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Abstract

This report presents a tutorial of fundamental array processing and beamforming theory relevant
to microphone array speech processing. A microphone array consists of multiple microphones placed
at different spatial locations. Built upon a knowledge of sound propagation principles, the multiple
inputs can be manipulated to enhance or attenuate signals emanating from particular directions. In
this way, microphone arrays provide a means of enhancing a desired signal in the presence of corrupting
noise sources. Moreover, this enhancement is based purely on knowledge of the source location, and
so microphone array techniques are applicable to a wide variety of noise types. Microphone arrays
have great potential in practical applications of speech processing, due to their ability to provide both
noise robustness and hands-free signal acquisition.

This report has been extracted from my PhD thesis, and can be referenced as :
I..A. McCowan. ”Robust Speech Recognition using Microphone Arrays,” PhD Thesis, Queensland Uni-
versity of Technology, Australia, 2001.

For a more in-depth discussion of key microphone processing techniques, the interested reader is
refered to
M. Brandstein and D. Ward (Eds). ”Microphone Arrays”, Springer, 2001.

1 Array Processing Fundamentals

1.1 Introduction

Array processing involves the use of multiple sensors to receive or transmit a signal carried by propagating
waves. Sensor arrays have application in a diversity of fields, such as sonar, radar, seismology, radio
astronomy and tomography [1]. The focus of this article, is the use of microphone arrays to receive
acoustic signals, or more specifically, speech signals. While the use of sensor arrays for speech processing
is a relatively new area of research, the fundamental theory is well established as it is common to all
sensor arrays, being based on the theory of wave propagation.

In general, sensor arrays can be considered as sampled versions of continuous apertures, and the
principles governing their operation is best understood in this context. With this in mind, this section
seeks to develop the principles of array processing by discussing the key areas of

• wave propagation,

• continuous apertures, and

• discrete sensor arrays.

While retaining a certain generality in its discussion of sensor arrays, the section is restricted in scope to
the principles required to understand linear microphone arrays.
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1.2 Wave Propagation

Sound waves propagate through fluids as longitudinal waves. The molecules in the fluid move back
and forth in the direction of propagation, producing regions of compression and expansion. By using
Newton’s equations of motion to consider an infinitesimal volume of the fluid, an equation governing the
wave’s propagation can be developed. A generalised wave equation for acoustic waves is quite complex
as it depends upon properties of the fluid, however, assuming an ideal fluid with zero viscosity, the wave
equation can be derived as [2]

∇2x(t, r) −
1

c2

δ2

δt2
x(t, r) = 0 (1)

where x(t, r) is a function representing the sound pressure at a point in time and space,

r =




x
y
z



 (2)

and ∇2 is the Laplacian operator. The speed of propagation, c, depends upon the pressure and density
of the fluid, and is approximately 330ms−1 in air. The wave equation of Equation 1 is known as the
governing equation for a wide range of propagating waves, including electromagnetic waves.

The solution to the differential wave equation can be derived using the method of separation of
variables. The solution is well known and for a monochromatic plane wave is given as [2]

x(t, r) = Aej(ωt−k·r) (3)

where A is the wave amplitude, ω = 2πf is the frequency in radians per second, and the wavenumber
vector k indicates the speed and direction of wave propagation and is given by

k =
2π

λ

[
sin θ cosφ sin θ sinφ cos θ

]
(4)

where the wavelength λ is related to c by the simple relation λ = c/f . Alternately, the solution for a
spherical wave can be derived as [2]

x(t, r) = −
A

4πr
ej(ωt−kr) (5)

where r = |r| is the radial distance from the source, and k is the scalar wavenumber, given by 2π/λ.
The spherical wave solution shows that the signal amplitude decays at a rate proportional to the distance
from the source. This dependence of the amplitude on the distance has important implications for array
processing algorithms when the source is in the near-field, as will be discussed in later sections. While
sound waves are typically spherical in nature, they may be considered as plane waves at a sufficient
distance from the source, and this approximation is often used to simplify mathematical analysis.

The plane wave solution in Equation 3 is expressed in terms of two variables, time and space. Due to
the well defined propagation of the signal, these two variables are linked by a simple relation, and thus
the solution can be expressed as function of a single variable. If we formulate the plane wave solution as

x(t, r) = Aejω(t−β·r) (6)

where β = k

ω , and we define a new variable u such that u = t− β · r, then the solution can be expressed
as

x(u) = Aejωu (7)

For spherical waves, with the substitution u = t − r/c, we have the similar expression

x(u) = −
A

4πr
ejωu (8)
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Due to the linearity of the wave equation, the monochromatic solution can be expanded to the more
general polychromatic case by considering the solution as a sum or integral of such complex exponentials.
Fourier theory tells us that any function with a convergent Fourier integral can be expressed as a weighted
superposition of complex exponentials. From this we can make the powerful conclusion that any signal
with a valid Fourier transform, irrespective of its shape, satisfies the wave equation.

In this section, we have seen that propagating acoustic signals can be expressed as functions of a
single variable, with time and space linked by a simple relation. In addition, the information in the
signal is preserved as it propagates. These two conclusions imply that, for a band-limited signal, we can
reconstruct the signal over all space and time by either

• temporally sampling the signal at a given location in space, or

• spatially sampling the signal at a given instant of time.

The latter implication is the basis for all aperture and sensor array signal processing techniques.
Other implications from the above wave propagation analysis that are important for array processing
applications are [3]

• The speed of propagation depends on the properties of the medium, and thus is constant for a given
wave type and medium. For the specific case of acoustic waves in air, the speed of propagation is
approximately 330ms−1.

• In general, waves propagate from their source as spherical waves, with the amplitude decaying at a
rate proportional to the distance from the source.

• The superposition principle applies to propagating wave signals, allowing multiple waves to occur
without interaction. To separate these signals, algorithms must be developed to distinguish the
different signals based upon knowledge of their temporal and spatial characteristics.

The above discussion has retained the simplicity of assuming a homogeneous, lossless medium, and
neglecting effects such as dispersion, diffraction, and changes in propagation speed. A thorough analysis
of acoustic field theory can be found in Ziomek [2].

1.3 Continuous Apertures

The term aperture is used to refer to a spatial region that transmits or receives propagating waves. A
transmitting aperture is referred to as an active aperture, while a receiving aperture is known as a passive
aperture. For example, in optics, an aperture may be a hole in an opaque screen, and in electromagnetics
it may be an electromagnetic antenna. In acoustics, an aperture is an electroacoustic transducer that
converts acoustic signals into electrical signals (microphone), or vice-versa (loudspeaker).

1.3.1 Aperture Function

Consider a general receiving aperture of volume V where a signal x(t, r) is received at time t and spatial
location r. Treating the infinitesimal volume dV at r as a linear filter having impulse response a(t, r),
the received signal is given by the convolution [2]

xR(t, r) =

∫
∞

−∞

x(τ, r)a(t − τ, r)dτ (9)

or, by taking the Fourier transform,

XR(f, r) = X(f, r)A(f, r) (10)

The term A(f, r) is known as the aperture function or the sensitivity function, and it defines the response
as a function of spatial position along the aperture.
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Amount of signal 
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Figure 1: Signal received by a linear aperture

1.3.2 Directivity Pattern

The response of a receiving aperture is inherently directional in nature, because the amount of signal seen
by the aperture varies with the direction of arrival. This principle is illustrated in Figure 1 (reproduced
from Moore [4]) for the simple case of planar waves being received by a linear aperture.

The aperture response as a function of frequency and direction of arrival is known as the aperture
directivity pattern or beam pattern. By manipulating the exact solution to the wave equation discussed
in Section 1.2, the directivity pattern can be shown to be related to the aperture function by a Fourier
transform relationship [2]. The far-field directivity pattern of a receiving aperture, having aperture
function AR, is given as

DR(f, α) = Fr{AR(f, r)}

=

∫
∞

−∞

AR(f, r)ej2πα·rdr
(11)

where Fr{·} denotes the three dimensional Fourier transform,

r =




xa

ya

za



 (12)

is the spatial location of a point along the aperture, and

α = fβ

=
1

λ

[
sin θ cosφ sin θ sinφ cos θ

] (13)

is the direction vector of the wave, where the angles θ and φ are as shown in Figure 2. Note that the
frequency dependence in the above equations is implicit in the wavelength term as λ = c/f .

1.3.3 Linear Apertures

In order to investigate some properties of the aperture directivity pattern, it is useful to simplify the
above equation by considering a linear aperture of length L along the x-axis, as shown in Figure 3. In

4



Z

Y

X

 
θ

φ

r

(r, θ, φ)

Figure 2: Spherical coordinate system

Z

Y

X

 θ

φ

r (r, θ, φ)

L/2

−L/2

Figure 3: Continuous linear aperture
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this case

r =




xa

0
0



 (14)

and the directivity pattern simplifies to

DR(f,αx) =

∫ L/2

−L/2
AR(f, xa)ej2παxxadxa (15)

where

αx =
sin θ cosφ

λ
(16)

if we write the equation as a function of angles θ and φ we obtain

DR(f, θ,φ) =

∫ L/2

−L/2
AR(f, xa)ej 2π

λ sin θ cosφxadxa (17)

The above expressions have been developed for plane waves and thus are only valid for the case of far-field
sources. For a linear aperture, a wave source may be considered to come from the far-field of the aperture
if [5]

|r| >
2L2

λ
(18)

For now the far-field assumption serves to simplify the discussion of aperture properties. The details of
the more precise case of near-field sources will be considered later when discussing discrete linear sensor
arrays.

Consider the case of a linear aperture with uniform, frequency-independent aperture function. The
aperture function may be written as

AR(xa) = rect(xa/L) (19)

where

rect(x/L)=̂

{
1 |x| ≤ L/2
0 |x| > L/2

(20)

The resulting directivity pattern is given by

DR(f,αx) = F{rect(xa/L)} (21)

which has the well known solution
DR(f,αx) = L sinc(αxL) (22)

where

sinc(x)=̂
sin(x)

x
(23)

Plots of the uniform aperture function and corresponding directivity pattern are shown in Figure 4. From
the plot we see that zeros in the directivity pattern are located at αx = mλ/L, where m is an integer.
The area of the directivity pattern in the range −λ/L ≤ αx ≤ λ/L is referred to as the main lobe and
its extent is termed the beam width. Thus we see that the beam width of a linear aperture is given by
2λ/L, or in terms of frequency 2c/fL. We note the important behaviour that the beam width is inversely
proportional to the product fL, and so for a fixed aperture length, the beam width will decrease with
increasing frequency.

It is often useful to consider the normalised directivity pattern of an aperture, as this serves to highlight
the relative differences in array response over varying angles of arrival. As the sinc function is bounded
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Figure 4: Uniform aperture function and directivity pattern
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by −1 ≤ sinc(x) ≤ 1, the maximum possible value of the directivity pattern is Dmax = L, and the
normalised directivity pattern is given as

DN (f,αx) =
DR(f,αx)

Dmax
= sinc(αxL) (24)

or in terms of the angles θ and φ

DN (f, θ,φ) = sinc(
L

λ
sin θ cosφ) (25)

A common tool for examining the properties of the aperture response is a polar plot of the horizontal
directivity pattern over angle φ, given by

DN (f,
π

2
,φ) = sinc(

L

λ
cosφ) (26)

Polar plots of the horizontal directivity pattern are shown in Figure 5 for different values of L/λ, demon-
strating the beam width’s dependence on this ratio as discussed previously.

Although the directivity pattern given by Equation 22 can theoretically be evaluated for any value of
αx, because αx = sin θ cosφ, it is practically bounded by −1 ≤ αx ≤ 1. This interval is referred to as the
visible region of the aperture. To examine the physical significance of key values of αx we consider the
horizontal directivity pattern, for which θ = π

2 . First, we see that αx = 0 implies that φ = π
2 or φ = 3π

2 ,
corresponding to a source that is situated perpendicular to the aperture axis, referred to as a broadside
source. Conversely, αx = ±1 implies that φ = 0 or φ = π, corresponding to a source on the same axis as
the aperture, termed an endfire source.

1.4 Discrete Sensor Arrays

A sensor array can be considered to be a sampled version of a continuous aperture, where the aperture
is only excited at a finite number of discrete points. As each element can itself be considered as a
continuous aperture, the overall response of the array can be determined as the superposition of each
individual sensor response. This superposition of sensor responses results in an array response that
approximates the equivalent (sampled) continuous aperture.

1.4.1 Linear Sensor Array

We consider the particular case of a linear array having an odd number of elements, as shown in Figure 6.
In the general case where each element has a different complex frequency response en(f, x), using the
superposition principle we can express the complex frequency response of the array as

A(f, xa) =

N−1
2∑

n=−
N−1

2

wn(f)en(f, xa − xn) (27)

where wn(f) is the complex weight for element n, en(f, x) is its complex frequency response or element
function, and xn is its spatial position on the x-axis. If we substitute this discrete aperture function into
Equation 15 we obtain the far-field directivity pattern as

D(f,αx) =

N−1
2∑

n=−
N−1

2

wn(f)En(f,αx)ej2παxxn (28)

8



  0.5

  1

30

210

60

240

90

270

120

300

150

330

180 0

  0.5

  1

30

210

60

240

90

270

120

300

150

330

180 0

  0.5

  1

30

210

60

240

90

270

120

300

150

330

180 0

  0.5

  1

30

210

60

240

90

270

120

300

150

330

180 0

(a) L/λ = 0.5 (b) L/λ = 1

(c) L/λ = 2 (d) L/λ = 4

Figure 5: Polar plot of directivity pattern
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where En(f,αx) is the directivity pattern of element n.
In the case where all the elements have identical frequency response (that is En(f,αx) = E(f,αx),

∀n), the aperture function can be simplified to

A(f, xa) =

N−1
2∑

n=−
N−1

2

wn(f)δ(xa − xn) (29)

with the corresponding directivity pattern

D(f,αx) =

N−1
2∑

n=−
N−1

2

wn(f)ej2παxxn (30)

Equation 30 is the far-field directivity pattern for a linear array of N identical sensors, with arbitrary
inter-element spacing. For the case where all elements are equally spaced by d metres, the directivity
pattern becomes

D(f,αx) =

N−1
2∑

n=−
N−1

2

wn(f)ej2παxnd (31)

Considering only the horizontal directivity pattern, we have

D(f,φ) =

N−1
2∑

n=−
N−1

2

wn(f)ej 2π
λ nd cosφ (32)

or, making the frequency dependence explicit

D(f,φ) =

N−1
2∑

n=−
N−1

2

wn(f)ej 2πf
c nd cosφ (33)

Equation 33 gives us the directivity pattern for a linear, equally spaced array of identical sensors.
From the equation we see that the directivity pattern depends upon

• the number of array elements N

• the inter-element spacing d, and

• the frequency f .

Recall that a discrete sensor array approximates a continuous aperture. The effective length of a sensor
array is the length of the continuous aperture which it samples, and is given by L = Nd. The actual
physical length of the array, as given by the distance between the first and last sensors, is however d(N−1).
Several interesting characteristics of a linear, equally spaced sensor array can be observed by plotting the
directivity pattern for the following scenarios

1. varying number of array elements N (L and f fixed).

2. varying effective array length L = Nd (N and f fixed).

3. varying frequency f (N and L fixed).
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Figure 7: Directivity pattern for varying number of sensors (f=1 kHz,L=0.5 m)
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Figure 8: Directivity pattern for varying effective array length (f=1 kHz, N=5)

12



0 20 40 60 80 100 120 140 160 180 0
500

1000
1500

2000
2500

3000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

φ (degrees)

|D(f, φ)|

f (Hz)

Figure 9: Directivity pattern for 400Hz ≤ f ≤ 3000Hz (N=5, d=.1 m)

Figure 7 plots the directivity pattern for the first of these scenarios. We observe that the sidelobe
level decreases with increasing spatial sampling frequency - that is, the more sensors we use, the lower
the sidelobe level. The directivity pattern for the second scenario is shown in Figure 8. The plot shows
that the beam width decreases as the effective array length (and thus the spacing) increases. In fact, the
beam width is inversely proportional to the product fL, as seen in Figure 4. Given that L = Nd and that
N is fixed in this case, we see that to vary the beam width we must vary fd. It is more common however
to require a constant beam width, in which case we must ensure that fd remains relatively constant.
We thus see that, for a given frequency, two important characteristics of the array directivity pattern,
namely the beam width and the sidelobe level, are directly determined by the inter-element spacing and
the number of sensors respectively.

For a given array configuration, we note that the beam width will vary as a function of frequency :
as the frequency increases, the beam width will decrease. This effect is shown in Figure 9, which plots
the horizontal directivity pattern for the third scenario, where the frequency is varied over the range
400Hz ≤ f ≤ 3000Hz.

1.4.2 Spatial Aliasing

A familiar principle in temporal sampling is that of the Nyquist frequency, which is the minimum sampling
frequency required to avoid aliasing (the appearance of grating lobes) in the sampled signal [6]. In essence,
sensor arrays implement spatial sampling, and an analogous requirement exists to avoid grating lobes in
the directivity pattern. The temporal sampling theorem states that a signal must be sampled at a rate
fs (of period Ts) such that

fs =
1

Ts
≥ 2fmax (34)
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Figure 10: Example of spatial aliasing

where fmax is the maximum frequency component in the signal’s frequency spectrum. Similarly, for
spatial sampling we have the requirement that

fxs =
1

d
≥ 2fxmax (35)

where fxs is the spatial sampling frequency in samples per metre and fxmax is the highest spatial frequency
component in the angular spectrum of the signal. The spatial sampling frequency along the x-axis is
given by

fxs =
sin θ cosφ

λ
(36)

The maximum value of this ratio naturally occurs when the numerator is maximum and the denominator
minimum. This leads to the relation

fxmax =
1

λmin
(37)

and consequently the requirement that

d <
λmin

2
(38)

where λmin is the minimum wavelength in the signal of interest. Equation 38 is known as the spatial
sampling theorem, and must be adhered to in order to prevent the occurrence of spatial aliasing in the
directivity pattern of a sensor array. Figure 10 illustrates the effect of spatial aliasing on the polar plot
of the horizontal directivity pattern.

1.4.3 Array Gain and Directivity Factor

A key measure for sensor arrays is the array gain, which is defined as the improvement in signal-to-noise
ratio between a reference sensor and the array output. The array gain can be expressed as

Ga =
Gd

Gn
(39)
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where Gd is the gain to the desired signal and Gn is the average gain to all noise sources. The gain to
the desired signal corresponds to the power of the directivity pattern in the direction of arrival, while the
noise gain naturally changes depending on the nature of the noise field.

A diffuse noise field is one in which noise of equal energy propagates in all directions at all times (see
Section 2.2. In the case of a diffuse noise field, the array gain is also known as the factor of directivity
and is given by

Ga(f, θ0,φ0) =
|D(f, θ0,φ0)|

2

1
4π

∫ 2π
0

∫ π
0 |D(f, θ,φ)|2 sin θ dθ dφ

(40)

where the desired source is located in the direction (θ0,φ0).

1.5 Behaviour for Near-field Sources

To this point we have only considered the case of far-field sources. Recall that, for a linear aperture, a
wave source may be considered to come from the far-field of the aperture if

|r| >
2L2

λ
(41)

Under this assumption, the wavefronts arriving at the aperture can be considered as plane waves, that
is, the curvature of the wavefront can be neglected. For many practical applications of sensor arrays,
particularly within the context of speech recognition, the above criterion is not satisfied and the signal
source is said to be located within the near-field of the array. The derivation of equivalent near-field
expressions for the general continuous and discrete directivity patterns is quite involved, but for the
purpose of this discussion it is sufficient to consider the horizontal directivity pattern for a linear sensor
array. Indeed, a simple derivation of a near-field expression is possible in this case.

Consider the arrival of planar wavefronts on different elements in a sensor array, as shown in Figure 11.
From the diagram we see that the actual distance traveled by the wave between adjacent sensors is given
by

d′ = d cosφ (42)

More generally, the distance traveled by the wave between the reference sensor n = 0 and the nth sensor
is given by

d′ = nd cosφ (43)

Figure 12 illustrates the arrival of spherical wavefronts on different elements in a sensor array. From
the diagram we see that the actual distance traveled by the wave between the two sensors is given by

d′ = d1(r,φ) − d0(r,φ) (44)

and in general
d′ = dn(r,φ) − d0(r,φ) (45)

where dn(r,φ) is the distance from the source to the nth sensor as a function of the spherical coordinates
of the source (in the horizontal plane) with respect to the reference sensor. Using trigonometric relations,
it can be shown that this distance is given by [7]

dn(r,φ) =
[
r2 + 2r(xn − x0) cosφ+ (xn − x0)

2
] 1

2 (46)

which, in the case of an equally spaced array, reduces to

dn(r,φ) =
[
r2 + 2rnd cosφ+ (nd)2

] 1
2 (47)
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Figure 13: Directivity pattern for far-field and near-field (r=1 m) source (f=1 kHz, N=10, d=.1 m)

If we recall the far-field horizontal directivity pattern of a linear sensor array

D(f,φ) =

N−1
2∑

n=−
N−1

2

wn(f)ej 2π
λ nd cosφ (48)

we note that the exponential contains the term nd cosφ. We have seen that this corresponds to the
distance traveled by the propagating wave between the reference sensor and the nth sensor. Substituting
in the equivalent expression for the near-field case we obtain

D′(f,φ) =

N−1
2∑

n=−
N−1

2

wn(f)ej 2π
λ (dn(r,φ)−d0(r,φ)) (49)

In addition, we recall that for spherical acoustic waves, the amplitude decays at a rate proportional to
the distance traveled. For far-field sources the amplitude differences between sensors can be considered to
be negligible, however, these amplitude differences may be significant for near-field sources. Incorporating
the amplitude dependency into the expression and normalising to give unity amplitude on the reference
sensor we obtain the following expression for the horizontal directivity pattern for near-field sources

Dnf (f,φ) =

N−1
2∑

n=−
N−1

2

d0(r,φ)

dn(r,φ)
wn(f)ej 2π

λ (dn(r,φ)−d0(r,φ)) (50)

Figure 13 plots the horizontal directivity pattern for both a far-field source and a near-field source
for the same sensor array for r=1 m, illustrating the dependence of the pattern on the distance to the
source.

If a sensor array is desired to operate in the near-field, the near-field directivity pattern can be made
to match the corresponding far-field directivity pattern by compensating the frequency dependent sensor
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weights wn(f). If we replace the far-field weights by the near-field compensated weights

w′

n(f) =
dn(r,φ)

d0(r,φ)
ej 2π

λ (d0(r,φ)−dn(r,φ)+nd cosφ)wn(f) (51)

then the near-field directivity pattern will match the far-field directivity pattern obtained using the origi-
nal weights wn(f). This procedure is referred to as near-field compensation and allows us to approximate
a desired far-field directivity pattern at a given point (r,φ) in the near-field.

1.6 Beamforming

We now consider the term wn(f) in the far-field horizontal directivity pattern of a linear sensor array

D(f,αx) =

N−1
2∑

n=−
N−1

2

wn(f)ej2παxnd (52)

Up to this point of the discussion, we have assumed equally weighted sensors in calculating the
directivity patterns, that is

wn(f) =
1

N
(53)

In general, the complex weighting can be expressed in terms of its magnitude and phase components as

wn(f) = an(f)ejϕn(f) (54)

where an(f) and ϕn(f) are real, frequency dependent amplitude and phase weights respectively. By
modifying the amplitude weights, an(f), we can modify the shape of the directivity pattern. Similarly,
by modifying the phase weights, ϕn(f), we can control the angular location of the response’s main lobe.
Beamforming techniques are algorithms for determining the complex sensor weights wn(f) in order to
implement a desired shaping and steering of the array directivity pattern.

To illustrate the concept of beam steering, we consider the case where the sensor amplitude weights
an(f) are set to unity, resulting in the directivity pattern

D(f,φ) =

N−1
2∑

n=−
N−1

2

ej(2παxnd+ϕn(f)) (55)

If we use the phase weights
ϕn(f) = −2πα′

xnd (56)

where

α′

x =
sin θ′ cosφ′

λ
(57)

then the directivity pattern becomes

D′(f,αx) =

N−1
2∑

n=−
N−1

2

ej 2π
λ nd(αx−α

′

x) (58)

which can be expressed as
D′(f,αx) = D(f,αx − α′

x) (59)
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Figure 14: Unsteered and steered directivity patterns (φ′=45 degrees, f=1 kHz, N=10, d=.15 m)

The effect of such a phase weight on the beam pattern is thus to steer the main lobe of the beam pattern
to the direction cosine αx = α′

x, and thus to the directions θ = θ′ and φ = φ′. While the beam pattern
remains unchanged apart from the shift along the αx axis, when plotted as a function of angle, the beam
shape will change as αx is actually a function of sin θ and cosφ. The horizontal directivity pattern is
shown in in Figure 14, where the beam pattern has been shifted to φ′ = 45o.

Fourier transform theory tells us that a negative phase shift in the frequency domain corresponds to
a time delay in the time domain [6], and so beam steering can effectively be implemented by applying
time delays to the sensor inputs. Considering only the horizontal plane, we see that the delay for the nth

sensor is given by

τn =
ϕn

2πf

=
2πfnd cosφ′

2πfc

=
nd cosφ′

c

(60)

which is seen to be equivalent to the time the plane wave takes to travel between the reference sensor and
the nth sensor. This is the principle of the simplest of all beamforming techniques, known as delay-sum
beamforming, where the time domain sensor inputs are first delayed by τn seconds, and then summed
to give a single array output. While we have seen here that the mathematics of discrete sensor arrays
assures a main lobe of increased gain in the direction of the desired signal, the signal enhancement and
noise reduction provided by the delay-sum beamformer can intuitively be attributed to the constructive
(in phase) interference of the desired propagating wave and the destructive (out of phase) interference
of waves from all other directions. Other more complicated beamforming techniques will be discussed in
detail in the following section.
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2 Microphone Array Beamforming Techniques

2.1 Introduction

The previous section presented the fundamental theory of sensor arrays, and introduced the concept of
beamforming algorithms. This chapter continues the discussion by presenting the theory of a number of
key microphone array beamforming techniques.

Beamforming techniques can be broadly classified as being either data-independent, or data-dependent.
Data-independent, or fixed, beamformers are so named because their parameters are fixed during op-
eration. Conversely, data-dependent, or adaptive, beamforming techniques continuously update their
parameters based on the received signals.

As different beamforming techniques are appropriate for different noise conditions, the chapter begins
by defining the noise fields encountered in microphone array applications. Following this, the principles of
a number of key beamforming techniques are described in detail. The chapter concludes with a summary
of the beamforming techniques, indicating their advantages, disadvantages and applicability in different
noise conditions.

2.2 Noise Fields

There are three main categories of noise fields to be defined for microphone array applications. These
categories are characterised by the degree of correlation between noise signals at different spatial locations.
A commonly used measure of the correlation is the coherence, which is defined as [8]

Γij(f)=̂
Φij(f)

√
Φii(f)Φjj(f)

(61)

where Φij is the cross-spectral density between signals i and j. The coherence is essentially a normalised

cross-spectral measure, as the magnitude squared coherence can be seen to be bounded by 0 ≤ |Γij(f)|2 ≤
1.

A more comprehensive analysis of noise fields can be found in Templeton and Saunders [9].

2.2.1 Coherent Noise Fields

A coherent noise field is one in which noise signals propagate to the microphones directly from their
sources without undergoing any form of reflection, dispersion or dissipation due to the acoustic envi-
ronment. In a coherent noise field, the noise signals on different microphones in an array are strongly
correlated, and hence |Γij(f)|2 ≈ 1. In practice, coherent noise fields occur in open air environments
where there are no major obstacles to sound propagation and where wind or thermal turbulence effects
are minimal.

2.2.2 Incoherent Noise Fields

In an incoherent noise field, the noise measured at any given spatial location is uncorrelated with the
noise measured at all other locations, that is |Γij(f) ≈ 0|2. Such an ideal incoherent noise field is difficult
to achieve and is seldom encountered in practical situations. In the case of microphone arrays however,
electrical noise in the microphones is generally randomly distributed and can be considered to be a source
of incoherent noise. Incoherent noise is also said to be spatially white.

2.2.3 Diffuse Noise Fields

In a diffuse noise field, noise of equal energy propagates in all directions simultaneously. Thus sensors in
a diffuse noise field will receive noise signals that are lowly correlated, but have approximately the same
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energy. Many practical noise environments can be characterised by a diffuse noise field, such as office or
car noise. The coherence between the noise at any two points in a diffuse noise field is a function of the
distance between the sensors, and can be modeled as [10]

Γij(f) = sinc

(
2πfdij

c

)
(62)

where dij is the distance between sensors i and j, and the sinc function has been defined in Equation 23.
It can be seen that the coherence approaches unity for closely spaced sensors and decreases sharply with
increasing distance.

2.3 Classical Beamforming

2.3.1 Delay-sum Beamforming

The simplest of all microphone array beamforming techniques is delay-sum beamforming, as discussed in
Section 1.6. We recall that, by applying phase weights to the input channels, we can steer the main lobe
of the directivity pattern to a desired direction. Considering the horizontal directivity pattern, if we use
the phase weights

ϕn =
−2π(n − 1)d cosφ′f

c
(63)

we obtain the directivity pattern

D(f,φ) =
N∑

n=1

ej
2πf(n−1)d(cos φ−cos φ′)

c (64)

and the directivity pattern’s main lobe will be moved to the direction φ = φ′, as illustrated in Figure 15 for
φ′ = 45o. Note that in this chapter we have made a simple modification to the formulae from Chapter 1 in
order to change the microphone index range from −N−1

2 ≤ n ≤ N−1
2 to the more convenient 1 ≤ n ≤ N .

The negative phase shift in the frequency domain can effectively be implemented by applying time
delays to the sensor inputs, where the delay for the nth sensor is given by

τn =
(n − 1)d cosφ′

c
(65)

which is the time the plane wave takes to travel between the reference sensor and the nth sensor.
Delay-sum beamforming is so-named because the time domain sensor inputs are first delayed by

τn seconds, and then summed to give a single array output. Usually, each channel is given an equal
amplitude weighting in the summation, so that the directivity pattern demonstrates unity gain in the
desired direction. This leads to the complex channel weights

wn(f) =
1

N
ej −2πf

c (n−1)d cosφ′

(66)

Expressing the array output as the sum of the weighted channels we obtain

y(f) =
1

N

N∑

n=1

xn(f)ej −2πf
c (n−1)d cosφ′

(67)

Equivalently, in the time domain we have

y(t) =
1

N

N∑

n=1

xn(t − τn) (68)

where τn is defined in Equation 65.
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Figure 15: Unsteered and steered directivity patterns (φ′=45 degrees, f=1 kHz, N=10, d=.15 m)

2.3.2 Filter-sum Beamforming

The delay-sum beamformer belongs to a more general class known as filter sum beamformers, in which
both the amplitude and phase weights are frequency dependent. In practice, most beamformers are a
class of filter-sum beamformer. The output of a filter-sum beamformer is given as

y(f) =
N∑

n=1

wn(f)xn(f) (69)

It is often convenient to use matrix algebra to simplify the notation when describing microphone array
techniques. The above equation can be rewritten using matrix notation as

y(f) = w(f)T x(f) (70)

where the weight vector w(f) and data vector x(f) are defined as

w(f) =
[

w1(f) · · · wn(f) · · · wN (f)
]T

(71)

and
x(f) =

[
x1(f) · · · xn(f) · · · xN (f)

]T
(72)

where (·)T denotes matrix transpose. A block diagram showing the structure of a general filter-sum
beamformer is given in Figure 16.

2.3.3 Sub-array Beamforming

From the equation for the directivity pattern of a uniformly spaced sensor array, it is seen that the
characteristics of the array response depend on the frequency of interest, the inter-element spacing (or
effective length, as L = Nd), and the number of elements in the array. The dependency on the operating
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Figure 16: Filter-sum beamformer structure

frequency means that the response characteristics (beam-width, sidelobe level) will only remain constant
for narrow-band signals, where the bandwidth is not a significant proportion of the centre frequency.
Speech, however, is a broad-band signal, meaning that a single linear array design is inadequate if a
frequency invariant beam-pattern is desired.

One simple method of covering broadband signals is to implement the array as a series of sub-arrays,
which are themselves linear arrays with uniform spacing. These sub-arrays are designed to give desired
response characteristics for a given frequency range. Due to the dependencies discussed in Section 1.4.1,
as the frequency increases, a smaller array length is required to maintain constant beam-width. In
addition, to ensure the sidelobe level remains the same across different frequency bands, the number
of elements in each sub-array should remain the same. The sub-arrays are generally implemented in a
nested fashion, such that any given sensor may be used in more than one sub-array. Each sub-array is
restricted to a different frequency range by applying band-pass filters, and the overall broad-band array
output is formed by recombining the outputs of the band-limited sub-arrays. An example of such a
nested sub-array structure for delay-sum beamforming, designed to cover 4 different frequency bands, is
shown in Figure 17. The sub-arrays employ 3, 5, 5 and 5 microphone respectively, but, due to the nested
structure, the 4 sub-arrays can be implemented using a total of 9 microphones.

For a general sub-array broadband beamformer, the beamforming channel filters are band-pass filtered
between the specified upper and lower frequencies for each sub-band. At the output of each channel filter
we have

vs,i(f) = ws,i(f)xi(f) (73)

where xi(f) is the input to channel i of the array, and the subscript s represents the sub-array index.
The output of sub-array s, is then given by the sum across channels as

ys(f) =
N∑

i=1

vs,i(f) (74)

where there are N microphones in the array. The summation in each sub-array is shown up to N for
simplicity of notation, although in practice only the channels belonging to each sub-array are used. The
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overall array output is then calculated as

y(f) =
S∑

s=1

ys(f) (75)

where there are S sub-arrays.
Any technique may be used to design the filters for a sub-array filter-sum beamformer. The most

common technique is simply to use conventional delay-sum beamforming within each sub-array.

2.4 Superdirective Beamforming

Conventional linear arrays with sensors spaced at d ≈ λ/2 have directivity that is approximately pro-
portional to the number of sensors, N . It has been found that the directivity of linear endfire arrays
theoretically approaches N2 as the spacing approaches zero in a diffuse (spherically isotropic) noise
field [11, 12]. Beamforming techniques that exploit this capability for closely spaced endfire arrays are
termed superdirective beamformers. The channel filters of superdirective beamformers are typically for-
mulated to maximise the array gain, or factor of directivity. In Section 1.4.3 the factor of directivity was
defined as

Ga(f, θ0,φ0) =
|D(f, θ0,φ0)|

2

1
4π

∫ 2π
0

∫ π
0 |D(f, θ,φ)|2 sin θ dθ dφ

(76)

Recall that the horizontal directivity pattern is given by

D(f,φ) =
N∑

n=1

wn(f)ej 2πf
c (n−1)d cosφ (77)

Using the filter-sum weight vector, w(f), and defining the propagation vector as

d(f) =
[

1 · · · e−j 2πf
c (n−1)d cosφ · · · e−j 2πf

c (N−1)d cosφ
]T

(78)

we can formulate the directivity pattern in matrix notation as

D(f,φ) = w(f)Hd(f) (79)

where (·)H denotes matrix transpose conjugate. Expressing the factor of directivity in matrix notation,
and noting that w is independent of direction, we obtain

Ga(f, θ0,φ0) =

∣∣w(f)Hd(f)
∣∣2

w(f)H
(

1
4π

∫ 2π
0

∫ π
0 d(f)d(f)H sin θ dθ dφ

)
w(f)

(80)

and if we define the matrix Γ as

Γ =
1

4π

∫ 2π

0

∫ π

0
d(f)d(f)H sin θ dθ dφ (81)

we can express the factor of directivity concisely as

Ga =

∣∣wHd
∣∣2

wHΓw
(82)

where the frequency dependence has been omitted for notational simplicity.
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From the discussion in Section 1.4.3 we recall that the factor of directivity is the array gain for a diffuse
noise field. The diffuse noise field is characterised by the matrix Γ, which represents the cross-spectral
density of the noise between sensors. For a general noise field with noise cross-spectral matrix Q, the
array gain can be expressed as [13]

Ga =

∣∣wHd
∣∣2

wHQw
(83)

Superdirective beamformers aim to calculate the weight vector w that maximises the array gain, that
is :

max
w

∣∣wHd
∣∣2

wHQw
(84)

Cox [13] gives the solution using the Lagrange method as

w = αQ−1d (85)

where α is an arbitrary complex constant. If we choose α to produce unity signal response with zero
phase shift (that is, wHd = 1), then the solution is [13] :

w =
Q−1d

dHQ−1d
(86)

In practice, the above solution can lead to undesirable gain of incoherent noise due to electrical sensor
noise, channel mismatch and errors in microphone spacing. To prevent excessive amplification of the
incoherent noise, a more robust solution can be found if a constraint is placed on the white noise gain :

∣∣wHd
∣∣2

wHw
= δ2 ≤ M (87)

where the constraining value δ2 must be chosen to be less than or equal to the maximum possible white
noise gain M .

The above solution can also be expanded for the more general case where the optimisation is subjected
to multiple linear constraints (including that of unity response for the desired signal), expressed as

CHw = g (88)

The solution under such a set of linear constraints, as well as a constraint on the white noise gain, is
given by Cox [13] as

w = [Q + εI]−1C
{
CH [Q + εI]−1C

}−1
g (89)

where ε is a Lagrange multiplier that is iteratively adjusted until the white noise gain constraint is
satisfied. The white noise gain is the array gain for spatially white (incoherent) noise, that is, Q = I. A
constraint on the white noise gain is necessary, as an unconstrained superdirective solution will in fact
result in significant gain to any incoherent noise, particularly at low frequencies. Cox [13] states that
the technique of adding a small amount to each diagonal matrix element prior to inversion is in fact the
optimum means of solving this problem. A study of the relationship between the multiplier ε and the
desired white noise gain δ2, shows that the white noise gain increases monotonically with increasing ε.
One possible means of obtaining the desired value of ε is thus an iterative technique employing a binary
search algorithm between a specified minimum and maximum value for ε. The computational expense of
the iterative procedure is not critical, as the beamformer filters depend only on the source location and
array geometry, and thus must only be calculated once for a given configuration.

For speech processing applications, superdirective methods are useful for obtaining acceptable array
performance at low frequencies for realistic array dimensions. The wavelength for acoustic waves at 500
Hz is approximately 0.66 m, and so sensor elements spaced closer than 0.33 m in an endfire configuration
can be used in the low frequency range to improve performance.
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2.5 Near-field Superdirective Beamforming

Low frequency performance is problematic for conventional beamforming techniques because large wave-
lengths give negligible phase differences between closely spaced sensors, leading to poor directive dis-
crimination. Täger [14] states that delay-weight-sum beamformers can roughly cover the octave band
0.25 < d/λ < 0.5 (where d is the inter-element spacing) before excessive loss of directivity occurs. A
frequency of 100 Hz corresponds to a wavelength of 3.4 m for sound waves, and so to cater for this
frequency range requires that 0.85m < d < 1.7m. For a sub-array of 5 elements, this would give an
array dimension of 3.4m < L < 6.8m, which is impractical for many applications. For example, in the
context of a multimedia workstation, it is desirable that the array dimension does not exceed the monitor
width, which will be approximately 17 inches, or 40 cm. Thus methods providing good low frequency
performance with realistic array dimensions are required.

One such method is a technique proposed by Täger [14, 15], called near-field superdirectivity. As
its name implies, near-field superdirectivity is a modification of the standard superdirective technique
presented in Section 2.4, in which the propagation vector d is replaced by one formulated for a near-field
source.

We recall from Section 1.5 that the near-field directivity pattern can be expressed as

Dnf(f,φ) =
N∑

n=1

d1(r,φ)

dn(r,φ)
wn(f)ej 2π

λ (dn(r,φ)−d1(r,φ)) (90)

If we define the time difference between sensor n and the reference sensor (n = 1) as

τn =
dn(r,φ) − d1(r,φ)

c
(91)

and the amplitude attenuation factor between sensor n and the reference sensor as

αn =
d1(r,φ)

dn(r,φ)
(92)

then the near-field modified propagation vector can be expressed as

dnf(f) =
[
α1e−j2πfτ1 · · · αne−j2πfτn · · · αNe−j2πfτN

]T
(93)

Near-field superdirectivity uses the above near-field propagation vector in the standard superdirective
formulation, while maintaining the assumption of a (far-field) diffuse noise field in the noise cross-spectral
matrix Γ. In this way, as well as providing directional sensitivity, the technique gives a level of discrimi-
nation between the array’s near- and far-fields. Expressed formally we have

max
w

∣∣wHdnf

∣∣2

wHΓw
(94)

where Γ was defined in Equation 81 using the far-field propagation vector. Thus, similar to standard
superdirectivity, the solution under a set of linear constraints, CHw = g (including wHdnf = 1), and a
robustness constraint on the white noise gain is given as

w = [Γ+ εI]−1C
{
CH [Γ+ εI]−1C

}−1
g (95)

Near-field superdirectivity succeeds in achieving greater performance than standard techniques for
near-field sources at low frequencies. This is due to the fact that it takes the amplitude differences into
account as well as the phase differences. While the phase differences are negligible at low frequencies, the
amplitude differences are significant, particularly when the sensors are placed in an endfire configuration
as this maximises the difference in the distance from the source to each microphone. A simple illustration
of the effect of the amplitude compensation is given in Täger [14].
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Figure 18: Generalised sidelobe canceler structure

2.6 Generalised Sidelobe Canceler (GSC)

Data-dependent beamforming techniques attempt to adaptively filter the incoming signals in order to pass
the signal from the desired direction while rejecting noises coming from other directions. For their opti-
misation criterion, most adaptive techniques rely on the minimisation of the mean-square error between a
reference signal that is highly correlated to the desired signal, and the output signal. Unfortunately, the
normal least means square (LMS) algorithm can degrade the desired signal as it seeks purely to minimise
the mean-square error - it places no conditions upon the distortion to the desired signal. The most famous
adaptive beamforming technique that addresses this limitation is known as Frost’s algorithm [16]. Frost’s
algorithm treats the filter estimation process as a problem in constrained least mean-square minimisation
- the solution minimises the mean-square error while maintaining a specified transfer function for the
desired signal. This constraint is normally designed to ensure that the response to the desired signal has
constant gain and linear phase. Frost’s algorithm belongs to a class of beamformers known as linearly
constrained minimum variance (LCMV) beamformers.

Perhaps the most commonly used LCMV beamforming technique is the generalised sidelobe canceler
(GSC) [17]. GSC is a beamforming structure that can be used to implement a variety of linearly con-
strained adaptive array processors, including Frost’s algorithm. It separates the adaptive beamformer
into two main processing paths. The first of these implements a standard fixed beamformer, with con-
straints on the desired signal. The second path is the adaptive portion, which provides a set of filters
that adaptively minimise the power in the output. The desired signal is eliminated from this second path
by a blocking matrix, ensuring that it is the noise power that is minimised. The block structure of the
generalised sidelobe canceler is shown in Figure 18.

Examining the upper path, the inputs are first time aligned and then passed through a filter-sum
beamformer to give the fixed beamformed signal y′

u as

y′

u(f) = wc(f)T x′(f) (96)
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where
w(f) =

[
w1(f) · · · wn(f) · · · wN (f)

]T
(97)

are the fixed amplitude weights for each of the N channels, and

x′(f) =
[

x′

1(f) · · · x′

n(f) · · · x′

N (f)
]T

(98)

are the time aligned input signals.
The output of the fixed beamformer is then filtered by the constraint filter hu which ensures a specified

gain and phase response for the desired signal. The output of the upper path is thus given by

yu(f) = hu(f)y′

u(f) (99)

The lower path of the structure is the adaptive portion. It consists of two major parts. The first of
these is the blocking matrix, B, whose purpose is to remove the desired signal from the lower path. As
the desired signal is common to all the time-aligned channel inputs, blocking will occur if the rows of the
blocking matrix sum to zero. If x′′ denotes the signals at the output of the blocking matrix, then

x′′(f) = Bx′(f) (100)

where each row of the blocking matrix sums to zero, and the rows are linearly independent. As x′ can
have at most N − 1 linearly independent components, the number of rows in B must be N − 1 or less.
The standard Griffiths-Jim blocking matrix is [17]

B =






1 −1 0 0 · · · 0
0 1 −1 0 · · · 0
... · · ·

. . .
. . . · · ·

...
0 · · · 0 1 −1 0
0 · · · 0 0 1 −1






(101)

Following application of the blocking matrix, x′′ is adaptively filtered and summed to give the lower
path output ya. If we denote the lower path adaptive filters as a, then we have

ya(f) = a(f)T x′′(f) (102)

Due to the blocking matrix, the lower path output only contains noise signals. The overall system output
is calculated as the difference of the upper and lower path outputs as

y(f) = yu(f) − ya(f) (103)

Because the upper path contains the constrained desired signal estimate, and the lower path only
contains noise and interference terms, finding the set of filter coefficients a which minimise the power in
y is effectively equivalent to finding the linearly constrained minimum variance beamforming solution.
As the signal is constrained in the upper path, the unconstrained LMS algorithm can be used to adapt
the lower path filter coefficients

ak+1(f) = ak(f) + µyk(f)x′′

k(f) (104)

where µ is the step size and k is the frame number.
The GSC is a flexible structure due to the separation of the beamformer into a fixed and adaptive

portion, and it is the most widely used adaptive beamformer. In practice, the GSC can cause a degree
of distortion to the desired signal, due to a phenomenon known as signal leakage. Signal leakage occurs
when the blocking matrix fails to remove all of the desired signal from the lower noise canceling path.
This can be particularly problematic for broad-band signals, such as speech, as it is difficult to ensure
perfect signal cancellation across a broad frequency range.
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2.7 AMNOR

While LCMV algorithms are theoretically powerful, they often encounter a number of problems in prac-
tice. Because of the hard constraint of one permissible value for the desired signal’s transfer function,
LCMV techniques can fail to sufficiently reduce the noise level due to the lack of freedom in the choice
of filters. Evaluation of the human auditory system shows that a certain level of distortion in the desired
signal can be tolerated and so in some situations it may be permissible, and even desirable, to allow some
signal distortion in order to achieve better noise reduction.

A technique incorporating such a ‘soft’ constraint, named the AMNOR (adaptive microphone-array
system for noise reduction) system was proposed by Kaneda [18]. Instead of allowing only one response for
the desired signal, the system adopts a soft constraint that allows a class of responses whose degradation
is less than some pre-determined permissible level.

Figure 19 shows the structure of the AMNOR system. The system is essentially composed of three
filter blocks, h1, h2 and h3.

The filter block h1 contains the beamforming filters that are applied to the multi-channel input to
give the system output, y(n). The impulse response of the acoustic path between the source and array
element i is modeled by the filter gi(z). The frequency response of the beamformer to the desired signal
is therefore

F (z) =
N∑

i=1

h1,i(z)gi(z) (105)
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The second set of filters h2 are adaptively updated to satisfy the criterion of minimum output noise
power for a given level of degradation to the desired signal. The adaptation only occurs during noise-only
periods, during which time a fictitious desired signal is introduced into the system. This fictitious desired
signal is a white noise signal with unity power that is magnified by a variable amplitude factor A. The
fictitious desired signal is filtered by the acoustic path impulse responses gi(z) in order to simulate the
presence of a known desired signal during noise-only periods.

It can be shown [18] that the mean square error in the output is related to the degradation to the
desired signal D1, the output noise power D2, and the amplitude of the fictitious desired signal A,
according to

|e(n)|2 = A2·D1 + D2 (106)

In addition, it can be shown that D1 and D2 are monotonically decreasing and increasing functions
of A respectively. This has the powerful implication that the level of signal degradation and output noise
power can be adjusted by varying a single parameter - namely the amplitude of the fictitious desired
signal, A.

The third set of filters h3 are used to estimate the response degradation D1 in order to adapt the
amplitude of the fictitious desired signal to achieve the desired levels of degradation and output noise
power.

Full details of the algorithm are given in Kaneda [18], and further work is presented in Kaneda [19]
and Kataoka et al [20]. The AMNOR technique has the limitations of requiring accurate speech/silence
detection and knowledge of the impulse responses of the acoustic paths between the source and each
microphone. Due to the fixed filters during speech periods, the technique implicitly assumes slowly-
varying noise characteristics. In practice, the acoustic paths are modeled using simple time delays, as for
delay-sum beamforming.

2.8 Post-filtering

In practice, the basic filter-sum beamformer seldom exhibits the level of improvement that the theory
promises and further enhancement is desirable. One method of improving the system performance is to
add a post-filter to the output of the beamformer.

Zelinski [21] proposed a Wiener post-filter formulated using the cross-spectral densities between chan-
nels in a microphone array. Incorporating a post-filter with a beamformer allows use of knowledge
obtained in spatial filtering to also allow effective frequency filtering of the signal. In using both spatial
and frequency domain enhancement, the use of information about the signal is maximised, where this
knowledge is solely the direction of arrival of the signal.

The use of such a post-filter with a filter-sum microphone array was thoroughly investigated by
Marro [22, 23] who demonstrated the mathematical interaction of the post-filter and the beamformer,
and determined an optimal array structure for their combination. A diagram illustrating the system is
presented in Figure 20.

At the output of the channel filters we have the time-aligned channel inputs

vi(f) = wi(f)xi(f) (107)

These signals contain an aligned version of the desired signal plus a noise component

vi(f) = s(f) + ni(f) (108)

where s is the desired signal and ni is the noise on microphone i.
The general Wiener filter expression for a microphone array is given as [22]

hopt(f) =
Φss(f)

Φss(f) + Φn̄n̄(f)
(109)
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Figure 20: Filter-sum beamformer with post-filter

where Φss(f) and Φn̄n̄(f) are respectively the auto-spectral density of the desired signal s(f) and the
noise at the output of the beamformer n̄(f).

A common problem with Wiener filters is the estimation of the signal and noise auto-spectral densities.
The multi-channel approach provides an interesting solution to this problem. Under the assumptions that

1. The signal arriving at each microphone can be modeled by the sum of the desired signal and noise,
according to Equation 108.

2. The noises ni(n) and desired signal s(n) are uncorrelated.

3. The power spectral density of the noise is the same on each microphone Φnini(f) = Φnn(f), i =
1, . . . , N .

4. The noises are uncorrelated between different microphones Φninj (f) = 0, i )= j.

5. The input signals vi(n) are restored into perfect phase alignment with s(n).

we have
Φvivi(f) = Φss(f) + Φnn(f) (110)

and
Φvivj (f) = Φss(f) (111)

and by averaging these spectral densities, we can estimate the Wiener filter equation as [22]

ĥ(f) =

∑N
i=1 |wi(f)|2

∑N−1
i=1

∑N
j=i+1 wi(f)w∗

j (f)

*{
∑N−1

i=1

∑N
j=i+1 Φ̂vivj (f)}

∑N
i=1 Φ̂vivi(f)

(112)

The real operator *{·} is used because Φss(f) is necessarily real. An incoherent noise field is the ideal
condition for such a post-filter, however a diffuse noise field also provides a reasonable approximation of
the above assumptions for the noise signals on different sensors. For this reason, the post-filter is best
suited to incoherent or diffuse noise. The overall system output is given by

z(f) = ĥ(f)y(f) (113)
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where y(f) is the beamformer output.
In Marro [22], equations are developed for the post-filter transfer function in terms of beamformer

characteristics such as the noise reduction factor, signal to noise ratio and array gain for the following
adverse input conditions :

• the presence of diffuse noise;

• the presence of a coherent noise source;

• a minor fault in the pointing direction of the array; and

• the presence of noise that is correlated with the desired signal.

By investigating the dependence of the post-filter upon these properties, it is shown that a post-filter
enhances the beamformer output in the following ways :

• The post-filter cancels any incoherent noise.

• The post-filter further enhances the beamformer’s rejection of coherent correlated or uncorrelated
noise sources not emanating from the steered direction.

• The post-filter displays robustness to minor errors in the pointing of the array.

In summary, it is found that the effectiveness of such a post-filter follows that of the beamformer -
if the beamformer is effective, the post-filter will further improve the system output. However, in the
case where the beamformer is ineffective, the post-filter, being intrinsically linked to the beamformer
performance, will be similarly ineffective.

2.9 Overview of Beamforming Techniques

This section summarises the important characteristics of the beamforming techniques discussed in this
chapter. For each technique, Table 1 indicates whether or not it is a fixed or adaptive technique, the
optimal noise conditions for its use, and whether the technique should be used with a broadside or endfire
array configuration. Table 2 lists a number of key advantages and disadvantages of each technique.

Technique Fixed / Noise Array
adaptive condition configuration

Delay-sum fixed incoherent broadside
Sub-array fixed incoherent broadside
delay-sum
Superdirectivity fixed diffuse endfire
Near-field fixed diffuse endfire
Superdirectivity
Generalised adaptive coherent broadside
Sidelobe Canceler
AMNOR adaptive coherent broadside
Post-filtering adaptive diffuse either

Table 1: Properties of beamforming techniques
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Technique Advantages Disadvantages
Delay-sum simplicity low frequency performance

narrow-band
Sub-array broad-band low frequency performance
delay-sum
Superdirectivity optimised array gain assumes diffuse noise
Near-field optimised array gain assumes diffuse noise
Superdirectivity near-field sources assumes noise in far-field

low frequency performance
Generalised adapts to noise conditions low frequency performance
Sidelobe minimises output noise power can distort in practice
Canceler hard constraint on signal
AMNOR adapts to noise conditions low frequency performance

minimises output noise power complexity
soft constraint on signal speech-silence detection
distortion level controlled some distortion

Post-filtering adapts to noise conditions can distort signal
improves beamformer output

Table 2: Advantages and disadvantages of beamforming techniques

While these tables give a simplistic overview of the different beamforming techniques, they serve to
indicate the characteristics that must be considered when choosing a technique for a given application
and noise conditions. For example, if the noise is approximately diffuse and there are no localised noise
sources, then a superdirective technique is appropriate. If, however, prominent localised noise sources
exist, then an adaptive technique would be advantageous. In applications where it is important to
minimise distortion to the desired signal, fixed techniques are generally better than adaptive techniques.
Also, depending on the location of the desired signal, a technique designed for the near-field may be
required.
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[14] W. Täger, “Near field superdirectivity (NFSD),” in Proceedings of ICASSP ’98, pp. 2045–2048, 1998.

[15] W. Tager, Etudes en Traitement d’Antenne pour la Prise de Son. PhD thesis, Universite de Rennes
1, 1998. in french.

[16] O. L. Frost, “An algorithm for linearly constrained adaptive array processing,” Proceedings of the
IEEE, vol. 60, pp. 926–935, August 1972.

[17] L. Griffiths and C. Jim, “An alternative approach to linearly constrained adaptive beamforming,”
IEEE Trans. on Antennas and Propagation, vol. 30(1), pp. 27–34, January 1982.

[18] Y. Kaneda, “Adaptive microphone-array system for noise reduction,” IEEE Transactions on Acous-
tics, Speech and Signal Processing, vol. ASSP-34, pp. 1391–1400, December 1986.

[19] Y. Kaneda, “Directivity characteristics of adaptive microphone-array for noise reduction (amnor),”
Journal of the Acoutical Society of Japan, vol. (E) 12, no. 4, pp. 179–187, 1991.

[20] A. Kataoka and Y. Ichinose, “A microphone-array configuration for amnor (adaptive microphone-
array system for noise reduction),” Journal of the Acoutical Society of Japan, vol. 11, no. 6, pp. 317–
325, 1990.

[21] R. Zelinski, “A microphone array with adaptive post-filtering for noise reduction in reverberant
rooms,” in Proceedings of ICASSP-88, vol. 5, pp. 2578 –2581, 1988.

[22] C. Marro, Traitements de Dereverberation et de Debruitage Pour le Signal de Parole dans des Con-
textes de Communication Interactive. PhD thesis, Universite de Rennes 1, 1996. in french.

[23] C. Marro, Y. Mahieux, and K. Uwe Simmer, “Analysis of noise reduction and dereverberation
techniques based on microphone arrays with postfiltering,” IEEE Transactions on Speech and Audio
Processing, vol. 6, pp. 240–259, May 1998.

36


