
by Linda G. Hayes

The Automated
Testing Handbook

The Automated Testing Handbook

The Automated Testing Handbook 1

About the Author 3

Introduction 3

Why automate? 4

When not to automate 8

How not to automate 9

Setting realistic expectations 10

Getting and keeping management commitment 15

Terminology 17

Fundamentals of Test Automation 19

Maintainability 20

Optimization 22

Independence 23

Modularity 25

Context 26

Synchronization 29

Documentation 30

The Test Framework 32

Common functions 32

Standard tests 37

Test templates 39

Application Map 41

Test Library Management 44

Change Control 44

Version Control 45

Configuration Management 46

Page 2 The Automated Testing Handbook

Selecting a Test Automation Approach 48

Capture/Playback 50
Structure 51
Advantages 52
Disadvantages 52
Comparison Considerations 55
Data Considerations 57

Data-Driven 58
Structure 60
Advantages 61
Disadvantages 62
Data Considerations 63

Table-Driven 64
Structure 65
Advantages 66
Disadvantages 69

The Test Automation Process 70

The Test Team 70

Test Automation Plan 73

Planning the Test Cycle 76

Test Suite Design 77

Test Cycle Design 79

Test Execution 81

Test log 81

Error log 84

Analyzing Results 85
Inaccurate results 85
Defect tracking 87

Test Metrics 88

Management Reporting 95

Historical trends 97

About the Author Page 3

About the Author

Linda G. Hayes is an accountant and tax lawyer who has founded three software

companies, including AutoTester - developer of the first PC-based test automation tool,

and Worksoft – developer of the next generation of test automation solutions.

She is an award-winning author and popular speaker on software quality. She has been

a columnist continuously since 1996 in publications including Computerworld ,

Datamation and StickyMinds and her work has been reprinted for universities and the

Auerbach Systems Handbook. She co-edited Dare to be Excellent with Alka Jarvis on

best practices and has published numerous articles on software development and

testing.

But most importantly she brings two decades of personal experience with thousands of

people and hundreds of companies that is distilled into practical advice.

Introduction

The risk of software failure has never been greater. The estimated annual economic

impact ranges from $60 billion for poor testing to $100 billion in lost revenues and

increased costs. Unfortunately, market pressure for the delivery of new functionality and

applications has also never been stronger. This combination creates increasing pressure

on software test organizations to improve test coverage while meeting ever-shorter

deadlines with static or even declining resources. The only practical means to achieving

quality goals within the constraints of schedules and budgets is to automate.

Page 4 The Automated Testing Handbook

Since software testing is a labor-intensive task, especially if done thoroughly, automation

sounds instantly appealing. But, as with anything, there is a cost associated with getting

the benefits. Automation isn’t always a good idea, and sometimes manual testing is out

of the question. The key is to know what the benefits and costs really are, then to make

an informed decision about what is best for your circumstances.

The unfortunate fact is that many test automation projects fail, even after significant

expenditures of time, money and resources. The goal of this book is to improve your

chances of being among the successful.

Why automate?

The need for speed is practically the mantra of the information age. Because

technology is now being used as a competitive weapon on the front lines of customer

interaction, delivery schedules are subject to market pressures. Late products can

lose revenue, customers, and market share. But economic pressures also demand

resource and cost reductions as well, leading many companies to adopt automation

to reduce time to market as well as cut testing budgets.

While it might be costly to be late to the market, it can be catastrophic to

deliver a defective product. Software failures can cost millions or even billions,

and in some cases entire companies have been lost. So if you don’t have

enough people or time to perform adequate testing to begin with, adding

automation will not reduce software instability and errors. Since it is well-

documented that software errors – even a single one – can cost millions more

than your entire testing budget, the first priority should be first to deliver

reliable software. Once that is achieved, then focus on optimizing the time and

costs. In other words, if your software doesn’t work, it doesn’t matter how fast

or cheap you deliver it.

Introduction Page 5

Automated delivers software tests provide three key benefits: cumulative coverage to

detect errors and reduce the cost of failure, repeatabililty to save time and reduce the

cost to market, and leverage to improve resource productivity.

But realize that the test cycle will be tight to begin with, so don’t count on automation to

shorten it - count on it to help you meet the deadline with a reliable product. By

increasing your coverage and thus reducing the probability of failure, automation can

help to avoid the costs of support and rework, as well as potentially devastating costs.

Cumulative

coverage

It is a fact that applications change and gain complexity over their

useful life. As depicted in the figure below, the feature set of an

application grows steadily over time. Therefore, the number of tests

that are needed for adequate coverage is also constantly increasing.

Just a 10% code change still requires that 100% of the features be

tested. That is why manual testing can’t keep up – unless you

constantly increase test resources and cycle time, your test coverage

will constantly decline. Automation can help this by allowing you to

accumulate your test cases over the life of the application so that

both existing and new features can always be tested.

Ironically, when test time is short, testers will often sacrifice

regression testing in favor of testing new features. The irony is that

Page 6 The Automated Testing Handbook

the greatest risk to the user is in the existing features, not the new

ones! If something the customer is already doing stops working – or

worse, starts doing the wrong thing – then you could halt operations.

The loss of a new feature may be inconvenient or even

embarrassing, but it is unlikely to be devastating.

But this benefit will be lost if the automated tests are not designed to

be maintainable as the application changes. If they either have to be

rewritten or require significant modifications to be reused, you will

keep starting over instead of building on prior efforts. Therefore, it is

essential to adopt an approach to test library design that supports

maintainability over the life of the application.

Leverage True leverage from automated tests comes not only from repeating a

test that was captured while performed manually, but from executing

tests that were never performed manually at all. For example, by

generating test cases programmatically, you could yield thousands or

more - when only hundreds might be possible with manual resources.

Enjoying this benefit requires the proper test case and script design

to allow you to take advantage of external data files and other

constructs.

Faster time to

market

Because software has become a competitive weapon, time to market

may be one of the key drivers for a project. In some cases, time is

worth more than money, especially if it means releasing a new

product or service that generates revenue.

Automation can help reduce time to market by allowing test execution

to happen 24X7. Once the test library is automated, execution is

faster and run longer than manual testing. Of course, this benefit is

only available once your tests are automated.

Reduced cost Software is used for high risk, mission critical applications that

Introduction Page 7

of failure represent revenue and productivity. A single failure could cost more

than the entire testing budget for the next century! In one case a

single bug resulted in costs of almost $2 billion. The national

department of standards and technology estimates the cost of

correcting defects at $59.5 billion a year, and USA Today claims a

$100 billion annual cost to the US economy.

Automation can reduce the cost of failure by allowing increased

coverage so that errors are uncovered before they have a chance to

do real damage in production.

Notice what was NOT listed as a benefit: reduced testing resources. The sad fact is that

most test teams are understaffed already, and it makes no sense to try to reduce an

already slim team. Instead, focus on getting a good job done with the time and resources

you have. In this Handbook we will present practical advice on how to realize these

benefits while keeping your expectations realistic and your management committed.

Page 8 The Automated Testing Handbook

When not to automate

The cornerstone of test automation is the premise that the expected application behavior

is known. When this is not the case, it is usually better not to automate.

Unstable

design

There are certain applications that are inherently unstable by design.

For example, a weather-mapping system or one that relies on real-

time data will not demonstrate sufficiently predictable results for

automation. Unless you have a simulator that can control the inputs,

automation will be difficult because the expected results are not

known

Also, if you can’t control the application test environment and data,

then automation will be almost impossible. The investment required

to develop and maintain the automated tests will not be offset by the

benefits, since repeatability will be doubtful.

If your application is highly configurable, for example, or has other

attributes that make its design variable, then either forget automation

or focus on implementing only selected configuration profiles.

Whatever you do, don’t try to reproduce all of the configurability of

the application into the test library, otherwise you will end up with

excessive complexity, high probability of test failure, and increased

maintenance costs.

Inexperienced

testers

If the person(s) automating the test are not sufficiently experienced

with the application to know the expected behavior, automating their

tests is also of doubtful value. Their tests may not accurately reflect

the correct behavior, causing later confusion and wasted effort.

Remember, an automated test is only as good as the person who

created it.

Introduction Page 9

If you have inexperienced testers who are new to the team, they

make the best manual testers because they will likely make the same

mistakes that users will. Save automation for the experts.

Temporary

testers

In other cases, the test team may be comprised primarily of

personnel from other areas, such as users or consultants, who will

not be involved over the long term. It is not at all uncommon to have

a “testfest” where other departments contribute to the test effort. But

because of the initial investment in training people to use the test

tools and follow your library design, and the short payback period of

their brief tenure, it is probably not time or cost effective to automate

with a temporary team. Again, let them provide manual test support

while permanent staff handles automation.

Insufficient

time,

resources

If you don’t have enough time or resources to get your testing done

manually in the short term, don’t expect a tool to help you. The initial

investment for planning, training and implementation will take more

time in the short term than the tool can save you. Get through the

current crisis, then look at automation for the longer term.

Keep in mind that automation is a strategic solution, not a short term

fix.

How not to automate

Whatever you do, do not simply distribute a testing tool among your testers and expect

them to automate the test process. Just as you would never automate accounting by

giving a program compiler to the accounting department, neither should you attempt to

automate testing by just turning a testing tool over to the test group.

It is important to realize that test automation tools are really just specialized

programming languages, and developing an automated test library is a development

project requiring commensurate skills.

Page 10 The Automated Testing Handbook

Automation is

more than

capture/replay

If you acquired a test tool with the idea that all you have to do is

record and playback the tests, you are due for disappointment.

Although it is the most commonly recognized technique,

capture/replay is not the most successful approach. As discussed in

a later chapter, Selecting an Automation Approach, capture and

replay does not result in a test library that is robust, maintainable or

transferable as changes occur.

Don’t write a

program to

test a

program!

The other extreme from capture/replay is pure programming. But if

you automate your tests by trying to write scripts that anticipate the

behavior of the underlying program and provide for each potential

response, you will essentially end up developing a mirror version of

the application under test! Where will it end? Who tests the tests?

Although appealing to some, this strategy is doomed - no one has the

time or resources to develop two complete systems.

Ironically, developing an automated test library that provides

comprehensive coverage would require more code than exists in the

application itself! This is because tests must account for positive,

negative, and otherwise invalid cases for each feature or function.

Automation is

more than test

execution

So if it isn’t capture/replay and it isn’t pure programming, what is it?

Think of it this way. You are going to build an application that

automates your testing, which is actually more than just running the

tests. You need a complete process and environment for creating

and documenting tests, managing and maintaining them, executing

them and reporting the results, as well as managing the test

environment. Just developing scores of individual tests does not

comprise a strategic test automation system.

Duplication of

effort

The problem is, if you just hand an automation tool out to individual

testers and command that they automate their tests, each one of

them will address all of these issues - in their own unique and

Introduction Page 11

personal way, of course. This leads to tremendous duplication of

effort and can cause conflict when the tests are combined, as they

must be.

Automation is

more than test

execution

So if it isn’t capture/replay and it isn’t pure programming, what is it?

Think of it this way. You are going to build an application that

automates your testing, which is actually more than just running the

tests. You need a complete process and environment for creating

and documenting tests, managing and maintaining them, executing

them and reporting the results, as well as managing the test

environment. Just developing scores of individual tests does not

comprise a strategic test automation system.

Need for a

framework

Instead, approach the automation of testing just as you would the

automation of any application - with an overall framework, and an

orderly division of the responsibilities. This framework should make

the test environment efficient to develop, manage and maintain. How

to develop a framework and select the best automation approach are

the focus of this handbook.

 Remember, test tools aren’t magic - but, properly

implemented, they can work wonders!

Setting realistic expectations

All too often, automated testing tools are expected to save the day by making up for too

little time, resources, or expertise. Unfortunately, when these expectations are inevitably

disappointed, automation or the tool itself gets a bad name. Before any effort can be

deemed a success, realistic expectations must be set up front.

Page 12 The Automated Testing Handbook

There are three important things to remember when setting expectations about test

automation: one, an initial as well as ongoing investment in planning, training and

development must be made before any benefits are possible; two, the time savings

come only when automated tests can be executed more than once, by more than one

person, and without undue maintenance requirements; three, no tool can compensate

for the lack of expertise in the test process.

Test

automation is

strategic

If your test process is in crisis and management wants to throw

money at a tool to fix it, don’t fall for it. Test automation is a long

term, strategic solution, not a short term band-aid. Buying a test tool

is like joining a health club: the only weight you have lost is in your

wallet! You must use the club, sweat it out and invest the time and

effort before you can get the benefits.

Use

consultants

wisely

Along the same lines, be wary about expecting outside consultants to

solve your problems. Although consultants can save you time by

bringing experience to bear, they are not in and of themselves a

solution. Think of consultants as you would a personal trainer: they

are there to guide you through your exercises, not to do them for you!

Paying someone else to do your situps for you will not flatten your

stomach.

Here’s a good rule of thumb to follow when setting expectations for a

test tool. Calculate what your existing manual test iteration requires,

then multiply by (5) five for a text-based user interface and (10) ten

for a GUI, then add on the time scheduled for training and planning.

GUI interfaces have inherently more complexity than text interfaces.

This will approximate the time it will take to properly automate your

manual tests. So, if it takes you two weeks to execute one iteration

of tests manually, plan for ten to twenty weeks after training and

planning are complete to get through your first automated iteration.

From there on out, though, you can cut each iteration in half or more.

Naturally, these are only approximations and your results may be

Introduction Page 13

different. For intensive manual test processes of stable applications,

you may see an even faster payback.

Not everything

can be

automated

But remember, you must still allow time for tasks that can’t be

automated - you will still need to gather test requirements, define test

cases, maintain your test library, administer the test environment,

and review and analyze the test results. On an ongoing basis you

will also need time to add new test cases based on enhancements or

defects, so that your coverage can constantly be improving.

Accept

gradual

progress

If you can’t afford the time in the short term, then do your automation

gradually. Target those areas where you will get the biggest payback

first, then reinvest the time savings in additional areas until you get it

all automated. Some progress is better than none!

Plan to keep

staff

As pointed out earlier, don't plan to jettison the majority of your

testing staff just because you have a tool. In most cases, you don’t

have enough testers to begin with: automation can help the staff you

have be more productive, but it can’t work miracles. Granted, you

may be able to reduce your dependence on temporary assistance

from other departments or from contractors, but justifying testing

tools based on reducing staffing requirements is risky, and it misses

the point.

The primary goal of automation should be to increase test

coverage, not to cut testing costs. A single failure in some

systems can cost more than the entire testing budget for the next

millennia. The goal is not to trim an already slim testing staff, it is to

reduce the risk and cost of software failure by expanding coverage.

Page 14 The Automated Testing Handbook

Reinvest time

savings

As your test automation starts to reap returns in the form of time

savings, don’t automatically start shaving the schedule. The odds

are that there are other types of tests that you never had time for

before, such as configuration and stress testing. If you can free up

room in the schedule, look for ways to test at high volumes of users

and transactions, or consider testing different platform configurations.

Testing is never over!

When setting expectations, ask yourself this question: Am I satisfied

with everything about our existing test process, except for the amount

of time it takes to perform manually? If the answer is yes, then

automation will probably deliver like a dream. But if the answer is no,

then realize that while automation can offer great improvements, it is

not a panacea for all quality and testing problems.

The most important thing to remember about setting expectations is that you will be

measured by them. If you promise management that a testing tool will cut your testing

costs in half, yet you only succeed in saving a fourth, you will have failed! So take a

more conservative approach: be up front about the initial investment that is required, and

offer cautious estimates about future savings. In many cases, management can be

satisfied with far less than you might be.

For example, even if you only break even between the cost to automate and the related

savings in direct costs, if you can show increased test coverage then there will be a

savings in indirect costs as a result of improved quality. In many companies, better

quality is more important than lower testing costs, because of the savings in other areas:

failures can impact revenues, drive up support and development costs, and reduce

customer confidence.

Introduction Page 15

Getting and keeping management commitment

There are three types of management commitment needed for successful test

automation: money, time and resources. And it is just as important to keep commitment

as it is to get it in the first place! Keep in mind that test automation is a project that will

continue for the life of the application under test.

Commit

money

Acquiring a test automation tool involves spending money for

software, training and perhaps consulting. It is easier to get money

allocated all at once instead of piece meal, so be careful not to buy

the software first then decide later you need training or additional

services. Although the tool itself may be advertised as “easy to use”,

this is different from “easy to implement”. A hammer is easy to

swing, but carpentry takes skill.

Do a pilot Just because the money is allocated all at once, don’t spend it that

way! If this is your first time to automate, do a small pilot project to

test your assumptions and prove the concept. Ideally, a pilot should

involve a representative subset of your application and have a narrow

enough scope that it can be completed in 2-4 weeks.

Take the time to carefully document the resource investment during

the pilot as well as the benefits, as these results can be used to

estimate a larger implementation. Since you can be sure you don’t

know what you don’t know, it is better to learn your lessons on a

small scale. You don’t learn to drive on a freeway!

Commit time All too often tools are purchased with the expectation that the

acquisition itself achieves automation, so disappointment sets in

when results aren’t promptly forthcoming. It is essential to educate

management about the amount of time it takes to realize the benefits,

but be careful about estimating the required time based on marketing

Page 16 The Automated Testing Handbook

literature: every organization and application is different.

A pilot project can establish a sound basis for projecting a full scale

rollout.

When you ask for time, be clear about what will be accomplished and

how it will be measured.

Commit

resources

Remember that even though test automation saves resources in the

long run, in the short term it will require more than a manual process.

Make sure management understands this, or you may find yourself

with a tool and no one to implement it.

Also be sure to commit the right type of resources. As further

described in the Test Team section of this Handbook, you will need a

mix of skills that may or may not be part of your existing test group.

Don’t imagine that having a tool means you can get by with less skill

or experience: the truth is exactly the opposite.

Track

progress

Even though benefits most likely won’t be realized for several

months, it is important to show incremental progress on a regular

basis - monthly at the least. Progress can be measured in a number

of ways: team members trained on the tool, development of the test

plan, test requirements identified, test cases created, test cases

executed, defects uncovered, and so forth.

Identify the activities associated with your test plan, track them and

report them to management regularly. Nothing is more disconcerting

than to wait for weeks or months with no word at all. Also, if you run

up against obstacles, it is critical to let management know right away.

Get bad news out as early as possible and good news out as soon as

you can back it up.

Introduction Page 17

Adjust as you

go

If one of your assumptions changes, adjust the schedule and

expectations accordingly and let management know right away. For

example, if the application is not ready when expected, or if you lose

resources, recast your original estimates and inform everyone

concerned. Don’t wait until you are going to be late to start

explaining why. No one likes surprises!

Plan for the

long term

Be sure to keep focus on the fact that the test automation project will

last as long as the application under test is being maintained.

Achieving automation is not a sprint, it is a long distance run. Just as

you are never through developing an application that is being actively

used, the same applies to the test library.

In order for management to manage, they must know where things stand and what to

expect. By letting them know up front what is needed, then keeping them informed

every step of the way, you can get their commitment and keep it.

Terminology

Throughout this Handbook we will be investing certain terms with specific meanings.

Requirement A required feature or function of the application under test. A

business requirement is a statement of function that is necessary for

the application to meet its intended use by the customer: the “what”

of the system. A design feature is an attribute of the way in which the

functions are actually implemented: the “how” of the system. A

performance requirement spells out the volume and speed of the

application, such as the maximum acceptable response or

processing time and the highest number of simultaneous users.

Test This term will be used to describe the combination of a test case and

a test script, as defined below.

Page 18 The Automated Testing Handbook

Test Case A test case is a set of inputs and expected application response that

will confirm that a requirement has been met. Depending on the

automation approach adopted, a test case may be stored as one or

more data records, or may be stored within a test script.

Test Script A test script is a series of commands or events stored in a script

language file that execute a test case and report the results. Like a

program, a test script may contain logical decisions that affect the

execution of the script, creating multiple possible pathways. Also,

depending on the automation approach adopted, it may contain

constant values or variables whose values change during playback.

The automation approach will also dictate the degree of technical

proficiency required to develop the test script.

Test Cycle A test cycle is a set of individual tests that are executed as a

package, in a particular sequence. Cycles are usually related to

application operating cycles, or by the area of the application they

exercise, or by their priority or content. For example, you may have a

build verification cycle that is used to establish acceptance of a new

software build, as well as a regression cycle to assure that previous

functionality has not been disrupted be changes or new features.

Test Schedule A test schedule consists of a series of test cycles and comprises a

complete execution set, from the initial setup of the test environment

through reporting and cleanup.

Fundamentals of Test Automation Page 19

Fundamentals of Test Automation

It is a mistake to assume that test automation is simply the capture and replay of a

manual test process. In fact, automation is fundamentally different from manual testing:

there are completely different issues and opportunities. And, even the best automation

will never completely replace manual testing, because automation is about predictability

and users are inherently unpredictable. So, use automation to verify what you expect,

and use manual testing for what you don’t.

So, your chances of success with automation will improve if you understand the

fundamentals of test automation.

Test process

must be well-

defined

A key consideration is that you cannot automate a process that is not

already well-defined. A fully manual process may not have the

formality or documentation necessary to support a well-designed

automation library. However, defining a complete test process is

outside the scope of this handbook; entire books have been written

about software testing. For our purposes, we will assume that you

know what needs to be tested.

Testware is

software

But even when the test process is reasonably well-defined,

automation is still a challenge. The purpose of this handbook is to

bridge the gap between what should be tested and how it should be

automated. This begins by laying out certain fundamental principles

that apply which must be understood before success is possible. All

of these principles can be summarized in one basic premise:

testware is software!

Test

automation is

two different

As odd as it sounds, test automation is really two different things.

There is testing, which is one discipline, and automation, which is

another. Automating software testing is no different than automating

Page 20 The Automated Testing Handbook

disciplines accounting or any other business function: in each case, a computer

is being instructed to perform a task previously performed manually.

Whether these instructions are stored in something called a script or

a program, they both have all of the characteristics of source code.

Test Automation

 Application expertise Development expertise

 What to test How to automate

 Test Cases Test scripts

The fact that testware is software is the single most important concept to grasp! Once

this premise is understood, others follow.

Maintainability

Just as application software must be designed in order to be maintainable over its useful

life, so must your automated tests.

Applications

are maintained

continuously

One reason maintainability is so important is that without it you

cannot accumulate tests. On average, 25% of an application is

rewritten each year; if the tests associated with the modified portions

cannot be changed with a reasonable amount of effort, then they will

be obsolete. Therefore, instead of gradually improving your test

coverage over time by accumulating more and more test cases, you

will be discarding and recreating tests instead. Since each new

version of the application most likely has increasing functionality, you

will be lucky to stay even!

Changes must

be known in

advance

It is also important to know where and how to make changes to the

test library in advance. Watching tests execute in hopes of finding

application changes in the form of errors is not only extremely

inefficient, it brings the validity of test results and metrics into

question. A failed test may in fact be a correct result! If a person

must watch the test to determine the results, then the test is not truly

Fundamentals of Test Automation Page 21

automated.

In most cases, the application source code will be managed by a

source control or configuration management system. These systems

maintain detailed change logs that document areas of change to the

source code. If you can’t get information directly from development

about changes to the application, ask to be copied on the change log.

This will at least give you an early warning that changes are coming

your way and which modules are affected.

Cross-

reference tests

to the

application

Identifying needed changes is accomplished by cross-referencing

testware components to the application under test, using consistent

naming standards and conventions. For example, by using a

consistent name for the same window throughout the test library,

when it changes each test case and test script which refers to it can

be easily located and evaluated for potential modifications. These

names and their usage is is described more fully in the section on the

Application Map.

Design to

avoid

regression

Maintainability is achieved not only by assuring that changes can be

easily identified and made, but also that they do not have an

unexpected impact on other areas. Unexpected impact can occur as

a consequence of poor test design or implementation. For example,

a test script that selects an item from a list box based on its relative

position in the list is subject to failing if the order or number of items

in the list changes. In this case, a maintainable test script would be

designed to enter the selected item or select it based on its text

value. This type of capability may be limited by your test tool; if you

are evaluating tools, look for commands that use object-based

commands (“select list box item XYZ”) instead of coordinate-based

events (click window @ 451,687).

Page 22 The Automated Testing Handbook

Maintainability can be designed into your test cases and scripts by adopting and

adhering to an overall test framework, discussed in the next section.

Optimization

When designing your tests, remember that more is not always better. The more tests

you have, the more time it will take to develop, execute and maintain them. Optimization

is important to be sure you have enough tests to do the job without having too many to

manage.

One test, one

requirement

Well-designed tests should not roam across the entire application,

accessing a wide variety of areas and functions. Ideally, each test

should be designed to map to a specific business or design

requirement, or to a previously reported defect. This allows tests to

be executed selectively when needed; for example, to confirm

whether a defect has been corrected.

Having no

requirements

is no excuse

If you don’t have formally defined requirements, derive them from the

tests you are going to perform instead of the other way around, but

don’t just ignore them altogether. Examine your tests and decide

what feature or function this test verifies, then state this as a

requirement. This is important because you must know what test

cases are affected if an application requirement changes; it is simply

not practical to review every test case to see whether it remains valid.

Understanding

test results

Another reason to specify as precisely as possible what each test

case covers is that, if the test case fails, it reduces the level of

diagnostics required to understand the error. A lengthy, involved test

case that covers multiple features or functions may fail for any

number of reasons; the time it takes to analyze a failure is directly

related to the complexity of the test case itself. A crisp tie-in between

requirements and test cases will quickly indicate the type and

severity of the failure.

Fundamentals of Test Automation Page 23

Requirements

measure

readiness

Once you have them, requirements can be assigned priorities and

used to measure readiness for release. Having requirements tied to

tests also reduces confusion about which requirements have been

satisfied or failed based on the results of the test, thus simplifying the

test and error log reports. Unless you know what requirements have

been proven, you don't really know whether the application is suitable

for release.

A requirements matrix is a handy way of keeping track of which

requirements have an associated test. A requirement that has too

many tests may be too broadly defined, and should be broken down

into separate instances, or it may simply have more tests than are

needed to get the job done. Conversely, a test that is associated

with too many requirements may be too complex and should be

broken down into smaller, separate tests that are more targeted to

specific requirements.

There are tools available that will generate test cases based on your requirements.

There are two primary approaches: one that is based on addressing all possible

combinations, and one that is based on addressing the minimum possible combinations.

Using the former method, requirements are easier to define because interdependencies

are not as critical, but the number of tests generated is greater. The latter method

produces fewer tests, but requires a more sophisticated means of defining requirements

so that relationships among them are stated with the mathematical precision needed to

optimize the number of tests.

Independence

Page 24 The Automated Testing Handbook

Independence refers to the degree to which each test case stands alone. That is, does

the success or failure of one test case depend on another, and if so what is the impact of

the sequence of execution? This is an issue because it may be necessary or desirable

to execute less than all of the test cases within a given execution cycle; if dependencies

exist, then planning the order of execution becomes more complex.

Independent

data

Independence is most easily accomplished if each test case verifies

at least one feature or function by itself and without reference to other

tests. This can be a problem where the state of the data is key to the

test. For example, a test case that exercises the delete capability of a

record in a file should not depend on a previous test case that

creates the record; otherwise, if the previous test is not executed, or

fails to execute properly, then the later test will also fail because the

record will not be available for deletion. In this case, either the

beginning state of the database should contain the necessary record,

or the test that deletes the record should first add it.

Independent

context

Independence is also needed where application context is

concerned. For example, one test is expected to commence at a

particular location, but it relies on a previous test to navigate through

the application to that point.

Again, if the first test is not successfully executed, the second test

could fail for the wrong reason. Your test framework should give

consideration to selecting common entry and exit points to areas of

the application. and assuring that related tests begin and end at one

of them.

Result

independence

It is also risky for one test case to depend on the successful result of

another. For example, a test case that does not expect an error

message should provide assurance that, in fact, no message was

issued. If one is found, steps should be added to clear the message.

Otherwise, the next test case may expect the application to be ready

for input when in fact it is in an error status.

Fundamentals of Test Automation Page 25

If proper attention is paid to independence, the test execution cycle will be greatly

simplified. In those cases where total independence is not possible or desirable, then be

certain that the dependencies are well documented; the sequence, for example, might

be incorporated into the naming conventions for test cases (ADD RECORD 01,ADD

RECORD 02, etc.).

Modularity

Modularity in this context refers to test scripts, whereas independence refers to test

cases. Given that your test library will include a number of scripts that together make up

an automated test environment, modularity means scripts that can be efficiently

assembled to produce a unified system without redundancy or omission.

Tie script

design to

application

design

Ideally, the test scripts should be comprised of modules that

correspond to the structure of the application itself, so that when a

change is made to the application, script changes are as localized as

possible. Depending on the automation approach selected, this may

require separate scripts for each window, for example, or for each

type of method of interacting with a control.

But modularity should not be taken to an extreme: scripts should not

be broken down so minutely that they lose all individual meaning.

This will raise the same issues that lengthy, convoluted scripts do:

where should changes be made?

Identify

common

scripts

Modularity also means that common functions needed by all tests

should not be duplicated within each individual script; instead, they

should be shared as part of the overall test environment. Suggested

common routines are described further in the Test Framework

chapter.

Page 26 The Automated Testing Handbook

Context

As described earlier, context refers to the state of the application during test playback.

Because an automated test is executing at the same time the application is, it is critical

that they remain synchronized. Synchronization takes two forms: one, assuring that the

application is in fact located at the point where the test expects to be, and two, assuring

the test does not run ahead of the application while it is waiting or processing. We will

cover the second type in the next section, Synchronization.

Context

controls

results

Because tests are performing inputs and verifying outputs, it is

imperative that the inputs be applied at the proper location in the

application, and that the outputs appear where expected. Otherwise,

the test will report an incorrect result. Also, when multiple tests run

one after the other, the result from one test can affect the next. If one

test begins at the main menu and ends at a sub-menu, the following

test must either expect to begin at the sub-menu or risk failure.

Similarly, if a test which expects to complete at the main menu

instead fails and aborts within a window, the next test will most likely

begin out of context.

Fundamentals of Test Automation Page 27

The Main

menu

approach

The simplest solution to beginning and ending context is to design all

tests to begin and end at the same point in the application. This point

must be one from which any area of the application can be accessed.

In most cases, this will be the main menu or SIGNON area. By

designing every test so that it commences at this point and ends

there, tests can be executed in any order without considering context.

Enabling error

recovery

Adopting a standard starting and ending context also simplifies

recovery from unexpected results. A test which fails can, after

logging its error, call a common recovery function to return context to

the proper location so that the next test can be executed. Granted,

some applications are so complex that a single point of context may

make each individual test too long; in these cases, you may adopt

several, such as sub-menus or other intermediate points. But be

aware that your recovery function will become more complex, as it

must have sufficient logic to know which context is appropriate.

Designing test suites, or combinations of tests, will also be more

complex as consideration must be given to grouping tests which

share common contexts.

Page 28 The Automated Testing Handbook

The key to context is to remember that your automated tests do not have the advantage

that you have as a manual tester: they cannot make judgment calls about what to do

next. Without consistency or logic to guide them, automated tests are susceptible to the

slightest aberration. By proper test design, you can minimize the impact of one failed

test on others, and simplify the considerations when combining tests into suites and

cycles for execution.

Fundamentals of Test Automation Page 29

Synchronization

Synchronization between the test and the application requires that they execute at the

same rate. Because different conditions may exist at the time of playback than existed

when the test was created, precise timing coincidence may not be possible. For

example, if heavier system traffic increases processing time, the application may

respond more slowly than it did previously. If the test does not have a means for

compensating for fluctuating application speed, it may fail a test if the result does not

appear in the time frame expected, or it may issue input when the application is not

ready to receive it.

Synchronization is complicated when there are multiple platforms involved. Methods for

synchronizing with a local application are different from those for synchronizing with a

remote host or network server. But in any case, synchronization can affect the result of

your automated tests and must be accounted for.

Global

indicators

Some test tools compensate for local synchronization by waiting for

the application to cease processing. In Windows applications, for

example, this may take the form of waiting while the hourglass cursor

is being displayed. In other cases, this may require that the tool

check to see that all application activity has ceased. Unfortunately,

neither method is infallible. Not all applications use the hourglass

cursor consistently, and some conduct constant polling activities

which never indicate a steady state. Verify your tool’s

synchronization ability against a subset of your application under

varying circumstances before developing large volumes of tests that

may later require rework.

Local

indicators

Other tools automatically insert wait states between windows or even

controls, causing the test script to suspend playback until the proper

window or control is displayed. This method is more reliable, as it

does not rely on global behavior that may not be consistent.

Page 30 The Automated Testing Handbook

However, this approach also requires that some form of timeout

processing be available; otherwise, a failed response may cause

playback to suspend indefinitely.

Remote

indicators

When a remote host or network server is involved, there is yet

another dimension of synchronization. For example, the local

application may send a data request to the host; while it is waiting,

the application is not “busy”, thus risking the indication that it has

completed its response or is ready for input. In this case, the tool

may provide for protocol-specific drivers, such as IBM 3270 or 5250

emulation, which monitor the host status directly through HLLAPI

(high level language application program interface). If your tool does

not provide this, you may have to modify your scripts to detect

application readiness through more specific means, such as waiting

for data to appear.

Synchronization is one of the issues that is unique to automated testing. A person

performing a manual test instinctively waits for the application to respond or become

ready before proceeding ahead. With automated tests, you need techniques to make

this decision so that they are consistent across a wide variety of situations.

Documentation

Documentation of the testware means that, in a crunch, the test library could be

executed manually. This may take the form of extensive comments sprinkled throughout

the test cases or scripts, or of narrative descriptions stored either within the tests or in

separate documentation files. Based on the automation approach selected, the form

and location of the documentation may vary.

Fundamentals of Test Automation Page 31

Document for

transferability

It may not be evident from reading an undocumented

capture/playback script, for example, that a new window is expected

to appear at a certain point; the script may simply indicate that a

mouse click is performed at a certain location. Only the person who

created the script will know what was expected; anyone else

attempting to execute the script may not understand what went

wrong if the window does not appear and subsequent actions are out

of context. So, without adequate documentation, transferability from

one tester to another is limited.

Mystery tests

accumulate

Ironically, mystery tests tend to accumulate: if you don’t know what a

test script does or why, you will be reticent to delete it! This leads to

large volumes of tests that aren’t used, but nevertheless require

storage, management and maintenance. Always provide enough

documentation to tell what the test is expected to do.

More is better Unlike some test library elements, the more documentation, the

better! Assume as little knowledge as possible, and provide as much

information as you can think of.

Document in

context

The best documentation is inside the test itself, in the form of

comments or description, so that it follows the test and explains it in

context. Even during capture/playback recording, some test tools

allow comments to be inserted. If this option is not available, then

add documentation to test data files or even just on paper.

Page 32 The Automated Testing Handbook

The Test Framework

The test framework is like an application architecture: it outlines the overall structure for

the automated test environment, defines common functions, standard tests, provides

templates for test structure, and spells out the ground rules for how tests are named,

documented and managed, leading to a maintainable and transferable test library.

The need for a well-defined and designed test framework is especially great in testing.

For an application, you can at least assume that the developer has a basic

understanding of software design and development principles, but for automated tests

the odds are high that the tester does not have a technical background and is not aware

of, much less well-versed in, structured development techniques.

The test framework presented in this chapter can be applied to any of the automation

approaches described in this Handbook. The only difference between one approach

and another is in how the individual test cases and scripts are structured. By adopting a

framework, you can enjoy the efficiency that comes from sharing common functions, and

the effectiveness that standard tests and templates provide.

Common functions

Common functions are those routines which automate tasks that are shared throughout

the entire test library. Some functions may be shared by all tests, such as routines

which recover from unexpected errors, log results and other similar tasks. These

functions should usually be structured as subroutines, which means that they can be

called from any point and return to the next step after the one which called them.

The Test Framework Page 33

Other types of common functions are utility scripts: for example, refreshing the database

or populating it with a known set of records, deleting temporary work files, or otherwise

managing the test environment. Clearly defining and sharing these routines will reduce

and simplify testware development and maintenance. These scripts should be

structured so that they can be executed stand-alone, or linked together sequentially as

part of an integrated test cycle.

Page 34 The Automated Testing Handbook

Following are suggested common functions:

SETUP The SETUP function prepares the test environment for execution. It

is executed at the beginning of each test cycle in order to verify that

the proper configuration is present, the correct application version is

installed, all necessary files are available, and all temporary or work

files are deleted. It may also perform housekeeping tasks, such as

making backups of permanent files so that later recovery is possible

in the event of a failure that corrupts the environment. If necessary, it

may also intialize data values, or even invoke sorts that improve

database performance. Basically, SETUP means what it says: it

performs the setup of the test environment. It should be designed to

start and end at a known point, such as the program manager or the

command prompt.

SIGNON The SIGNON function loads the application and assures that it is

available for execution. It may provide for the prompting of the user

ID and password necessary to access the application from the point

at which the SETUP routine ends, then operate the application to

another known point, such as the main menu area. It may also be

used to start the timer in order to measure the entire duration of the

test cycle. SIGNON should be executed after SETUP at the

beginning of each test execution cycle, but it may also be called as

part of a recovery sequence in the event a test failure requires that

the application be terminated and restarted.

DRIVER The DRIVER function is one which calls a series of tests together as

a suite or cycle. Some test tools provide this capability, but if yours

does not you should plan to develop this function. Ideally, this

function relies upon a data file or other means of storing the list of

tests to be executed and their sequence; if not, there may be a

separately developed and named DRIVER function for each test

suite.

The Test Framework Page 35

Remember if you are using a DRIVER to design each individual test

to return to the DRIVER function when it ends, so that the next test

can be called.

MONITOR The MONITOR function may be called after each transaction is

submitted, or at other regular intervals, in order to check the status of

the system. For host-based applications, this may be the status line;

for networked applications, this may be the area in which system

messages are broadcast. The purpose of this script is to check for

asynchronous messages or events - those which are not expected

but which may nevertheless occur. Because result comparison is

usually based on what is expected, some manner of checking for the

unexpected is necessary; otherwise, host or network failures or

warnings may go undetected.

RECOVER The RECOVER function is most often called by the LOGERROR

function, but in fact may be called by any script that loses context

during playback. Instead of simply aborting test execution altogether,

or blindly continuing to execute and generating even more errors, a

routine like RECOVER can be used to attempt to restore context to a

known location so that subsequent tests in the suite can be executed.

This may include navigating through the application to reach a

predefined point, such as the main menu, or terminating the

application and restarting it. In the latter event, the RECOVER

routine may also call the SIGNON script to reload the application.

For instances where the steps to recover are not standard throughout

the application and human intervention is needed, it may be helpful to

insert an audible alarm of some type, or to halt playback and display

a message, that alerts the test operator that assistance is needed.

If correctly designed, this intervention can be provided without

interfering with continuation of the test cycle. For example, the

displayed message might instruct the operator to suspend playback,

Page 36 The Automated Testing Handbook

return context to a particular window, then resume.

SIGNOFF The SIGNOFF routine is the sibling script to SIGNON. It terminates

the application and returns the system to a known point, such as the

program manager or command prompt. It should be used at the end

of the last test suite, before other shared routines such as CLEANUP

are executed. SIGNOFF may also stop the test cycle timer, thus

providing a measure of how long the entire cycle required for

execution.

LOGTEST The LOGTEST function is called at the end of each test case or script

in order to log the results for the component just executed. This

routine may report not only pass/fail status, but also elapsed time and

other measurements. Results may be written to a text file, to the

clipboard, or any other medium that can be later used to derive

reports. A test logging function may already be integrated into your

test tool; if not, develop a function to provide it.

LOGERROR The LOGERROR function is called by any test that fails. Its primary

purpose is to collect as much information as possible about the state

of the application at the time of the error, such as the actual context

versus expected; more sophisticated versions may invoke stack or

memory dumps for later diagnostics. A secondary purpose may be

to call the RECOVER function, so that context can be restored for the

next test.

CLEANUP The CLEANUP function is the sibling script to SETUP. It begins at a

selected point, such as the program manager or command prompt,

and it does what its name implies: it cleans up the test environment.

This may include deleting temporary or work files, making backups of

result files, and otherwise assuring that the test environment does not

accumulate any detritus left behind by the test execution process. A

properly designed CLEANUP routine will keep your test environment

The Test Framework Page 37

organized and efficient.

By designing your test framework to include common functions, you can prevent the

redundancy that arises when each individual tester attempts to address the same

issues. You can also promote the consistency and structure that provides

maintainability.

Standard tests

The concept of common functions can be extended even further when you consider

standard tests. A common function is shared among tests; a standard test is shared

among test suites, cycles or even applications. Certain types of standard tests might

also be shared with the development or production support groups.

For example, each test library might include a standard test that performs a complete

walkthrough of the application, down each menu branch and through each window and

control. Although this type of test could be shared by all testers, it need not be

developed by all of them. These tests should be structured just as any other test, so that

they can be executed stand-alone or as part of a complete test suite.

Page 38 The Automated Testing Handbook

WALKTHRU As described above, the WALKTHRU standard test navigates

through the application, assuring that each menu item, window and

control is present and in the expected default state. It is useful to

establish that a working copy of the application has been installed

and that there are no major obstacles to executing functional tests.

Each test execution cycle can take advantage of this standard test in

order to assure that fatal operational errors are uncovered before

time and effort are expended with more detailed tests. This type of

test could be executed by the development group after the system

build, before the application is delivered for testing, or by the

production support group after the application has been promoted

into the production environment.

STANDARDS The STANDARDS test is one which verifies that application design

standards are met for a given component. While the WALKTHRU

test assure that every menu item, window and control is present and

accounted for, the STANDARDS test verifies that previously agreed

upon standards have been satisfied.

The Test Framework Page 39

For example, it may be a design criteria that every window have a

maximize and minimize button, vertical and horizontal scroll bars,

and both an OK and CANCEL push button. It might also verify

standard key behaviors, such as using the ESC key to cancel. This

type of test could be executed by developers against each individual

window as part of the unit test phase.

TESTHELP The TESTHELP standard test, like the STANDARDS test, is one

which might be useful on every screen or window. It assures that the

help function is available at all points in the application. Depending

on whether the help function is context-sensitive or not, this test may

require additional logic to verify the correct response. If your

application has similar functionality that is common to multiple areas

of the application, you may consider developing standard tests

specific to those functions.

It is well worth the time to think through the particulars of testing your application in order

to identify those tests that are widely applicable. By developing as many common and

standard functions and tests as possible, you can streamline and standardize your test

library development.

Test templates

A test template provides the structure for the development of individual tests. It may be

used to speed development by allowing a single format to be quickly copied and filled in,

saving time for new tests and promoting consistency. Although naming conventions for

tests and their contents are important, and are more fully described in the next section

on the Application Map, it is also important that each individual test follow a common

structure so that it can be easily linked into the test framework.

Page 40 The Automated Testing Handbook

For example, tests which are expected to be called as subroutines and shared with other

tests must be developed in order to permit a return to the calling test; likewise, tests

which are to be executed from a driver or other control mechanism must be capable of

returning control when they are completed. The precise means of accomplishing this will

vary with each automation approach, and is discussed in the related section for each

approach.

However, some elements of structure are common to all approaches.

HEADER Just as a document has a Header section that describes important

information about its contents, a test case or script should contain an

area that stores key data about the test. Depending on the tool and

approach selected, this information may be found within the test

script, the data file, or on paper. The Header is designed to provide

later testers with enough information about the test to execute or

modify it.

NEXT The NEXT area is used for those tests that rely on external files, and

it indicates the point at which the next record is read from the file. It is

used as a branch point within the test after processing is complete for

a single record.

END At the end of each test there should be an ending area, which is the

last section to be executed before the test terminates. For tests that

read external files, this may be the branch point for an end-of-file

condition. In most cases, this area would provide for the test to be

logged, such as by calling the LOGTEST routine. For subroutine

scripts or tests that are shared by other routines, this area would

include the command(s) necessary to return control to the calling

script, such as RESUME. For scripts that are executed stand-alone,

this might simply say STOP.

The Test Framework Page 41

Test Case Header

Application: General Ledger 5.1.1 Test Case ID: 112-0000

Date Created: 01/01/2X By: Teresa Tester

Last Updated: 01/11/2X By: Lucinda Librarian

--

Test Description:

This test case deletes an existing chart of accounts record that has a

zero balance. The script DELETE_ACCTS is used to apply the test case.

--

Inputs:

This test case begins at the Account Number edit control; the account

number 112 and sub-account number 0000 are entered, then the OK button

is clicked.

--

Outputs:

The above referenced account is retrieved and displayed. Click DELETE

button. The message “Account Deleted” appears. All fields are cleared

and focus returns to Account Number field.

--

Special requirements:

The security level for the initial SIGNON to the general ledger system

must permit additions and deletions.

--

Dependencies:

Test Case 112-0000 should be executed by the ADD_ACCTS script first so

that the record will exist for deletion. Otherwise, the completed

chart of accounts file ALL_ACCTS should be loaded into the database

before execution.

Application Map

Similar to a data dictionary for an application, the Application Map names and describes

the elements that comprise the application and provides the terminology used to tie the

tests to the application. Depending on the type of automation approach you adopt,

these elements may include the components that comprise the user interface of the

application, such as windows, dialog boxes and data elements or controls.

Page 42 The Automated Testing Handbook

Test

Vocabulary

Think of your Application Map as defining the “vocabulary” of your

automated tests. This vocabulary spells out what words can be used

in the test library to refer to the application and what they mean.

Assuring that everyone who contributes to the test process uses the

same terminology will not only simplify test development, it will

assure that all of the tests can be combined into a central test library

without conflict or confusion.

Naming

Conventions

In order to develop a consistent vocabulary, naming conventions are

needed. A naming convention simply defines the rules by which

names are assigned to elements of the application. The length and

format of the names may be constrained by the operating system

and/or test automation tool. In some cases, application elements will

be identified as variables in the test script; therefore, the means by

which variables are named by the tool may affect your naming

conventions. Also, test scripts will be stored as individual files whose

names must conform to the operating system’s conventions for file

names.

Cross-

reference

names to

application

Because your tests must ultimately be executed against the

application, and the application will inevitably change over time, it is

crucial that your tests are cross-referenced to the application

elements they impact. By using consistent names for windows, fields

and other objects, a change in the application can be quickly cross-

referenced to the potentially affected test cases through a search for

the name(s) of the modified elements.

The Test Framework Page 43

Following is an excerpt from the Application Map for the sample general ledger system;

the Data-Driven approach is assumed.

Object Names

Conventions:

Sub-menus are named within the higher level menu; windows are named

within their parent menus. Controls are named within their parent

window. Data files are named by the script file that applies them;

script files are named by the parent window.

Name Description Object Type Parent

CHT_ACCTS Chart of accounts Window CHT_MENU

CHT_ACCTS Text file .TXT CHT_ACCTS

CHT_ACCTS Script file .SLF CHT_ACCTS

ACCTNO Account number Edit control CHT_ACCTS

SUBACCT Sub account number Edit control CHT_ACCTS

ACCTDESC Account description Edit control CHT_ACCTS

STMTTYPE Statement type Radio button CHT_ACCTS

ACCTTYPE Account type List box CHT_ACCTS

HEADER Header Check box CHT_ACCTS

MESSAGE Message Information box CHT_ACCTS

OK Accept record Push button CHT_ACCTS

CANCEL Cancel record Push button CHT_ACCTS

Page 44 The Automated Testing Handbook

Test Library Management

Just as an application source library will get out of control if changes and different

versions are not managed, so will the test library eventually become useless if it is not

managed properly. Regardless of how many testers are involved, there must be a

central repository of all test scripts, data and related information that can be effectively

managed over time and turnover. Individual, uncoordinated test libraries have no long

term value to the organization; they are only as good - and around only as long - as the

person who created them.

Test library management includes change control, to assure that changes are made only

by authorized persons, are documented, and are not made concurrently to different

copies so that overwriting occurs; version control, to assure that tests for different

versions of the same application are kept segregated; and configuration management to

account for any changes to the test environment.

Change Control

Change control refers to the orderly process of introducing change to the test library.

Documenta-

tion is key

Changes may take the form of new tests being added or existing

tests being modified or deleted. It is important to not only know that a

change was made, but who made it, when and why. Documentation

of the nature of the change to an existing module should ideally

include a delta file, which contains the differences between the old

module and the new one. At a minimum, an explanation should be

provided of what was changed and where.

Test Library Management Page 45

Change log The test librarian should manage the change control process,

keeping either a written or electronic log of all changes to the test

library. This change log should list each module affected by the

change, the nature of the change, the person responsible, the date

and time. Regular backups of the test library are critical, so that

unintended or erroneous changes can be backed out if needed.

Test your tests The librarian should also take steps to assure that the test being

added to the library has been itself tested; that is, it should have

been executed successfully at least once before being introduced

into the permanent library.

Synchronize

with source

control

There should also be some level of correspondence between the

change log for the application source and the test library. Since

changes to the application will often require changes to the affected

tests, the test librarian may take advantage of the application change

log to monitor the integrity of the test library. In fact, it is ideal to use

the same source control system whenever possible. If the change to

a test reflects a new capability in a different application version, then

the new test should be checked into a different version of the test

library instead of overwriting the test for the prior version. See

Version Control, following, for more information.

Version Control

Just as the application source code must be kept aligned by versions, so must the test

library.

Multiple At any given time, more than one version of the application may

Page 46 The Automated Testing Handbook

application

versions

require testing; for example, fixes may be added to the version in the

field, while enhancements are being added to the next version

planned for release.

Multiple test

library

versions

Proper version control of the test library allows a test execution cycle

to be performed against the corresponding version of the application

without confusing changes made to tests for application modifications

in subsequent versions. This requires that more than one version of

the test library be maintained at a time.

Configuration Management

A thorough test exercises more than just the application itself: it ultimately tests the

entire environment, including all of the supporting hardware and surrounding software.

Multiple layers

affect the test

In today’s complex, layered environments, there may be eight or

more different variables in the environment: the workstation

operating system and hardware configuration, the network protocol

and hardware connection, the host or server communications

protocol, the server’s hardware configuration and operating system,

and the state of the database. It is risky to test an application in one

Test Library Management Page 47

environment and deliver it in another, since all of these variables will

impact the functionality of the system.

Test integrity

requires

configuration

management

This means that configuration management for the test environment

is crucial to test integrity. It is not enough to know what version of

the software was tested: you must know what version and/or

configuration of every other variable was tested as well. Granted,

you may not always be able to duplicate the production environment

in its entirety, but if you at least know what the differences are, you

know where to look if a failure occurs.

Page 48 The Automated Testing Handbook

Selecting a Test Automation
Approach

There are as many ways to approach test automation as there are testers, test tools and

applications. This is one reason why it is important to develop an overall approach for

your automated test environment: otherwise, each tester will adopt his or her own,

leading to a fragmented test library and duplication of effort.

For our purposes, we will refer to three major approaches as described below. These

approaches are not exclusive of each other, or of other approaches; rather, they are

intended to describe options that may be mixed and matched, based on the problem at

hand. Indeed, a single test library may contain tests designed according to each

approach, depending on the particular type of test being automated.

But before you can get started, you have to know where you are starting from. The

following assessment is designed to help you evaluate where you stand in terms of your

application, test team and test process. Based on the results, you will be able to select

the automation approach that is right for your needs. Start by answering these

questions:

 What phase of development is the application in?

 _____ Planning

 _____ Analysis

 _____ Design

 _____ Code

 _____ Test

 _____ Maintenance

Selecting a Test Automation Approach Page 49

 What is the skill set of the test team?

 _____ Primarly technical

 _____ Some technical, some non-technical

 _____ Primarily non-technical

 How well documented is the test process?

 _____ Well-documented

 _____ Somewhat documented

 _____ Not documented

 How stable is the application?

 _____ Stable

 _____ Somewhat stable

 _____ Unstable

Based on your answers to these questions, you should select an automation approach

that meets your needs. Each of the approaches is described in more detail below.

Approach Profile

Capture/Playback Application already in test phase or maintenance

 Primarily non-technical test team

 Somewhat or not documented test process

 Stable application

Data-Driven Application in code or early test phase

 Some technical, some non-technical test team

 Well or somewhat documented test process

 Stable or somewhat stable application

Table-Driven Application in planning, analysis or design

 Some technical, most non- technical test team

 Well documented test process

 Unstable or stable application

Page 50 The Automated Testing Handbook

These profiles are not hard and fast, but they should indicate the type of approach you

should consider. Remember that you have to start from where you are now, regardless

of where you want to end up. With a little prior planning, it is usually possible to migrate

from one method to another as time and expertise permits.

Capture/Playback

The capture/playback approach means that tests are performed manually while the

inputs and outputs are captured in the background. During subsequent automated

playback, the script repeats the same sequence of actions to apply the inputs and

compare the actual responses to the captured results; differences are reported as errors.

Capture/playback is available from almost all automated test tools, although it may be

implemented differently.

Following is an excerpt from an example capture/playback script:

Select menu item “Chart of Accounts>>Enter Accounts”

Type “100000”

Press Tab

Type “Current Assets”

Press Tab

Select Radio button “Balance Sheet”

Check box “Header” on

Select list box item “Asset”

Push button “Accept”

Verify text @ 562,167 “Account Added”

Notice that the inputs - selections from menus, radio buttons, list boxes, check boxes,

and push buttons, as well as text and keystrokes - are stored in the script. In this

particular case, the output - the expected message - is explicit in the script; this may or

may not be true with all tools - some simply capture all application responses

automatically, instead of allowing or requiring that they be explicitly declared. See

Comparison Considerations below for more information.

Selecting a Test Automation Approach Page 51

Structure

In order to allow capture/playback script recording to be distributed among multiple

testers, a common structure should be adopted.

One script,

one

requirement

The ideal structure is to have one script per requirement, although

multiple instances of the requirement - i.e. test cases - might be

grouped together. This also allows the requirements to be distributed

among multiple testers, and the name of the script can be used as a

cross-reference to the requirement and clearly indicate the content

and purpose of each script.

Associate

scripts by

application

areas

These scripts can be packaged together into test suites that are

related by common characteristics, such as beginning and ending

context and data requirements, and/or by the area of the application

they exercise. This makes it easier for a single tester to focus on

certain areas of the system, and simplifies later maintenance when

changes are needed.

Callable

scripts

Depending on the capabilities provided by your tool, you may need to

build in the capability of tying scripts together into suites and/or test

cycles.

If your tool does not have a built-in mechanism, you should consider

making each script callable from another, so that when it completes it

returns processing to the next instruction in the calling script. A

master or driver script can then be created which contains a series of

calls to the individual scripts for execution.

Page 52 The Automated Testing Handbook

Advantages

Capture/playback is one of the earliest and most common automated test approaches

and offers several advantages over other methods.

Little training

or setup time

The main advantage of this approach is that it requires the least

training and setup time. The learning curve is relatively short, even

for non technical test operators.

Develop tests

on the fly

Tests need not be developed in advance, as they can be defined on

the fly by the test operator. This allows experienced users to

contribute to the test process on an ad hoc basis.

Audit trail This approach also provides an excellent audit trail for ad hoc or

usability testing; in the event an error occurs, the precise steps that

created it are captured for later diagnosis or reproduction.

Disadvantages

There are, however, several disadvantages of capture/playback, many of which have led

to more advanced and sophisticated test tools, such as scripting languages.

Selecting a Test Automation Approach Page 53

Requires

manual

capture

Except for reproducing errors, this approach offers very little leverage

in the short term; since the tests must be performed manually in

order to be captured, there is no real leverage or time savings. In the

example shown, the entire sequence of steps must repeated for each

account to be added, updated or deleted.

Application

must be stable

Also, because the application must already exist and be stable

enough for manual testing, there is little opportunity for early

detection of errors; any test that uncovers an error will most likely

have to be recaptured after the fix in order to preserve the correct

result.

Redunancy

and omission

Unless an overall strategy exists for how the functions to be tested

will be distributed across the test team, the probability of redundancy

and/or omission is high: each individual tester will decide what to

test, resulting in some areas being repeated and others ignored.

Assuring efficient coverage means you must plan for traceability of

the test scripts to functions of the application so you will know what

has been tested and what hasn’t.

Tests must be

combined

It is also necessary to give overall consideration to what will happen

when the tests are combined; this means you must consider naming

conventions and script development standards to avoid the risk of

overwriting tests or the complications of trying to execute them as a

set.

Page 54 The Automated Testing Handbook

Lack of

maintainability

Although subsequent replay of the tests may offer time savings for

future releases, this benefit is greatly curtailed by the lack of

maintainability of the test scripts. Because the inputs and outputs are

hard-coded into the scripts, relatively minor changes to the

application may invalidate large groups of test scripts. For example,

changing the number or sequence of controls in a window will impact

any test script that traverses it, so a window which has one hundred

test transactions executed against it would require one hundred or

more modifications for a single change.

Short useful

script life

This issue is exacerbated by the fact that the test developer will

probably require additional training in the test tool in order to be able

to locate and implement necessary modifications. Although it may

not be necessary to know the script language to capture a test, it is

crucial to understand the language when making changes. As a

result, the reality is that it is easier to discard and recapture scripts,

which leads to a short useful life and a lack of cumulative test

coverage.

No logic

means more

tests fail

Note also that there is no logic in the script to be sure that the

expected window is in fact displayed, or that the cursor or mouse is

correctly positioned before input occurs - all the decisions about what

to do next are made by the operator at the time of capture and are

not explicit in the script. This lack of any decision-making logic in the

scripts means that any failure, regardless of its true severity, may

abort the test execution session and/or invalidate all subsequent test

results. If the application does not behave precisely as it did when the

test was captured, the odds are high that all following tests will fail

because of an improper context, resulting in many duplicate or false

failures which require time and effort to review.

Selecting a Test Automation Approach Page 55

Comparison Considerations

The implied assumption in capture/playback is that the application behavior captured at

the time the test is created represents the expected, or correct, result. As simple as this

sounds, there are issues that must be addressed before this is effective.

Page 56 The Automated Testing Handbook

Identify results

to verify

For fixed screen format character-based applications, the comparison

criteria often includes the entire screen by default, with the

opportunity to exclude volatile areas such as time and date. In the

case of windowed applications or those without a fixed screen format,

it may become necessary to rely only on selected areas. In either

event, it is critical to evaluate what areas of the display are pertinent

to the verification and which are not.

Use text

instead of

bitmaps when

possible

For graphical applications, full screen or window bitmap comparisons

are usually impractical. Simply capturing, storing and comparing the

huge amount of information present in a graphical image is a

tremendously resource intensive task. Also, merely moving the test

from one computer to another may invalidate the comparison

altogether, since different monitor resolutions return different values

for bitmaps. Further, the very nature of graphical applications is to be

fluid instead of fixed, which means that the same inputs may not

result in precisely the same outputs. For example, the placement of

a window is often determined by the window manager and not by the

application. Therefore, it is usually more accurate to use text to

define expected results instead of using images.

Verify by

inclusion

instead of

exclusion

If your tool permits it, define the test results by inclusion rather than

exclusion. That is, define what you are looking for instead of what

you are not looking at - such as everything except what is masked

out. Explicit result verification is easier to understand and maintain -

there is no guesswork about what the test is attempting to verify.

Having said that, however, also be aware that minimally defined

results may allow errors to go unnoticed: if, for example, system

messages may be broadcast asynchronously, then you might miss

an error message if you are not checking the system message area.

Selecting a Test Automation Approach Page 57

Of course your tool will control the types of comparison available to you and how it is

defined, to some degree. Familiarize yourself with your options and adopt a consistent

technique.

Data Considerations

Because capture/playback expects the same inputs to produce the same outputs, the

state of the data is critical.

Static data The beginning state of the application database is essential to

predictable results in any automated test method. Assure that your

test cycle contains steps to prepare the database to a known state,

either by refreshing it with a new copy or populating it with known

records.

Dynamic data In some cases, the application will generate a data value dynamically

that cannot be known in advance but must be used later during the

test. For example, a unique transaction identifier may be assigned to

each new record as it is entered, which must be input later in order to

access the record. Because capture/playback hard codes the test

data in the script at the time of capture, in this situation subsequent

playback will not produce the same results.

Using

variables

In these cases, it may be necessary to implement variable capability

for the dynamic field, so that the value can be retrieved during

playback and saved for later reference. This will require at least one

member of the test team to become familiar with how the test tool

defines and manipulates variables in order to substitute them in place

of the fixed values which were captured against the dynamic field.

If your test tool can store its scripts in a text format, you can use your

favorite word processor to copy the script for a single transaction,

then simply search and replace the data values for each iteration.

That way, you can create new tests without having to perform them

Page 58 The Automated Testing Handbook

manually!

Data-Driven

The difference between classic capture/playback and Data-Driven is that in the former

case the inputs and outputs are fixed, while in the latter the inputs and outputs are

variable. This is accomplished by performing the test manually, then replacing the

captured inputs and expected outputs with variables whose corresponding values are

stored in data files external to the script. The sequence of actions remain fixed and

stored in the test script. Data-Driven is available from most test tools that employ a script

language with variable data capability, but may not be possible with pure

capture/playback tools.

The following page contains an example of the previous capture/playback script,

modified to add an external file and replace the fixed values with variables. Comments

have been added for documentation:

Selecting a Test Automation Approach Page 59

Select menu item “Chart of Accounts>>Enter Accounts”

Open file “CHTACCTS.TXT” * Open test data file

Label “NEXT” * Branch point for next record

Read file “CHTACCTS.TXT” * Read next record in file

End of file? * Check for end of file

 If yes, goto “END” * If last record, end test

Type ACCTNO * Enter data for account #

Press Tab

Type ACCTDESC * Enter data for description

Press Tab

Select Radio button STMTTYPE * Select radio button for statement

Is HEADER = “H”? * Is account a header?

 If yes, Check Box HEADER on * If so, check header box

Select list box item ACCTTYPE * Select list box item for type

Push button “Accept”

Verify text MESSAGE * Verify message text

 If no, Call LOGERROR * If verify fails, log error

 Press Esc * Clear any error condition

CALL LOGTEST * Log test case results

Goto “NEXT” * Read next record

Label “END” * End of test

Example file contents:

Test
Case

ACCT
NO

SUB
ACCT

ACCT
DESC

STMT
TYPE

ACCT
TYPE

HEADER MESSAGE

1000000 100 0000 Current
Assets

Balance
Sheet

Asset H Account Added

1001000 100 1000 Cash in
Banks

Balance
Sheet

Asset Account Added

Page 60 The Automated Testing Handbook

Structure

In order to permit test cases to be defined as data records to be processed by as

external files to scripts, the application data elements associated with each process must

be known. This should be provided by the Application Map. Also, the following structure

should be followed:

One script,

one process

A Data-Driven script is tied to a single processing sequence but will

support multiple test cases. A sequence of steps that enters or

processes data may include many test cases relating to individual

elements of the data or steps in the sequence. Select a sequence of

steps that require a consistent set of data for each iteration, and

name the script for the process or application window it addresses.

One record,

one test case

Each record in the test data file should relate to a single test case,

and the test case identifier should be stored in the data record. This

allows a single script to process multiple test cases while logging

results for each. Notice in the example that the test results are logged

for each record, instead of at the end of the script.

Data-intensive Implied in this approach is that the application is fairly data intensive;

that is, the same steps tend to be repeated over and over with

different data. In the general ledger example, the steps to enter one

account are identical to those needed to enter hundreds.

Consistent

behavior

Also assumed is that the same steps are repeated without significant

variance, so that different inputs do not have a major impact on the

sequence of actions. For example, if the value of one field causes a

completely different processing path to take effect, then the amount

of logic required to process each test case increases exponentially.

Selecting a Test Automation Approach Page 61

Advantages

There are several advantages to Data-Driven over simple capture/playback.

Create test

cases earlier

Data-Driven allows test cases - the inputs and expected outputs - to

be created in advance of the application. The software does not

have to be stable enough to operate before test cases can be

prepared as data files; only the actual script has to await the

application.

Flexible test

case creation

Because they are stored as data, the sets of inputs and outputs can

be entered through a spreadsheet, word processor, database or

other familiar utility, then stored for later use by the test script.

Familiarity with, or even use of, the test tool is not required for test

cases.

Leverage Data-Driven provides leverage in the sense that a single test script

can be used to apply many test cases, and test cases can be added

later without modifications to the test script.

Notice that the example script could be used to enter one or one

Page 62 The Automated Testing Handbook

thousand different accounts, while the capture/playback script enters

only one. Cut and paste facilities of the selected utility can be used to

rapidly “clone” and modify test cases, providing leverage.

Reduced

maintenance

This approach reduces required maintenance by not repeating the

sequence of actions and logic to apply each test case; therefore,

should the steps to enter an account change, they would have to be

changed only one time, instead of once for each account.

Disadvantages

The main disadvantage of this approach is that it requires additional expertise in the test

tool and in data file management.

Technical tool

skills required

In order to convert the script to process variable data, at least one of

the testers must be proficient in the test tool and understand the

concept of variable values, how to implement external data files, and

programming logic such as if/then/else expressions and processing

loops.

Data file

management

needed

Similarly, the test case data will require someone with expertise in

creating and managing the test files; large numbers of data elements

in a test case may lead to long, unwieldy test case records and

awkward file management. Depending on the utility used, this may

require expertise in creating and manipulating spreadsheet macros,

database forms or word processor templates, then exporting the data

into a file compatible with the test tool.

Selecting a Test Automation Approach Page 63

Data Considerations

Because the test data is stored externally in files, there must be a consistent mechanism

for creating and maintaining the test data.

One script,

one file

Generally, there will be a file for each script that contains records

comprising the set of values needed for the entire script. Therefore,

the content and layout of the file must be defined and organized for

easy creation and maintenance. This may take the form of creating

macros, templates or forms for spreadsheets, word processors or

databases that lay out and describe the necessary fields; some level

of editing may also be provided. Obviously, the more that can be

done to expedite and simplify the data collection process, the easier

it will be to add and change test cases.

Using multiple

files

It is of course possible to have more than one test data file per script.

For example, there may be standalone data files that contain a list of

the equivalence tests for specialized types of fields, such as dates.

Instead of repeating these values for every script in which dates

appear, a single file may be read from multiple scripts. This

approach will require additional script logic to accomodate nested

processing loops for more than one file per script iteration.

Dynamic data This approach may also require the same manipulation for dynamic

variables that was described under Data Considerations for

capture/playback, above.

Page 64 The Automated Testing Handbook

Table-Driven

Table-Driven differs from Data-Driven in that the sequence of actions to apply and

evaluate the inputs and outputs are also stored external to the script. This means that

the test does not have to be performed manually at all. The inputs and expected

outputs, as well as the sequence of actions, are created as data records; the test scripts

are modular, reusable routines that are executed in a sequence based on the test data.

The logic to process these records and respond to application results is embedded in

these routines.

Another key differentiator is that these script routines are reusable across applications.

They are completely generic in that they are based on the type of field or object and the

action to be performed. The exact instance of the field or object is defined in the

Application Map and is provided to the routine when the test executes.

Below is an excerpt of the test script routines and test data file that would process the

same entry of the chart of accounts:

Open file TESTDATA * Open test data file

Label “NEXT” * Branch point for next test case

Read file @TESTDATA * Read next record in file

 End of file? * Check for end of file

 If yes, goto “END” * If last record, end test

Does @WINDOW have focus? * Does the window have focus?

 If no, Call LOGERROR * If not, log error

Does @CONTROL have focus? * Does the control have focus?

 If no, set focus to @CONTROL * Try to set the focus

 Does @CONTROL have focus? * Was set focus successful?

 If no, Call LOGERROR * If not, log error

Call @METHOD * Call test script for method

Call LOGTEST * Log test results

Goto ”NEXT”

Label “END”

SELECT_MENU script

Does menu item VALUE exist? * Does the menu item exist?

Selecting a Test Automation Approach Page 65

 If no, Call LOGERROR * If not, log error

Is menu item VALUE enabled? * Is the menu item enabled?

 If no, Call LOGERROR * If not, log error

Select menu item VALUE * Select the menu item

Resume * Return to main script

Example file contents:

Test Case Window Object Method Value On Pass On Fail

Add

Account

MAINMENU CHART.MENU Select Chart of
Accounts>>Ent
er Accounts

Continue Abort

Add

Account

Chart of
Accounts

Account
Number

Enter 100000 Continue Continue

Add

Account

Chart of
Accounts

Account
Descriptio
n

Enter Current
Assets

Continue Continue

Add

Account

Chart of
Accounts

Statement
Type

Select Balance Sheet Continue Continue

Add

Account

Chart of
Accounts

Header Check On Continue Continue

Add

Account

Chart of
Accounts

Account
Type

Select Assets Continue Continue

Add

Account

Chart of
Accounts

OK Push Continue Continue

Add

Account

Chart of
Accounts

Message
Box

Verify
Text

Account Added Continue Continue

Structure

Like Data-Driven, this method requires that the names of the application data elements

be known; however, it also requires that the type of object and the valid methods it

supports also be defined and named, as well as the windows and menus. In the earlier

stages of development, the object types and methods may not yet be known, but that

should not prevent test cases from being developed. A simple reference to input or

output can be later refined as the precise methods are implemented. For example, the

input of the statement type can eventually be converted to a check box action. This

information will support the following structure:

Page 66 The Automated Testing Handbook

One file,

multiple

scripts

A single test data file in Table-Driven script is processed by multiple

scripts. In addition to common and standard scripts, there will be a

master script that reads the test file and calls the related method

scripts. Each object and method will have its own script that contains

the commands and logic necessary to execute it.

Multiple

records, one

test case

A single test case is comprised of multiple records, each containing a

single step. The test case identifier should be stored in each data

record to which it relates. This allows a single set of scripts to

process multiple test cases. Notice in the example that the test

results are logged for each step, instead of at the end of the test

case.

Advantages

The main advantage to this approach is that it provides the maximum maintainability and

flexibility.

Develop test

cases, scripts

earlier

Test cases can be constructed much earlier in the development

cycle, and can be developed as data files through utilities such as

spreadsheets, word processors, databases, and so forth. The

elements of the test cases, can be easily modified and extended as

the application itself becomes more and more defined. The scripts

that process the data can be created as soon as the objects

Selecting a Test Automation Approach Page 67

(screens, windows, controls) and methods have been defined.

Page 68 The Automated Testing Handbook

Minimized

maintenance

By constructing the test script library out of modular, reusable

routines, maintenance is minimized. The script routines need not be

modified unless a new type of object is added that supports different

methods; adding new windows or controls simply requires additions

to the tool’s variable file or GUI map, where the objects are defined.

Portable

architecture

between

applications

Another key advantage of Table-Driven is that the test library can be

easily ported from one application to another. Since most

applications are composed of the same basic components - screens,

fields and keys for character-based applications; windows and

controls for graphical applications - all that is needed to move from

one to another is to change the names and attributes of the

components. Most of the logic and common routines can be left

intact.

Portable

architecture

between tools

This approach is also portable between test tools. As long as the

underlying script language has the equivalent set of commands, test

cases in this format could be executed by a script library created in

any tool. This means you are free to use different tools for different

platforms if necessary, or to migrate to another tool.

No tool

expertise

needed to

create test

cases

Because logic is defined and stored only once per method, and there

is substantial implied logic for verifying the context and state of the

application to assure proper playback, individual testers may create

test cases without understanding logic or programming. All that is

needed is an understanding of the application components, their

names, and the valid methods and values which apply to them.

Selecting a Test Automation Approach Page 69

Disadvantages

The central disadvantage of the Table-Driven approach is the amount of training and

setup time required to implement it.

Extensive

technical and

tool skills

required

In order to properly design and construct the script library, extensive

programming skills and test tool expertise are needed. Programming

skills are needed to implement a library of modular scripts and the

surrounding logic that ties them together and uses external data to

drive them.

Data

conventions

and

management

critical

Because all test assets are maintained as data, it is essential to have

a means of enforcing conventions and managing the data. While this

can be done in spreadsheets, a database is far more powerful.

Page 70 The Automated Testing Handbook

The Test Automation Process

In an ideal world, testing would parallel the systems development life cycle for the

application. This cycle is generally depicted as:

Software

Planning Requirements Design Code Test Maintain

Testware

Test Plan Test Cases Test Scripts Test Execution/Maintenance

Unfortunately, not all test efforts commence at the earliest stage of the software

development process. Depending on where your application is in the timeline, these

activities may be compressed and slide to the right, but in general each of these steps

must be completed.

The Test Team

But regardless of the approach you select, to automate your testing you will need to

assemble a dedicated test team and obtain the assistance of other areas in the

company. It is important to match the skills of the persons on your team with the

responsibilities of their role. For example - although the type and level of skills will vary

somewhat with the automation approach you adopt - developing test scripts is

essentially a form of programming; for this role, a more technical background is needed.

The Test Automation Process Page 71

You must also be sure that the person in each role has the requisite authority to carry

out their responsibilities; for example, the team leader must have control over the

workflow of the team members, and the test librarian must be able to enforce procedures

for change and version control.

Following are suggested members of the test team and their respective responsibilities:

Team Leader The Team Leader is responsible for developing the Test Plan and

managing the team members according to it, as well as coordinating

with other areas to accomplish the test effort. The Team Leader

must have the authority to assign duties and control the workflow of

those who are dedicated to the test team.

Test

Developers

Test Developers are experts in the application functionality,

responsible for developing the test cases, executing them, analyzing

and reporting the results. They should be trained on how to develop

tests, whether as data records or as scripts, and use the test

framework.

Page 72 The Automated Testing Handbook

Script

Developers

Script Developers are experts in the testing tool, ideally with technical

programming experience. They are responsible for developing and

maintaining the test framework and supporting scripts and publishing

the Application Map.

Test Librarian The Test Librarian is responsible for managing the configuration,

change and version control for all elements of the test library. This

includes defining and enforcing check in and check out procedures

for all files and related documentation.

Customer

Liaison

The Customer Liaison represents the user community of the

application under test and is responsible for final approval of the test

plan or any changes to it, and for working with the Test Developers to

identify test cases and gather sample documents and data. Even

though the Customer Liaison may not be a dedicated part of the

testing organization, he or she must have dotted line responsibility to

the Test Team to assure the acceptance criteria are communicated

and met.

Development

Liaison

The Development Liaison represents the programmers who will

provide the application software for test and is responsible for

delivering unit test cases and informing the Test Librarian of any

changes to the application or its environment. Even though the

Development Liaison may not be a dedicated part of the testing

organization, he or she must have dotted line responsibility to the

Test Team to assure the software is properly unit tested and

delivered in a known state to the Test Team.

The Test Automation Process Page 73

Systems

Liaison

The Systems Liaison represents the system or network support

group and database administrator, and is responsible for supporting

the test environment to assure that the Test Team has access to the

proper platform configuration and database for test execution. The

Systems Liaison must also inform the Test Librarian of any changes

to the test platform, configuration or database.

Test Automation Plan

A Test Automation Plan describes the steps needed to automate testing. It outlines the

necessary components of the test library, the resources which will be required, the

schedule, and the entry/exit criteria for moving from one step to the next. Note that the

Test Automation Plan is a living document that will be maintained throughout the test

cycle as progress is made and additional information is obtained. Following is an

example Plan:

Document Control

Activity Initials Date Comments

Created LL 5/1/XX F:\GENLDGR\TESTPLAN.DOC

Updated CC 5/21/XX Added acceptance criteria

Updated TT 5/31/XX Added test cases

Revised PP 6/3/XX Modified schedule

Published LL 6/15/XX Circulated to team members
for approval

Approved CC 6/17/XX Updates and revisions
accepted

This section is used to control additions and changes to the plan. Because the plan will

likely be modified over time, keeping track of the changes is important.

Page 74 The Automated Testing Handbook

Application

Version 1.0 of the General Ledger system.

Describe the application under test in this section. Be sure to specify the version

number. If only a subset is to be automated, describe it as well.

Scope of Test Automation

Black box tests for each of the listed requirements will be

automated by the test team. Unit string and integration testing

will be performed by development manually using a code debugger

when necessary. Performance testing will be done using

Distributed Test Facility to create maximum simultaneous user

load. Ad hoc testing for usability will be captured by the

automated tool for reproducing conditions that lead to failure but

will not be checked into the test library.

The statement of scope is as important to describe what will be tested as what will not

be, as well as who will be responsible.

Test Team

Name Role Initials

Mike Manager Team Leader MM

Tina Tester Test Developer TT

Steve Scripter Script Developer SS

Loretta Librarian Test Librarian LL

Carla Customer Customer Liaison CC

Dave Developer Development Liaison DD

Percy Production Systems Liaison PP

List the names and roles of the test team members, and cross-reference each of the

steps to the responsible party(ies).

The Test Automation Process Page 75

Be sure you have a handle on the test environment and configuration. These factors

can affect compatibility and performance as much as the application itself. This includes

everything about the environment, including operating systems, databases and any third

party software.

Schedule

Phase Scheduled
Date

Entry Criteria Exit Criteria Date
Complete

Test
requirements
defined

 Planning
completed

SIGNOFF by
customer

Configuration
of test
environment

 Hardware and
software

SIGNOFF by
system
support

Publication of
Application
Map

 Design
completed

SIGNOFF by
development

Development of
test cases

 Requirements
defined

SIGNOFF by
customer

Initial
installation
of application

 Coding
completed

SIGNOFF by
development

Development of
test scripts

 Application
installed

SIGNOFF by
team leader

Execution of
tests and
result
reporting

 Cases,
scripts
completed

SIGNOFF by
team leader

Result
analysis and
defect
reporting

 Execution
completed

SIGNOFF by
team leader

Test cases for
defects found

 Defect
reporting

SIGNOFF by
customer

Page 76 The Automated Testing Handbook

Schedule (continued)

Test script
modifications
for execution
errors

 Result
analysis

SIGNOFF by
team leader

Second
installation
of application

 Changes
completed

SIGNOFF by
development

Execution of
tests

 Application
installed

SIGNOFF by
team leader

Result
analysis and
defect
reporting

 Execution
completed

SIGNOFF by
team leader

Test cases for
defects found

 Defect
reporting

SIGNOFF by
customer

Test script
modifications
for execution
errors

 Result
analysis

SIGNOFF by
team leader

Third
installation
of application

 Changes
completed

SIGNOFF by
development

Execution of
tests

 Application
installed

SIGNOFF by
team leader

Ad hoc and
usability
testing

 No known or
waived
defects

SIGNOFF by
customer

Performance
testing

 No known or
waived
defects

SIGNOFF by
systems

Result
analysis and
defect
reporting

 All tests
executed

SIGNOFF by
team leader

Application
release

 No known or
waived
defects

SIGNOFF by
all test
team

Planning the Test Cycle

The Test Automation Process Page 77

In an automated environment, the test cycle must be carefully planned to minimize the

amount of supervision or interaction required. Ideally, an execution cycle should be

capable of automatically preparing and verifying the test environment, executing test

suites or individual tests in sequence, producing test result reports, and performing final

cleanup.

Test Suite Design

A test suite is a set of tests which are related, either by their function or by the area of

the application they impact, and which are executed as a group. Not only the set of tests

but their sequence within the suite should be considered. The execution of a suite may

be a feature available from the test tool, or may have to be scripted within the tool itself

using a driver.

Related tests A test suite usually contains tests that are related by the area of the

application they exercise, but they may also be selected by their

priority. For example, each suite of tests may be designated by the

priority level of the requirements they verify. This allows the most

critical tests to be executed selectively, and less important ones to be

segregated. Another means of differentiation is to identify tests by

their type; for example, verifying error messaging or other type of

design requirements.

Context All tests in a suite should share the same beginning and ending

context, as well as the expected state of the database. This allows

the suite to be packaged so that the data is prepared at the

beginning, and all tests that depend on each other for to be executed

in the proper sequence. Any RECOVERY routine that is included

should also coincide with the desired context. If the suite is packaged

to be executed with a driver script, each individual test within the

suite should end with a return to the calling driver.

Documenta- Test suite documentation should include the set and sequence of

Page 78 The Automated Testing Handbook

tion individual tests, the beginning and ending context, as well as any

data or sequence dependencies with other test suites.

The Test Automation Process Page 79

Test Cycle Design

In addition to designing test suites, the entire test execution cycle must also be

designed. There may be different types of test cycles needed; for example, a regression

cycle that exercises the entire test library, or a fix cycle that tests only targeted areas of

the application where changes have been made. Although there may be varying cycles,

certain aspects of each cycle must always be considered, such as the configuration of

the test platform as well as initialization, setup and cleanup of the test environment.

Setup The cycle should commence with the setup of the test environment,

including verifying the configuration and all other variables that affect

test execution. Preparing the test environment for execution requires

that the platform be properly configured. A test cycle executed

against the wrong platform configuration may be worthless. The

configuration includes not only assuring that the hardware, operating

system(s), and other utilities are present and of the expected model

or version, but also that the version or level of the application and test

library are properly synchronized.

Certain portions of the configuration may be automated and included

in a shared routine, such as SETUP; others may require human

intervention, such as loading software. Whatever the required steps,

the configuration of the test platform should be carefully documented

and verified at the beginning of each test execution cycle.

Context The beginning and ending context of a cycle should be the same

point, usually the program manager or command prompt. Care

should be taken to synchronize the suites within the cycle to assure

that the context for the first and last suite meets this requirement.

In addition to assuring that the test platform is configured, it may be

Page 80 The Automated Testing Handbook

important to initialize the state of the database or other data

elements. For example, a clean version of the database may be

restored, or a subset appended or rewritten, in order to assure that

the data is in a known state before testing begins. Data elements,

such as error counters, may also require initialization to assure that

previous test results have been cleared.

Schedule

sequence

A test schedule is often comprised of a set of test cycles. The

sequence should reflect any dependencies of either context or data,

and standard tests, such as a WALKTHU, should be packaged as

well. A test schedule template may be useful for assuring that all

standard tests and tasks are included for each run.

Cleanup The cycle should end with the cleanup of the test environment, such

as deleting work files, making file backups, assembling historical

results, and any other housekeeping tasks.

Test Execution Page 81

Test Execution

Since an ideally automated test cycle does not depend on human intervention or

supervision, the test execution process must thoroughly document results. This

documentation must be sufficient to determine which tests passed or failed, what

performance was, as well as provide additional information that may be needed to assist

with diagnosis of failures.

Test log

The test log reports the results of the test execution for each test case. It is also useful to

include the elapsed time for each test, as this may indicate performance problems or

other issues. For example, a test which executes too quickly may indicate that it was not

run all the way to completion; one that takes too long might raise questions about host

response time.

Pass/fail Each individual test case - whether as data record(s) or scripts -

should be logged as to whether it executed successfully or not.

Ideally, each case should be cross-referenced to a requirement that

has a priority rating, so that high priority requirements can be easily

tracked.

Performance In addition to reporting the elapsed time for each test, if host or

server based testing is involved the test log should track the highest

response time for transactions as well as the average. Many service

level agreements specify the maximum allowable response time,

and/or the expected average, for given areas of the system.

Page 82 The Automated Testing Handbook

Performance measurements may also include the overall time

required to execute certain functions, such as a file update or other

batch process. It is of course critical to establish the performance

criteria for the application under test, then assure that the necessary

tests are executed and measurements taken to confirm whether the

requirements are in fact met or not.

Configuration Each test log should clearly indicate the configuration against which it

was executed. This may take the form of a header area or

comments. If subsequent logs show widely varying results, such as

in the area of performance, then any changes to the configuration

may provide a clue.

Totals Total test cases executed, passed and failed, as well as the elapsed

time overall, should be provided at the end of the execution log to

simplify the updating of historical trends.

Test Execution Page 83

Test Log

Date: 01/01/2X TIME: HH:MM Page: XXX

Application: GENLEDGR Version: 5.1.1 Test Cycle: ALL

--

Test Suite Test Script Test Case Begin End Status

--

CHT_ACCTS 08:11:12

 NEW_ACCTS 100-0000 08:11:15 08:12:21 Passed

 NEW_ACCTS 101-0000 08:12:23 08:13:25 Passed

 NEW_ACCTS 102-0000 08:13:29 08:14:31 Passed

 NEW_ACCTS 102-1000 08:14:34 08:15:42 Passed

 NEW_ACCTS 102-2000 08:15:45 08:16:50 Passed

 NEW_ACCTS 110-0000 08:16:53 08:18:01 Passed

 NEW_ACCTS 111-0000 08:18:05 08:19:17 Passed

 NEW_ACCTS 111-1000 08:19:20 08:19:28 Passed

 NEW_ACCTS 111-2000 08:19:33 08:20:54 Passed

 DEL_ACCTS 112-0000 08:21:02 08:22:19 Failed

Elapsed Time: 00:11:07 Cases Passed: 9 Cases Failed: 1

Test Log Summary

Failed: Previous New Resolved Remaining

Priority 1 9 10 9 10

Priority 2 58 10 22 46

Priority 3 70 25 30 65

Total 137 45 61 121

Passed: 172

Total Executed 217

Ratios: 21% defects 55% recurrence

Page 84 The Automated Testing Handbook

Error log

For every test which fails, there should be a corresponding entry in the error log. The

error log provides more detailed information about a test failure to support diagnosis of

the problem and determination about its cause.

Test case and

script

The test case which failed, as well as the script being executed,

should be documented in the error log to enable later review of the

error condition. Errors do not necessarily indicate a defect in the

application: the test case or script may contain errors, or the

application context or data may be incorrect.

State of

application

When an error occurs, it is important to document the actual state of

the application for comparison against what was expected. This may

include a snapshot of the screen at the time of failure, the date and

time, test case being executed, the expected result, and whether

recovery was attempted.

Diagnostics Whenever possible, the error log should include as much diagnostic

information about the state of the application as is available: stack or

memory dumps, file listings, and similar documentation may be

generated to assist with later diagnosis of the error condition.

Test Execution Page 85

Analyzing Results

At the conclusion of each test cycle, the test results - in the form of the execution,

performance and error logs - must be analyzed. Automated testing may yield results

which are not necessarily accurate or meaningful; for example, the execution log may

report hundreds of errors, but a closer examination may reveal that an early, critical test

failed which in turn jeopardized the integrity of the database for all subsequent tests.

Inaccurate results

Inaccurate results occur when the test results do not accurately reflect the state of the

application. There are generally three types of inaccurate results: false failures,

duplicate failures, and false successes.

False failure

from test

environment

A false failure is a test which fails for a reason other than an error or

defect in the application. A test may fail because the state of the

database is not as expected due to an earlier test, or because the

test environment is not properly configured or setup, or because a

different error has caused the test to lose context.

Or, a test which relies on bitmap comparisons may have been

captured against one monitor resolution and executed against

another.

False failure

from

application

changes

Another type of false failure can occur if a new field or control is

added, causing the script to get out of context and report failures for

other fields or controls that are actually functional. Any of these

situations will waste resources and skew test results, confusing the

metrics which are used to manage the test process.

False failure

from test

errors

It is unfortunately true that the failure may also be the result of an

error in the test itself. For example, there may be a missing test case

record or an error in the script. Just as programmers may introduce

Page 86 The Automated Testing Handbook

one problem while fixing another, test cases and scripts are subject

to error when modifications are made.

Duplicate

failure

A duplicate failure is a failure which is attributable to the same cause

as another failure. For example, if a window title is misspelled, this

should be reported as only one error; however, depending on what

the test is verifying, the name of the window might be compared

multiple times. It is not accurate to report the same failure over and

over, as this will skew test results.

For example, if a heavily-used transaction window has an error, this

error may be reported for every transaction that is entered into it; so,

if there are five hundred transactions, there will be five hundred

errors reported. Once that error is fixed, the number of errors will

drop by five hundred. Using these figures to measure application

readiness or project the time for release is risky: it may appear that

the application is seriously defective, but the errors are being

corrected at an astronomical rate - neither of which is true.

False success

from test

defect

A false success occurs when a test fails to verify one or more

aspects of the behavior, thus reporting that the test was successful

when in fact it was not. This may happen for several reasons. One

reason might be that the test itself has a defect, such as a logic path

that drops processing through the test so that it bypasses certain

steps. This type of false success can be identified by measurements

such as elapsed time: if the test completes too quickly, for example,

this might indicate that it did not execute properly.

Test Execution Page 87

False success

from missed

error

Another false success might occur if the test is looking for only a

specific response, thus missing an incorrect response that indicates

an error. For example, if the test expects an error to be reported with

an error message in a certain area of the screen, and it instead

appears elsewhere. Or, if an asynchronous error message appears,

such as a broadcast message from the database or network, and the

test is not looking for it. This type of false success may be avoided

by building in standard tests such as a MONITOR, described in this

Handbook.

Defect tracking

Once a test failure is determined to be in fact caused by an error in the application, it

becomes a defect that must be reported to development for resolution. Each reported

defect should be given a unique identifier and tracked as to the test case that revealed it,

the date it was logged as a defect, the developer it was assigned to, and when it was

actually fixed.

Page 88 The Automated Testing Handbook

Test Metrics

Metrics are simply measurements. Test metrics are those measurements from your test

process that will help you determine where the application stands and when it will be

ready for release. In an ideal world, you would measure your tests at every phase of the

development cycle, thus gaining an objective and accurate view of how thorough your

tests are and how closely the application complies with its requirements.

In the real world, you may not have the luxury of the time, tools or tests to give you

totally thorough metrics. For example, documented test requirements may not exist, or

the set of test cases necessary to achieve complete coverage may not be known in

advance. In these cases, you must use what you have as effectively as possible.

Measure

progress

The most important point to make about test metrics is that they are

essential to measuring progress. Testing is a never-ending task, and

if you don’t have some means of establishing forward progress it is

easy to get discouraged. Usually, testers don’t have any indication of

success, only of failure: they don’t hear about the errors they catch,

only the ones that make it into production. So, use metrics as a

motivator. Even if you can’t test everything, you can get comfort from

the fact that you test more now than before!

Code coverage Code coverage is a measurement of what percentage of the

underlying application source code was executed during the test

cycle. Notice that it does not tell you how much of the code passed

the test - only how much was executed during the test. Thus, 100%

code coverage does not tell you whether your application is 100%

ready.

Test Metrics Page 89

A source level tool is required to provide this metric, and often it

requires that the code itself be instrumented, or modified, in order to

capture the measurement. Because of this, programmers are usually

the only ones equipped to capture this metric, and then only during

their unit test phase.

Although helpful, code coverage is not an unerring indicator of test

coverage. Just because the majority of code was executed during

the test, it doesn’t means that errors are unlikely. It only takes a

single line - or character - of code to cause a problem. Also, code

coverage only measures the code that exists: it can’t measure the

code that is missing.

When it is available, however, code coverage can be used to help

you gauge how thorough your test cases are. If your coverage is

low, analyze the areas which are not exercised to determine what

types of tests need to be added.

Requirements

coverage

Requirements coverage measures the percentage of the

requirements that were tested. Again, like code coverage, this does

not mean the requirements were met, only that they were tested. For

this metric to be truly meaningful, you must keep track of the

difference between simple coverage and successful coverage.

There are two prerequisites to this metric: one, that the requirements

are known and documented, and two, that the tests are cross-

referenced to the requirements. In many cases, the application

requirements are not documented sufficiently for this metric to be

taken or be meaningful. If they are documented, though, this

measurement can tell you how much of the expected functionality

has been tested.

Requirements However, if you have taken care to associate requirements with your

Page 90 The Automated Testing Handbook

satisfied

Priority

Requirements

test cases, you may be able to measure the percentage of the

requirements that were met - that is, the number that passed the test.

Ultimately, this is a more meaningful measurement, since it tells you

how close the application is to meeting its intended purpose.

Because requirements can vary from critical to important to desirable,

simple percentage coverage may not tell you enough. It is better to

rate requirements by priority, or risk, then measure coverage at each

level. For example, priority level 1 requirements might be those that

must be met for the system to be operational, priority 2 those that

must be met for the system to be acceptable, level 3 those that are

necessary but not critical, level 4 those that are desirable, and level 5

those that are cosmetic.

In this scheme, 100% successful coverage of level 1 and 2

requirements would be more important than 90% coverage of all

requirements; even missing a single level 1 could render the system

unusable. If you are strapped for time and resources (and who isn’t),

it is well worth the extra time to rate your requirements so you can

gauge your progress and the application’s readiness in terms of the

successful coverage of priority requirements, instead of investing

precious resources in low priority testing.

Exit criteria Successful requirements coverage is a useful exit criteria for the test

process. The criteria for releasing the application into production, for

example, could be successful coverage of all level 1 through 3

priority requirements. By measuring the percentage of requirements

tested versus the number of discovered errors, you could extrapolate

the number of remaining errors given the remaining number of

requirements.

But as with all metrics, don’t use them to kid yourself. If you have

only defined one requirement, 100% coverage is not meaningful!

Test case Test case coverage measures how many test cases have been

Test Metrics Page 91

coverage executed. Again, be sure to differentiate between how many passed

and how many were simply executed. In order to capture this metric,

you have an accurate count of how many test cases have been

defined, and you must log out each test case that is executed and

whether it passed or failed.

Predicting

time to release

Test case coverage is useful for tracking progress during a test cycle.

By telling you how many of the test cases have been executed in a

given amount of time, you can more accurately estimate how much

time is needed to test the remainder. Further, by comparing the rate

at which errors have been uncovered, you can also make a more

educated guess about how many remain to be found.

As a simple example, if you have executed 50% of your test cases in

one week, you might predict that you will need another week to finish

the cycle. If you have found ten errors so far, you could also

estimate that there are that many again waiting to be found. By

figuring in the rate at which errors are being corrected (more on this

below), you could also extrapolate how long it will take to turn around

fixes and complete another test cycle.

Defect Ratio The defect ratio measures how many errors are found as a

percentage of tests executed. Since an error in the test may not

necessarily be the result of a defect in the application, this

measurement may not be derived directly from your error log;

instead, it should be taken only after an error is confirmed to be a

defect.

If you are finding one defect out of every ten tests, your defect ratio is

10%. Although it does not necessarily indicate the severity of the

errors, this metric can help you predict how many errors are left to

find based on the number of tests remaining to be executed.

Fix rate Instead of a percentage, the fix rate measures how long it takes for a

Page 92 The Automated Testing Handbook

reported defect to be fixed. But before you know if a defect is fixed, it

must be incorporated into a new build and tested to confirm that the

defect is in fact corrected.

For this metric to be meaningful, you have to take into account any

delays that are built into the process. For example, it may only take

two hours to correct an error, but if a new build is created only weekly

and the test cycle performed only once every two weeks, it may

appear as though it takes three weeks to fix a defect. Therefore,

measure the fix rate from the time the defect is reported until the

corresponding fix is introduced into the source library.

Recurrence

ratio

If a code change that is purported to fix a defect does not, or

introduces yet another defect, you have a recurrence. The

recurrence ratio is that percentage of fixes that fail to correct the

defect. This is important because although your developers may be

able to demonstrate a very fast turnaround on fixes, if the recurrence

ratio is high you are spinning your wheels.

This ratio is extremely useful for measuring the quality of your unit

and integration test practices. A high recurrence ratio means your

developers are not thoroughly testing their work. This inefficiency

may be avoided to some degree by providing the programmer with

the test case that revealed the defect, so that he or she can verify

that the code change in fact fixes the problem before resubmitting it

for another round of testing.

So temper your fix rate with the recurrence ratio. It is better to have a

slower fix rate than a high recurrence ratio: defects that recur cost

everyone time and effort.

Post-release

defects

A post-release defect is a defect found after the application has been

released. It is the most serious type of defect, since it not only

reflects a weakness in the test process, it also may have caused

Test Metrics Page 93

mayhem in production. For this reason, it is important to know not

just how many of these there are, but what their severity is and how

they could have been prevented.

As discussed earlier, requirements should be prioritized to determine

their criticality. Post-release defects should likewise be rated. A

priority 1 defect - one which renders the system unusable - should

naturally get more attention than a cosmetic defect. Thus, a simple

numerical count is not as meaningful.

Defect

prevention

Once a defect is identified and rated, the next question should be

when and how it could have been prevented. Note that this question

is not about assessing blame, it is about continuous process

improvement. If you don’t learn from your mistakes, you are bound

to repeat them.

Determining when a defect could have been prevented refers to what

phase of the development cycle it should have been identified in. For

example, a crippling performance problem caused by inadequate

hardware resources should probably have been revealed during the

planning phase; a missing feature or function should have been

raised during the requirements or design phases.

In some cases, the defect may arise from a known requirement but

schedule pressures during the test phase may have prevented the

appropriate test cases from being developed and executed.

Continuous

improvement

Whatever the phase, learn from the problem and institute measures

to improve it. For example, when pressure arises during a later cycle

to release the product without a thorough test phase, the known

impact of doing so in a previous cycle can be weighed against the

cost of delay. A known risk is easier to evaluate than an unknown

one.

Page 94 The Automated Testing Handbook

As to how a defect could be prevented, there are a wide range of

possibilities. Although the most obvious means of preventing it from

being released into production is to test for it, that is really not what

this is about. Preventing a defect means keeping it from coming into

existence, not finding it afterwards. It is far more expensive to find a

defect than to prevent one. Defect prevention is about the entire

development cycle: how can you better develop high quality

applications in the future?

By keeping track of post-release defects as well as their root causes,

you can not only measure the efficacy of your development and test

processes, but also improve them.

Management Reporting Page 95

Management Reporting

Although there are many sophisticated metrics for measuring the test process,

management is usually interested in something very simple: when will the application be

ready? If you can’t answer this question, you run the risk that the application will be

released arbitrarily, based on schedules, instead of based on readiness. Few

organizations can make open-ended commitments about release dates.

Once management has invested time and money in test automation, they will also want

to know what their return was. This return could take three forms: savings in money,

time, and/or improved quality. By assuring that you have these measurements at your

fingertips, you can increase the odds of keeping management committed to the test

automation effort.

Estimated time

to release

Although you can never precisely predict when or even if an

application will be defect-free, you can make an educated guess

based on what you do know. The best predictor of readiness for

release is the requirements coverage as affected by the defect ratio,

fix rate and recurrence ratio.

For example, if after four weeks you are 80% through with 100 test

cases with a 20% defect ratio, a two day fix rate and a 5% recurrence

ratio, you can estimate time to release as:

 4 weeks = 80% 20% defects = 16

 1 week = 20% 5% recurrence = 1

 2 day fix rate = 34 days

 1 week + (34 days/5 days per week) + 5 weeks to test fixes =

13 weeks to release

Page 96 The Automated Testing Handbook

Saving money There are two kinds of savings from automated testing. The first is

the productivity that comes from repeating manual tests. Even

though you may not actually cut staff, you can get more done in less

time. To measure this savings - the amount you would have spent to

get the same level of test coverage - measure the time it takes to

manually execute an average test, then automate that test and

measure the time to execute it.

Divide the automated time into the manual test time. If it takes two

hours to perform the test manually but it will playback in thirty

minutes, you will get a productivity factor of 4. Next, execute a

complete automated test cycle and measure the total elapsed time,

then multiply that times the productivity factor. In this example, a

twelve hour automated test cycle saves 48 hours of manual test time.

So, if you have four releases per year and three test iterations per

release, you are saving (4 times 3 times 48 hours) 576 hours per

year. Multiply that by your cost per man hour; if it’s $50, then you are

saving $28,800 per year.

Saving time Getting the application into the market or back into production faster

also saves the company time. In our above example, you are

shaving 3.6 weeks off the release time (3 iterations times 48 hours/40

hours per week). This is almost a month of time savings for each

release. If the reason for the release is to correct errors, that extra

time could translate into significant productivity.

Management Reporting Page 97

Higher quality It is hard to measure the impact of higher quality: you can’t really

measure the amount of money you aren’t spending. If you do a

thorough job of testing and prevent defects from entering into

production, you have saved money by not incurring downtime or

overhead from the error.

Unfortunately, few companies know the cost to fix an error. The best

way to tell if you are making progress is when the post-release defect

rate declines.

Better

coverage

Even if you can’t tell exactly what it is saving the company, just

measure the increasing number of test cases that are executed for

each release. If you assume that more tests mean fewer errors in

production, this expanded coverage has value.

Historical trends

In all of these metrics, it is very useful to keep historical records so that you can measure

trends. This may be as simple as keeping the numbers in a spreadsheet and plotting

them graphically. Remember to also keep the numbers that went into the metric: not

just test case coverage, for example, but the total number of test cases defined as well

as executed that went into the calculation.

The reason historical trends are important is that they highlight progress - or, perish the

thought, regression. For example, the number of requirements and test cases which

have been defined for an application should be growing steadily. This indicates that

enhancements, as well as problems found in production, are being added as new

requirements and test cases, assuring that your test library is keeping pace with the

application. A declining recurrence ratio might indicate that programming practices or

unit testing has improved.

Page 98 The Automated Testing Handbook

Another reason to analyze historical trends is that you can analyze the impact of

changes in the process. For example, instituting design reviews or code walkthroughs

might not show immediate results, but later might be reflected as a reduced defect ratio.

Management Reporting Page 99

