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Summary

We have developed a computational pipeline to analyse large surveys of Affymetrix
GeneChips, for example NCBI’s Gene Expression Omnibus. GEO samples data for many
organisms, tissues and phenotypes. Because of this experimental diversity, any observed
correlations between probe intensities can be associated either with biology that is robust,
such as common co-expression, or with systematic biases associated with the GeneChip
technology.
Our bioinformatics pipeline integrates the mapping of probes to exons, quality control
checks on each GeneChip which identifies flaws in hybridization quality, and the mining
of correlations in intensities between groups of probes. The output from our pipeline has
enabled us to identify systematic biases in GeneChip data. We are also able to use the
pipeline as a discovery tool for biology.
We have discovered that in the majority of cases, Affymetrix probesets on Human
GeneChips do not measure one unique block of transcription. Instead we see numerous
examples of outlier probes. Our study has also identified that in a number of probesets the
mismatch probes are an informative diagnostic of expression, rather than providing a mea-
sure of background contamination. We report evidence for systematic biases in GeneChip
technology associated with probe-probe interactions. We also see signatures associated
with post-transcriptional processing of RNA, such as alternative polyadenylation.

1 Motivation

Affymetrix GeneChip technology provides multiple measures of the expression level for each
gene. Each probe is a 25-nt oligomer (25mer) and each probeset, designed to represent a dif-
ferent gene transcript, typically consists of eleven perfect match (PM) probes as well as corre-
sponding mismatch (MM) probes. There has been tremendous success in applying Affymetrix
GeneChip technology to illuminate the difference in gene-expression patterns for different
species, tissues, phenotypes and disease states [1]. Following the publication of many experi-
ments using GeneChips, public repositories of GeneChip data, such as GEO [2], were set up.
These databases now contain the results from tens of thousands of GeneChips. The true value
of having access to the combined data sources is only now becoming apparent. It is clear much
more knowledge can be extracted from the combined data, than has already been published by
individual studies. Many of the improvements in the use of GeneChips will derive from com-
putational methods to either extract biological signals from the data or to remove systematic
errors introduced by the technology.
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2 Our pipeline

We have built a pipeline which analyses tens of thousands of GeneChips that are freely available
in the public domain. Our pipeline brings together unique mapping of probes, quality control
analysis on each GeneChip and data-mining signal intensities across many experiments. We
have begun to use the products of this pipeline to make inferences about both biological systems
and the biophysics of GeneChip technology.

2.1 Unique probe mappings to minimise the impact of cross-hybridization

We have previously shown that post-transcriptional processing steps, such as alternative
polyadenylation and alternative splicing, leave their mark in GeneChip data [3]. In particu-
lar, probes that map to different exons may show differential regulation. In order to circumvent
the biological variation in transcriptomic data caused by splicing we have focussed on groups of
probes which map to the same exon. This choice identifies groups of probes whose expression
should be correlated [4].

Previous work has focussed on mapping Affymetrix probes to different transcript variants in
order to study alternative splicing [5, 6, 7]. However, these mappings still include probes that
align exactly to more than one place in the genome. These cases are referred to as multiple
targeting (MT) [8]. Probes are also susceptible to cross-hybridization (CH) where the probe
sequence partially aligns to multiple genomic locations. We have attempted to avoid the issue
of MT and CH by identifying probes which map uniquely to either an exon or an exon-exon
junction. Ensembl [9] exon and spliced transcript sequences (release 48) and probe sequences
for 12 Affymetrix Human GeneChip chip types [10] were used. The probe sequences were
aligned against the spliced transcripts and exons using MegaBLAST [11]. Care was taken to
ensure that the probe did not align to the antisense version of the gene (i.e. alignments with
start position greater than end position). Ensembl exons with the same length, sequence and
genomic coordinates have different identifiers if they are different sequence types (coding or
non-coding). In our analysis we considered such exons as being synonymous because they will
produce the same RNA sequence and will be equally able to hybridize to a probe which aligns
to the exon.

In order to account for both multiple-targeting and cross-hybridization we calculated the align-
ment “value” for each probe by multiplying the alignment length and the percentage sequence
identity. For example a probe that aligns to a sequence with 25 bases and percentage sequence
identity of 80% would have an alignment value of 20 (25*0.8).

Figures 1 and 2 demonstrate which probes are considered to be mapping uniquely to an exon.
We consider a probe to be mapping uniquely to an exon if it:

• aligns exactly (25 bases, 100% identity) to only one exon and to any of its synonyms (i.e.
the probe maps to the same genomic region)

• maps to only one place on the same exon

• does not map to any exon-exon junctions
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• does not map partially to any other exon (i.e. does not have alignment value between 20
and 25 with any other exon)

Figure 1: An example of a probe considered to be mapping uniquely to an exon. Probe 1 aligns to
only one place in the exon with 25 bases (100% identity) and nowhere else.

Figure 2: An example of a probe which is not considered to be mapping uniquely to an exon. Probe
2 aligns to one exon with 25 bases (100% identity) but also partially (25 bases and 96% identity)
to another exon with an alignment value of 24 (25*0.96).

We have also identified those probes that map uniquely to an exon-exon junction. We consider
a probe to be mapping uniquely to an exon-exon junction if it:

• aligns exactly (all 25 bases, 100% identity) to only one position on a spliced transcript

• does not map partially to any other spliced transcript (i.e. does not have an alignment
value between 20 and 25 to any other spliced transcript)

• does not map to any exon with 25 bases, 100% identity

The unique junction probe may map to the same exon pair in different transcripts of the same
gene. Figures 3, 4 and 5 demonstrate which probes are considered to be mapping uniquely to
an exon-exon junction.

Figure 3: An example of a probe considered to be mapping uniquely to an exon-exon junction.
Probe 1 maps to two exon-exon junctions that contain the same exons from different transcripts of
the same gene (Gene 1). The exons of both transcripts are the same in terms of length and genomic
position, i.e. the probe is mapping to the same genomic region.

We have created a database containing information about the probes, exons and transcripts. The
computational system that we have developed implements the definition of unique mappings
and uses the database information. By using this system, all probes which map uniquely to the
same exon, as well as probes mapping uniquely to an exon-exon junction have been identified.
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Figure 4: An example of a probe not considered to be mapping uniquely to an exon-exon junction.
Probe 1 maps to two junctions from different genes (Gene 1 and Gene 2).

Figure 5: A different example of a probe not considered to be mapping uniquely to an exon-exon
junction. Probe 1 maps to two exon-exon junctions which are from the same gene but contain
different exons (i.e. probe 1 maps to different genomic regions) and therefore the mapping is not
unique.

2.2 Correlation matrices for probesets

The preprocessing of GeneChips is an active research field with a number of different algo-
rithms being developed [12]. The calibration of microarrays requires a correction for back-
ground signals as well as normalization of the data and the calculation of an expression mea-
sure. We have identified the calculation of the expression measure as being the dominant cause
of variance in the lists of genes reporting to be differentially expressed in experiments [13].

The base assumption behind all the expression measures is that multiple probes from within
the same probeset measure the same thing. Each probe should, ideally, provide an accurate
and linear response to increasing amounts of the gene target. Although many probes perform
as desired, there are many probes which are noticeably less responsive to target concentration.
Some probes are either unresponsive (no hybridization signal) or invariant (same hybridization
signal) across many observations. We have begun to examine the correlations between probes
from within the same probeset. Our analysis is starting to produce results that indicate that
many, if not all, of the existing expression measure calculations may be missing interesting
biophysical effects. These include clear evidence for a significant fraction of mismatch probes
which are measuring the effects of signal rather than background. We are also seeking to
identify spurious probes in order to remove them from downstream analysis.

We use large numbers of GeneChip experiments obtained from GEO in order to identify those
probes whose expression changes are corrupted in a systematic way. We have begun to iden-
tify the sources of these systematic errors through studying relationships apparent across tens
of thousands of microarray experiments. In February 2007 we downloaded almost 40,000
Affymetrix GeneChip CEL files from GEO. Human, mouse and rat samples make up the ma-
jority of the CEL files.

Many of the GeneChips we have downloaded contain spatial flaws in their hybridization.
We have developed methods to correct for these defects [14, 15], building upon our earlier
work [16]. For all the chips of a given design we first identify and then remove defects from
downstream analysis and then row quantile normalise the chip intensities so as to transform the
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intensities into a standard distribution. Row quantile normalization is quantile normalization in
that the distribution of intensities is forced to take a standard form, but it also takes into account
the way Affymetrix GeneChips are generated. Probes in a row have similar sequences. This
is due to the way the probes are laid out by Affymetrix. This means all probes in a row tend
to have similar GC content which in turn leads to individual rows showing biases in intensities
different to their immediate neighbours. Quantile Normalizing each row independently acts to
remove these biases.

We transform all intensities onto a log2 scale and then correlate the probe signals across all
examples of a chip with a given design, e.g. HG-U133A, against the signals from all the probes
taken from the same probeset. Figure 6 shows an example for two perfect match probes, PM9
and PM11 from probeset 208772 at, on the HG-U133A array. We collate all the correlations
for a given probeset, including the correlations between perfect match probes, mismatch probes
and perfect match and mismatch probes, into a matrix which we colour-code according to the
correlation value. The data in Figure 6 is transformed into one number, the correlation. This is
one of the squares in the matrix shown in Figure 7.

Figure 6: A scatter plot of the log2 intensities between perfect match probes 9 and probe 11 from
probeset 208772 at, obtained from 5638 HG-U133A GeneChips. For this particular probe pair,
1047 of the original set of 6685 chips were flagged as possibly providing spurious signals or being
close to dubious values.

The correlation matrices are proving to be an effective tool for establishing systematic biases
in probes and probesets. Figure 8 shows the correlation matrix for probeset 200750 s at on
the HG-U133A chip. Figure 8 indicates that all the PM probes are correlated closely with
each other, which means they can be reliably condensed into a single measure of expression.
However, Figure 8 also shows that the MM probes are also closely correlated with the PM
probes, and thus they are measuring the same thing as the PM, i.e. they are not measuring
a background signal. Figure 9 shows that there is little or no correlation between any of the
probes in probeset 204921 at on the HG-U133A chip. It is unlikely that this set can be used
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for diagnostic purposes, and care should be taken in interpretation if this probeset shows up as
being differentially expressed in any experiment. Figure 10 shows that PM 5 and its mismatch in
probeset 201131 s at on HG-U133A are outliers, and should not be included in the calculation
of any expression measure.

We have generated correlation matrices for all of the GeneChip types of the Human data in
GEO (up to February 2007). The matrices can be obtained from http://bioinformatics.
essex.ac.uk/users/wlangdon. We intend to produce similar correlation matrices for all the
other organisms for which GeneChips exist, and which contain sufficient data to enable robust
correlation values to be calculated.

Figure 7: The correlations in intensities (log2) between probes in probeset 208772 at on the HG-
U133A array. The numbers to the left indicate the mean linear intensity of each probe across all
the data in GEO. The numbers to the right indicate the standard deviation of the normalised log2
intensities for all the data in GEO. The lower left quadrant details the correlations between perfect
match probes and all the other perfect match probes in the probeset. The upper right quadrant
details the correlations between all the mismatch probes. The upper left quadrant details the
correlations between the perfect match and mismatch probes. The number in each square is the
correlation ×10. The matrix is diagonally symmetric, and the diagonal corresponds to comparing
a probe with itself – perfect correlation, and hence is scored 10. The correlation calculated for PM
probes 9 and 11 , the data in Figure 3, is reported as 8 (0.76 multiplied by 10 and rounded).
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Figure 8: The correlations in intensities (log2) between probes in probeset 200750 s at on HG-
U133A. There is considerable correlation between all the probes, including mismatch probes. This
suggests that in this probeset mismatch probes contain information about the expression of the
transcript, rather than as a measure of the background signal.

Figure 9: The correlation in intensities (log2) for probes in probeset 204921 at on HG-U133A. For
this probeset there is little correlation between any of the probes – this indicates that this probeset
will be uninformative.
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Figure 10: The correlations in intensities (log2) between probes in probeset 201131 s at on HG-
U133A. Probe 5 for both the PM and MM appears poorly correlated with the other probes. Out-
liers should be removed before the calculation of expression.

2.3 Using correlation matrices to identify signatures associated with
post-transcriptional processing of RNA

Correlation matrices were created for every Ensembl exon (release 48) with unique Affymetrix
probes aligning in the sense direction of the exon. These provide good controls because the
groups of probes that align to the same exon are expected to show concordance in their expres-
sion. However, the effects of polyadenylation may result in a block of correlation within the
matrix of an exon. Figures 11 and 12 both show blocks of high correlation in the matrix at posi-
tions of polyadenylation (polyA) sites, which we have obtained from the ASTD database [17].
We have started to analyse these steps as well as similar step structures due to competing splice
sites (data not shown).

2.4 Why probes are not behaving as expected

In studying the correlation between probes drawn from a single exon we observe some remark-
ably low (even large negative) correlations between probes. Figure 13 shows a group of probes
from within a probeset that all map to the same exon. Probes 6, 7 and 8 are all correlated
indicating that they are measuring something. But these are not correlated with the rest of the
probes in the probeset. Figure 14 shows that probes 6, 7 and 8 are closely correlated with tens
of thousands of other probes. Indeed, they are correlated with the outlier probe seen in Fig-
ure 10, PM5 in probeset 201131 s at. The probes within the family have a common run of four
or more contiguous guanines. Probes containing runs of contiguous guanine have been shown
to have abnormal binding affinities and be typically outliers within a probeset [18]. We con-
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Figure 11: A correlation matrix for exon ENSE00000808379 with probes from HG-U133 Plus 2.
Probes 1-13 lie before a polyA site and probes 14-24 are after. The matrix suggests that the Gene-
Chips are detecting expression from transcripts which frequently use this site, as there is little
correlated expression beyond the site. The numbers under the lower left quadrant (PMvsPM) de-
tail the position of probes on the exon. The 1st base of probe 1 is at position 22 with respect to the
start of the ENSEMBL exon, and the 1st base of probe 2 is at position 25 (22 + 3).

firm this observation, and go further by identifying that the probes containing runs of guanine
are closely correlated. We expect this signature results from four adjacent probes containing a
run of guanines interacting to form a G-quadruplex [19]. Determining the existence of probe-
probe interactions on GeneChips may have widespread implications for the users of Affymetrix
GeneChip 3’ gene expression, tiling, exon and Genotyping arrays.

We are presently seeking other explanations for the causes of outliers. We expect that in a
number of cases, the probe sequence will overlap the location of a Single Nucleotide Polymor-
phism (SNP). SNPs have been shown to cause divergent values for the differences in PM and
MM intensities [20]. SNPs have also been found to cause the false identification of expressed
quantitative trait loci using GeneChip data [21].

A fraction of the probes show little or no expression across all of the experiments in GEO.
These probes are not useful measures of expression, and should therefore be excluded from
any expression measure calculation. We are identifying such probes and exploring the reasons
behind why probes are unresponsive.

Another issue we are considering is how to deal with probes which share a significant overlap
in sequence. Indeed there are a number of examples of probe sequences which have multiple
copies, i.e. the sequences of the probes are identical but they are assigned to separate probe-
sets. There are also a large number of overlapping probes in which a significant fraction of
sequence is shared. These overlapping probes are often strongly correlated, as expected, but
these are not truly independent measurements. However, many of the summary expression
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Figure 12: A correlation matrix for exon ENSE00000799596 with probes from HG-U133 Plus 2.
Probes 1-10 align to the exon before a polyA site and probes 11-20 align after. The matrix suggests
that there is a considerable population of GeneChips measuring transcripts that did not terminate
at this site, because there is correlated expression beyond the site.

Figure 13: The correlation matrix for probeset 209885 at on the HG-U133A array. All the PM
probes map uniquely to one exon, ENSE00001219272, and yet they show two different correlation
blocks (PM 1,2,3,4,5,9,10 and 11 in one block, and PM 6,7 and 8 in the other block).
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Figure 14: Rank of correlations between each of the probes mapping to exon ENSE00001219272
and the rest of the probes on the GeneChip HG-U133Av2. The several thousand probes that show
close correlation have runs of contiguous guanines. We suggest this signal comes from probe-probe
interactions resulting in G-quadruplexes.

level quantifiers make no distinction between independent and dependent probes. Moreover,
we have found that relatively small overlaps in sequence can result in significant correlation
due to cross-hybridization. It is crucial to separate the biological cause of the correlation from
the biophysical cause of the correlation, and we are exploring methods to do this.

3 Summary

We have developed a computational pipeline to analyse tens of thousands of Affymetrix Hu-
man GeneChips, freely available from the Gene Expression Omnibus. The data samples many
tissues and phenotypes. Because of this experimental diversity, any observed correlations be-
tween probe intensities can be associated either with biology that is robust, such as common
co-expression, or with systematic biases associated with the GeneChip technology.

We generate matrices of correlations of the intensities of all the probes within each of the
Affymetrix-defined probesets as well as for groups of probes which map uniquely to individual
exons. The unique mappings reduce the effects of multiple targeting and cross-hybridization.
The focus on exons also minimises the impact of alternative splicing which sometimes causes
probes within a probeset to behave incoherently.

In the majority of cases, probesets do not measure one solid block of transcription. Instead
there are numerous examples of outlier probes. In a number of probesets the mismatch probes
indicate expression rather than providing a measure of background signal. Probes containing
runs of four or more contiguous guanines are correlated with other similar probes and so do
not measure gene expression. We suggest this systematic bias in GeneChip data results from
probe-probe interactions. Furthermore, post-transcriptional processing events such as alterna-
tive polyadenylation leave a clear mark in a number of correlation matrices.

Our results have widespread implications because of the pervasive use of GeneChips in modern
biological research.
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