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Abstract  In this paper, a more efficient syndrome-weight decoding algorithm (SWDA), called the enhanced 
syndrome-weight decoding algorithm (ESWDA), is presented to decode up to three possible errors for the binary 
systematic (23, 12, 7) and (31, 16, 7) quadratic residue (QR) codes. In decoding of the QR codes, the evaluation of 
the error-locator polynomial in the finite field is complicated and time-consuming. To solve such a problem, the 
proposed ESWDA avoids evaluating the complicated error-locator polynomial, and has no need of a look-up table to 
store the syndromes and their corresponding error patterns in the memory. In comparison with the SWDA developed 
by Lin-Chang-Lee-Truong (2010), the simulation results show that the ESWDA can serve as an efficient and high-
speed decoder. 
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1. Introduction 
The triple-error-correcting binary QR codes include (23, 

12, 7) QR code and (31, 16, 7) QR code, respectively. The 
binary (23, 12, 7) QR code is also called the binary Golay 
code, which is a perfect code. The Golay code is first 
introduced by Golay in 1949 [4]. If an overall parity check 
is used, the rate is exactly 1/2, so that most of the known 
QR codes are the best-known codes. Among them, the 
extended (24, 12, 8) Golay code was utilized to act as an 
error control on the Voyager I and II spacecraft mission, 
providing clear remote pictures of Jupiter and Saturn [13]. 

Several algebraic decoding algorithms (ADAs) had 
been developed to decode the binary Golay code [3,12]. 
The key idea of decoding the Golay code by using ADA is 
to compute the unknown syndrome for determining the 
coefficients of the error-locator polynomial. One of the 
representative methods is inverse-free Berlekamp-Massey 
algorithm [10]. In [11], Reed et al. developed the ADA of 
the extended (32, 16, 8) QR code with reducible generator 
polynomial. However, such an algorithm is quiet 
complicated. Lin et al. [6] thus proposed a modified ADA 
to reduce the decoding complexity. For ADAs, once the 
coefficients of the error-locator polynomial are obtained, 
the error positions can be determined by using the Chien 
search algorithm [1], which is an exhaustive search over 
all the elements in the finite field. In the decoding 
procedure of ADAs, this step is the most time-consuming 
and need plenty of multiplication and division operations 
over the finite field. 

Most recently, table-lookup decoding algorithms 
(TLDAs) [2,7,9] have played an important role in forward 

error correction. These types of decoders are efficient with 
minimum decoding delay; however, the TLDAs require a 
memory space in the decoder chip and increase the 
decoding cost rapidly when the code length is large. The 
SWDA proposed by Lin et al. [7] used the refined lookup 
table (RLT) to decode the triple-error-correcting binary 
Golay code and (31, 16, 7) QR code. For decoding the 
Golay code, the RLT consists of 42 syndromes and their 
corresponding coset leaders, and it only needs 168 bytes 
memory size. For decoding the (31, 16, 7) QR code, the 
RLT consists of 72 syndromes and their corresponding 
coset leaders, and it only requires 288 bytes memory 
size. 

In this paper, the proposed ESWDA has faster decoding 
speed than the SWDA, and it does not need a memory size 
to store the lookup table. The key idea of the proposed 
ESWDA is based on the weight of syndrome difference 
between the syndrome of the received word and the row 
vector of the transpose of the parity-check matrix. 
Therefore, the error cases can be swiftly determined. The 
application of the syndrome weight and the syndrome 
difference can constitute a high-speed decoding algorithm. 
Moreover, no complicated computation in the finite field 
is required in the proposed ESWDA. Two examples 
demonstrate the decoding procedure of the proposed 
ESWDA. The proposed ESWDA is applicable to decode 
other cyclic codes such as the binary (15, 5, 7) BCH code; 
however, the decoding steps of the proposed ESWDA 
need to make some slight adjustments. The decoding steps 
of the binary (15, 5, 7) BCH code are demonstrated in a 
simple example. Computer simulation result shows that 
the decoding time of the proposed ESWDA is superior to 
the SWDA. 

 



8 Automatic Control and Information Sciences  

The remainder of this paper is organized as follows: 
The background of the binary QR codes is briefly 
reviewed in Section 2. The proposed ESWDA is described 
in Section 3. In Section 4, we use three examples to 
demonstrate the proposed ESWDA. Computer simulation 
results of the proposed ESWDA and the SWDA are given 
in Section 5. Finally, this paper concludes with a brief 
summary in Section 6. 

2. Background of the Binary QR Codes 
The binary QR codes are a nice family of linear cyclic 

codes. Let (n, (n+1)/2, d) denote the binary QR codes with 
generator polynomial g(x) over GF(2). The length of this 
code is a prime number of the form n = 8l ± 1, where l is 
some integer. Also, let k = (n+1)/2 denote the message 
length or information length, and d denote the minimum 
Hamming distance of the code. The set Qn of quadratic 
residues modulo n is the set of nonzero squares modulo n; 
that is, Qn = {j | j ≡ x2 mod n, 1 ≤ x ≤ n−1}. If n = 23, then 
its quadratic residue set is Q23 = {1, 2, 3, 4, 6, 8, 9, 12, 13, 
16, 18}. If n = 31, then its quadratic residue set is Q31 = {1, 
2, 4, 5, 7, 8, 9, 10, 14, 16, 18, 20, 25, 28}. 

Let the symbols C23 and C31 denote the binary Golay 
code and binary (31, 16, 7) QR code, respectively. Let α 
be a root of primitive polynomial pr23(x) = x11 + x2 + 1. If 
α = 2, then the 11 roots of pr23(x) are α = 2, α2 = 4, α22

 = 
16, α23

 = 256, α24
 = 160, α25

 = 1064, α26
 = 1605, α27

 = 158, 
α28

 = 380, α29
 = 1530, α210

 = 1987. Let the element β = αu 
be a primitive 23rd root of unity in GF(2ll), where u = (211 
– 1) / 23 = 89. Therefore, β = α89 = 322, where 322 is the 
decimal representation of β. The total 23 roots are listed in 
Table 1. 

Table 1. The total 23 roots of x23 – 1 (in decimal number) 
β 0 = 1 β 1 = 322 β 2 = 174 β 3 = 1164 β 4 = 1148 
β 5 = 481 β 6 = 637 β 7 = 1942 β 8 = 1887 β 9 = 1518 
β 10 = 1155 β 11 = 167 β 12 = 2011 β 13 = 418 β 14 = 281 
β 15 = 1525 β 16 = 378 β 17 = 1728 β 18 = 1747 β 19 = 319 
β 20 = 552 β 21 = 1876 β 22 = 1085   
The generator polynomial of C23 is defined by 
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Now let α be a generator of the multiplicative group of 
all nonzero elements in GF(25). Then, the element β = αu, 
where u = (25 − 1)/31 = 1. The x31–1 can be factored into 
seven primitive minimal irreducible polynomials; that is, 
x31–1 = (x5 + x2 + 1)(x5 + x4 + x2 + x + 1)(x5 + x3 + x2 + x + 
1)(x5 + x4 + x3 + x2 + 1)(x5 + x3 + 1)(x5 + x4 + x3 + x + 1)(x 
+ 1). Then, the generator polynomial of C31 is reducible, 
and is defined by 
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where g1(x), g5(x), and g7(x) are the minimal polynomials 
of x31–1. That is, gr(x) = (x − ßr)(x − ß2r)…(x − ß24r) and 

ß2ir ∈ GF(25) for 0 ≤ i ≤ 4 are the roots of gr(x), where r = 
1, 5, and 7. If α = 2, then the total 31 roots of x31 − 1 are 
listed in Table 2. 

Table 2. The total 31 roots of x31 – 1 (in decimal number) 
β 0 = 1 β 1 = 2 β 2 = 4 β 3 = 8 β 4 = 16 
β 5 = 5 β 6 = 10 β 7 = 20 β 8 = 13 β 9 = 26 
β 10 = 17 β 11 = 7 β 12 = 14 β 13 = 28 β 14 = 29 
β 15 = 31 β 16 = 27 β 17 = 19 β 18 = 3 β 19 = 6 
β 20 = 12 β 21 = 24 β 22 = 21 β 23 = 15 β 24 = 30 
β 25 = 5 β 26 = 23 β 27 = 11 β 28 = 22 β 29 = 9 
β 30 = 18     
Because the minimum Hamming distance of C23 and 

C31 is d = 7, the inequality 2v + 1 ≤ 7 is valid, where v is 
the actual number of errors to be corrected. Hence, the 
error-correcting capability is   32/)1( =−= dt , where 

 x  denotes the greatest integer less than or equal to x. 
The codeword is a multiple of generator polynomial g(x); 
that is, ∑ = == 1-

0 )()()( n
i

i
i xgxmxCxC , where Ci ∈ GF(2) 

for 0 ≤ i ≤ n–1, and ∑ −
== 1

0)( k
i

i
i xmxm  denotes the 

message polynomial, where mi ∈ GF(2) for 0 ≤ i ≤ k–1. 
Let ∑ −−

== 1
0)( kn

i
i

i xpxp  be the parity-check polynomial, 
where pi ∈ GF(2) for 0 ≤ i ≤ n–k–1. Let 

∑ −−
== 1

0)( kn
i

i
i xpxp  be the parity-check polynomial, where 

pi ∈ GF(2) for 0 ≤ i ≤ n–k–1. Let p(x) ≡ m(x)xn–k mod g(x), 
then one obtains m(x)xn–k = q(x)g(x) + p(x). The term (p(x) 
+ m(x)xn–k), which is a multiple of g(x), is a codeword 
polynomial given by 

 -1
0( ) ( ) ( )  ,n i n k

iic x c x p x m x x −
== = +∑  (3) 

where ci ∈ GF(2) for 0 ≤ i ≤ n–1. In this paper, the 
systematic encoding method is utilized. Now, let a 
codeword be transmitted through an additive white 
Gaussian noise (AWGN) channel to obtain a received 
word with the form r(x) = c(x) + e(x), where e(x) is the 
polynomial of the received error pattern expressed as 

∑ −
== 1

0)( n
i

i
i xexe , where ei ∈ GF(2) for 0 ≤ i ≤ n–1. The 

syndromes polynomial is expressed as ∑ == 1--
0)( kn

i
i

i xsxs . 
To simplify the polynomial expressions mentioned 

above, let the message, codeword, error pattern, received 
word, and syndrome polynomials be expressed as the binary 
vector forms )    ( 110 −= kmmm m , )    ( 110 −= nccc c , 

)   ( 110 −= neee e , )   ( 110 −=+= nrrr ecr , and 
)   ( 110 −−= knsss s , respectively. The systematic 

codeword of the vector form is given by 

 c mG=  (4) 
where G is called the systematic generator matrix. Let P 
be a k×(n–k) matrix and Ik be a k×k identity matrix, and G 
can be expressed as 

 ( )k n k k k n× − ×
 =  G P I  (5) 

The parity-check matrix H can be expressed as 
[ ]

nkn
T

kknkn ×−×−−=
)()(PIH , where PT denotes the (n–k)×k 

transpose matrix of P. The vector form of the syndrome is 
defined by 
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 ,Ts = rH  (6) 

where HT denotes the n×(n–k) transpose matrix of H; that 
is, HT can be expressed as 
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For C23, HT has the following form: 

 

11
1 0 1 0 1 1 1 0 0 0 1
1 1 1 1 1 0 0 1 0 0 1
1 1 0 1 0 0 1 0 1 0 1
1 1 0 0 0 1 1 1 0 1 1
1 1 0 0 1 1 0 1 1 0 0

.0 1 1 0 0 1 1 0 1 1 0
0 0 1 1 0 0 1 1 0 1 1
1 0 1 1 0 1 1 1 1 0 0
0 1 0 1 1 0 1 1 1 1 0
0 0 1 0 1 1 0 1 1 1 1
1 0 1 1 1 0 0 0 1 1 0
0 1 0 1 1 1 0 0 0 1 1
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3. Decoding Algorithm and Theorems 
In this section, the proposed ESWDA is used to decode 

the C23 and C31. For the development of the proposed 
ESWDA, the following definition, theorem and corollary 
given in Lin et al. [8] are needed. 
Definition 1: The Hamming weight of a binary vector a is 
denoted by w(a), and the Hamming distance between a 
and b is denoted by d(a, b) = w(a + b). 
Theorem 1: Let a = (a0 … a1 an-1) and b = (b0 … b1 bn-1) 
be two binary vectors, then 

 1( ) ( ) ( ) 2 .n
i iiw w w a b=+ = + − ∑a b a b  (9) 

Corollary 1: If aibi = 0 for 1 ≤ i ≤ n, then 

 ( ) ( ) ( ).w w w+ = +a b a b  (10) 

The following Theorem 2 is useful to compute the 
syndrome of the received word when the received word 
shifts one bit to the left. For more detailed proof of this 
theorem, see [13, p118]. 
Theorem 2: Let s(x) be the syndrome polynomial 
corresponding to a received polynomial r(x). Also, let 
r(1)(x) be the polynomial obtained by cyclically shifting 
the coefficients of r(x) one bit to the left. Then the 
remainder obtained when dividing xs(x) by g(x) is the 
syndrome s(1)(x) corresponding to r(1)(x). 

However, for each cyclical shift of the received word, 
we have to divide xs(x) by g(x). If the syndrome cyclically 
shifts many times, then the syndrome computation is 
rather time-consuming for dividing xs(x) by gn(x) many 
times. The following theorem provides an efficient 
method to compute s(i) for 0 ≤ i ≤ n–1, and it can save a lot 
of computational time. 
Theorem 3: For the binary QR codes, let rj be an element 
of r and hj be the jth row vector of HT for 0 ≤ j ≤ n–1. 
Then the syndrome s(i) of r(i) for 0 ≤ i ≤ n–1 has the form 

 -1( )
0 [ ]

,ni
jj i j

r= +
= ∑s h  (11) 

where the suffix [x] of h denotes x mod n. 
Proof: Let r = (r0,…,rn-1) and r(i) = (ri,…, rn-1, r0,…, ri-1) 
for 0 ≤ i ≤ n–1. By (7), we have s(i) = r(i)HT = 

∑ = −
1-
0 ][

n
j jijr h  = 

][
1-
0 ji

n
j jr

+=∑ h . The proof is thus completed. 

Theorem 3: reveals that the syndrome of r(i) can be fast 
computed by the vector addition. Theorem 4 also provides 
an efficient method to simplify the decoding step by using 
the syndrome weight. For a detailed proof, see [8]. 

Theorem 3 reveals that the syndrome of r(i) can be fast 
computed by the vector addition. Theorem 4 also provides 
an efficient method to simplify the decoding step by using 
the syndrome weight. For a detailed proof, see [8]. 
Theorem 4: For the binary QR codes, it is assumed that 
there are v errors in the received word, where 1 ≤ v ≤ t. All 
v errors are in the parity-check bits if and only if the 
weight of syndrome w(s) = v. 

By using Theorem 4, we can develop the following 
useful theorem. 
Theorem 5 For the binary QR codes, if v errors are in the 
information bits of the received word, where 1 ≤ v ≤ t and 
t =  2/)1( −d , then the weight of the corresponding 
syndrome polynomial or syndrome vector satisfies 

 ( )( ) ( ) ( ) ( )3 3 or .w s x d v w s d v− −  (12) 

Proof: Let error polynomial e(x) present the v errors in the 
information bits; that is, w(e(x)) = v. Since s(x) ≡ r(x) ≡ e(x) 
(mod g(x)), we have e(x) + s(x) ≡ 0 (mod g(x)). This 
implies that e(x) + s(x) is a codeword and hence the 
codeword must satisfy w(e(x) + s(x)) ≥ d. By Corollary 1, 
w(e(x) + s(x)) = w(e(x)) + w(s(x)) ≥ d and then w(s(x)) ≥ d 
– w(e(x)). Thus, the weight of the syndrome polynomial 
satisfies w(s(x)) ≥ d–v or w(s) ≥ (d–v). The proof is thus 
completed. 

Given a received word r, the syndrome of r(i) can be 
fast computed by Theorem 3. According to Theorem 4, if 
1 ≤ w(s) ≤ 3, then the error positions are in the parity-
check bits of r. If 1 ≤ w(s(n-k)) ≤ 3, then the error positions 
are in the information bits of r. Let hi denote the ith row 
vector of HT, where 0 ≤ i ≤ n–1. Also let sdw denote the 
syndrome difference between the syndromes of r and hi in 
each decoding step w. By using the weight of sdw, the 
error cases can be quickly determined. Let u0 = (1, 0,…, 0) 
be a k-tuples unit vector and uj has only one nonzero 
component at the jth position, where 0 ≤ j ≤ k–1. By using 
these properties, the proposed ESWDA can be constructed. 

Let upper case P, C, and H denote the error position in 
the parity-check bits, center bit, and information bits of r, 
respectively. For C23 or C31, there are 15 error cases (P, PP, 
PPP, H, HH, HHH, C, PC, PH, PPC, PPH, PHH, CH, 
CHH, and PCH), which cover all ( )∑ = =3

1
23
 2047i i  and 

( )∑ = =3
1

31
 4991i i  error patterns. If w(s) = 0, then r has no 

error. If 1 ≤ w(s) ≤ 3 or 1 ≤ w(s(n-k)) ≤ 3, then there are 6 
error cases (P, PP, PPP, H, HH, and HHH). Let the 
syndrome difference sd3 = (s–hi) for n–k ≤ i ≤ n–1. If 0 ≤ 
w(sd3) ≤ 2, then there are 5 error cases (C, PC, PH, PPC, 
and PPH). Let the syndrome difference sd4 = (s(n-k)–hi) for 
n–k ≤ i ≤ n–1. If n–k ≤ i ≤ n–2 and w(sd4) = 2, then there 
is only 1 error case (PHH). If i = n–1 and 1 ≤ w(sd4) ≤ 2, 
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then there are 2 error cases (CH and CHH). Let the 
syndrome difference sd5 = ((s–hn-k)–hi) for k ≤ i ≤ n–1. If 
w(sd5) = 1, then there is only 1 error case (PCH). The 
decoding steps of the proposed ESWDA work as follows: 

1). (No error, P, PP, and PPP cases.) By Theorem 3, 
compute s and w(s). If 0 ≤ w(s) ≤ 3, then the information 
vector is m = (rn-k,…, rn-1). Go to step 6. 

2). (H, HH, and HHH cases.) By Theorem 3, compute 
s(n-k) and w(s(n-k)). If 1 ≤ w(s(n-k)) ≤ 3, then the corrected 
information vector is m = (rn-k,…, rn-1) + (s(n-k) >>1), 
where “>>” denotes the logical right shift operator in 
programming or the extension by zeros on the right in 
mathematics. Go to step 6. 

3). (C, PC, PH, PPC, and PPH cases.) Compute the 
syndrome difference sd3 = (s–hi) for n–k ≤ i ≤ n–1 and 
w(sd3). If 0 ≤ w(sd3) ≤ 2, then the corrected information 
vector is m = (rn-k,…, rn-1) + ui-(n-k). Go to step 6. 

4). (PHH, CH, and CHH cases) Compute the syndrome 
difference sd4 = (s(n-k)–hi) for n–k ≤ i ≤ n–1 and w(sd4). If 
n–k ≤ i ≤ n-2 and w(sd4) = 2, then the corrected 
information vector is m = (rn-k,…, rn-1) + (sd4 >>1). If i = 
n–1 and 1 ≤ w(sd4) ≤ 2, then the corrected information 
vector is m = (rn-k,…, rn-1) + u0 + (sd4 >> 1). Go to step 6. 

5). (PCH case.) Compute the syndrome difference sd5 = 
((s–hn-k)–hi) for k ≤ i ≤ n–1 and w(sd5). If w(sd5) = 1, then 
the corrected information vector is m = (rn-k,…, rn-1) + u0 
+ ui-(n-k). Go to step 6. 

6). Stop. 
Table 3 lists all the 15 error cases and the number of 

error patterns in each decoding steps of the proposed 
ESWDA. The flowchart of the proposed ESWDA is 
shown in Figure 1. 

Table 3. The number of error patterns in each decoding step of C23 
and C31 

Steps Cases Number of error patterns 
C23 C31 

1 

P ( )11
1 11=  ( )15

1 15=  

PP ( )11
2 55=  ( )15

2 105=  

PPP ( )11
3 165=  ( )15

3 455=  

2 

H ( )11
1 11=  ( )15

1 15=  

HH ( )11
2 55=  ( )15

2 105=  

HHH ( )11
3 165=  ( )15

3 455=  

3 

C 1 1 

PC ( )11
1 11=  ( )15

1 15=  

PPC ( )11
2 55=  ( )15

2 105=  

PH ( )( )11 11
1 1 121=  ( )( )15 15

1 1 225=  

PPH ( )( )11 11
2 1 605=  ( )( )15 15

2 1 1575=  

4 

PHH ( )( )11 11
1 2 605=  ( )( )15 15

2 1 1575=  

CH ( )11
1 11=  ( )15

1 15=  

CHH ( )11
2 55=  ( )15

2 105=  

5 PCH ( )( )11 11
1 1 121=  ( )( )15 15

1 1 225=  

 

Figure 1. Flowchart of the proposed ESWDA 

4. Examples 
In this section, three examples are presented to illustrate 

the proposed ESWDA. Example 1 and 2 show the 
decoding steps for the binary systematic Golay code. 
Example 3 shows the decoding steps for the binary 
systematic (15, 5, 7) BCH code, denoted by C15; however, 
the decoding steps of the proposed ESWDA have to make 
some slight adjustments. 
Example 1: Let a message m = (000110101010) be 
encoded into a C23 codeword c = 
(11011010100000110101010). If the received word r = 
(11011010100010111001010), then the error pattern e = 
(00000000000010001100000), which means a HHH error 
case. The decoding steps are shown below. 

1). Compute s = (10101100100) and w(s) = 5. Since 
w(s) > 3, go to step 2. 

2). Compute s(11) = (10001100000) and w(s(11)) = 3 ≤ 3. 
The corrected information word m = (010111001010) + 
(010001100000) = (000110101010). Go to stop. 

Example 2: This example demonstrates the worst 
decoding case. Let a message m = (000110101010) be 
encoded into a C23 codeword c = 
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(11011010100000110101010). If the received word r = 
(01011010100100110101011), then the error pattern e = 
(10000000000100000000001), which means a PCH error 
case. The decoding steps are shown below. 

1). Compute s = (11001001111) and w(s) = 7. Since 
w(s) > 3, go to step 2. 

2). Compute s(11) = (01001001110) and w(s(11)) = 5. 
Since w(s(11)) > 3, go to step 3. 

3). Compute sd3 = (s–hi) for 11 ≤ i ≤ 22 and w(sd3). 
sd3 = (s–h11) = (11001001111) – (11000111010) = 
(00001110101). w(sd3) = 5. 
sd3 = (s–h12) = (11001001111) – (01100011101) = 
(10101010010). w(sd3) = 5. 
… 
sd3 = (s–h21) = (11001001111) – (10010011111) = 
(01011010000). w(sd3) = 4. 
sd3 = (s–h22) = (11001001111) – (10001110101) = 
(01000111010). w(sd3) = 5. 
Since every w(sd3) > 2, go to step 4.  
4). Compute sd4 = (s(11)–hi) for 11 ≤ i ≤ 22 and 

w(sd4). 
sd4 = (s(11)–h11) = (01001001110) – (11000111010) = 
(10001110100). w(sd4) = 5. 
sd4 = (s(11)–h12) = (01001001110) – (01100011101) = 
(00101010011). w(sd4) = 5. 
… 
sd4 = (s(11)–h21) = (01001001110) – (10010011111) = 
(11011010001). w(sd4) = 6. 
sd4 = (s(11)–h22) = (01001001110) – (10001110101) = 
(11000111011). w(sd4) = 7. 
Since every w(sd4) > 2, go to step 5. 
5). Compute sd5 = ((s–h11)–hi) = (00001110101) – hi 

for 12 ≤ i ≤ 22 and w(sd5). 
sd5 = (s–h11)–h12 = (00001110101) – (11000111010) = 
(11001001111). w(sd5) = 7. 
sd5 = (s–h11)–h13 = (00001110101) – (11110110100) = 
(11111000001). w(sd5) = 6. 
… 
sd5 = (s–h11)–h21 = (00001110101) – (10010011111) = 
(10011101010). w(sd5) = 6. 
sd5 = (s–h11)–h22 = (00001110101) – (10001110101) = 
(10000000000). w(sd5) = 1. 
Since w(sd5) = 1, the corrected information word m = 
(r11,…, r22) + u0 + u22-11 = (100110101011) + 
(100000000000) + (000000000001) = (000110101010). 
Go to stop. 
PCH case is the worst case; however, only 121 error 

patterns, namely 5.91%, will enter step 5. 
Example 3: Let a message m = (00011) be encoded into a 
codeword of C15 with g(x) = x10 + x9 + x8 + x6 + x5 + x2 + 1, 
and obtain the codeword c = (101100101000011). If the 
received word r = (101110101011011), then the error 
pattern e = (000010000011000), which means a PHH 
error case. First, the decoding steps of the proposed 
ESWDA mentioned in Section 3 can be slightly adjusted 
as follows: 

1). (No error, P, PP, and PPP cases.) By Theorem 3, 
compute s and w(s). If 0 ≤ w(s) ≤ 3, then the information 
vector is m = (rn-k,…, rn-1), and go to step 5. 

2). (H, HH, HHH, PH, PPH, and PHH cases.) By 
Theorem 3, compute s(n-k) and w(s(n-k)). If 1 ≤ w(s(n-k)) ≤ 3, 
then the corrected information vector is m = (rn-k,…, rn-1) 
+ (s(n-k) & (11111)), where the notation “&” denotes the 
bitwise AND operator, and go to step 5. 

3). (PH and PPH cases.) Compute the syndrome 
difference sd3 = (s–hi) for n–k ≤ i ≤ n–1 and w(sd3). If 0 ≤ 
w(sd3) ≤ 2, then the corrected information vector is m = 
(rn-k,…, rn-1) + ui-(n-k), and go to step 5. 

4). (PHH case) Compute the syndrome difference sd4 = 
(s(n-k)–hi) for n–k ≤ i ≤ n–1 and w(sd4). If w(sd4) = 2, then 
the corrected information vector is m = (rn-k,…, rn-1) + (sd4 
& (11111)), and go to step 5. 

5). Stop. 
For this code, there are 9 error cases. Table 4 lists all 

the 9 error cases and the number of error patterns in each 
decoding steps. 

Table 4. The number of error patterns in each decoding step of C15 

Steps Cases 
Number of error patterns 

C23 

1 

P ( )10
1 10=  

PP ( )10
2 45=  

PPP ( )10
3 120=  

2 

H ( )5
1 5=  

HH ( )5
2 10=  

HHH ( )5
3 10=  

PH ( )( )5 5
1 1 25=  

PPH ( )( )5 5
2 1 50=  

PHH ( )( )5 5
1 2 50=  

3 
PH ( )( ) ( )( )10 5 5 5

1 1 1 1 25− =  

PPH ( )( ) ( )( )10 5 5 5
2 1 2 1 175− =  

4 PHH ( )( ) ( )( )10 5 5 5
1 2 1 2 50− =  

The decoding steps are shown below. 
1). Compute s = (1001001011) and w(s) = 5. Since 

w(s) > 3, go to step 2. 
2). Compute s(5) = (1101111101) and w(s(5)) = 8. Since 

w(s(5)) > 3, go to step 3. 
3). Compute sd3 = (s–hi) for 10 ≤ i ≤ 14 and w(sd3). 
sd3 = (s–h11) = (1001001011) – (1101100101) = 
(0100101110). w(sd3) = 5. 
sd3 = (s–h12) = (1001001011) – (0110101111) = 
(1111100100). w(sd3) = 6. 
sd3 = (s–h13) = (1001001011) – (1101011110) = 
(0100010101). w(sd3) = 4. 
sd3 = (s–h14) = (1001001011) – (0111011001) = 
(1110010010). w(sd3) = 5. 
sd3 = (s–h15) = (1001001011) – (1110110010) = 
(0111111001). w(sd3) = 7. 
Since every w(sd3) > 2, go to step 4.  
4). Compute sd4 = (s(5)–hi) for 10 ≤ i ≤ 14 and w(sd4). 
sd4 = (s(5)–h11) = (1101111101) – (1101100101) = 
(0000011000). w(sd4) = 2. 
Since w(sd4) = 2, the corrected information word m = 

(r10,…, r14) + (sd4 & (11111)) = (11011) + ((0000011000) 
& (11111)) = (00011). Go to stop. 
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5. Simulation Results 
The proposed ESWDA has been programmed in C++ 

language. On an Intel Q6600 PC with XP operating 
system, all 2k codewords with all ( )∑ =

3
1i

n
i  error patterns 

were created to check every possible error pattern of C15, 
C23, and C31, respectively. In other words, the error 
patterns of C15, C23, and C31 are ( ) 5753

1
15 =∑ =i i , 

( ) 20473
1

23 =∑ =i i , and ( ) 49913
1

31 =∑ =i i , respectively. The 
decoding times of the proposed ESWDA and the SWDA 
are shown in the Table 5, Table 6, and Table 7, 
respectively. For v = 1, it means that one error of that code 
input to the decoder, and for the average decoding time, it 
means that all the error patterns of that code input to the 
decoder. In these three tables, the average decoding time 
of the proposed ESWDA is about 10.6 times, 19.6 times, 
and 4 times faster than the SWDA, respectively. The 
memory requirements of the two algorithms are also 
shown in Table 5, Table 6, and Table 7, respectively. It is 
obvious that the proposed ESWDA significantly reduces 
decoding time with the increase of the code length. 

Table 5. Comparison of the decoding time (in µs) and memory 
requirement (in bytes) for the Golay code between two algorithms 

Algorithms 
Number of errors Memory 

size v = 1 v = 2 v = 3 Average 

ESWDA 0.232 0.372 0.661 0.612 0 

SWDA 4.026 5.311 6.728 6.514 168 

Table 6. Comparison of the decoding time (in µs) and memory 
requirement (in bytes) for the (31, 16, 7) QR code between two 
algorithms 

Algorithms 
Number of errors Memory 

size v = 1 v = 2 v = 3 Average 

ESWDA 0.316 0.548 0.997 0.956 0 

SWDA 11.23 14.89 19.07 18.73 288 

Table 7. Comparison of the decoding time (in µs) and memory 
requirement (in bytes) for the (15, 5, 7) BCH code between two 
algorithms 

Algorithms 
Number of errors Memory 

size v = 1 v = 2 v = 3 Average 

ESWDA 0.196 0.236 0.321 0.289 0 

SWDA 0.097 0.933 1.151 1.115 36 

6. Conclusions 
Binary QR codes are well known for their good features. 

A high-speed and efficient ESWDA is developed to 
decode C15, C23, and C31. The proposed ESWDA neither 
stores large lookup table in the memory nor computes 
complicated algebraic computations. By using Theorem 3, 
Theorem 4, Theorem 5, and the weight of sdw, the error 
cases can be quickly identified and corrected. Therefore, 
the proposed ESWDA is a very efficient and low-cost 
decoder for decoding the triple-error-correcting QR codes. 
The proposed ESWDA can be extended to decode other 
QR codes or BCH codes; however, the decoding steps of 
the proposed ESWDA need to make some slight 
adjustments. 
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