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Abstract. Using the structure of an adjacency-tree for
binarv-valued images. we define inclusion filters, a class of
connected operators. Inclusion filters modify the image by
filling or retaining the holes of the connected components of
foreground and those of the background of a binary image
depending on application-specific criteria, which are
increasing in the set theoretic sense. We demonstrate a
straightforward method to achieve self-duality (gray level
inversion invarance) of inclusion filters on the discrete
Cartesian domain by considering only 8-adjacency.
Inclusion filters are extended to the grayscale images by the
threshold decomposition principle. As an application,
inclusion filters are shown to improve the perfornmance of
snake-based tracking of leukocytes observed in intravital
microscopic video imagery. In this set of experiments the
mean position error is reduced by a factor of 2.5 using the
inclusion filter.

1 INTRODUCTION

An important class of nonlinear filfers is connected
operators [1]. An operator is called connected if it deletes or
retains (but does not distort) the connected components of a
binary image or the connected componenis of the
complement of a binary image [1.2]. The basic approach of
such filtering methods is to decompose a grayscale image
into level sets (binary images obtained by thresholding the
grayscale image), filter the level sels, and then recombine
the filtered level sets [1.2]. Examples include flat zone
filters, area open, arca close, and grain filters [3]. The
importance of such filters is manifested in many
applications. such as segmentation [4]. classification [5], and
motion estimation [2}.

The topographic map or the level line (boundary of
a connecled component within a level set) based
representation of a gravscale image on a continuous domain
essentially describes the same kind of contrast invariant
connected operators that fills the holes of connected sets or
retains them [6]. The key concept here is that a closed level
line forms a hole and that level lings are nested and non-
intersecting. Due to the existence of Jordan curve theorem
for discrete domain imagery. the concept of hole filling can
be directly adapted to the discrete Cartesian domain [7]. But,
such direct adaptation of a level line based approach in the
_ discrete Cartesian domain results in non-self-dual filters.
(An operator ! is self-dual if for any binary image, I:
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Iy=tl)) As an example, Figare 1(a) shows a
checkerboard. Let us assume 8-adjacency for foreground
(black) and 4-adjacency for background (white). If we want
to fill all holes with arca less than 2, then we obtain Figure
1(b). In Figure 1(c) we show the complement of Figure 1(a).
Applying the same filter with the same adjacencies to Figure
1(c) results in no change. Now the complement of Figure
1(c) is Figure 1(¢a), which is not the same as Figure 1(b). So
the grain filters [7] implemented on the discrete Cartesian
domain are not self-dual.

Instead of relying om the level line based
description, we show in this paper that the adjacency tree
[3,8] approach o define such filters results in a perfectly
self-dual filter, provided we consider only 8-adjacency for
both foreground and background of an image level sct.
Figure 2(a)} shows a binary image, where we label the
connected components of foreground and those of the
background, respectively in black and white. The adijacency
forest (collection of adjacency trees) for Figure 2(a) is
shown in Figure 2(b). The white and the black nodes of the
adjacency tree respectively denote the connected
components of background and those of foreground. The
root nodes in the forest designate the connected sets
touching the image boundary. The existence of the
adjacency tree can be shown when any one of 4-8,8-4, or 8-8
adjacency is considered {3,8,9]. By »-m adjacency we denote
n-adjacency for the foreground and m-adjacency for the
background on the discrete Cartesian domain. Now, to
illustrate the concept of holes consider the connected set 1,

in Figure 2(a). The two holes of 1, are (3, w3, w4,,) and
(4 W5y W6, T,y . Similarly the only hole of the
connected set, 2, 1s 2,. With the help of the adjacency

tree we can also demonstrate the filling of a hole. Consider
filling the two holes, 5., and 7, . The binary image and the

corresponding adjacency forest after filling these holes are
shown respectively in Figures 2(c) and 2(d). This leads to~
the proposed filter we refer 1o as inclusion filter: retain or fill
the holes based on some criterion, which is an increasing
function, mapping sets of points to the elements of the set
{6,1}, where 0 means “fill’ and 1 means ‘retain’ The
inclusion filter paradigm may be viewed as a class of
perfectly self-dnal grain filters. An example of increasing
criterion defining an inclysion filter is as follows: retain a
hole if it contains any point belonging to the set 5, or 7, ;



otherwise, delete the hole. Filtering Figure 2(a) with this
criterion. we obtain the result shown in Figure 2(c).

{L SELF-DUAL INCLUSION FILTERS

The existence of adjacency forest for any binary
image establishes a very important fact: if a foreground
(background) connected set is finite, then a unique
background (foreground) connected set surrounds it [8].

We characterize the holes of connected sets by
means of the adjacency forest as follows. Let S be a node in
the adjacency forest. We denote by F(S) the sub-tree rooted
at § in the adjacency forest, ie., F(S) denotes the set of
points in the sub-tree rooted at S. Thus if G, C;,..., G, are
the children nodes of S, then we say S has » holes, and they
are F(O)). F(Cy),..., F(C,). Any unbroken path (a set of
ordered adjacent points) from a point belonging to a hole,
F(C) of S, to any point belonging to the image boundary,
must intersect S. Conversely, if all unbroken paths from a
point to the image boundary always intersect S, then the
point must belong either to S or to some hole, F{C) of S.
Filling a hole, F(C)) of S, means to change the value of the
points belonging to F{C)) to the same value as the points of
S. In other words, filling the hole F(C} means to mesge the
sub-tree rooted at C; with S. Thus, filling all the holes of S
will result in the set, F(Sy=38uF(C)w - wF(C,). Here,
any roo! node in the adjacency forest is called an infinite
connected set.

The adjacency forest naturally characterizes the
inclusion sequence defined as follows. Let L be a binary-
valued image and x be a point in the image domain. Then,

() if r{x)=1, then there exists a unique alternating
sequence of foreground and background connected sets — (7,
Hy, Ch,..., such that x eC, and > is the parent of Gy, Cs is
the parent of H,, and so on.

(iiy if L(x)=0, then there exists a unique alternating
sequence of background and foreground connected sets —
Hy, Cy, Ha, ..., such that x eH, and C; is the parent of H,
Hy is the parent of C,, and so on. Such a sequence will
henceforth be called an inclusion sequence (IS). Any 1S
always terminates with an infinite connected set.

We first define an increasing criterion and then

define inclusion filter with the use of inclusion sequences.
Increasing Criterion. Let (2 be the image domain, then a
function, 7, mapping the power set of 0 to the sct {0,1}, is
increasing if 0<7(S)<T(S,)<1, forany §, cQ S, cQ
with S — §,. Additionally we stipulate that 7(5) =1 for any
infinite connected set S.
Inclusion Filter. Let C,,H,,C,... of H,,C,.H,... bean 1S
for x in the binary image L, where C’s and H’s respectively
denote foreground and background connected sets. Now,
F(C,) is a hole of H,,,, F(H,+) is a hole of €5, and so on.
Se,wehave: . . c F(C, )c F(H)c F(C,,)c... fromthe
adjacency tree. For an increasing criterion 7 we have:
0. <T(FC, N <T(FH N STFEEC, N<...<1. Since
the last term in this sequence is unity-valued, only the four
matnally exclusive and exhaustive possibilities exist:

ATFC) =TFH,N=TEFECH=TFHN=...=1;
b)3n such that . =T(FC, _N=T(FH))=0
TRC, n=TFH,  N=...=],
OT(FH))=TFC,H=T(FIH,)=TFCN=...=1.
d)3n that . =T(FH, NW=TFCN=0
TFH, N=TFC, . n=-.=1

We define, 14x), the inclusion filtered Z(x), as follows:
1= ][1, if (a)or (b)is true,

and

such and

0, 1f (c)or (d) is true.
In short we say 1 .(x) =y, (L(x)). It is easy to verify that
inchision filter is a formal description of filling the holes of
connected sets of a binary image based on any increasing
criterion. Te prove the idempotency of the inclusion filter
we first state and prove the following Lemma.
Lemma L Let S; and §; be two connected sets such that
8, 28, then F(S,) o F(S,) -
Proof. Let pe F(S,) and examine two cases. In the first
case, peS,. Then peS,. Therefore pe F(S,). In the
second case, peS,, but, pe /7. a hole of 5. Then. any
unbroken path, 7 from p to the image border meets S., i e.,
a8, z¢. Then, 78, =¢. So p belongs to a hole of S,
ie.,peF(S). Therefore F(S) o F(S,). <
Proposition L Inclusion filters are idempotent,
Proof. Let (%) = (L(X)) - We first consider case (a).
Afer filtering, the 1S of x in Lybecomes C|, /,, C,,.... with
C.,oC,H,oH,C,>C,,.... Therefore, by Lemma I
FEC)Y D FECOFH Y o F(H).FIC,) D FC)..... Thus,
TEFECH=TEH)=TECH=...=1,80 L ()=, (LX)
implying that the filter is idempotent in this case. In case (b),
the hole F(H,) of C,. is filled. So after the inciusion

fitering the 1S for x becomes ¢, H, C,,. ., with
C.,oC, .H,oH,,C,oC,,,, and hence, the same result
follows. Cases (c) and (d) are similar. <>

Propesition 11 Inclusion filters are self-dual.
Proof. Under the intensity reversal of a binary image, the
nades in the 8-8 adjacency forest change only their color
(black te white and vice versa), but the entire forest remains
unchanged in terms of its structure, This implies that if the
i8S of x in a binary image L is Cy, Ha,...,(H1, Co....) then the
IS of x for the complement 7 of L is H, Ca,...(Cy, H,....),
where C’s and H’s denote the foreground and the
background connected sets. Therefore, from the definition of
the inclusion filter: y (L(x)) = v, (L(x)). <>
Inclusion filtering can be extended to grayscale
images by means of a threshold decomposition technique
{1.2]. where the input grayscale image is first decomposed
into binary images (level sets) with increasing thresholds,
then each of these binary images is filtered with inclusion
fiter, and finally the output binary images are stacked
(added) to obtain the output grayscale image. In order for
this techaique to be meaningful, gray level causality must be
maintained.
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Gray level causality, Let /*and £ be two level sets of a
grayscale image, J (with a domain Q), at gray levels 2, < 4,.
Gray level causality holds if, for any xe(2,
Fxy=1=1x)=1. or equivalently,
LH(x) =0 = I*(x) = 0. To establish gray level causality for
inclusion filters, we first prove Lemma I1.
Lemma IL Let S and 5> be two connected sets with holes
HI.H .. and H? HZ,..., respectively. Let § 55, and Jet
x be a point, such that x e F(S,)and x e ¥}, for some /.
Then there exists Hj, for some j, such that Hf- SH).
Proof. Let any atbitrary pep! and p=x. Given that
x € H|, there exists an unbroken path 7z from x to p, such
that 7 c i} Thus 1! ~ S, = ¢ leads to:

xS =¢. H
Now xe ! = x¢ §,. Therelore g ¢ 5, as S, o .5,. Butilis
given that x € F(S,), so there must exist a hole, H} of S,
such that x e /2. Let us now assume that p e F(S,). Then
the path, # from x (o p, must meet 5, ie., 7S, #d.
Since S, o §,. we have the following:

zOS, =g (3]
Thus, (1) and (2} are contradictory, and our assumption that
peF(S,y is false. Therefore perF(S,). Now

peH!=peS,. Then § o8, =pes,. Since pe F(S,)
and pgS,. there must exist a hole f7 of S, such that
p e A} Let us now assume that /= ;. Since S; surrounds
both H? and f? and since erjand p e H}. it follows
- that 7 ~§, = ¢ . which leads once again to (2). So /= ;. as
(2) is coniradictory to (1). So we arrive at the result that for
any arbitraty pzx, peH! :3,,er_ Now we know that
xeH] xeH:. find  that
peH =peH; vp.-S0 H: oH!. <
Now we are in a position to prove the preservation
of gray level causality.

Proposition TII (Preservation of gray level causality).
Lpx)y=1=m=1Y2, <4,

Proof. Let the IS for the point x in the level set, I, be
CLHICH. o0 g 2 H2.... where (s and H's denote
respectively foreground (=1) and background (=0) connected
sets. Assuming gray level causality for the input image, for
any foreground connected set, C: in 1%, there exists a

and Therefore  we

foreground connected set, C' in L*, such that ' >Ck So
by Lemma I we have FECYoFEC?H. Thus
xe F(C}) = xe F(CY). Therefore C' is present in the IS of
x in %, so there exists C!, such that ¢! =C'. Now,
ng (x) = 1; so there are two cases to constder:

Case (1) T(F(CIn=1.

By the preceding argument there exists (!, in the IS for x,
and ¢! >C7. -Now xeCl=xeC). S0 m=1. Now by

Lemma I we have F(C))oS F(C?), and, by the increasing
nature of 7, we have: 1=T(FCH) <T(F(C'). implying
T(F(C{y)=1,and hence 3 (x)=1.

Case (2): T(F(H})) =0 and T(F(C} ) =1 forsome n=21.

n+l

We have already shown that 3¢! o CZ . Two cases are
possible here. In the first case, m =0, i.e., the IS of x in I*
starts with ¢/. Then, 1=T(F(C. NW<T(F(C})), and thus,
Lj (x)=1. Inthe second case, m >0, i.e., there exists /! in
the ISof x in 2* . Then F(#!) isa hole in C! , containing
x. Therefore by Lemma I, there exists a hole, H in 2,
such that H? 5 F(H!) and xe H*. Now, both F(x?) and
i are holes of C2, such that xe F(#?) and xeH’,
which is not possible unless f? = F(H?). Therefore, the

increasing natwre of 7  again  implies  that
T(FCHL N STWEH)=0 and L=70HCL NTUC,,,)-
This leads to L’; x)=1. <>

1. NUMERICAL RESULTS

In this section we show that inclusion filters can
significantly enhance the performance of tracking moving
targets. Automatic tracking of rolling leukocytes in vivo is
pursued here to gain knowledge about the inflammatory
process [9]. One of the characteristics of such intravital
video sequences is the intensity reversal and contrast change
of the leukocytes [9]. Thus the requirement of self-duality is
crucial here. With a shape-size constrained srake, the snake
finds the leukocyte boundary by minimizing an energy
functional involving leukocyte-shape information and the
image gradient [9]. The frames obfained via microscopy are
often cluttered and noisy leading to error. So, before being
processed by the tracker, the frames are inclusion filtered
with the following increasing criterion:

TEC) - {1 if FICYNS 24,

0, otherwise,

where §={(x,»): (x-%)"+(v-F) <R’}. (X} Is the
estimated leukocyte center and R is the radius of the
leukocyte, known a priori. This infers that holes are filled
only in the case where the holes do not have overiap with the
prior 2-D cell shape. Figure 3(a) shows a part of an intravital
videe frame with leukocytes and the set S (inside the red
contour}, Figure 3(b) and 3(c) show respectively the gradient
magnitudes without and with the application of inclusion
filter.

One hundred tracking experiments of length 91
frames (duration 3 seconds) are used as the test dataser.
These sequences are first tracked mamually, then tracked
with snake trackers with and without the application of the
inchision filter, As a performance measure, we consider
position error as the distance (in microns) between the
mamally racked levkocyte center and the tracker computed
center. Another performarnce measure, percentage of frames
tracked, is also considered. A frame is deemed "successfully
tracked"” if the position error for that frame is less than R.
Thus, the percentage of frames tracked for a sequence is
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computed as the ratio of the total number of frames tracked
in that sequence over 91, Figure 4 shows the comparison of
mean position errors in tracking with and without the use of
inclusion filters. Figure 5 shows the comparison of
percentage of frames tracked with and without the use of the
inclusion filter. Table 1 summarizes the comparative resuls
by taking the mean measures over the one hundred
sequernces.

IV. CONCLUSIONS

In this paper, we definre a seif-dual connected
operator by considering only 8-connectivity for foreground
and background in a binary image. We also detail the
extension to gravscale images. As an important application
where self-duality of a filter is indispensable, we illustrate
the enhancement of performance in tracking leukocytes in
vivo through the use of the proposed filter.
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(a) (b) {c)

Figure 1. (a) Checkerboard L and ¢(I). (b) €L). (¢) T and g(f).

(&) d)
Figure 2. (a). (b) A binary image and the corresponding adjacency
forest. (¢}, (d) Filtered image and the adjacency forest.

(e}
Figure 3. (a) Leukocytes, (b) gradient magnitude without inclusion
filter and (c) gradient magnitude with inclusion filter.
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Figure 4. Mean position error with and without the inclusion filter.
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Figure 5. Percentage of frames tracked with and without the
inclusion filter,

Table 1. Average performance measures.

Tracking Method Average Average
RMSE Percentage of
(microns) Frames Tracked
without Inciusion | 2.7 72
Filter
with Inclusion Filter 1.1 87
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