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Abstract.
This work demonstrates how an autonomous robotic platform can use intrin-

sically noisy, coarse-scale visual methods lacking range information to produce
good estimates of the location of objects, by using a map space representation
for weighting together multiple observations from different vantage points. As the
robot moves through the environment it acquires visual images which are processed
by means of a fast but noisy visual detection algorithm that gives bearing only in-
formation. The results from the detection are then projected from image space into
map space, where data from multiple viewpoints can intrinsically combine to yield
an increasingly accurate picture of the location of objects. This method has been
implemented and shown to work for object localization on a real robot. It has also
been tested extensively in simulation, with systematically varied false positive and
false negative detection rates. The results demonstrate that this is a viable method
for object localization, even under a wide range of sensor uncertainties.
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Introduction

Autonomous robots are becoming increasingly free-roaming and independent as the
mapping, planning and control systems built into them grow more and more sophisti-
cated. This fact, however, poses a problem in that it increases the rate at which the robot
receives new visual data. Visual processing therefore needs to diversify to produce al-
gorithms that are highly reliable but relatively slow on the one hand, and on the other
algorithms that are fast but may admit more noise.

In domestic applications many important tasks set for robots involve interacting with
specific objects. It thus becomes necessary to develop visual routines for this that allow a
robot to make efficient use of its more expensive visual repertoire, by directing attention
onto the most likely object locations, and doing this by means of cheaper algorithms.

This paper presents a method for combining relatively low-quality, bearing-only vi-
sual object detection output from different vantage points to produce a more accurate
estimate of 2D object position, which can then be used for view planning and other prob-
abilistic decision making. It makes use of Receptive Field Cooccurrence Histograms for
visual detection and a grid for accumulation of evidence.
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The overall objective is to find objects in the environment and populate the spatial
model with them. The work here is a continuation of the work on object search and
localization presented in [3,11].

This work is related in purpose, and somewhat in method, to visual attention. There
has been a lot of work done in this area, from general saliency-based methods such
as that of [9] to more composite approaches such as the one in [7] which is geared
specifically towards object detection. These methods operate in the visual space, whereas
the approach proposed in this paper instead creates a 2D map representation for the
accumulation of evidence.

This 2D map representation has many similarities with occupancy grids [5] where
the world is divided into cells. Each cell is assigned a value to reflect the probability
or certainty of that cell being occupied. A large number of methods for updating such
grids have been proposed, based on Bayesian theory, fuzzy logic, etc. See [16,18] for
an overview and comparison of sonar based occupancy grid methods. The sonar sen-
sor provides relatively accurate distance estimates but the angular information is rather
vague. Integrating many measurements is therefore necessary to get a good estimate of
the structure of the environment. For obstacle avoidance using sonar the Histogram in
Motion Mapping approach [1] is sometimes used as it provides a fast way of updating
the grid in a time-critical application. In it a simplified update of the occupancy grid is
used where only the cells along the acoustic axis of the sensor are updated, by adding and
subtracting fixed integer values, thus ignoring the angular uncertainty of the sensor. This
is in contrast to the full Bayesian formulation, where in theory, every cell will be affected
by every observation. Accuracy in the model is instead gained by frequent updates.

Methods akin to the occupancy grid have also been used for global localization of a
mobile robot [6]. Here the grid represents a discretization of the probability density func-
tion for the pose of the robot. Recently, particle filters have become popular in robotics
applications [2]. A major challenge when estimating a high dimensional state such as the
concurrent position of a large number of targets is that of computational cost. In [17] a
particle filter implementation of the probability hypothesis density (PHD) is presented.
The idea with the PHD is to limit the estimation to the first moment of the state, i.e. the
mean value, and also look at the combined density over all targets instead of individual
ones. This results in a significant reduction in the computational effort.

As in the case of integrating sonar data in an occupancy grid, each measurement
in itself provides relatively little information about the position of an object. Here, the
information is bearing-only and depending on the detection method used might have
a large amount of false positives. Several measurements are necessary to get a good
estimate of the probability distribution. This method is similar to computing the PHD as
described above, doing so for each object class independently.

The main inspiration for the way evidence is accumulated in this paper is the Hough
transform [8], in that it in effect enumerates possible explanations for observations and
accumulates evidence for these explanations. However, the Hough transform involves
moving into a configuration space separate from the space being described, which is not
the case here.

In object localization itself much work has also been done, including attention and
view planning ([15], [14]), as well as detection, distance estimation and localization [3,
10]. The Receptive Field Cooccurrence Histogram (RHCH) method [4] used in [3] is
what provides the input for the algorithm presented in this paper.



Finally the area of reliable object recognition has a peripheral bearing on this work,
in that recognition will likely be used in the areas indicated by the algorithm proposed;
this is however beyond the scope of this paper.

Contributions

The contribution of this paper is an algorithm which allows many individually relatively
unreliable sensor responses to be combined efficiently into a map-space representation
of confidence values from which more reliable position hypotheses may be extracted.
Unlike occupancy grid methods, this confidence estimate uses no range information.

The feasibility of the approach is verified by an implementation running on a real
robotic system. Also, results from simulations are presented illustrating the performance
of the algorithm and its degree of robustness to false positives and false negatives in the
sensor data.

1. Image processing

The algorithm presented in this work is designed to work with Receptive Field Cooc-
currence Histograms (RFCH). RFCH is an image processing method for object detec-
tion based on bulk image properties, as opposed to feature-based methods such as SIFT
[12] [13] which are typically used for recognition. It is used here because it is fast and
produces a scalar degree-of-match as output given any part of an image, large or small.
RFCH are object-specific and so this algorithm, based on them, will be as well. How-
ever, any object detection algorithm with similar properties to RFCH matching could in
principle be substituted.

Prior to engaging in the object search, the robot’s vision system is trained on each
object of interest by performing feature value clustering and histogram extraction on
training images of the objects of interest. The clusters and the histogram for the object
are stored for the purpose of object detection on the images subsequently acquired.

2. Accumulator Grid

In order to create and maintain a distribution across space of the confidence the robot has
in the presence of objects, an accumulator grid has been developed. This is a grid over-
laid on the robot’s navigation map, where each grid cell is associated with a confidence
value similar to that of an occupancy grid. One set of such values is maintained for every
distinct object of interest. In the following description, only one object is considered for
simplicity.

As the robot moves through the environment and acquires visual data, the accumu-
lator grid cells are updated according to the output of the visual object detection algo-
rithm. As data accumulates from different locations, the confidence values reinforce in a
way similar to the functioning of the Hough transform, embodying an increasingly accu-
rate representation of the true locations of objects in the environment, and the robot can
utilize these to direct its motion, or store them for later use.



2.1. Initialization

The accumulator grid is set up with a specific extent in the X and Y dimensions as well
as a cell size. Appropriate values for these parameters are highly dependent on the envi-
ronment the robot operates in. In general, its extent should equal the size of the operating
area and the cell size should be roughly equal to the size of sought objects. If objects
of different sizes are to be represented, the smallest size can be used or, alternatively,
several grid sizes may be used in parallel.

Initially, the confidence values are all set to 0, if the robot does not possess any prior
information about object locations. It would be possible to represent prior knowledge of
the likely and unlikely locations of objects during initialization as well. Also, a robot
may well be initialized with the values accumulated during an earlier run, if objects are
assumed to be static in the interim.

2.2. Update

As the robot proceeds through its surroundings, it acquires camera images, which are
subdivided into small patches for which RFCH are extracted. The resulting histograms
are compared to the histogram from the training image of the object being sought, pro-
ducing a match value for each patch.

It is assumed that the pose of the robot is known at all times. If this is not the case,
it will become necessary to take steps similar to those needed for occupancy grids built
during mapping under uncertain odometry; such considerations are however beyond the
scope of this paper.

Because the robot’s camera is kept horizontal, each column of image patches corre-
sponds to a specific interval of bearings, which is projected onto the 2D map from the
location of the robot. This produces a “sensor wedge” as shown in Figure 1(a).

The accumulator grid is then updated according to the following principle: Each
cell covered by a sensor wedge is incremented by the maximum magnitude of all the
RFCH match values associated with it. In effect, a strong RFCH response will increase
confidence in all cells lying in the direction from which that response was obtained, as
in Figure 1(b). As the robot continues to acquire images from different vantage points,
the wedges intersecting objects will reinforce the grid cells, whereas cells that are only
incidentally part of a sensor wedge will not get reinforced as in Figure 1(c).

In practical terms, the update of the cells in each sensor wedge is carried out by
means of line rasterization, performed in parallel for the left- and right-hand rays of
the slice, respectively, and by filling in the intermediate cells in rows or columns as
appropriate. However, given the potentially very large granularity of the accumulator
grid and the aliasing effects this will cause, a supersampling scheme is adopted in which
the resolution of the grid is augmented by a factor of 10 during the update. In effect, each
cell is updated in proportion to how well it is covered; see Figure 1(d). This alleviates
aliasing problems without incurring any extra storage costs.

3. Implementation and Experiments

The algorithm described in the previous section was implemented and tested on a Perfor-
mance Peoplebot mobile robot platform. The robot is approximately 1.2m in height, and



(a) The robot’s field of view is subdi-
vided into wedges

(b) Each wedge is updated by its associ-
ated sensor response. Note the smooth-
ing effect of supersampling

(c) As views are acquired from different
vantage points, cells containing objects
will be reinforced

(d) Cells in each wedge are in-
cremented, using supersampling to
counter aliasing effects

Figure 1. Principles of the accumulator grid update

equipped with a Canon-VCC4 pan-tilt zoom camera, and differential drive. The camera
is mounted at a height of 1m above the floor, and has a horizontal field of view of 45
degrees. The camera was used to acquire images at a resolution of 320×240 pixels. In
order for the robot to be able to detect objects in a wide field of view as it explores the
environment, the camera’s zoom was not used.

An accumulator grid of 50 × 50 cells was created at a resolution of 0.1m, and with
all values initially set to zero. The test was performed in a mockup living room of ap-
proximate dimensions 4.5m × 6m, shown schematically in Figure 2(a). The robot was
programmed to visit 5 locations in the room and take pictures in all directions (8 views
at a field-of-view of 45◦) from each location. RFCH detection was carried out on the
resulting 40 images, and an accumulator grid was updated according to Section 2.2.



After visiting each location and processing the images, the result was the accumu-
lator grid shown in Figure 2(b). The actual location of the sought object, a packet of
rice, is plainly visible in the upper left quarter of the grid. On the center right a chair of
somewhat similar color to the object can be made out, and towards the bottom of the grid
a bookcase containing many items of varying appearance causes a low-level blur; still,
these false positives are clearly less prominent than the true location. A view planning
algorithm can use this information to create priorities for regions to investigate, which
would lead it to begin with the area that actually contains the object in this case.

(a) Schematic representation of the
room used

(b) Result of grid accumulation. The true ob-
ject location is at the bright spot on the upper
left

Figure 2. Experimental results

4. Simulation

In order to test the performance limits of the algorithm with respect to visual detection
and recognition algorithms which are noisy such as RFCH, SIFT and others, the perfor-
mance of the system is evaluated by means of Monte Carlo simulation in an abstract sce-
nario, in which the false positive and false negative detection rates of the robot detection
can be varied freely.

The environment is represented as a 20×20 grid. The object is positioned randomly
in the environment (excepting the outer edges), and occupies exactly one grid cell. The
robot can move to any part of the environment except for the cell containing the object.
The robot can also have any orientation in space. In the real world, the robot would
follow some continuous trajectory through space, sensing as it went. It would thus see
the object from several distinct orientations and views. Here, in order to simulate this
fact, while avoiding any bias introduced by a manually selected trajectory, the robot is
given a random new orientation and position for every view that is acquired.



For a given robot pose, a field of view is simulated by an angular slice of the map,
with its apex at the robot’s position, as was seen in Figure 1(a). The field of view is
divided into wedges corresponding to the image patch columns described in Section 2.2.
For each wedge, the cells covered by it are incremented if the object intersects the wedge.

After a set number of random views, the search is terminated and the result is eval-
uated by locating the maximally-valued cell and comparing its position in the map to
the known position of an object. The test is considered successful if the cell with the
maximum value in the accumulator grid is the one containing the object or adjacent to it.

The performance of a noisy visual detection algorithm such as RFCH matching was
simulated as a detector which gives a binary response on the location of the object, with
non-zero false positive and false negative rates Pfp and Pfn respectively. The perfor-
mance of object localization with the accumulator grid, under such noisy visual detection
conditions, were evaluated in a series of tests. The false positive and false negative rates
were varied in intervals of 0.1 between 0 and 1. For each combination of values, tests
were performed evaluating the localization with 10, 25, 75 and 150 views. 100 such tests
were performed for each parameter setting. Figure 3 shows the outcomes of the tests.

Obviously, a low view count does not provide enough data for a good estimate,
but even with 10 random views a good guess can often be made. With 25, results are
reasonably reliable in the absence of noise. The real-world test in Section 3 with 40 well-
planned views compares to a situation with 75 or 150 random views. At this level the
algorithm is able to deal with a large range of false negative rates if the false positive
rate is low, and a somewhat more limited range of false positive rates if the false negative
rate is low. This is because a false negative does not alter the accumulator grid, whereas
a false positive introduces flawed data.

Typically visual processing algorithms are associated with a Receiver Operating
Characteristic or ROC curve, describing how the false positive rate relates to the false
negative rate for that algorithm when varying some discrimination threshold. For RFCH,
for instance, a threshold on the degree of match will determine these error rates. Figure
3 shows that good results are achieved whenever either Pfp or Pfn can be made small,
which is the case with many algorithms. More generally, with knowledge of the ROC
curve, it is possible to optimize the performance of the accumulator grid for any given
algorithm.

5. Discussion

The simulated and real results presented in this paper are promising, and suggest that this
algorithm would be a viable method for object localization. However, there are several
issues which could be considered further.

Extra-visual information

Information arising from other sources than vision may be useful to take into account.
For example, if the layout of walls and other partitions in the environment is known this
can be exploited to shield obscured areas from being accumulated needlessly; similarly,
objects of interest may be precluded from occurring in certain areas such as in open floor
spaces. Prior information on probable locations could also be used.
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(c) 75 views
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Figure 3. Performance of object localization for various probabilities of false positive and false negative rates.
The Z axis denotes the percentage correct estimations, and the X and Y axes the rate of false positives and
negatives, respectively.

Viewpoint bias correction

In simulation, the robot was given a new position and orientation at every time step.
However, in the real world the robot doesn’t move randomly through space, and subse-
quent locations and views of the object are not entirely independent of previous loca-
tions. If there is a bias in the locations from which images are acquired, this will impair
the localization.

Extrinsically, this problem can be solved by planning for the robot to move and
obtain visual data in a way that provides a good distribution of viewpoints. If this is
not possible, intrinsic solutions involving changes to the algorithm itself might be made.
Possibilities include weighting of the grid increment based on the amount of sensor data
gathered from the current direction, or the creation of multiple grid layers for different
viewing directions. Either way would require increasing the amount of data stored.



Usage methods

The intended use for the accumulator grid is to allow a robot to obtain a notion of the
likely locations of objects, using low-cost visual procedures, typically as a by-product of
other activities such as exploration or more directed tasks that do not monopolize vision.
When a new task indicates a need for localization of a given object, the robot will process
its accumulator grid for that object, find the likeliest location, and proceed to investigate
it, typically using more advanced and expensive visual procedures.

In addition to its primary function of guiding navigation and visual attention, the ac-
cumulator grid could also be used for building statistical models of object class distribu-
tions in the environment, verbally conveying uncertain data to humans, or possibly per-
forming place classification. The algorithm should be easily usable for all these purposes
without requiring any major alterations to its current form.

6. Conclusion

This paper presents a novel method for consolidating noisy bearing-only visual data to
achieve object localization. The method uses an accumulator grid to update confidence
information through an algorithm that transforms the data from visual into map space.
Results are presented of feasibility testing in a realistic scenario as well as an extensive
evaluation in simulation. The results indicate that the method performs well in the face
of noisy measurements and promises to be useful as a way of obtaining and representing
the uncertain location of objects in a robot’s environment.
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