
Automatic Control and Information Sciences, 2014, Vol. 2, No. 1, 7-12
Available online at http://pubs.sciepub.com/acis/2/1/2
© Science and Education Publishing
DOI:10.12691/acis-2-1-2

Decoding of the Triple-Error-Correcting Binary
Quadratic Residue Codes

Hung-Peng Lee*, Hsin-Chiu Chang

Department of Computer Science and Information Engineering, Fortune Institute of Technology, Kaohsiung, ROC
*Corresponding author: hpl@fotech.edu.tw

Received February 14, 2013; Revised January 17, 2014; Accepted February 09, 2014

Abstract In this paper, a more efficient syndrome-weight decoding algorithm (SWDA), called the enhanced
syndrome-weight decoding algorithm (ESWDA), is presented to decode up to three possible errors for the binary
systematic (23, 12, 7) and (31, 16, 7) quadratic residue (QR) codes. In decoding of the QR codes, the evaluation of
the error-locator polynomial in the finite field is complicated and time-consuming. To solve such a problem, the
proposed ESWDA avoids evaluating the complicated error-locator polynomial, and has no need of a look-up table to
store the syndromes and their corresponding error patterns in the memory. In comparison with the SWDA developed
by Lin-Chang-Lee-Truong (2010), the simulation results show that the ESWDA can serve as an efficient and high-
speed decoder.

Keywords: syndrome, error pattern, Golay code, quadratic residue code

Cite This Article: Hung-Peng Lee, and Hsin-Chiu Chang, “Decoding of the Triple-Error-Correcting Binary
Quadratic Residue Codes.” Automatic Control and Information Sciences, vol. 2, no. 1 (2014): 7-12. doi:
10.12691/acis-2-1-2.

1. Introduction
The triple-error-correcting binary QR codes include (23,

12, 7) QR code and (31, 16, 7) QR code, respectively. The
binary (23, 12, 7) QR code is also called the binary Golay
code, which is a perfect code. The Golay code is first
introduced by Golay in 1949 [4]. If an overall parity check
is used, the rate is exactly 1/2, so that most of the known
QR codes are the best-known codes. Among them, the
extended (24, 12, 8) Golay code was utilized to act as an
error control on the Voyager I and II spacecraft mission,
providing clear remote pictures of Jupiter and Saturn [13].

Several algebraic decoding algorithms (ADAs) had
been developed to decode the binary Golay code [3,12].
The key idea of decoding the Golay code by using ADA is
to compute the unknown syndrome for determining the
coefficients of the error-locator polynomial. One of the
representative methods is inverse-free Berlekamp-Massey
algorithm [10]. In [11], Reed et al. developed the ADA of
the extended (32, 16, 8) QR code with reducible generator
polynomial. However, such an algorithm is quiet
complicated. Lin et al. [6] thus proposed a modified ADA
to reduce the decoding complexity. For ADAs, once the
coefficients of the error-locator polynomial are obtained,
the error positions can be determined by using the Chien
search algorithm [1], which is an exhaustive search over
all the elements in the finite field. In the decoding
procedure of ADAs, this step is the most time-consuming
and need plenty of multiplication and division operations
over the finite field.

Most recently, table-lookup decoding algorithms
(TLDAs) [2,7,9] have played an important role in forward

error correction. These types of decoders are efficient with
minimum decoding delay; however, the TLDAs require a
memory space in the decoder chip and increase the
decoding cost rapidly when the code length is large. The
SWDA proposed by Lin et al. [7] used the refined lookup
table (RLT) to decode the triple-error-correcting binary
Golay code and (31, 16, 7) QR code. For decoding the
Golay code, the RLT consists of 42 syndromes and their
corresponding coset leaders, and it only needs 168 bytes
memory size. For decoding the (31, 16, 7) QR code, the
RLT consists of 72 syndromes and their corresponding
coset leaders, and it only requires 288 bytes memory
size.

In this paper, the proposed ESWDA has faster decoding
speed than the SWDA, and it does not need a memory size
to store the lookup table. The key idea of the proposed
ESWDA is based on the weight of syndrome difference
between the syndrome of the received word and the row
vector of the transpose of the parity-check matrix.
Therefore, the error cases can be swiftly determined. The
application of the syndrome weight and the syndrome
difference can constitute a high-speed decoding algorithm.
Moreover, no complicated computation in the finite field
is required in the proposed ESWDA. Two examples
demonstrate the decoding procedure of the proposed
ESWDA. The proposed ESWDA is applicable to decode
other cyclic codes such as the binary (15, 5, 7) BCH code;
however, the decoding steps of the proposed ESWDA
need to make some slight adjustments. The decoding steps
of the binary (15, 5, 7) BCH code are demonstrated in a
simple example. Computer simulation result shows that
the decoding time of the proposed ESWDA is superior to
the SWDA.

8 Automatic Control and Information Sciences

The remainder of this paper is organized as follows:
The background of the binary QR codes is briefly
reviewed in Section 2. The proposed ESWDA is described
in Section 3. In Section 4, we use three examples to
demonstrate the proposed ESWDA. Computer simulation
results of the proposed ESWDA and the SWDA are given
in Section 5. Finally, this paper concludes with a brief
summary in Section 6.

2. Background of the Binary QR Codes
The binary QR codes are a nice family of linear cyclic

codes. Let (n, (n+1)/2, d) denote the binary QR codes with
generator polynomial g(x) over GF(2). The length of this
code is a prime number of the form n = 8l ± 1, where l is
some integer. Also, let k = (n+1)/2 denote the message
length or information length, and d denote the minimum
Hamming distance of the code. The set Qn of quadratic
residues modulo n is the set of nonzero squares modulo n;
that is, Qn = {j | j ≡ x2 mod n, 1 ≤ x ≤ n−1}. If n = 23, then
its quadratic residue set is Q23 = {1, 2, 3, 4, 6, 8, 9, 12, 13,
16, 18}. If n = 31, then its quadratic residue set is Q31 = {1,
2, 4, 5, 7, 8, 9, 10, 14, 16, 18, 20, 25, 28}.

Let the symbols C23 and C31 denote the binary Golay
code and binary (31, 16, 7) QR code, respectively. Let α
be a root of primitive polynomial pr23(x) = x11 + x2 + 1. If
α = 2, then the 11 roots of pr23(x) are α = 2, α2 = 4, α22

 =
16, α23

 = 256, α24
 = 160, α25

 = 1064, α26
 = 1605, α27

 = 158,
α28

 = 380, α29
 = 1530, α210

 = 1987. Let the element β = αu
be a primitive 23rd root of unity in GF(2ll), where u = (211
– 1) / 23 = 89. Therefore, β = α89 = 322, where 322 is the
decimal representation of β. The total 23 roots are listed in
Table 1.

Table 1. The total 23 roots of x23 – 1 (in decimal number)
β 0 = 1 β 1 = 322 β 2 = 174 β 3 = 1164 β 4 = 1148
β 5 = 481 β 6 = 637 β 7 = 1942 β 8 = 1887 β 9 = 1518
β 10 = 1155 β 11 = 167 β 12 = 2011 β 13 = 418 β 14 = 281
β 15 = 1525 β 16 = 378 β 17 = 1728 β 18 = 1747 β 19 = 319
β 20 = 552 β 21 = 1876 β 22 = 1085
The generator polynomial of C23 is defined by

 23 23
11 9 7 6 5

() ()

1.

i
i Qg x x β

x x x x x x

∈= −

= + + + + + +

∏
 (1)

Now let α be a generator of the multiplicative group of
all nonzero elements in GF(25). Then, the element β = αu,
where u = (25 − 1)/31 = 1. The x31–1 can be factored into
seven primitive minimal irreducible polynomials; that is,
x31–1 = (x5 + x2 + 1)(x5 + x4 + x2 + x + 1)(x5 + x3 + x2 + x +
1)(x5 + x4 + x3 + x2 + 1)(x5 + x3 + 1)(x5 + x4 + x3 + x + 1)(x
+ 1). Then, the generator polynomial of C31 is reducible,
and is defined by

, 1

)1(

)11)((

)()()()()(

389131415

235

24525

75113 31

++++++=

++++

++++++=

=−= ∏∈

xxxxxx

xxxx

xxxxxx

xgxgxgβxxg Qi
i

 (2)

where g1(x), g5(x), and g7(x) are the minimal polynomials
of x31–1. That is, gr(x) = (x − ßr)(x − ß2r)…(x − ß24r) and

ß2ir ∈ GF(25) for 0 ≤ i ≤ 4 are the roots of gr(x), where r =
1, 5, and 7. If α = 2, then the total 31 roots of x31 − 1 are
listed in Table 2.

Table 2. The total 31 roots of x31 – 1 (in decimal number)
β 0 = 1 β 1 = 2 β 2 = 4 β 3 = 8 β 4 = 16
β 5 = 5 β 6 = 10 β 7 = 20 β 8 = 13 β 9 = 26
β 10 = 17 β 11 = 7 β 12 = 14 β 13 = 28 β 14 = 29
β 15 = 31 β 16 = 27 β 17 = 19 β 18 = 3 β 19 = 6
β 20 = 12 β 21 = 24 β 22 = 21 β 23 = 15 β 24 = 30
β 25 = 5 β 26 = 23 β 27 = 11 β 28 = 22 β 29 = 9
β 30 = 18
Because the minimum Hamming distance of C23 and

C31 is d = 7, the inequality 2v + 1 ≤ 7 is valid, where v is
the actual number of errors to be corrected. Hence, the
error-correcting capability is   32/)1(=−= dt , where

 x denotes the greatest integer less than or equal to x.
The codeword is a multiple of generator polynomial g(x);
that is, ∑ = == 1-

0)()()(n
i

i
i xgxmxCxC , where Ci ∈ GF(2)

for 0 ≤ i ≤ n–1, and ∑ −
== 1

0)(k
i

i
i xmxm denotes the

message polynomial, where mi ∈ GF(2) for 0 ≤ i ≤ k–1.
Let ∑ −−

== 1
0)(kn

i
i

i xpxp be the parity-check polynomial,
where pi ∈ GF(2) for 0 ≤ i ≤ n–k–1. Let

∑ −−
== 1

0)(kn
i

i
i xpxp be the parity-check polynomial, where

pi ∈ GF(2) for 0 ≤ i ≤ n–k–1. Let p(x) ≡ m(x)xn–k mod g(x),
then one obtains m(x)xn–k = q(x)g(x) + p(x). The term (p(x)
+ m(x)xn–k), which is a multiple of g(x), is a codeword
polynomial given by

 -1
0() () () ,n i n k

iic x c x p x m x x −
== = +∑ (3)

where ci ∈ GF(2) for 0 ≤ i ≤ n–1. In this paper, the
systematic encoding method is utilized. Now, let a
codeword be transmitted through an additive white
Gaussian noise (AWGN) channel to obtain a received
word with the form r(x) = c(x) + e(x), where e(x) is the
polynomial of the received error pattern expressed as

∑ −
== 1

0)(n
i

i
i xexe , where ei ∈ GF(2) for 0 ≤ i ≤ n–1. The

syndromes polynomial is expressed as ∑ == 1--
0)(kn

i
i

i xsxs .
To simplify the polynomial expressions mentioned

above, let the message, codeword, error pattern, received
word, and syndrome polynomials be expressed as the binary
vector forms) (110 −= kmmm m ,) (110 −= nccc c ,

) (110 −= neee e ,) (110 −=+= nrrr ecr , and
) (110 −−= knsss s , respectively. The systematic

codeword of the vector form is given by

 c mG= (4)
where G is called the systematic generator matrix. Let P
be a k×(n–k) matrix and Ik be a k×k identity matrix, and G
can be expressed as

 ()k n k k k n× − ×
 =  G P I (5)

The parity-check matrix H can be expressed as
[]

nkn
T

kknkn ×−×−−=
)()(PIH , where PT denotes the (n–k)×k

transpose matrix of P. The vector form of the syndrome is
defined by

 Automatic Control and Information Sciences 9

 ,Ts = rH (6)

where HT denotes the n×(n–k) transpose matrix of H; that
is, HT can be expressed as

0

() ()

1

.T n k
n k

k n k n n k

n

−
−

× − × −

−

 
 
  
 = = 
     
  

h

I
hH

P

h





 (7)

For C23, HT has the following form:

11
1 0 1 0 1 1 1 0 0 0 1
1 1 1 1 1 0 0 1 0 0 1
1 1 0 1 0 0 1 0 1 0 1
1 1 0 0 0 1 1 1 0 1 1
1 1 0 0 1 1 0 1 1 0 0

.0 1 1 0 0 1 1 0 1 1 0
0 0 1 1 0 0 1 1 0 1 1
1 0 1 1 0 1 1 1 1 0 0
0 1 0 1 1 0 1 1 1 1 0
0 0 1 0 1 1 0 1 1 1 1
1 0 1 1 1 0 0 0 1 1 0
0 1 0 1 1 1 0 0 0 1 1

T

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

I

H (8)

3. Decoding Algorithm and Theorems
In this section, the proposed ESWDA is used to decode

the C23 and C31. For the development of the proposed
ESWDA, the following definition, theorem and corollary
given in Lin et al. [8] are needed.
Definition 1: The Hamming weight of a binary vector a is
denoted by w(a), and the Hamming distance between a
and b is denoted by d(a, b) = w(a + b).
Theorem 1: Let a = (a0 … a1 an-1) and b = (b0 … b1 bn-1)
be two binary vectors, then

 1() () () 2 .n
i iiw w w a b=+ = + − ∑a b a b (9)

Corollary 1: If aibi = 0 for 1 ≤ i ≤ n, then

 () () ().w w w+ = +a b a b (10)

The following Theorem 2 is useful to compute the
syndrome of the received word when the received word
shifts one bit to the left. For more detailed proof of this
theorem, see [13, p118].
Theorem 2: Let s(x) be the syndrome polynomial
corresponding to a received polynomial r(x). Also, let
r(1)(x) be the polynomial obtained by cyclically shifting
the coefficients of r(x) one bit to the left. Then the
remainder obtained when dividing xs(x) by g(x) is the
syndrome s(1)(x) corresponding to r(1)(x).

However, for each cyclical shift of the received word,
we have to divide xs(x) by g(x). If the syndrome cyclically
shifts many times, then the syndrome computation is
rather time-consuming for dividing xs(x) by gn(x) many
times. The following theorem provides an efficient
method to compute s(i) for 0 ≤ i ≤ n–1, and it can save a lot
of computational time.
Theorem 3: For the binary QR codes, let rj be an element
of r and hj be the jth row vector of HT for 0 ≤ j ≤ n–1.
Then the syndrome s(i) of r(i) for 0 ≤ i ≤ n–1 has the form

 -1()
0 []

,ni
jj i j

r= +
= ∑s h (11)

where the suffix [x] of h denotes x mod n.
Proof: Let r = (r0,…,rn-1) and r(i) = (ri,…, rn-1, r0,…, ri-1)
for 0 ≤ i ≤ n–1. By (7), we have s(i) = r(i)HT =

∑ = −
1-
0][

n
j jijr h =

][
1-
0 ji

n
j jr

+=∑ h . The proof is thus completed.

Theorem 3: reveals that the syndrome of r(i) can be fast
computed by the vector addition. Theorem 4 also provides
an efficient method to simplify the decoding step by using
the syndrome weight. For a detailed proof, see [8].

Theorem 3 reveals that the syndrome of r(i) can be fast
computed by the vector addition. Theorem 4 also provides
an efficient method to simplify the decoding step by using
the syndrome weight. For a detailed proof, see [8].
Theorem 4: For the binary QR codes, it is assumed that
there are v errors in the received word, where 1 ≤ v ≤ t. All
v errors are in the parity-check bits if and only if the
weight of syndrome w(s) = v.

By using Theorem 4, we can develop the following
useful theorem.
Theorem 5 For the binary QR codes, if v errors are in the
information bits of the received word, where 1 ≤ v ≤ t and
t =  2/)1(−d , then the weight of the corresponding
syndrome polynomial or syndrome vector satisfies

 ()() () () ()3 3 or .w s x d v w s d v− − (12)

Proof: Let error polynomial e(x) present the v errors in the
information bits; that is, w(e(x)) = v. Since s(x) ≡ r(x) ≡ e(x)
(mod g(x)), we have e(x) + s(x) ≡ 0 (mod g(x)). This
implies that e(x) + s(x) is a codeword and hence the
codeword must satisfy w(e(x) + s(x)) ≥ d. By Corollary 1,
w(e(x) + s(x)) = w(e(x)) + w(s(x)) ≥ d and then w(s(x)) ≥ d
– w(e(x)). Thus, the weight of the syndrome polynomial
satisfies w(s(x)) ≥ d–v or w(s) ≥ (d–v). The proof is thus
completed.

Given a received word r, the syndrome of r(i) can be
fast computed by Theorem 3. According to Theorem 4, if
1 ≤ w(s) ≤ 3, then the error positions are in the parity-
check bits of r. If 1 ≤ w(s(n-k)) ≤ 3, then the error positions
are in the information bits of r. Let hi denote the ith row
vector of HT, where 0 ≤ i ≤ n–1. Also let sdw denote the
syndrome difference between the syndromes of r and hi in
each decoding step w. By using the weight of sdw, the
error cases can be quickly determined. Let u0 = (1, 0,…, 0)
be a k-tuples unit vector and uj has only one nonzero
component at the jth position, where 0 ≤ j ≤ k–1. By using
these properties, the proposed ESWDA can be constructed.

Let upper case P, C, and H denote the error position in
the parity-check bits, center bit, and information bits of r,
respectively. For C23 or C31, there are 15 error cases (P, PP,
PPP, H, HH, HHH, C, PC, PH, PPC, PPH, PHH, CH,
CHH, and PCH), which cover all ()∑ = =3

1
23
 2047i i and

()∑ = =3
1

31
 4991i i error patterns. If w(s) = 0, then r has no

error. If 1 ≤ w(s) ≤ 3 or 1 ≤ w(s(n-k)) ≤ 3, then there are 6
error cases (P, PP, PPP, H, HH, and HHH). Let the
syndrome difference sd3 = (s–hi) for n–k ≤ i ≤ n–1. If 0 ≤
w(sd3) ≤ 2, then there are 5 error cases (C, PC, PH, PPC,
and PPH). Let the syndrome difference sd4 = (s(n-k)–hi) for
n–k ≤ i ≤ n–1. If n–k ≤ i ≤ n–2 and w(sd4) = 2, then there
is only 1 error case (PHH). If i = n–1 and 1 ≤ w(sd4) ≤ 2,

10 Automatic Control and Information Sciences

then there are 2 error cases (CH and CHH). Let the
syndrome difference sd5 = ((s–hn-k)–hi) for k ≤ i ≤ n–1. If
w(sd5) = 1, then there is only 1 error case (PCH). The
decoding steps of the proposed ESWDA work as follows:

1). (No error, P, PP, and PPP cases.) By Theorem 3,
compute s and w(s). If 0 ≤ w(s) ≤ 3, then the information
vector is m = (rn-k,…, rn-1). Go to step 6.

2). (H, HH, and HHH cases.) By Theorem 3, compute
s(n-k) and w(s(n-k)). If 1 ≤ w(s(n-k)) ≤ 3, then the corrected
information vector is m = (rn-k,…, rn-1) + (s(n-k) >>1),
where “>>” denotes the logical right shift operator in
programming or the extension by zeros on the right in
mathematics. Go to step 6.

3). (C, PC, PH, PPC, and PPH cases.) Compute the
syndrome difference sd3 = (s–hi) for n–k ≤ i ≤ n–1 and
w(sd3). If 0 ≤ w(sd3) ≤ 2, then the corrected information
vector is m = (rn-k,…, rn-1) + ui-(n-k). Go to step 6.

4). (PHH, CH, and CHH cases) Compute the syndrome
difference sd4 = (s(n-k)–hi) for n–k ≤ i ≤ n–1 and w(sd4). If
n–k ≤ i ≤ n-2 and w(sd4) = 2, then the corrected
information vector is m = (rn-k,…, rn-1) + (sd4 >>1). If i =
n–1 and 1 ≤ w(sd4) ≤ 2, then the corrected information
vector is m = (rn-k,…, rn-1) + u0 + (sd4 >> 1). Go to step 6.

5). (PCH case.) Compute the syndrome difference sd5 =
((s–hn-k)–hi) for k ≤ i ≤ n–1 and w(sd5). If w(sd5) = 1, then
the corrected information vector is m = (rn-k,…, rn-1) + u0
+ ui-(n-k). Go to step 6.

6). Stop.
Table 3 lists all the 15 error cases and the number of

error patterns in each decoding steps of the proposed
ESWDA. The flowchart of the proposed ESWDA is
shown in Figure 1.

Table 3. The number of error patterns in each decoding step of C23
and C31

Steps Cases Number of error patterns
C23 C31

1

P ()11
1 11= ()15

1 15=

PP ()11
2 55= ()15

2 105=

PPP ()11
3 165= ()15

3 455=

2

H ()11
1 11= ()15

1 15=

HH ()11
2 55= ()15

2 105=

HHH ()11
3 165= ()15

3 455=

3

C 1 1

PC ()11
1 11= ()15

1 15=

PPC ()11
2 55= ()15

2 105=

PH ()()11 11
1 1 121= ()()15 15

1 1 225=

PPH ()()11 11
2 1 605= ()()15 15

2 1 1575=

4

PHH ()()11 11
1 2 605= ()()15 15

2 1 1575=

CH ()11
1 11= ()15

1 15=

CHH ()11
2 55= ()15

2 105=

5 PCH ()()11 11
1 1 121= ()()15 15

1 1 225=

Figure 1. Flowchart of the proposed ESWDA

4. Examples
In this section, three examples are presented to illustrate

the proposed ESWDA. Example 1 and 2 show the
decoding steps for the binary systematic Golay code.
Example 3 shows the decoding steps for the binary
systematic (15, 5, 7) BCH code, denoted by C15; however,
the decoding steps of the proposed ESWDA have to make
some slight adjustments.
Example 1: Let a message m = (000110101010) be
encoded into a C23 codeword c =
(11011010100000110101010). If the received word r =
(11011010100010111001010), then the error pattern e =
(00000000000010001100000), which means a HHH error
case. The decoding steps are shown below.

1). Compute s = (10101100100) and w(s) = 5. Since
w(s) > 3, go to step 2.

2). Compute s(11) = (10001100000) and w(s(11)) = 3 ≤ 3.
The corrected information word m = (010111001010) +
(010001100000) = (000110101010). Go to stop.

Example 2: This example demonstrates the worst
decoding case. Let a message m = (000110101010) be
encoded into a C23 codeword c =

 Automatic Control and Information Sciences 11

(11011010100000110101010). If the received word r =
(01011010100100110101011), then the error pattern e =
(10000000000100000000001), which means a PCH error
case. The decoding steps are shown below.

1). Compute s = (11001001111) and w(s) = 7. Since
w(s) > 3, go to step 2.

2). Compute s(11) = (01001001110) and w(s(11)) = 5.
Since w(s(11)) > 3, go to step 3.

3). Compute sd3 = (s–hi) for 11 ≤ i ≤ 22 and w(sd3).
sd3 = (s–h11) = (11001001111) – (11000111010) =
(00001110101). w(sd3) = 5.
sd3 = (s–h12) = (11001001111) – (01100011101) =
(10101010010). w(sd3) = 5.
…
sd3 = (s–h21) = (11001001111) – (10010011111) =
(01011010000). w(sd3) = 4.
sd3 = (s–h22) = (11001001111) – (10001110101) =
(01000111010). w(sd3) = 5.
Since every w(sd3) > 2, go to step 4.
4). Compute sd4 = (s(11)–hi) for 11 ≤ i ≤ 22 and

w(sd4).
sd4 = (s(11)–h11) = (01001001110) – (11000111010) =
(10001110100). w(sd4) = 5.
sd4 = (s(11)–h12) = (01001001110) – (01100011101) =
(00101010011). w(sd4) = 5.
…
sd4 = (s(11)–h21) = (01001001110) – (10010011111) =
(11011010001). w(sd4) = 6.
sd4 = (s(11)–h22) = (01001001110) – (10001110101) =
(11000111011). w(sd4) = 7.
Since every w(sd4) > 2, go to step 5.
5). Compute sd5 = ((s–h11)–hi) = (00001110101) – hi

for 12 ≤ i ≤ 22 and w(sd5).
sd5 = (s–h11)–h12 = (00001110101) – (11000111010) =
(11001001111). w(sd5) = 7.
sd5 = (s–h11)–h13 = (00001110101) – (11110110100) =
(11111000001). w(sd5) = 6.
…
sd5 = (s–h11)–h21 = (00001110101) – (10010011111) =
(10011101010). w(sd5) = 6.
sd5 = (s–h11)–h22 = (00001110101) – (10001110101) =
(10000000000). w(sd5) = 1.
Since w(sd5) = 1, the corrected information word m =
(r11,…, r22) + u0 + u22-11 = (100110101011) +
(100000000000) + (000000000001) = (000110101010).
Go to stop.
PCH case is the worst case; however, only 121 error

patterns, namely 5.91%, will enter step 5.
Example 3: Let a message m = (00011) be encoded into a
codeword of C15 with g(x) = x10 + x9 + x8 + x6 + x5 + x2 + 1,
and obtain the codeword c = (101100101000011). If the
received word r = (101110101011011), then the error
pattern e = (000010000011000), which means a PHH
error case. First, the decoding steps of the proposed
ESWDA mentioned in Section 3 can be slightly adjusted
as follows:

1). (No error, P, PP, and PPP cases.) By Theorem 3,
compute s and w(s). If 0 ≤ w(s) ≤ 3, then the information
vector is m = (rn-k,…, rn-1), and go to step 5.

2). (H, HH, HHH, PH, PPH, and PHH cases.) By
Theorem 3, compute s(n-k) and w(s(n-k)). If 1 ≤ w(s(n-k)) ≤ 3,
then the corrected information vector is m = (rn-k,…, rn-1)
+ (s(n-k) & (11111)), where the notation “&” denotes the
bitwise AND operator, and go to step 5.

3). (PH and PPH cases.) Compute the syndrome
difference sd3 = (s–hi) for n–k ≤ i ≤ n–1 and w(sd3). If 0 ≤
w(sd3) ≤ 2, then the corrected information vector is m =
(rn-k,…, rn-1) + ui-(n-k), and go to step 5.

4). (PHH case) Compute the syndrome difference sd4 =
(s(n-k)–hi) for n–k ≤ i ≤ n–1 and w(sd4). If w(sd4) = 2, then
the corrected information vector is m = (rn-k,…, rn-1) + (sd4
& (11111)), and go to step 5.

5). Stop.
For this code, there are 9 error cases. Table 4 lists all

the 9 error cases and the number of error patterns in each
decoding steps.

Table 4. The number of error patterns in each decoding step of C15

Steps Cases
Number of error patterns

C23

1

P ()10
1 10=

PP ()10
2 45=

PPP ()10
3 120=

2

H ()5
1 5=

HH ()5
2 10=

HHH ()5
3 10=

PH ()()5 5
1 1 25=

PPH ()()5 5
2 1 50=

PHH ()()5 5
1 2 50=

3
PH ()() ()()10 5 5 5

1 1 1 1 25− =

PPH ()() ()()10 5 5 5
2 1 2 1 175− =

4 PHH ()() ()()10 5 5 5
1 2 1 2 50− =

The decoding steps are shown below.
1). Compute s = (1001001011) and w(s) = 5. Since

w(s) > 3, go to step 2.
2). Compute s(5) = (1101111101) and w(s(5)) = 8. Since

w(s(5)) > 3, go to step 3.
3). Compute sd3 = (s–hi) for 10 ≤ i ≤ 14 and w(sd3).
sd3 = (s–h11) = (1001001011) – (1101100101) =
(0100101110). w(sd3) = 5.
sd3 = (s–h12) = (1001001011) – (0110101111) =
(1111100100). w(sd3) = 6.
sd3 = (s–h13) = (1001001011) – (1101011110) =
(0100010101). w(sd3) = 4.
sd3 = (s–h14) = (1001001011) – (0111011001) =
(1110010010). w(sd3) = 5.
sd3 = (s–h15) = (1001001011) – (1110110010) =
(0111111001). w(sd3) = 7.
Since every w(sd3) > 2, go to step 4.
4). Compute sd4 = (s(5)–hi) for 10 ≤ i ≤ 14 and w(sd4).
sd4 = (s(5)–h11) = (1101111101) – (1101100101) =
(0000011000). w(sd4) = 2.
Since w(sd4) = 2, the corrected information word m =

(r10,…, r14) + (sd4 & (11111)) = (11011) + ((0000011000)
& (11111)) = (00011). Go to stop.

12 Automatic Control and Information Sciences

5. Simulation Results
The proposed ESWDA has been programmed in C++

language. On an Intel Q6600 PC with XP operating
system, all 2k codewords with all ()∑ =

3
1i

n
i error patterns

were created to check every possible error pattern of C15,
C23, and C31, respectively. In other words, the error
patterns of C15, C23, and C31 are () 5753

1
15 =∑ =i i ,

() 20473
1

23 =∑ =i i , and () 49913
1

31 =∑ =i i , respectively. The
decoding times of the proposed ESWDA and the SWDA
are shown in the Table 5, Table 6, and Table 7,
respectively. For v = 1, it means that one error of that code
input to the decoder, and for the average decoding time, it
means that all the error patterns of that code input to the
decoder. In these three tables, the average decoding time
of the proposed ESWDA is about 10.6 times, 19.6 times,
and 4 times faster than the SWDA, respectively. The
memory requirements of the two algorithms are also
shown in Table 5, Table 6, and Table 7, respectively. It is
obvious that the proposed ESWDA significantly reduces
decoding time with the increase of the code length.

Table 5. Comparison of the decoding time (in µs) and memory
requirement (in bytes) for the Golay code between two algorithms

Algorithms
Number of errors Memory

size v = 1 v = 2 v = 3 Average

ESWDA 0.232 0.372 0.661 0.612 0

SWDA 4.026 5.311 6.728 6.514 168

Table 6. Comparison of the decoding time (in µs) and memory
requirement (in bytes) for the (31, 16, 7) QR code between two
algorithms

Algorithms
Number of errors Memory

size v = 1 v = 2 v = 3 Average

ESWDA 0.316 0.548 0.997 0.956 0

SWDA 11.23 14.89 19.07 18.73 288

Table 7. Comparison of the decoding time (in µs) and memory
requirement (in bytes) for the (15, 5, 7) BCH code between two
algorithms

Algorithms
Number of errors Memory

size v = 1 v = 2 v = 3 Average

ESWDA 0.196 0.236 0.321 0.289 0

SWDA 0.097 0.933 1.151 1.115 36

6. Conclusions
Binary QR codes are well known for their good features.

A high-speed and efficient ESWDA is developed to
decode C15, C23, and C31. The proposed ESWDA neither
stores large lookup table in the memory nor computes
complicated algebraic computations. By using Theorem 3,
Theorem 4, Theorem 5, and the weight of sdw, the error
cases can be quickly identified and corrected. Therefore,
the proposed ESWDA is a very efficient and low-cost
decoder for decoding the triple-error-correcting QR codes.
The proposed ESWDA can be extended to decode other
QR codes or BCH codes; however, the decoding steps of
the proposed ESWDA need to make some slight
adjustments.

References
[1] Chien, R.T., “Cyclic decoding procedure for the Bose-Chaudhuri-

Hocquenghem codes,” IEEE Trans. Inform. Theory, 10(4). 357-
363. Oct. 1964.

[2] Chen, Y.H., Chien, C.H., Huang, C.H., Truong, T.K., and Jing,
M.H., “Efficient decoding of systematic (23, 12, 7) and (41, 21, 9)
quadratic residue codes,” J. Inform. Sci. and Eng., 26(5). 1831-
1843. Sept. 2010.

[3] Elia, M., “Algebraic decoding of the (23, 12, 7) Golay codes,”
IEEE Trans. Inform. Theory, 33(1). 150-151. Jan. 1987.

[4] Golay, M.J.E., “Notes on digital coding,” Proc. IRE, 37, 657.
1949.

[5] Lee, C.D., “Weak general error locator polynomials for triple-
error-correcting binary Golay code,” IEEE Comm. Letters, 15(8).
857-859. Aug. 2011.

[6] Lin, T.C., Chang, H.C., Lee, H.P., Chu, S.I, and Truong, T.K.,
“Decoding of the (31, 16, 7) quadratic residue code,” J. Chinese
Institute of Engineers, 33(4). 573-580. June 2010.

[7] Lin, T.C., Chang, H.C., Lee, H.P., and Truong, T.K., “On the
decoding of the (24, 12, 8) Golay code,” Inform. Sci., 180(23).
4729-4736. Dec. 2010.

[8] Lin, T.C., Lee, H.P., Chang, H.C., Chu, S.I, and Truong, T.K.,
“High speed decoding of the binary (47, 24, 11) quadratic residue
code,” Inform. Sci., 180(20). 4060-4068. Oct. 2010.

[9] Lin, T.C., Lee, H.P., Chang, H.C., and Truong, T.K., “A cyclic
weight algorithm of decoding the (47, 24, 11) quadratic residue
code,” Inform. Sci., 197. 215-222. Aug. 2012.

[10] Reed, I.S., Shih, M.T., and Truong, T.K., “VLSI design of
inverse-free Berlekamp-Massey algorithm,” IEE Proc. Comput.
Digit. Tech., 138(5). 295-298. Sept. 1991.

[11] Reed, I.S., Yin, X., and Truong, T.K., “Algebraic decoding of the
(32, 16, 8) quadratic residue code,” IEEE Trans. Inform. Theory,
36 (4). 876-880. July 1990.

[12] Reed, I.S., Yin, X., Truong, T.K., and Holmes, J.K., “Decoding
the (24, 12, 8) Golay code,” IEE Proc. Comput. Digit. Tech.,
137(3). 202-206. May 1990.

[13] Wicker, S.B. Error control systems for digital communication and
storage, Prentice Hall, New Jersey, 1995.

