
Journal of Mathematics Research; Vol. 8, No. 1; 2016
ISSN 1916-9795 E-ISSN 1916-9809

Published by Canadian Center of Science and Education

On Some Properties of *-annihilators and *-maximal Ideals in
Rings with Involution

Maya A. Shatila

Correspondence: Maya A. Shatila, Department of Mathematics and Computer Science, Faculty of Science, Beirut Arab
University, Beirut, Lebanon. E-mail: mayachatila@hotmail.com

Received: November 3, 2015 Accepted: November 19, 2015 Online Published: January 7, 2016

doi:10.5539/jmr.v8n1p1 URL: http://dx.doi.org/10.5539/jmr.v8n1p1

Abstract

We describe the ∗ − right annihilator (∗ − le f t anihilator) of a subset of a ring and we investigate the relationships
between the right annihilator and ∗ − right annihilator. These connections permit the transfer of various properties from
annihilators to ∗ − annihilators . It is known that the quotient ring constructed from a ring and a maximal ideal is a
field, whereas we prove that the quotient ring constructed from a ring and a *-maximal ideal is not a *-field. Equivalent
definitions to ∗−regular ring are given.
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1. Introduction

A ring A is said to be a ring with involution or simply *-ring if there is a unary operation ∗: A→ A such that for all a, b ∈
A we have:

a∗∗ = a, (ab)∗ = b∗a∗, (a + b)∗ = a∗ + b∗

In this paper, only associative rings are considered. For more details concerning the ring with involution see (Rowen,
1988).

An ideal I of an involution ring A (I � A) is called *-ideal (I �∗ A), if it is closed under involution; that is I∗= I. An
involution * of a *-ring R is said to be proper (semiproper) if x∗x = 0 (x∗Rx = 0) implies x = 0 for every x ∈ R. In
(Rowen, 1988), the right annihilator of a ∈ A, denoted by r(a), is defined as r(a) = {b ∈ A| ab = 0}. Similarly, the left
annihilator of a is l(a) = {b ∈ A|ba = 0}.
A ring (resp. *-ring) A is semiprime (resp. *-semiprime ) if I2 = 0 for every nonzero ideal (resp. *-ideal) I of
A. A ring A is called reduced if it has no nonzero nilpotent elements

(
an = 0 for any a ∈ A and positive integer n

)
.

(see (Berberianetal., 1988), (Rowen, 1988)) . A ring A is called regular if for every a ∈ A, a ∈ aAa. Equivalently, every
principal one-sided ideal of A is generated by an idempotent (see (von Neuman, 1960)).

An element e of A is called idempotent (projection) if e2 = e (and e∗ = e. Equivalently, e = ee∗).

2. Properties of *-annihilators

Let A be a ring with involution which does not necessary have identity. Recall that the right annihilator of a subset S of
A is defined as S r = {x ∈ A/S x = 0}. Now, let S be a non empty subset of the *-ring A, define the ∗ − of S to be the
self adjoint subset S r

∗ = {x ∈ A/S x = 0 and S x∗ = 0}. Similarly, the ∗ − le f t annihilator can be defined. It is clear that
S r
∗ ⊆ S r. However the converse is not true as shown in the following example.

Example 1. Consider the ring A of all 2 × 2 matrices rings over the real field R,M2 (R), with transpose of matrices as

invotution. Let S =
{(

a a
0 0

)
/a ∈ R

}
, then S r =

{(
b c
−b −c

)
/b, c ∈ R

}
and S r

∗ =

{(
−t t
t −t

)
/t ∈ R

}
.It is clear that in

this example the right annihilator of S is not a ∗ − right annihilator of S .

In (Anderson et al., 1992), it is proved that the right annihilator of S is a two sided ideal, a similar proof is given in the
following proposition to show that the ∗ − right annihilator of a right ideal S of A is a ∗ − ideal of A.

Proposition 2. If S is a right (resp. left) ideal of a *- ring A, then the ∗ − right annihilator S r
∗ (resp. left) is a ∗ − ideal of

A.

Proof. Let x,y be two elements of the ∗ − right annihilator S r
∗, a ∈A. Then S (x − y) ⊆ S x − S y = 0 and S (x − y)∗ ⊆

S x∗ − S y∗ = 0. Also, S (ax) = (S a)x ⊆ S x = 0, S (ax)∗ = (S x∗)a∗ = 0 and similarly S (xa) = 0 = S (xa)∗. �
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The ∗− annihilator of a non empty subset S is defined by S ∗ = S r
∗∩S l

∗.If S is self adjoint, then it is clear that S r
∗ = S l

∗ = S ∗.
The following is an immediate corollary of the previous proposition.

Corollary 3. If S is a *-ideal of A, then S r
∗ = S l

∗ = S ∗ is also a *-ideal of A.

Our main goal is to give some properties of *-annihilators.

Theorem 4. Let S ,T be subsets of a ring A, then:

1. S r
∗ = (S ∗)l

∗

2. S r
∗ = ∩(a∈s) (a)r

∗

3. (S ∪ T ) r
∗ = S r

∗ ∩ T r
∗ , (S ∪ T ) l

∗ = S l
∗ ∩ T l

∗

Proof. 1. let x ∈ S r
∗, S x = 0 and S x∗ = 0, x∗S ∗ = 0 and xS ∗ = 0, so x ∈ (S ∗)l

∗ and S r
∗ ⊆ (S ∗)l

∗. Let x ∈ (S ∗)l
∗ , xS ∗ = 0

and x∗S ∗ = 0, S x∗ = 0 and S x = 0, So, x ∈ S r
∗ and (S ∗)l

∗ ⊆ S r
∗ therefore S r

∗ = (S ∗)l
∗ .

2. Let x ∈ S r
∗, S x = 0 and S x∗ = 0, ax = 0 and ax∗ = 0 for every a ∈ S then x ∈ (a) r

∗ for every a ∈ S hence x ∈ ∩ (a) r
∗.

Let x ∈ ∩(a∈s) (a)r
∗, ax = 0 and ax∗ = 0 for every a ∈ S , Sox ∈ S r

∗. Hence, S r
∗ = ∩(a∈s) (a)r

∗ .

3. Let x ∈ (S ∪ T ) l
∗, x (S ∪ T ) = 0 and x∗ (S ∪ T ) = 0, (xS = 0 and xT = 0) and (x∗S = 0 and x∗T = 0) . Then x ∈ S l

∗
and x ∈ T l

∗ and x ∈ S l
∗ ∩ T l

∗. Let x ∈ S l
∗ ∩ T l

∗, x ∈ S l
∗ and x ∈ T l

∗, (xS = 0 and x∗S = 0) and (xT = 0 and x∗T = 0) so,
(xS = 0 and xT = 0) and (x∗S = 0 and x∗T = 0) , finally, x(S ∪ T ) = 0 and x∗(S ∪ T ) = 0, Hence x ∈ (S ∪ T ) l

∗. �

Proposition 5. If A is reduced then S r
∗ = S l

∗.

Proof. Let x ∈ S r
∗ then S x = 0 and S x∗ = 0, yx = 0 and yx∗ = 0 for every y ∈ S , we also have (xy)2 = xyxy = 0 and

(x∗y)2 = x∗yx∗ y = 0. But A is reduced then it has no non zero nilpotent element. Thus, xy = 0 andx∗y = 0 for every
y ∈ S . So, x ∈ S l

∗. Similarly, we get S l
∗ ⊆ S r

∗. Hence, S r
∗ = S l

∗. �

Proposition 6. If * -is a proper (semi proper) involution then S ∩ S l
∗ = 0

Proof. Let x ∈ S ∩ S l
∗, x ∈ S and x ∈ S l

∗ which implies that xS = 0 andx∗S = 0, but x ∈ S then x2 = 0 and x∗x = 0. But
∗− is a proper involution then x∗x = 0 gives x = 0 (due to (Berberian, 1988)). Hence S ∩ S l

∗ = 0 �

By a similar reasoning we obtain that S ∩ S l
∗ = 0 if ∗− is a semi proper involution or if A is a reduced ring.

In general, for any subset S of A, S  
(
S r
∗
)l
∗ .

Example 7. S =
{(

a a
0 0

)
/a ∈ R

}
,T = S r

∗ =

{(
−t t
t −t

)
/t ∈ R

}
, T l
∗ =

{(
b b
b b

)
/b ∈ R

}
, S  

(
S r
∗
)l
∗ .

If S is self adjoint, then S ⊆ (
S r
∗
)l
∗ .

Proposition 8. If S = S ∗ then S ⊆ (
S r
∗
)l
∗ ; moreover S ⊆ (

S r
∗
)r
∗ and S ⊆

(
S l
∗
)l

∗

Proof. Let T = S r
∗. To show that S ⊆ T l

∗ we need to show that S T = 0 andS ∗T = 0 but S = S ∗ then it is enough to show
S T = 0.

But T = S r
∗ gives S T = 0 and S T ∗ = 0, hence S T = 0 and S ⊆ (

S r
∗
)l
∗ .Notice that if S = S ∗ then S r

∗ = S l
∗ and S ⊆

(
S l
∗
)l

∗
and S ⊆ (

S r
∗
)r
∗ �

Corollary 9. If A is semiprime ring and S � A then S r
∗ = S l

∗.(same reasoning as (Herstein), corollary 1, p.6)

Corollary 10. Every element of S r
∗ is a *-zero divisor. (definition of *-zero divisor is given in (Anderson, et al., 2010))

Proof. Let x ∈ S r
∗ then S x = 0 and S x∗ = 0 then there exist y ∈ S such that yx = 0 and yx∗ = 0. Hence x is a ∗ −zero

divisor. �

The converse is not true; not every ∗ − zero divisor of a ring belongs to S r
∗.

Example 11. Let R = A⊕ Aop with exchange involution (a, b)∗ = (b, a) , A = Z6, (2, 0) is a ∗ −zero divisor, (2, 0) (3, 0) =
(0, 0) and (2, 0) (0, 3) =(0, 0) , but (2, 0) < S r

∗S = Z3 ⊕ Z3 since there exist (1, 3) ∈ S such that (2, 0) (1, 3) , (0, 0) .
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3. *-maximal Ideal

Motivated by a theorem in ring theory which said that an ideal I of a ring A is maximal if and only if the quotient ring
A/I is a field, the involutive version will be shown in this section. birkenmeier has defined ∗−prime ideal and ∗−maximal
ideal in a ring with involution in (Birkenmeier et al., 1997), he showed that every prime (maximal) ideal is ∗−prime
(∗−maximal) ideal.

The ring A considered in this section is commutative.

Every maximal ideal of A is a ∗−maximal ideal of A but the converse is not true. Indeed, consider the ring R = Z4 ⊕ Z4
with exchange involution (a, b)∗ = (b, a) . I = {0, 2} is a maximal ideal of Z4, then J = I ⊕ I is a ∗ − maximal ideal of
Z4 ⊕ Z4 under the exchange involution. But J is not maximal since it is contained in Z4 ⊕ I.

Proposition 12. Let A be a ∗− ring, every ∗− maximal ideal of A is a ∗−prime ideal of A.

Proof. Let M be a ∗− maximal ideal of A. if M is a maximal ideal of A then M is a prime ideal and therefore M is a
∗−prime ideal of A. if M is not a maximal ideal K of A then there exists a maximal K of A such that: K + K∗ = A and
K ∩ K∗ = M (see (Birkenmeier et al., 1997)). K is a maximal ideal of A then K is prime, So K is ∗−prime and K ∩ K∗ is
∗−prime (see (Birkenmeier et al., 1997)), Then M is ∗−prime ideal of A. �

Proposition 13. Let A be a commutative ∗− ring with identity and M �∗ A. If the factor ring A/M is a ∗− field then M
is a ∗− maximal ideal of A.

Proof. Let A/M is a ∗− field then A/M is a field then M is a maximal ideal of A and M is a ∗− maximal ideal of A. �

The converse is not always true; the following example shows that is if M is a ∗− maximal ideal of A then A/M is not a
∗−field.

Example 14. Let A = Z4⊕Z4, M = I⊕ I with I = {0, 2} is a ∗− maximal ideal of A under the exchange involution (a, b)∗ =
(b, a), but Ō , (2, 1) ∈ A/M is not invertible for the reason that (2, 1) is a zero divisor (2, 1)(2, 0) =

(
0, 0

)
henceA/M is

not a field and not a ∗−field.

Proposition 15. Every ∗− field is a ∗− integral domain.

Proof. Let A be a ∗−field with a, b and c are non zero elements in A such that ab = ac and a∗b = a∗c, a admits an inverse
element a−1, a−1ab = a−1ac and a−1a∗b = a−1a∗c then b = c and A is a ∗− integral domain since the cancellation property
holds true. �

4. *-regular Ring

Definition 16. Refer to (vonNeuman, 1960), A ∗−ring A is called *-regular, if every principal one-sided ideal of A is
generated by a projection.

Theorem 17. For every ∗−ring A, the following statements are equivalent:

1. A is ∗ − regular.

2. a ∈ Aa∗a for every a ∈ A

3. a ∈ aa∗A for every a ∈ A

4. a ∈ Aa∗a ∩aa∗A for every a ∈ A

Proof. (1) ⇒ (2) Let A be ∗ − regular, then for every a ∈ A, aA = eA for some projection e of A. Hence a = ea and
e = ar for some r ∈ A.Thus a = e∗a = r∗a∗a ∈ Aa∗a.

(2) ⇒ (3) Let the condition be satisfied. Then for every a ∈ A, we have a∗ ∈ A (a∗)∗ (a∗) = Aaa∗. Take the involution,
then a ∈ aa∗A.

(3)⇒ (4) obvious

(4) ⇒ (1) we have a = xa∗a for some x ∈ A. But (xa∗) (xa∗)∗ = xa∗ax∗ = ax∗ implies (xa∗) (xa∗)∗ = (xa∗) which means
that xa∗ is a projection. Then a = ea for some projection e of A implies aA = eA and hence A is ∗ − regular. �
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