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Let Your Fingers Do the Multiplying

Sidney J. Kolpas

n the movie Stand and Deliver (Warner Brothers
1988), Edward James Olmos, portraying mathe-
matics teacher Jaime Escalante, confronts Chuco, a
defiant gang member, during Olmos’s class at
Garfield High School in East Los Angeles:

Escalante. Ohh. You know the times tables?

Chuco. I know the ones . . . twos . . . three.

[On “three” Chuco flips the bird to Escalante.]

Escalante. Finger Man. I heard about you. Are
you The Finger Man? I’m the Finger Man, too. Do
you know what I can do? I know how to multiply by
nine! Nine times three. What you got? Twenty-
seven. Six times nine. One, two, three, four, five,
six. What you got? Fifty-four. You wanna hard one.
How about eight times nine? One, two, three, four,
five, six, seven, eight. What do you got? Seventy-
two. (Warner Brothers 1988, p. 9)

To capture Chuco’s attention, Escalante was
using a well-known finger-multiplication trick: mul-
tiplying by nines by counting on his fingers. Just as
this trick captured Chuco’s interest, it can also cap-
ture the interest of high school and college students
when they investigate the mathematics behind the
reasons that it works.

Students are often admonished that they should
not count on their fingers. This article investigates
two methods of finger multiplication that can, how-
ever, help students. Although students may have
first learned these methods in elementary school,
high school and college students can apply their
knowledge of number theory, algebra, and problem-
solving strategies to prove why these finger tech-
niques “work.” The two methods can also serve as
catalysts for extension activities and multicultural
projects on the history of finger reckoning. Suggest-
ed activities and projects are found at the end of
this article.

The first method—the one that Escalante used
with Chuco for finding multiples of nine up to 90—
requires that the students hold both hands up, with
palms facing the student. The student counts his or
her thumbs and fingers consecutively from left to
right, with the thumb on the left hand representing

the number 1 and the thumb on the right hand rep-
resenting the number 10. To multiply n times 9,
where 1 ≤ n ≤ 10 and where n is a whole number,
the student bends down the nth finger. The number
of fingers to the left of the bent finger represents
the tens-place digit of the product, whereas the
number of fingers to the right of the bent finger
represents the ones-place digit of the product. Fig-
ures 1 and 2 illustrate 3 × 9 and 7 × 9, respectively.
But why does Escalante’s trick work?
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Fig. 1
3 × 9 = 27;

two fingers to the left of the bent finger = 20;
seven fingers to the right of the bent finger = 7;

20 + 7 = 27.

PROOF OF ESCALANTE’S TRICK FOR
MULTIPLYING BY 9
Escalante’s trick works because it is based on the
theorem from number theory that states that if a
number is a multiple of 9, then the sum of its digits
is a multiple of 9. We prove that in the special case
of multiples of 9 no larger than 10 × 9, the sum of
the digits is exactly 9 and that the digit in the tens
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place is one less than n. Thus, bending down the
nth finger ensures that the number of fingers to its
left is one less than n and that the number of fingers
to its right is the number that remains to make the
digits sum to 9. Discussing with students the rea-
soning behind the following proof should increase
their understanding of, and appreciation for, both
Escalante’s finger trick and number theory.

To show that if a two-digit product is a multiple
of nine, the sum of its digits is a multiple of nine,
we let the two-digit product be represented by 
p = 10a + b, where a and b are whole numbers and
where 1 ≤ a ≤ 9 and 0 ≤ b ≤ 9. In this place-value
notation, a and b are, respectively, the tens-place
digit and the units-place digit of the product p.
Since we are given 9|p, that is, p is a multiple of 9,
we know that 9|( p – 9a). But 

( p – 9a) = 10a + b – 9a
= a + b,

the sum of the digits of the product. (The students
should verify that fact.) Therefore, 9|(a + b), the sum
of the digits of the product. Thus, we have estab-
lished that if a two-digit number is a multiple of 9,
then the sum of its digits is a multiple of 9. We next
need to show that the sum of the digits is exactly 9
for multiples of 9 no larger than 90. We know that
multiples of 9 no larger than 90 can be written as
9n, where 1 ≤ n ≤ 10. To be able to prove that the
sum of the digits is exactly 9, we need to rewrite the
product 9n in place-value form to identify its digits.
In place-value form, 9n = (n – 1)10 + [9 – (n – 1)].
Moreover, since 1 ≤ n ≤ 10, 0 ≤ (n – 1) ≤ 9 and 
0 ≤ [9 – (n – 1)] ≤ 9. This place-value form reveals
that (n – 1) and [9 – (n – 1)] are the tens digit and
units digit, respectively, of the product. Therefore,
for multiples of 9 no larger than 90, the tens digit is

one less than n. Moreover, the two digits sum to
exactly 9: (n – 1) + [9 – (n – 1)] = 9. The reason that
Escalante’s trick works is no longer a mystery.

To further test students’ understanding of the
theory behind Escalante’s trick, the teacher might
ask them to prove that if a three-digit number is a
multiple of 9, then the sum of its digits is a multi-
ple of 9; their proof would parallel the previous
proof. Advanced students can try to prove the more
difficult general case. 

Escalante’s trick works only for multiplication
from 1 × 9 to 10 × 9. A second, more general, tech-
nique for obtaining products by counting on our fin-
gers also exists. The roots of the technique date
back to the Middle Ages, when finger counting was
a regular means of communicating arithmetic infor-
mation. We can use multiplication of digits between
6 × 6 and 10 × 10 to introduce this technique; this
article presents and proves an algorithm for 6 × 6
and 10 × 10. The technique is then extended to two
different cases of algorithms that cover larger
ranges of multipliers and multiplicands. Finally,
the article presents and proves two general algo-
rithms, one for each case.

TOWARD MORE 
GENERAL ALGORITHMS
6 × 6 to 10 × 10
The following method for multiplying digits from 
6 × 6 to 10 × 10 is sometimes called European peas-
ant multiplication. The method assumes knowledge
of multiplication facts from 0 × 0 to 4 × 4, as well as
knowing how to multiply by 10, as do all the remain-
ing methods discussed in this article. Commonly
used during the Middle Ages, the method was still
used by Russian and French peasants in the early
twentieth century (NCTM 1989, p. 122). In general,
finger-arithmetic methods became popular during
the Middle Ages because the Hindu-Arabic number
system was not yet in widespread use and because
paper and writing implements were scarce. More-
over, finger-multiplication techniques were univer-
sal, since they were not based on any particular
number system or language; finger arithmetic “had
the advantage of transcending language differ-
ences” (Eves 1969, p. 8). Even today, finger numera-
tion and computation is still used for bargaining in
marketplaces around the world. 

To use the technique for digits from 6 × 6 to 
10 × 10, the students hold up both hands, with
palms facing the student. On each hand, thumb to
pinkie, respectively, represent 6 through 10. To
multiply x times y, where 6 ≤ x ≤ 10 and 6 ≤ y ≤ 10,
we use the following algorithm:

• We touch the left hand’s finger that corresponds
to the multiplier to the right hand’s finger that
represents the multiplicand.

Finger-
multiplication
techniques
were universal

Fig. 2
7 × 9 = 63;

six fingers to the left of the bent finger = 60;
three fingers to the right of the bent finger = 3;

60 + 3 = 63.
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• We bend down the fingers below the two that are
touching, that is, those fingers that represent
numbers greater than those that we are multi-
plying. (Below is used in this manner throughout
the remainder of this article.)

• We multiply the total number of unbent fingers
by 10.

• We multiply the number of bent fingers on 
the left hand by the number of bent fingers on
the right hand.

• The sum of the previous two results is the prod-
uct of x and y.

Figure 3 illustrates 9 × 8. We next prove why this
algorithm works.

= 10[x + y – 10] + (10 – x)(10 – y)
= 10x + 10y – 100 + 100 – 10y – 10x + xy
= xy,

which is the product of the numbers.

Students can follow specific instances of the
proof and can thus practice the algorithm by count-
ing on their fingers.

We can expand the European peasant technique
for even larger products. However, a restriction
exists. The new techniques work only with products
that result when both multiplier and multiplicand
belong to the same set of five consecutive whole
numbers, for example, the product xy, where 
11 ≤ x ≤ 15 and 11 ≤ y ≤ 15. Two cases arise. In case
1, the units digit of both numbers ranges from 1
through 5; and in case 2, the units digit of both
numbers ranges from 6 through 0. The European
peasant multiplication just developed was an exam-
ple of case 2. We next discuss an algorithm for a
case 1 example, the digits from 11 × 11 to 15 × 15,
followed by a proof showing why it works. 

11 × 11 to 15 × 15 (case 1)
The students hold up both hands, with palms fac-
ing the student. On each hand, thumb to pinkie,
respectively, represent 11 through 15. To multiply x
times y, where 11 ≤ x ≤15 and 11 ≤ y ≤ 15, we use
the following algorithm, which differs from the one
that we previously used.

• We touch the left hand’s finger that corresponds
to the multiplier to the right hand’s finger that
represents the multiplicand.

• We bend down the fingers below the two that are
touching.

• We multiply the total number of unbent fingers
by 10.

• We multiply the number of unbent fingers on
the left hand by the number of unbent fingers
on the right hand.

• We add 100 to the sum of the two previous
results.

• The answer to the previous step is the product of
x and y.

Figure 4 illustrates 13 × 12. We next prove why
this algorithm works.

PROOF: If 11 ≤ x ≤ 15 and 11 ≤ y ≤ 15, the previous
algorithm gives the product xy. To begin, we ver-
ify that if the finger that represents x on the left
hand is touching the finger that represents y on
the right hand, then we can algebraically label
(x – 10) as the number of unbent fingers on the
left hand and ( y – 10) as the number of unbent

Fig. 3
9 × 8 = 7 × 10 + 1 × 2

= 72.

PROOF: If 6 ≤ x ≤ 10 and 6 ≤ y ≤ 10, the previous
algorithm gives the product xy. To begin, we
verify that if the finger that represents x on the
left hand is touching the finger that represents
y on the right hand, then we can algebraically
label—

• (x – 5) as the number of unbent fingers on the
left hand,

• ( y – 5) as the number of unbent fingers on the
right hand,

• (10 – x) as the number of bent fingers on the
left hand, and

• (10 – y) as the number of bent fingers on the
right hand.

Following the previous algorithm, using the
algebraic labels, and simplifying, we find that
the total number of unbent fingers times 10 plus
the product of the number of bent fingers on each
hand is equal to 

10[(x – 5) + ( y – 5)] + (10 – x)(10 – y) 
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fingers on the right hand. For this algorithm, we
do not use the number of bent fingers on each
hand. 

Following the previous algorithm, using the
algebraic labels, and simplifying, we find that
the total number of unbent fingers times 10 plus
the product of the number of unbent fingers on
each hand plus 100 equals

10[(x – 10) + (y – 10)] + (x – 10)(y – 10)        + 100 
= 10[x + y – 20] + (x – 10)(y – 10)          + 100
= 10x + 10y – 200 + xy – 10x – 10y + 100 + 100
= xy,

which is the product of the numbers.

Students can follow specific instances of the
proof and can practice the algorithm by counting on
their fingers. We now consider the next set of five
consecutive whole numbers, 16 × 16 to 20 × 20, a
case 2 example.

16 × 16 to 20 × 20 (case 2)
Students hold up both hands, palms facing the stu-
dent. On each hand, thumb to pinkie, respectively,
represent 16 through 20. To multiply x times y,
where 16 ≤ x ≤ 20 and 16 ≤ y ≤ 20, we use the fol-
lowing algorithm, which differs from the previous
algorithms.

• We touch the left hand’s finger that corresponds
to the multiplier to the right hand’s finger that
corresponds to the multiplicand.

• We bend down the fingers below the two that are
touching.

• We multiply the total number of unbent fingers
by 20.

• We multiply the number of bent fingers on the

left hand by the number of bent fingers on the
right hand.

• We add 200 to the sum of the two previous
results.

• The answer to the previous step is the product of
x and y.

Figure 5 illustrates 16 × 19. We next prove why
this algorithm works.

Fig. 4
13 × 12 = 5 × 10 + 3 × 2 + 100 

= 156.

Fig. 5
16 × 19 = 5 × 20 + 4 × 1 + 200

= 304.

PROOF: If 16 ≤ x ≤ 20 and 16 ≤ y ≤ 20, the previous
algorithm gives the product xy. To begin, we
verify that if the finger that represents x on the
left hand is touching the finger that represents
y on the right hand, then we can algebraically
label—

• (x – 15) as the number of unbent fingers on
the left hand,

• ( y – 15) as the number of unbent fingers on
the right hand,

• (20 – x) as the number of bent fingers on the
left hand, and 

• (20 – y) as the number of bent fingers on the
right hand.

Following the previous algorithm, using the
algebraic labels, and simplifying, we find that
the total number of unbent fingers times 20 plus
the product of the number of bent fingers on each
hand plus 200 equals

20[(x – 15) + ( y – 15)] + (20 – x)(20 – y)       + 200 
= 20[x + y – 30] + (20 – x)(20 – y)          + 200 
= 20x + 20y – 600 + 400 – 20y – 20x + xy + 200 
= xy,

which is the product of the numbers.

Students can
practice the
algorithm 
by counting
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Students can follow specific instances of the
proof and can thus practice the algorithm by count-
ing on their fingers. 

Using similar approaches, we can extend the finger-
multiplication process to still larger numbers in
which the multiplier and multiplicand belong to the
same set of five consecutive whole numbers (case 1,
case 2). Before developing the generalization of each
case, the teacher should determine whether the
students can derive the algorithm on their own for
the case 1 example 21 × 21 to 25 × 25 and then prove
why it works. They should use the previous case 1
algorithm and proof as their guide. The generaliza-
tions of each case are presented below, with proof.

THE GENERAL ALGORITHM
Discovering the general algorithm behind each of
the preceding cases is a challenging lesson for stu-
dents. The process seems to have a pattern, and
definite differences occur in the algorithms for sets
ending with units digit 5 (case 1) and sets ending
with units digit 0 (case 2). To explore this result, we
redefine case 1 and 2. 

We let d be a nonnegative multiple of ten. Then
we reexamine each case, as follows:

Case 1
The five consecutive whole numbers start at units
digit 1 and end at units digit 5. In general, this set
is d + 1, d + 2, d + 3, d + 4, and d + 5. For example,
if d = 20, then the set is 21, 22, 23, 24, 25. We call d
the decade for this set. In the previous example, the
set’s decade is 20. The teacher can ask the students
to review the case 1 algorithms and determine
whether they can discover a general algorithm in
terms of the set’s decade. 

Case 2
The five consecutive whole numbers start at units
digit 6 and end at units digit 0. In general, this set
is d + 6, d + 7, d + 8, d + 9, and d + 10. We define
this set’s low decade to be d and its high decade to
be d + 10. For example, if d = 10, then the set is 16,
17, 18, 19, 20, with a low decade of 10 and a high
decade of 20. If d = 0, then the set is 6, 7, 8, 9, 10,
with a low decade of 0 and a high decade of 10. The
students should review the case 2 algorithms and
determine whether they can discover a general
algorithm in terms of the set’s low decade and high
decade.

THE GENERAL CASE 1 AND CASE 2
ALGORITHMS
In both cases, if x represents the multiplier (left
hand) and y represents the multiplicand (right
hand), we can verify the following by counting on

our fingers:

• The number of unbent fingers on the left hand is
x minus one less than the lowest number in the
set. For case 1, it is x – d; for case 2, it is x – (d + 5).

• The number of unbent fingers on the right hand
is y minus one less than the lowest number in
the set. For case 1, it is x – d; for case 2, it is 
y – (d + 5).

• The number of bent fingers on the left hand is
the highest number in the set minus x. For case
1, it is d + 5 – x; for case 2, it is d + 10 – x.

• The number of bent fingers on the right hand is
the highest number in the set minus y. For case
1, it is d + 5 – y; for case 2, it is d + 10 – y.

We next consider the case 1 general algorithm
and proof.

Case 1 general algorithm and proof
The set begins with units digit 1 and ends in units
digit 5. Then the set is d + 1, d + 2, d + 3, d + 4, 
d + 5, with decade d.

• We multiply the total number of unbent fingers
by the set’s decade. 
d[(x – d) + ( y – d )]

• We multiply the number of unbent fingers on
each hand. 
(x – d)( y – d )

• We square the set’s decade.
d 2

• The sum of the previous three results gives the
product xy:
d[(x – d) + ( y – d)] + (x – d)( y – d ) + d 2

= dx + dy – 2d 2 + xy – dx – dy + d 2 + d 2

= xy

Students should verify that this algorithm gener-
alizes the case 1 algorithms.

Students can use a similar approach to supply
the proof and to verify that the following algorithm
generalizes the case 2 algorithms.

Case 2 general algorithm
The set begins with units digit 6 and ends in units
digit 0. Then the set is d + 6, d + 7, d + 8, d + 9, 
d + 10, with low decade d and high decade d + 10.

• We multiply the total number of unbent fingers
by the set’s high decade.

• We multiply the number of bent fingers on each
hand.

• We find the product of the set’s low decade and
its high decade. 

• The sum of the previous three results gives the
product xy.
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QUESTIONS AND PROJECTS
From classroom experience, I have found that many
extension activities arise naturally when presenting
this material. My students have been highly motivat-
ed to work on the following questions and projects:

11. Develop algorithms and proofs for 26 × 26 to 
30 × 30 and for 31 × 31 to 35 × 35.

12. Find one general algorithm that covers both
case 1 and case 2.

13. Verify that 1 × 1 to 5 × 5 fits into the general
algorithm for case 1. Hint: The set’s decade is 0.

14. Tell how the commutative property of multipli-
cation is implied in the algorithms.

15. Describe how you would you handle a problem
such as 22 × 58.

16. Find algorithms for such sets of five numbers as
23, 24, 25, 26, 27 that do not fit into case 1 or
case 2.

17. Write a computer program, with graphics if pos-
sible, that simulates the two multiplication
techniques.

18. Research the history of finger-computing tech-
niques, including the one used by Jaime
Escalante in the movie Stand and Deliver.

19. Research Vedic multiplication on the Internet,
and compare it with finger-multiplication tech-
niques. Striking similarities exist between the
Vedic algorithm called vertically and crosswise
and European peasant multiplication. Two
excellent Web sites are www.vedicmaths.org
/group_files/tutorial/Tutorial%20menus.htm
and members.aol.com/vedicmaths/vm.htm.

10. Research the Korean method of finger computa-
tion called chisenbop. A good Web site is klingon
.cs.iupui.edu/~aharris/chis/chis.html. Discuss
this method’s similarities with the algorithms
discussed in this article.

11. Research the finger-arithmetic techniques of
Mohammad Abu’l-Wafa Al-Buzjani (940–998).
A good Web site is www-groups.dcs.st-and.ac.uk
/~history/ Mathematicians/Abu’l-Wafa.html.

12. Develop finger-multiplication algorithms that
are based on six-fingered hands.

13. Look up the origin of the word digit, and tell
how its origin relates to finger computation.

CONCLUSION
The two different finger-multiplication methods dis-
cussed in this article truly provide hands-on activi-
ties for students at the secondary and college levels.
Not only are these methods fun to practice, but
they also lead to an investigation of why they work.
Students practice algebraic concepts, number theo-
ry, inductive thinking, and deductive proof. Addi-
tionally, many interesting follow-up activities,
including learning the history of finger-reckoning
techniques, are possible. Counting on one’s fingers

is sometimes OK, especially when students let their
fingers do the multiplying.
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