6 is a valid remainder since 9 divides (-6-12)
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• Which remainder do we choose?

By convention, we usually agree on the smallest positive integer r as remainder. This 

integer can be computed as

a = q  m + r where 0 ≤ r ≤ m-1

• Example: a=12 and  m= 9

12 = 1 x 9 + 3 →  r = 3

Remark: This is just a convention. Algorithmically we are free to choose any other valid 

remainder to compute our crypto functions.

� Properties of Modular Arithmetic (2)

remainderquotient
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• How do we perform modular division?

First, note that rather than performing a division, we prefer to multiply by the inverse. Ex:

b / a≡ b x a-1 mod m

The inverse a-1 of a number a is defined such that:

a a-1 ≡ 1 mod m

Ex: What is 5 / 7 mod 9 ?

The inverse of 7 mod 9 is 4 since 7 x 4 ≡ 28 ≡ 1 mod 9, hence:

5 / 7 ≡ 5 x 4 = 20 ≡ 2 mod 9

� Properties of Modular Arithmetic (3)

• How is the inverse compute?

The inverse of a number a mod m only exists if and only if:

gcd (a, m) = 1

(note that in the example above gcd(5, 9) = 1, so that the inverse of 5 exists modulo 9)

For now, the best way of computing the inverse is to use exhaustive search. In Chapter 6 of 

Understanding Cryptography we will learn the powerful Euclidean Algorithm which 

actually computes an inverse for a given number and modulus.
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� Properties of Modular Arithmetic (4)

• Modular reduction can be performed at any point dur ing a calculation

Let’s look first at an example. We want to compute 38 mod 7 (note that exponentiation is 

extremely important in public-key cryptography).

1. Approach: Exponentiation followed by modular red uction

38 = 6561 ≡ 2 mod 7

Note that we have the intermediate result 6561 even though we know that the final result 

can’t be larger than 6.

2. Approach: Exponentiation with intermediate modul ar reduction

38 = 34 34 = 81 x 81

At this point we reduce the intermediate results 81 modulo 7:

38 = 81 x 81 ≡ 4 x 4 mod 7

4 x 4 = 16 ≡ 2 mod 7

Note that we can perform all these multiplications without pocket calculator, whereas 

mentally computing 38 = 6561 is a bit challenging for most of us.

General rule: For most algorithms it is advantageou s to reduce 

intermediate results as soon as possible. 



� An Algebraic View on Modulo Arithmetic: The Ring Zm (1) 

• Closure : We can add and multiply any two numbers and the result is always in the ring. 

• Addition and multiplication are associative , i.e., for all  a,b,c ε Zm

a + (b + c) = (a + b) + c

a × (b × c) = (a × b) × c

and addition is commutative : a + b = b + a 

• The distributive law holds: a×(b+c) = (a×b)+(a×c) for all  a,b,c ε Zm

• There is the neutral element 0 with respect to addition , i.e., for all a ε Zm

a + 0 ≡ a mod m

• For all a ε Zm, there is always an additive inverse element –a such that

a + (-a) ≡ 0 mod m

• There is the neutral element 1 with respect to multiplication , i.e., for all a ε Zm

a × 1 ≡ a mod m

• The multiplicative inverse a-1

a × a-1 ≡ 1 mod m 

exists only for some, but not for all, elements in Zm.
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We can view modular arithmetic in terms of sets and operations in the set. By doing 

arithmetic modulo m we obtain the integer ring Zm .with the following properties:



� An Algebraic View on Modulo Arithmetic: The Ring Zm (2) 
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• We recall from above that an element a ε Zm has a multiplicative inverse only if:

gcd (a, m) = 1

We say that a is coprime or relatively prime to m.

• Ex: We consider the ring Z9 = {0,1,2,3,4,5,6,7,8}

The elements 0, 3, and 6 do not have inverses since they are not coprime to 9.

The inverses of the other elements 1, 2, 4, 5, 7, and 8 are:

1-1 ≡ 1 mod 9 2-1 ≡ 5 mod 9 4-1 ≡ 7 mod 9

5-1 ≡ 2 mod 9 7-1 ≡ 4 mod 9 8-1 ≡ 8 mod 9 

Roughly speaking, a ring is a structure in which we can always add, subtract and 

multiply, but we can only divide by certain elements (namely by those for which a 

multiplicative inverse exists).
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� Shift (or Caesar) Cipher (1)

• Ancient cipher, allegedly used by Julius Caesar

• Replaces each plaintext letter by another one.

• Replacement rule is very simple: Take letter that follows after k positions in the alphabet

Needs mapping from letters → numbers:

A B C D E F G H I J K L M

0 1 2 3 4 5 6 7 8 9 10 11 12

N O P Q R S T U V W X Y Z

13 14 15 16 17 18 19 20 21 22 23 24 25

• Example for k = 7

Plaintext = ATTACK =  0, 19, 19, 0, 2, 10

Ciphertext = haahr = 7, 0, 0, 7, 17

Note that the letters ”wrap around” at the end of the alphabet, which can be mathematically 

be expressed as reduction modulo 26, e.g., 19 + 7 = 26 ≡ 0 mod 26
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� Shift (or Caesar) Cipher (2)

• Elegant mathematical description of the cipher.

• Q; Is the shift cipher secure?

• A: No! several attacks are possible, including:

• Exhaustive key search (key space is only 26!)

• Letter frequency analysis, similar to attack against substitution cipher

Let k, x, y ε {0,1, …, 25}

• Encryption: y = ek(x) ≡ x + k mod 26

• Decryption: x = dk(x) ≡ y - k mod 26
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� Affine Cipher (1)

• Extension of the shift cipher: rather than just adding the key to the plaintext, we also 

multiply by the key

• We use for this a key consisting of two parts: k = (a, b)

• Since the inverse of a is needed for inversion, we can only use values for a for which:

gcd(a, 26) = 1

There are 12 values for a that fulfill this condition.

• From this follows that the key space is only 12 x 26 = 312 (cf. Sec 1.4 in Understanding 

Cryptography)

• Again, several attacks are possible, including:

• Exhaustive key search and letter frequency analysis, similar to the attack against 

the substitution cipher

Let k, x, y ε {0,1, …, 25}

• Encryption: y = ek(x) ≡ a x + b mod 26

• Decryption: x = dk(x) ≡ a-1( y – b) mod 26



36/36 Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl

� Lessons Learned

• Never ever develop your own crypto algorithm unless you have a team of experienced 

cryptanalysts checking your design.

• Do not use unproven crypto algorithms or unproven protocols.

• Attackers always look for the weakest point of a cryptosystem. For instance, a large key 

space by itself is no guarantee for a cipher being secure; the cipher might still be vulnerable 

against analytical attacks.

• Key lengths for symmetric algorithms in order to thwart exhaustive key-search attacks:

• 64 bit: insecure except for data with extremely short-term value

• 128 bit: long-term security of several decades, unless quantum computers become 

available (quantum computers do not  exist and perhaps never will)

• 256 bit: as above, but probably secure against attacks by  quantum computers.

• Modular arithmetic is a tool for expressing historical encryption schemes, such as the affine 

cipher, in a mathematically elegant way.


