On Some Properties of *-annihilators and *-maximal Ideals in Rings with Involution

Maya A. Shatila

Correspondence: Maya A. Shatila, Department of Mathematics and Computer Science, Faculty of Science, Beirut Arab University, Beirut, Lebanon. E-mail: mayachatila@hotmail.com

Received: November 3, 2015 Accepted: November 19, 2015 Online Published: January 7, 2016

doi:10.5539/jmr.v8n1p1 URL: http://dx.doi.org/10.5539/jmr.v8n1p1

Abstract

We describe the *-right annihilator (*-left anihilator) of a subset of a ring and we investigate the relationships between the *right* annihilator and *-right annihilator. These connections permit the transfer of various properties from annihilators to *- annihilators. It is known that the quotient ring constructed from a ring and a maximal ideal is a field, whereas we prove that the quotient ring constructed from a ring and a *-maximal ideal is not a *-field. Equivalent definitions to *-regular ring are given.

Keywords: involution, *-annihilator, *-maximal ideal, *-regular ring

1. Introduction

A ring A is said to be a ring with involution or simply *-ring if there is a unary operation *: $A \rightarrow A$ such that for all a, b \in A we have:

$$a^{**} = a, (ab)^* = b^*a^*, (a+b)^* = a^* + b^*$$

In this paper, only associative rings are considered. For more details concerning the ring with involution see (Rowen, 1988).

An ideal I of an involution ring A ($I \triangleleft A$) is called *-ideal ($I \triangleleft *A$), if it is closed under involution; that is $I^* = I$. An involution * of a *-ring R is said to be proper (semiproper) if $x^*x = 0$ ($x^*Rx = 0$) implies x = 0 for every $x \in R$. In (Rowen, 1988), the right annihilator of $a \in A$, denoted by r(a), is defined as $r(a) = \{b \in A \mid ab = 0\}$. Similarly, the left annihilator of a is $l(a) = \{b \in A \mid ba = 0\}$.

A ring (resp. *-ring) A is semiprime (resp. *-semiprime) if $I^2 = 0$ for every nonzero ideal (resp. *-ideal) I of A. A ring A is called reduced if it has no nonzero nilpotent elements ($a^n = 0$ for any $a \in A$ and positive integer n). (see (Berberianetal., 1988), (Rowen, 1988)). A ring A is called regular if for every $a \in A$, $a \in aAa$. Equivalently, every principal one-sided ideal of A is generated by an idempotent (see (von Neuman, 1960)).

An element e of A is called idempotent (projection) if $e^2 = e$ (and $e^* = e$. Equivalently, $e = ee^*$).

2. Properties of *-annihilators

Let A be a ring with involution which does not necessary have identity. Recall that the *right annihilator* of a subset S of A is defined as $S^r = \{x \in A/S \ x = 0\}$. Now, let S be a non empty subset of the *-ring A, define the *- of S to be the self adjoint subset $S^r_* = \{x \in A/S \ x = 0 \ and \ S \ x^* = 0\}$. Similarly, the *- left annihilator can be defined. It is clear that $S^r_* \subseteq S^r$. However the converse is not true as shown in the following example.

Example 1. Consider the ring A of all 2×2 matrices rings over the real field \mathbb{R} , $M_2(\mathbb{R})$, with transpose of matrices as invotution. Let $S = \left\{ \begin{pmatrix} a & a \\ 0 & 0 \end{pmatrix} / a \in \mathbb{R} \right\}$, then $S^r = \left\{ \begin{pmatrix} b & c \\ -b & -c \end{pmatrix} / b, c \in \mathbb{R} \right\}$ and $S^r_* = \left\{ \begin{pmatrix} -t & t \\ t & -t \end{pmatrix} / t \in \mathbb{R} \right\}$. It is clear that in this example the right annihilator of S is not a * - right annihilator of S.

In (Anderson et al., 1992), it is proved that the *right annihilator* of S is a two sided ideal, a similar proof is given in the following proposition to show that the *-right annihilator of a right ideal S of A is a *-ideal of A.

Proposition 2. If S is a right (resp. left) ideal of a *- ring A, then the *- right annihilator S_*^r (resp. left) is a *- ideal of A.

Proof. Let x,y be two elements of the *-right annihilator S_*^r , $a \in A$. Then $S(x-y) \subseteq Sx - Sy = 0$ and $S(x-y)^* \subseteq Sx^* - Sy^* = 0$. Also, $S(ax) = (Sa)x \subseteq Sx = 0$, $S(ax)^* = (Sx^*)a^* = 0$ and similarly $S(xa) = 0 = S(xa)^*$.

The *- annihilator of a non empty subset S is defined by $S_* = S_*^r \cap S_*^l$. If S is self adjoint, then it is clear that $S_*^r = S_*^l = S_*$. The following is an immediate corollary of the previous proposition.

Corollary 3. If S is a *-ideal of A, then $S_*^r = S_*^l = S_*$ is also a *-ideal of A.

Our main goal is to give some properties of *-annihilators.

Theorem 4. Let S, T be subsets of a ring A, then:

- 1. $S_*^r = (S^*)_*^l$
- 2. $S_*^r = \bigcap_{(a \in s)} (a)_*^r$
- 3. $(S \cup T)_{\alpha}^{r} = S_{\alpha}^{r} \cap T_{\alpha}^{r}, (S \cup T)_{\alpha}^{l} = S_{\alpha}^{l} \cap T_{\alpha}^{l}$

Proof. 1. let $x \in S_*^r$, Sx = 0 and $Sx^* = 0$, $x^*S^* = 0$ and $xS^* = 0$, so $x \in (S^*)_*^l$ and $S_*^r \subseteq (S^*)_*^l$. Let $x \in (S^*)_*^l$, $xS^* = 0$ and $x^*S^* = 0$, $Sx^* = 0$ and Sx = 0, $Sx^* = 0$ and Sx = 0, so $x \in S_*^r$ and $Sx^* = 0$, where $Sx^* = 0$ and $Sx^* = 0$ and $Sx^* = 0$ and $Sx^* = 0$ and $Sx^* = 0$.

2. Let $x \in S_*^r$, Sx = 0 and $Sx^* = 0$, ax = 0 and $ax^* = 0$ for every $a \in S$ then $x \in (a)_*^r$ for every $a \in S$ hence $x \in (a)_*^r$.

Let $x \in \bigcap_{(a \in S)} (a)_*^r$, ax = 0 and $ax^* = 0$ for every $a \in S$, $Sox \in S_*^r$. Hence, $S_*^r = \bigcap_{(a \in S)} (a)_*^r$.

3. Let $x \in (S \cup T)_*^l$, $x(S \cup T) = 0$ and $x^*(S \cup T) = 0$, (xS = 0 and xT = 0) and $(x^*S = 0 \text{ and } x^*T = 0)$. Then $x \in S_*^l$ and $x \in T_*^l$ and $x \in S_*^l \cap T_*^l$. Let $x \in S_*^l \cap T_*^l$, $x \in S_*^l$ and $x \in T_*^l$, $x \in S_*^l$ and $x \in T_*^l$, $x \in S_*^l$ and $x \in S_*^l \cap T_*^l$. Let $x \in S_*^l \cap T_*^l$ and $x \in S_*^$

Proposition 5. If A is reduced then $S_*^r = S_*^l$.

Proof. Let $x \in S_*^r$ then Sx = 0 and $Sx^* = 0$, yx = 0 and $yx^* = 0$ for every $y \in S$, we also have $(xy)^2 = xyxy = 0$ and $(x^*y)^2 = x^*yx^*$ y = 0. But A is reduced then it has no non zero nilpotent element. Thus, xy = 0 and $x^*y = 0$ for every $y \in S$. So, $x \in S_*^l$. Similarly, we get $S_*^l \subseteq S_*^r$. Hence, $S_*^r = S_*^l$.

Proposition 6. If *-is a proper (semi proper) involution then $S \cap S_*^l = 0$

Proof. Let $x \in S \cap S_*^l$, $x \in S$ and $x \in S_*^l$ which implies that xS = 0 and $x^*S = 0$, but $x \in S$ then $x^2 = 0$ and $x^*x = 0$. But *- is a proper involution then $x^*x = 0$ gives x = 0 (due to (Berberian, 1988)). Hence $S \cap S_*^l = 0$

By a similar reasoning we obtain that $S \cap S_{*}^{1} = 0$ if *- is a semi proper involution or if A is a reduced ring.

In general, for any subset S of A, $S \subseteq (S_n^r)^l$

Example 7.
$$S = \left\{ \begin{pmatrix} a & a \\ 0 & 0 \end{pmatrix} / a \in \mathbb{R} \right\}, T = S_*^r = \left\{ \begin{pmatrix} -t & t \\ t & -t \end{pmatrix} / t \in \mathbb{R} \right\}, T_*^l = \left\{ \begin{pmatrix} b & b \\ b & b \end{pmatrix} / b \in \mathbb{R} \right\}, S \subsetneq (S_*^r)_*^l.$$

If S is self adjoint, then $S \subseteq (S_*^r)_*^l$.

Proposition 8. If $S = S^*$ then $S \subseteq (S_*^r)_*^l$; moreover $S \subseteq (S_*^r)_*^r$ and $S \subseteq (S_*^l)_*^l$

Proof. Let $T = S_*^r$. To show that $S \subseteq T_*^l$ we need to show that ST = 0 and $S^*T = 0$ but $S = S^*$ then it is enough to show ST = 0.

But $T = S_*^r$ gives ST = 0 and $ST^* = 0$, hence ST = 0 and $S \subseteq (S_*^r)_*^l$. Notice that if $S = S^*$ then $S_*^r = S_*^l$ and $S \subseteq (S_*^l)_*^l$ and $S \subseteq (S_*^r)_*^r$

Corollary 9. If A is semiprime ring and $S \triangleleft A$ then $S_* = S_*^l$ (same reasoning as (Herstein), corollary 1, p.6)

Corollary 10. Every element of S_{x}^{r} is a *-zero divisor. (definition of *-zero divisor is given in (Anderson, et al., 2010))

Proof. Let $x \in S_*^r$ then Sx = 0 and $Sx^* = 0$ then there exist $y \in S$ such that yx = 0 and $yx^* = 0$. Hence x is a * -zero divisor.

The converse is not true; not every $*-zero\ divisor$ of a ring belongs to S_*^r .

Example 11. Let $R = A \oplus A^{op}$ with exchange involution $(a,b)^* = (b,a)$, $A = Z_6$, (2,0) is a *-zero divisor, (2,0)(3,0) = (0,0) and (2,0)(0,3) = (0,0), but $(2,0) \notin S_*^r S = Z_3 \oplus Z_3$ since there exist $(1,3) \in S$ such that $(2,0)(1,3) \neq (0,0)$.

3. *-maximal Ideal

Motivated by a theorem in ring theory which said that an ideal I of a ring A is maximal if and only if the quotient ring A/I is a field, the involutive version will be shown in this section. birkenmeier has defined *-prime ideal and *-maximal ideal in a ring with involution in (Birkenmeier et al., 1997), he showed that every prime (maximal) ideal is *-prime (*-maximal) ideal.

The ring A considered in this section is commutative.

Every maximal ideal of A is a *-maximal ideal of A but the converse is not true. Indeed, consider the ring $R = Z_4 \oplus Z_4$ with exchange involution $(a, b)^* = (b, a)$. $I = \{0, 2\}$ is a maximal ideal of Z_4 , then $J = I \oplus I$ is a *-maximal ideal of $Z_4 \oplus Z_4$ under the exchange involution. But J is not maximal since it is contained in $Z_4 \oplus I$.

Proposition 12. Let A be a *- ring, every *- maximal ideal of A is <math>a *- prime ideal of A.

Proof. Let M be a *- maximal ideal of A. if M is a maximal ideal of A then M is a prime ideal and therefore M is a *-prime ideal of A. if M is not a maximal ideal K of A then there exists a maximal K of A such that: $K + K^* = A$ and $K \cap K^* = M$ (see (Birkenmeier et al., 1997)). K is a maximal ideal of A then K is prime, So K is *-prime and $K \cap K^*$ is *-prime (see (Birkenmeier et al., 1997)), Then M is *-prime ideal of A.

Proposition 13. Let A be a commutative *- ring with identity and $M \lhd^* A$. If the factor ring A/M is a *- field then M is a *- maximal ideal of A.

Proof. Let A/M is a *- field then A/M is a field then M is a maximal ideal of A and M is a *- maximal ideal of A.

The converse is not always true; the following example shows that is if M is a *- maximal ideal of A then A/M is not a *-field.

Example 14. Let $A = Z_4 \oplus Z_4$, $M = I \oplus I$ with $I = \{0, 2\}$ is a *-maximal ideal of A under the exchange involution $(a, b)^* = (b, a)$, but $\bar{O} \neq \overline{(2, 1)} \in A/M$ is not invertible for the reason that $\overline{(2, 1)}$ is a zero divisor $\overline{(2, 1)(2, 0)} = \overline{(0, 0)}$ hence A/M is not a field and not a *-field.

Proposition 15. Every *- field is a *- integral domain.

Proof. Let A be a *-field with a, b and c are non zero elements in A such that ab = ac and $a^*b = a^*c$, a admits an inverse element a^{-1} , $a^{-1}ab = a^{-1}ac$ and $a^{-1}a^*b = a^{-1}a^*c$ then b = c and A is a *- integral domain since the cancellation property holds true.

4. *-regular Ring

Definition 16. Refer to (vonNeuman, 1960), A *-ring A is called *-regular, if every principal one-sided ideal of A is generated by a projection.

Theorem 17. For every *-ring A, the following statements are equivalent:

- 1. A is *-regular.
- 2. $a \in Aa^*a$ for every $a \in A$
- 3. $a \in aa^*A$ for every $a \in A$
- 4. $a \in Aa^*a \cap aa^*A$ for every $a \in A$

Proof. (1) \Rightarrow (2) Let A be *-regular, then for every $a \in A$, aA = eA for some projection e of A. Hence a = ea and e = ar for some $r \in A$. Thus $a = e^*a = r^*a^*a \in Aa^*a$.

- (2) \Rightarrow (3) Let the condition be satisfied. Then for every $a \in A$, we have $a^* \in A(a^*)^*(a^*) = Aaa^*$. Take the involution, then $a \in aa^*A$.
- $(3) \Rightarrow (4)$ obvious
- (4) \Rightarrow (1) we have $a = xa^*a$ for some $x \in A$. But $(xa^*)(xa^*)^* = xa^*ax^* = ax^*$ implies $(xa^*)(xa^*)^* = (xa^*)$ which means that xa^* is a projection. Then a = ea for some projection e of A implies aA = eA and hence A is * regular.

References

- Aburawash, U. A., & Sola, K.B. (2010). *-Zero divisors and *-prime ideals. East-West J. of mathematics, 12(1), 27-31.
- Anderson, F. W., & Fuller, K. R. (1992). Rings and categories of modules, Graduate Texts in Mathematics 13 (2 ed.), New York: Springer-Verlag, pp. x+376, ISBN 0-387-97845-3, MR 1245487. http://dx.doi.org/10.1007/978-1-4612-4418-9.
- Berberian, S. K. (1988). Baer rings and baer *-rings, University of Texas at Austin.
- Birkenmeier, G. F, Groenewald, N. J., & Heatherly, H. E. (1997). Minimal and maximal ideal in rings with involution. *Beitrage Algebra Geom.*, 38(2), 217-225.
- Herstein, I. N. Rings with involution. Chicago lectures in mathematics, ISSN 0069-3286. http://dx.doi.org/10.1016/0001-8708(78)90072-5.
- Rowen, L. H. (1988). Ring theory I, Academic Press, San Diego. http://dx.doi.org/10.1016/S0079-8169(08)60985-X
- von Neumann, J. (1960), Continuous geometry, Edited by I. Halperin, Princeton University Press, Princeton, N. J. http://dx.doi.org/10.2307/3612654

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).