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Abstract. Earth observing satellites usually not only take ordinary red-green-blue images, but
provide several images including the near-infrared and infrared spectrum. These images are called
multispectral, for about four to seven different bands, or hyperspectral, for higher dimensional images
of up to 210 bands. The drawback of the additional spectral information is that each spectral band has
rather low spatial resolution. In this paper we propose a new variational method for sharpening high
dimensional spectral images with the help of a high resolution gray scale image while preserving the
spectral characteristics used for classification and identification tasks. We describe the application of
Split Bregman minimization to our energy, prove convergence speed and compare the Split Bregman
method to a descent method based on the ideas of alternating directions minimization. Finally, we
show results on Quickbird multispectral as well as on AVIRIS hyperspectral data.
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1. Introduction. Instead of just taking red-green-blue images many satellite
imaging systems, such as the Quickbird and Landsat-7 satellites, produce so-called
multispectral images including the near-infrared spectrum and consist of four to seven
bands. These additional bands can be used for various identification and classifica-
tion tasks. Because images in a precise spectral range can only be taken at rather
low spectral resolution, many satellites also include a so-called panchromatic image,
which is a gray-scale image that spans a wide range of frequencies, but comes at
high spatial resolution. Pan-sharpening is the process of fusing the low resolution
multispectral image with the high resolution panchromatic image to obtain a high
resolution multispectral image.

The goal of pan-sharpening is to combine the high spatial resolution of the
panchromatic image with the precise spectral information of the multispectral im-
age. The resulting image should have high visual quality to aid in detection and
classification tasks. However, the pan-sharpened image should also contain the same
spectral (color) information as the original multispectral data for precise identification
of targets.

Several methods have been proposed for pan-sharpening multispectral imagery.
Many techniques express the panchromatic image as a linear combination of the multi-
spectral bands, including the Intensity-Hue-Saturation (IHS) ([17, 16, 44]) and Brovey
methods ([22]). Other methods project the images into a different space like Prin-
cipal Component Analysis (PCA) ([42]). Several authors have proposed using the
wavelet transform or other types of MRA to extract geometric edge information from
the panchromatic image. These details are injected into the low resolution image,
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sometimes based on certain decision models ([49, 28, 31, 2]). Improvements, hy-
brid schemes and other methods focusing on spectral consistency have been proposed
([3, 41, 35, 23, 25]). Recently, Ballester et. al. introduced a variational method called
P+XS image fusion that explicitly forces the edges of the pan-sharpened image to
line up with those in the panchromatic image ([6]).

Several survey papers have compared the performance of pan-sharpening methods
([45, 21, 22, 5]). Generally, the methods producing the highest spatial quality tend
to distort the spectral quality of the image. Very interesting observations have been
made by Thomas et al. in [43]. One of the main points in their paper is that imposing
a relationship between the remotely sensed image comes with the risk to drastically
weaken the fusion performance.

Almost all methods impose a certain spectral relation between the panchromatic
image and the spectral bands like the common assumption that the panchromatic
image can be modeled as a linear combination of the spectral bands. As described in
[43] this assumption can lead to heavy spectral distortion, since it does not reflect the
physics correctly. Furthermore, these methods do not extend to higher dimensional
images. For bands whose frequency is not covered by the panchromatic image their
main assumption is no longer valid.

Our goal is to combine ideas from Wavelet fusion and P+XS fusion with a new
spectral consistency term into a single variational framework that does not impose
any direct spectral relation between the multispectral and the panchromatic images.
We should mention that our approach does not respect all possible image input char-
acteristics described in [43], but no assumption is made on the link between the
intensity values of the multispectral and the panchromatic image. In other words,
the high resolution gray scale image does not have to be panchromatic, but could be
any high resolution image, an image we call master image, showing the same scene as
the multispectral. Therefore, our method naturally extends to higher dimensions, i.e.
hyperspectral images. Despite the missing spectral relation, we still want to preserve
the spectral information from the low resolution spectral image in the sharpening
process. We will present two slightly different energies: One which explicitly includes
matching of wavelet coefficients in the wavelet domain and an alternate energy, which
can be minimized in the spatial domain only and therefore has big computational
advantages. We refer to our models as variational wavelet pansharpening (VWP) and
the alternate energy (AVWP).

In Section 2, we present the energy models that describes the desired qualities
of the sharpened image. We discuss numerical methods for minimizing the energy in
Section 3. In Section 4, we present results on multispectral Quickbird data as well
as hyperspectral data which we sharpen with Google maps

TM

[1] screen shots as
master images. We also show to preserve the spectral information from the original
data. Finally, we conclude in Section 5 by suggesting extensions of VWP and areas
for future research.

A more detailed description on our image fusion method can be found in the
masters thesis [32]. Preliminary results on hyperspectral data were previously pre-
sented at the SPIE Conference on Algorithms and Technologies for Multispectral,
Hyperspectral, and Ultraspectral Imagery XV ([33]).

2. Energy Functional. The general idea of variational image processing meth-
ods is to develop an energy functional depending on an image, where a low value of
the energy functional corresponds to a good quality image.

Many existing pan-sharpening methods like IHS, Brovey, and P+XS image fusion
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assume that the panchromatic image is a linear combination of the different bands.
Looking at the spectral response of the sensors of the Quickbird satellite system,
this assumption does not seem to be true in general. ([36], Fig. 1). A false linear
combination assumption can lead to spectral distortion and therefore damage the
spectral information of the original multispectral image ([43]). Furthermore, imposing
a relation between the high resolution and the multispectral image as well as modeling
the image formation process makes the method sensor dependent and restricts it to
the bands whose spectral response is covered by the master image.

Therefore, we propose a method that does not depend on this assumption. The
VWP energy model consists of four parts and is specifically designed to sharpen
images with an arbitrary number of bands while preserving spectral quality. In the
following we describe each term of our energy functional separately. We refer to the
master image as M : Ω→ R, where Ω ⊂ R2 is the image domain. Hi are the original
low resolution and ui the desired high resolution spectral bands.

2.1. Geometry enforcing term. The first variational pan-sharpening method
was proposed by Ballester et al. in 2006 ([6]). Their idea for introducing the geometry
of the panchromatic image was to align all level lines of the high resolution image with
each multispectral band. The main assumption here is that the geometric information
of an image is contained in its level sets, independent of their actual level.

The level sets of an image can be represented by the vector field θ consisting of
all unit normal vectors of those level sets. The definition of θ is somehow problem-
atic: On smooth parts of the image the gradient is zero and at edges a classical or a
weak derivative does not exist. For practical purposes we use an additional regular-
ization and define θε(x) =

∇M(x)
|∇M(x)|ε

, where |∇M |ε =
√

(DxM)2 + (DyM)2 + ε2 is an
approximation of the unit normal vector field.

For the true unit normal vector field θ we have θ ·∇M = |∇M |. To ensure that
each spectral band has the same level sets as the panchromatic image, Ballester et al.
suggested to align the normal vectors of the level sets. Therefore, every band of the
restored image should satisfy |∇un|− θ ·∇un = 0. Integrating over the left hand side
and applying integration by parts leads to

∫

Ω(|∇un| + div(θ)un). The total energy
Ballester et al. suggested to minimize in [6] is

JP+XS(u) =
N
∑

n=1

∫

Ω
(|∇un|+ div(θ)un)dx

+λ

∫

Ω

(

N
∑

n=1

αnun −M
)2
dx

+µ

N
∑

n=1

∫

Ω
πS

(

(k ∗ un)−Hn

)2
dx, (2.1)

where λ and µ are parameters, k is a convolution kernel modeling the blur of the low
resolution data and πS is a dirac comb indicating which multispectral pixel values
are given by the low resolution data. Increasing the resolution by a factor of four
the discrete dirac comb would have ones every fourth pixel and zeros elsewhere. This
energy was proposed for sharpening multispectral images with M being a high res-
olution panchromatic image. The second term reflects the assumption that M is a
linear combination of the spectral bands un with mixing coefficients αn.

The idea for introducing the geometry of a higher resolution image can easily be
adapted for the sharpening of hyperspectral images with an arbitrary master image
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at high resolution. θ depends only on the level sets of the image and therefore no as-
sumption on the relation between the hyperspectral image and the master image needs
to be made. In particular, the method is independent of contrast and illumination
changes in the master image.

We start the construction of our energy similarly to the P+XS model. As dis-
cussed above, introducing the geometric information from the master image means
minimizing the quantity |∇un|− θ ·∇un over the whole image domain Ω. Integration
by parts leads to

Êg = γ

N
∑

n=1

[

∫

Ω
|∇un| dx+

∫

Ω
div(θ) · un dx]. (2.2)

The idea of aligning the gradient vectors of an image with a smooth unit normal
vector field similar to (2.2) was also proposed by Lysaker, Osher and Tai ([29]) for a
new image denoising algorithm and led to iterative regularization using the Bregman
distance ([34]). Therefore, it is not surprising that the geometry introducing term (2.2)
also has a link to Bregman distances. In the next subsection we will briefly recall the
concept of Bregman distances and show the connection to the contour alignment term
(2.2).

2.1.1. Bregman distance and its link to the alignment of isocontours.
The (generalized) Bregman distance associated with a convex energy functional J is
defined as

DJ(u, v) = {J(u)− J(v)− 〈p, u− v〉|p ∈ ∂J(u)}, (2.3)

where ∂J(u) denotes the subdifferential of J at u. While for a Frechet differentiable
functional the Bregman distance is unique, it can be multivalued for non differentiable
functionals like the total variation. Each element Dp

J(u, v) represents a distance in
the sense that Dp

J(u, v) ≥ 0. For a strictly convex J we even get Dp
J(u, v) > 0 for

u *= v.
Bregman distances were originally introduced in [7] as a functional analytical

concept to find extrema of convex funtionals. Recently, many papers have made use
of Bregman distances to develop new image processing and optimization algorithms
and prove convergence rates (e.g. [34, 8, 24, 10]).

It turns out that in the case of the geometry enforcing term from P+XS, (2.2),
we are also minimizing a Bregman distance: For a smooth master image with non-

zero gradient −div(θ) = −div
(

∇M
|∇M |

)

is the subgradient of the TV semi-norm at M .

Hence, we know that |M |TV = 〈−div(θ),M〉. Adding zero in the form of −|M |TV +
〈div(θ),−M〉 to term (2.2) then gives us

Êg = γ

N
∑

n=1

(

|un|TV − |M |TV + 〈div(θ), un −M〉
)

= γ

N
∑

n=1

D
−div(θ)
|.|TV

(un,M), (2.4)

which shows that aligning the isocontours of each multispectral band with the master
image is nothing but minimizing their Bregman distance with respect to the TV
seminorm. We penalize derivations from the master image in the Bregman distance.
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It is shown in [39] that Bregman distance regularization with respect to TV is linked to
texture enhancement. Furthermore, the Bregman distance is contrast invariant. This
indicates that this type of regularization is very well suited for our problem because
we are “close” to the master image independent of the master images actual values,
which means that the edges and jumps in the image must be in the right places.

2.2. Contrast Increasing Contour Alignment. Despite the nice link to Breg-
man distances we shall also consider a different weighting of the two terms in the
energy functional and write

Eg =
N
∑

n=1

[γ

∫

Ω
|∇un| dx+ η

∫

Ω
div(θ) · un dx]. (2.5)

The introduction of the additional parameter η might not be immediately clear since
it slightly contradicts the derivation of this term i.e. that ideally we have |∇un| −
θ · ∇un = 0. We found during our numerical experiments that choosing a slightly
higher parameter η > γ gives better spatial quality. In the next paragraph we will
look at the meaning of using different parameters in a mathematical sense and further
motivate our decision by some simple one dimensional examples.

The optimality condition for minimizing the functional (2.5) is

div

(

∇u

|∇u|

)

=
η

γ
div(θ). (2.6)

First of all note that the divergence of the normals (a quantity of the form div ∇a
|∇a| )

has a geometric meaning, i.e. the mean curvature of the level lines. The optimality
condition yields that for η = γ we enforce the curvature of our desired image u to
be the same as in our high resolution master image M . If we now choose η to be
greater than γ, we enforce the curvature of the desired image u to be even higher.
The desired curvature is the one of the panchromatic image multiplied by η

γ > 1. To
see the effect of a higher curvature we implemented an evolution of the form

uk+1 = uk + τ

(

div
( ∇uk

|∇uk|

)

−
η

γ
div(θ)

)

(2.7)

for some example signals in one dimension where we took the data as our initialization
u0 and ran (2.7) for a limited number of iterations. The results are shown in Figure
2.1.

Fig. 2.1. Examples of enforcing higher curvature. Left: Gaussian signal, middle: step function,
right: sinusoidal signal

One can see that all results (green curves) have a higher contrast than the original
signals. The peaks and parts of high curvatures have larger values after the evolution.
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For the second example, the step function, the result can be proved analytically even
for higher dimensions.

In image denoising regularization by total variation is known to decrease the
contrast of images, while the our weighting increases the contrast. Maybe the two
effects cancel out such that in sum a better, more realistic image is obtained.

2.3. Fidelity terms. To preserve as much spectral information as possible we
would like our fused spectral image to be very close to the low resolution image on
those parts of the image, where there are no edges or texture. On the edges we
would like to increase the contrast and enhance the spatial information. Therefore,
we decided to include a matching term in the wavelet domain.

A second level undecimated wavelet decomposition of the master image and each
spectral band is calculated. A well known concept in wavelet pan-sharpening is to
use the detail coefficients of the high resolution image (most likely containing the
geometric information) and the approximation coefficients of each multispectral band
(containing the color or spectral information) to obtain a sharpened image via the
reconstruction from these coefficients ([49]). This concept is illustrated in Figure 2.2
for a stationary wavelet transformation.

Fig. 2.2. Concept of the wavelet pan-sharpening

Despite the higher computational costs as well as memory requirements stationary
wavelets have proved to be superior to the orthogonal wavelet transform because they
are translational invariant and therefore much more robust towards slightly inaccurate
registration and aliasing effects ([15, 36, 26, 2]).

In our energy we would like to be able to weight the importance of the wavelet
coefficient matching differently for different levels of decomposition and type of coeffi-
cients. Depending on the desired image features the matching of the detail coefficients
from the high resolution image could be more or less important than the approxima-
tion coefficient matching to the low resolution image.

To formalize the wavelet matching in a mathematical context for our energy
functional let us briefly recall the wavelet notation. For a one dimensional wavelet
transform, let φ be a scaling function and ψ the corresponding wavelet generating
a wavelet orthonormal basis of L2(R). We define the wavelets ψ1(x) = ψ(x1)φ(x2),
ψ2(x) = φ(x1)ψ(x2), ψ3(x) = ψ(x1)ψ(x2) and denote for 1 ≤ k ≤ 3, j ∈ Z and
n = (n1, n2) ∈ Z2

ψk
j,n(x) =

1

2j
ψk

(

x1 − 2jn1

2j
,
x2 − 2jn2

2j

)

. (2.8)
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Further we define a two dimensional scaling function by

φ2
j,n(x) =

1

2j
φ

(

x1 − 2jn1

2j

)

φ

(

x2 − 2jn2

2j

)

. (2.9)

Then the approximation coefficients of a two-dimensional function are given by the
scalar product with φ2 and the three detail coefficients (which can be seen as horizon-
tal, vertical and diagonal details) are given by the scalar product with ψk, k ∈ {1, 2, 3}.
We define the approximation matching coefficients for band i as

aij [n] = 〈↑ Hi,φ
2
j,n〉, (2.10)

where ↑ Hi denotes upsampling of the low resolution spectral band. In our experi-
ments we used bilinear interpolation. The matching detail coefficients are taken from
the scalar product with the panchromatic image and are equal for all different bands,

d{k,j}[n] = 〈P,ψk
j,n〉, for 1 ≤ k ≤ 3. (2.11)

If we denote the desired approximation coefficients for band i by αi
j [n] and the desired

detail coefficients by βi
{k,j}[n] then we add the following term to our energy functional

Ew =
∑

n

c0(a
i
L[n]− αi

L[n])
2φ2

j,n(x) (2.12)

+
∑

n

L
∑

j=1

3
∑

k=1

cj(d{k,j}[n]− βi
{k,j}[n])

2ψk
j,n(x),

where c0 is the parameter for the approximation coefficient matching, cj , 1 ≤ j ≤ L
are the parameters for the different levels of detail coefficient matching, and L is the
level of decomposition. In our experiments we used L = 2. Notice that we assumed
that our continuous representations of the images are elements of V 2

0 = span(φ2
0,n)

since this holds for the discrete formulation anyway. In our variational context we
choose the parameters according to the type of image we would like to produce. For
high spatial quality we want to introduce the edge information of the panchromatic
image and therefore increase c1 and c2. Vice-versa we would choose larger values for
c0 for better spectral quality.

A second matching term we introduce is based on the assumption that the best
spectral information can be obtained from the low resolution image. Therefore, ho-
mogeneous parts without edges or texture should be contained as they are. However,
the set of edges and texture is easy to get from the master image. Unlike segmentation
methods (like Mumford-Shah), where the edge set is an unknow we can simply cal-
culate it in the master image. To detect edges and texture we apply the exponential
edge detector exp

(

− d
|∇M |2

)

to our master image M (with an appropriate constant

d, e.g. d = 0.004). We add

Ec = ν

N
∑

i=1

∫

Ω\Γ
(ui− ↑ Hi)

2 dx (2.13)

to our energy functional.
The combination of terms in the spatial domain and in the wavelet domain has

been applied in various image processing applications (e.g. [13, 19, 30]). Except for the
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advantage that one can choose different weights in the wavelet matching to obtain a
certain type of image this kind of combination also has a drawback. Each minimization
method will have to alternate between the spatial domain and the wavelet domain to
include the different types of terms our energy functional contains. Using stationary
wavelets this procedure can become extremely time as well as memory consuming,
particularly for very high dimensional images with up to 210 bands. Therefore, we
developed an alternate energy by choosing another matching term, that approximates
the two terms (2.13) and (2.12) from above.

If we choose the wavelet matching weights equal, c0 = c1 = c2, the above term
becomes a least squares match to the wavelet fused image. Respecting the idea that
the best information we have away from the edges is the low resolution image, we
construct a new matching image as a combination between the low resolution and the
wavelet fused image. Denoting the wavelet fused image for the nth band with Wn we
define the new matching image Zn to be

Zn = exp
(

−
d

|∇M |2
)

·Wn + (1− exp
(

−
d

|∇M |2
)
)

· ↑ Hn. (2.14)

We then force our result to be close to the fused image Zn by adding the term

Ea = ν

N
∑

n=1

∫

Ω
(un − Zn)

2 dx (2.15)

to our energy.

2.4. Spectral correlation preserving term. The previous terms constrain
the colors within each band and introduce spatial information from the master image.
The main focus was the spatial enhancement of the spectral image. However, the
great use of hyperspectral images is the possibility to identify materials based on the
spectral information in the image. For this application it is common to look at the
spectral z-direction at each pixel (see Figure 2.3). Most classification methods are
not so much based on the magnitude but on the shape of the spectral signature, i.e.
the signal in z-direction, at each pixel. Hence, it is crucial to preserve this signature
in the sharpening process which means we have to introduce a coupling term that
preserve the relation between the bands pixel by pixel.

Fig. 2.3. Common viewpoint for spectral response analysis

To sharpen the image we have to allow the magnitude of the spectral signature
to change. However, we want to preserve its shape. Instead of constraining the
spectral signature itself we propose to keep every possible ratio of two different spectral
bands of our sharpened image equal to the ratio of the same bands of the original
hyperspectral image. Mathematically, this means that we would like to obtain ui

uj
=
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↑Hi

↑Hj
⇒ ui· ↑ Hj − uj · ↑ Hi = 0 at every pixel. We add the sum of the squares of the

corresponding L2 norms to our energy functional:

Es = µ

N
∑

i,j=1, i<j

∫

Ω
(ui· ↑ Hj − uj · ↑ Hi)

2 dx. (2.16)

For any spectral signature .a in the low resolution image and a corresponding signature
.b in the high resolution image, the above energy term Es reaches its minimum for
a(i) ·b(j)−a(j) ·b(i) = 0 ∀i, j. For bj *= 0 we can write this as a(i) = a(j)

b(j) ·b(i) = 0 ∀i, j

and see that .a ‖ .b. The spectral angle, SAM = arccos
( 〈%a,%b〉

‖%a‖·‖%b‖

)

, is a widely used

metric to compare and evaluate spectral signatures ([48, 22, 5]). Notice that the
spectral correlation preserving term Es tries to keep the spectral vectors parallel and
therefore minimizes the spectral angle. In the minimum of (2.16) all classification
methods based on SAM will give the same result on the sharpened image as they do
on the original spectral image.

We constructed two different energies. The VWP energy combining wavelet and
spatial terms

EVWP (u) = Eg + Es + Ew + Ec, (2.17)

and the alternate energy (AVWP) which can be minimized in the spatial domain only.
Putting the terms (2.5), (2.15) and (2.16) together, the total energy functional is

E(u) = Eg + Es + Ea. (2.18)

In this paper, we will focus on the results produced by the latter energy. We can
show that there exists a minimizer for this energy functional and the minimizer is
unique. For the proof of existence and uniqueness as well as for a comparison of the
different methods we refer to [32].

To practically minimize (2.18) we compared two approaches. First we use gra-
dient descent and discretize the resulting PDE semi-implicitly similar to the ideas
for alternating direction minimization (ADI) introduced by Douglas, Peaceman and
Rachford ([37, 20]). The second approach uses the more recent technique of “Split
Bregman” proposed by Goldstein and Osher ([24]).

3. Numerical Minimization.

3.1. ADI minimization. The ADI approach has been used in image processing
and for minimizing total variation related functionals before (e.g. [12, 27, 11]). We
make use of the necessary condition for minima that the first variation of the energy
functional must equal zero. Unfortunately, the total variation part of the energy is
not differentiable so we need to use subdifferential calculus or an additional smoothing
similar to the epsilon regularization we used in the calculation of θε. We replace |∇un|
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by |∇un|ε and obtain for the n-th band

δEg

δun
= −(γdiv(

∇un

|∇un|ε
)− ηdiv(θε)). (3.1)

δEs

δun
= 2µ

N
∑

j=1,j (=n

(un· ↑ Hj − uj · ↑ Hn) ↑ Hj . (3.2)

δEc

δun
= 2ν(un − Zn). (3.3)

The optimality condition

δEg

δun
+

δEs

δun
+

δEc

δun
= 0 (3.4)

can be solved numerically by introducing an artificial time variable and solving

d

dt
un = −(

δEg

δun
+

δEs

δun
+

δEc

δun
) (3.5)

to steady state. In our implementation we discretize in time implicitly for δEs

δun
and

δEc

δun
. For δEg

δun
we lag the denominator by one time step (for not having to solve a

nonlinear equation each time step) and then follow the ideas of ADI minimization.
We first take a step implicitly for the derivative in x-direction and explicitly for the
derivative in y-direction and then change. This leaves us with a linear system where
the corresponding matrix is tridiagonal such that each step can be solved extremely
fast e.g. by the Thomas (TDMA) algorithm ([18]).

3.2. Split Bregman. The Split Bregman method was recently proposed by
Goldstein and Osher and is a fast minimization scheme for TV- or generally L1-
related energies. Before the calculation of the Euler-Lagrange equation a new variable
is introduced to split the non-differentiable TV part from the rest of the energy. This
way no additional ε regularization as for the ADI method is needed. More specific,
minimizing (2.18) is equivalent to

min
un,dn

E(un, dn) = min
un,dn

γ|dn|L1
+R(un) such that dn = ∇un, (3.6)

where R(un) denotes the energy functional without the total variation term:

R(un) = ν

∫

Ω
(un − Zn)

2 dx

+µ

N
∑

j=1,j (=n

∫

Ω
(un· ↑ Hj − uj · ↑ Hn)

2 dx

+η

∫

Ω
div(θ) · un dx. (3.7)

It is shown in [24] with the help of the convergence results in [34] that a constrained
minimization problem like (3.6) can be solved by using the Lagrangian form

min
un,dn

γ|dn|L1
+R(un) +

λ

2
‖dn −∇un‖

2
2 (3.8)
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and now instead of letting λ go to infinity (a common approach), apply the Bregman
iteration

(uk+1
n , dk+1

n ) = argmin
un,dn

Dp
E(un, u

k
n, dn, d

k
n) +

λ

2
‖dn −∇un‖

2
2

= argmin
un,dn

E(un, dn)− 〈pku, un − uk
n〉 − 〈pkd, dn − dkn〉+

λ

2
‖dn −∇un‖

2
2,

pk+1
u = pku − λ∇T (∇uk+1

n − dk+1
n ),

pk+1
d = pkd − λ(dk+1

n −∇uk+1
n ). (3.9)

This rather complicated formulation can be carried out in a simple two-step procedure
without having to use the subgradients pu and pd. The scheme (3.9) is equivalent to
the Uzawa-type algorithm

(uk+1
n , dk+1

n ) = argmin
un,dn

γ|
√

d2x + d2y|L1
+H(u) +

λ

2
‖dn −∇un − bkn‖

2
2,

bk+1
n = bkn + (∇uk+1

n − dk+1
n ). (3.10)

The optimization for uk+1
n and dk+1

n is done in an alternating way. Each part of the
minimization is rather easy because (3.10) is differentiable in un and the resulting
optimality equation

(

2ν + 2µ
N
∑

j=1,j (=q

(↑ Hj)
2 − λ∆

)

uk+1
q

= 2νZq + ηdiv(θ) + 2µ ↑ Hq

(

N
∑

j=1,j (=q

uk∗
j ↑ Hj

)

− λdiv(dkq − bkq ). (3.11)

can approximately be solved by one sweep of Gauss-Seidel. Notice that we decoupled
the bands by using uk∗

j = uk+1
j for j < q and uk∗

j = uk
j for j > q on the right hand

side of the equation. The solution for dk+1
q for a given uk+1

q can be given explicitly
using the generalized shrinkage formula

(dk+1
q )x = max(sk −

γ

λ
, 0)

∇xu
k+1
q + (bkq )x

sk
, (3.12)

(dk+1
q )y = max(sk −

γ

λ
, 0)

∇yu
k+1
q + (bkq )y

sk
, (3.13)

with sk =
√

|∇xu
k+1
q + (bkq )x|

2 + |∇yu
k+1
q + (bkq )y|

2. For more details on the method

and its derivation we refer to [24].

3.3. Convergence Speed of Split Bregman minimization. In addition to
the results in [24], we want to give the convergence speed of this method, before taking
the alternating minimization between uk+1

n and dk+1
n into account. For a convergence

analysis of the alternating minimization we refer to [40].
Our observation holds not only for the application of Split Bregman to anisotropic

TV regularization (as in our case), but Split Bregman methods in general, which is
why we examine problems of the form

min
u

|φ(u)|L1
+R(u, f), (3.14)
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with a quadratic R and a convex regularization term |φ(u)|L1
. In our case we have

φ(u) = ∇u and R(u, f) would be the rest of the energy functional without the TV-
regularization term. As seen above the idea of Split Bregman is to introduce a new
variable d = φ(u) and solve the resulting constrained problem

min
u,d

J(u, d) = min
u,d

|d|L1
+R(u, f) such that d = φ(u) (3.15)

with Bregman iteration. To be able to give a convergence rate, we need the definition
of a source condition.

Definition 3.1 (Source condition). We denote

L(u, d, b) = J(u, d)− 〈b, d− φ(u)〉. (3.16)

We say that (ũ, d̃) satisfies a source condition, if there exists a Lagrange multiplier b̃
such that

L(ũ, d̃, b) ≤ L(ũ, d̃, b̃) ≤ L(u, d, b̃) ∀u, d, b. (3.17)

We can now state the convergence result.
Theorem 3.2. Let (ũ, d̃) be the solution to the problem φ(u) = d. Then (ũ, d̃)

satisfies a source condition and the estimate

Dpuk ,pdk

J

(

(ũ, d̃), (uk, dk)
)

≤
‖b̃‖

2λk
= O

(

1

k

)

(3.18)

holds, where b̃ is the Lagrange multiplier from the source condition.
The convergence estimate is the result from Theorem 4.1 in [9] for Bregman itera-
tion in general, where the theorem assumes that a source condition is given. Hence,
we immediately get a convergence rate for (uk, dk) towards a solution of the original
minimization problem as soon as we can obtain a source condition of the true solu-
tion. Our contribution is to show that this is always the case for the split Bregman
algorithm.

Lemma 3.3. The true solution ũ of the minimization problem (3.15) always
satisfies the source condition (3.17).

Proof. The existence of a Lagrange multiplier in our case means that for

L(u, d, b) := |d|L1
+R(u, f)− 〈b, d− φ(u)〉 (3.19)

there exists a b̃ such that

L(ũ, d̃, b̃) ≤ L(u, d, b̃) ∀u, d. (3.20)

In other words (ũ, d̃) has to be the minimizer of the convex functional L(·, ·, b̃). That
means that a source condition is satisfied if and only if there exists a b̃ such that the
following two conditions hold.

1. Optimality condition for d̃

pd̃ − b̃ = 0, pd̃ ∈ ∂|d̃|L1
. (3.21)

2. Optimality condition for ũ

q̃ + φ∗(b̃) = 0, q̃ ∈ ∂R(ũ, f). (3.22)
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The true solution ũ with d̃ = φ(ũ) and was a solution to the original minimization
problem

ũ = argmin |φ(u)|+R(u, f), (3.23)

which mean that it satisfies the optimality condition

q̃ + p̃ = 0, (3.24)

for q̃ ∈ ∂R(ũ, f) and p̃ ∈ ∂u|φ(ũ)|. The latter can be written as p̃ = φ∗(pd̃) for a

pd̃ ∈ ∂d|d̃|L1
. Therefore, we define b̃ := pd̃ and immediately obtain the two optimality

conditions (3.21) and (3.22), which proves the Lemma.
Equation (3.21) also gives us an estimate on b̃. For a non-zero d̃ we have

b̃ =
d̃

|d̃|
= sign(d̃), (3.25)

but even for non differentiable parts where d̃ is zero, we still know that the absolute
value of a pd̃ ∈ ∂|d̃|L1

is bounded by one. Therefore, we get

b̃ ≤ |Ω|. (3.26)

Note that this estimate could even be much better if we knew more about the structure
of d̃. Since we integrate over a function that we expect to be similar to the sign of
d̃ we can hope that a sparse d̃ would give us a much better convergence rate. In our
case of using Split Bregman on total variation regularization we have d̃ = ∇ũ. Thus,
a sparse d̃ would correspond to an image with only very few non-zero gradients, e.g. a
piecewise constant image. Generally we can conclude that the less non-zero gradients
our true, sharpened image has the faster the method will converge. This is of course
reasonable since less edges need to be sharpened.

4. Numerical Results.

4.1. Results on Multispectral Data. In this section we present fusion results
on the Quckbird satellite data, which consists of a four band multispectral image with
a spatial resolution of 2.4m as well as a panchromatic image with a resolution of 0.6m.
The images were taken at exactly the same time and exactly the same position such
that only translational registration needed to be done to align the two images. For
the sake of clarity we moved the figures and tables of this section into the appendix.

To evaluate our method we compare it to the standard methods IHS, PCA,
Brovey, stationary wavelet fusion and to the other variational method, P+XS. The
comparison is based on seven different image quality metrics that measure spectral
quality and one metric measuring spatial quality. The metrics we used are the Rel-
ative Dimensionless Global Error in Synthesis (ERGAS) (e.g. used in [22, 5]), the
Spectral Angle Mapper (SAM)([48, 22, 5]), Spectral Information Divergence (SID)
([14]), Universal Image Quality Index (Q-average) ([47]), Root Mean Squared Error
(RMSE), Relative Average Spectral Error (RASE) ([16]) and Correlation Coefficients
(CC) ([45]) as well as the spatial quality measure introduced in [49], which we will
refer to as Filtered Correlation Coefficients (FCC).

Our method is specifically designed to preserve the spectral information from the
low resolution image. Unfortunately, we do not have a dataset with a multispectral
image at different resolution, such that we are missing a dataset with ground truth to
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compare our results with. To show that we preserve the low resolution image spectral
characteristics we first compare the sharpened images to the upsampled low resolution
images.

Secondly, to simulate a low resolution dataset with ground truth, we subsampled
our data and compared the fusion results with the original data. This procedure is
common for comparing multispectral fusion algorithms (cf. [46, 5, 45]). However, sub-
sampling the data always includes model assumptions, namely the direct problem of
producing the low resolution data given the high resolution data. This is information
we do not have for true satellite data. If we had this information we would try to solve
the corresponding inverse problem. In literature authors have started to investigate
the satellite sensor properties by looking at their modulation transfer functions (e.g.
[4]). However, we would like to present a general image fusion method without taking
specific sensor information into account, which is why in our experiments we simply
used bicubic interpolation for the subsampling.

Figures A.1 and A.2 show the fusion result for different pan sharpening methods.
We can see that all methods greatly improve the visual quality of the low resolution
image. The standard methods PCA, IHS and Brovey always give visually satisfying
results. However, by taking a close look at the color of the fused images and the colors
of the low resolution image we can see that these methods tend to change some of
the colors. Particularly, the colors of the trees and the color of the swimming pool in
image A.1 seem to be slightly off. This is a sign for spectral distortion. To quantify
spectral quality we calculated the above mentioned quality metrics with respect to
the low resolution image. The results are shown in Tables A.1 and A.2 respectively.

The quality metrics indicate, that PCA, IHS and Brovey have the highest spatial
quality, but they also distorted the spectral quality most. The fact that Brovey
always satisfies SAM=0 comes from the fact that each band is multiplied with the
same factor and therefore SAM never changes. However, the other quality metrics
show that Brovey still changes the spectral information.

Our VWP and AVWP fusion results are not as sharp as the above mentioned
methods. However, our goal was to sharpen the low resolution image while preserving
most of the spectral information. Looking at the image quality metrics we can see
that AVWP and VWP fusion results are close to the low resolution image in terms
of spectral information. For both images VWP and AVWP have the best values in
ERGAS, RASE, RMSE and CC and are second in SAM, SID and QAVE. The contrast
increased image with η = 1.3γ has very sharp edges and high visual quality, but we
can see in the quality metrics that we gain the visual quality at the price of loosing
some of the spectral information of the low resolution image. Nevertheless these we
still get much better values than for the standard methods. Particularly, the idea of
minimizing a term to keep the spectral angle at zero, still gives very good SAM and
SID metric values.

A little surprising are the metric values for spatial quality. In our opinion the
result that P+XS clearly has the worst spatial quality can not be confirmed by visual
analysis. Furthermore, we would argue that the visual quality of AVWP* is equal
to the top methods, PCA, IHS and Brovey. It seems to be difficult to find a metic
that measures the “sharpness” of an image precisely. Particularly, almost any metric
that we believe to measure “sharpness” could be used in a variational frame work to
minimize for.

As mentioned above, we also simulated fusion data with ground truth by subsam-
pling the given data. Figures A.3, A.4 and A.5 show the fusion results and Tables
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A.3, A.4 and A.5 the corresponding quality metric values. Notice that the images
denoted by “ground truth” are now the original images and “low resolution” are the
image we obtained by subsampling the “ground truth” using bicubic interpolation.
Looking at the quality metrics we can see that although the difference between the
methods seems to be smaller, VWP and AVWP still perform very well. The contrast
increased AVWP images give much better quality values than in the previous com-
parison, which shows that the contrast improvement could be of practical relevance.
Comparing to the ground truth, the spectral quality of AVWP* does not seem to be
bad.

We can see that the low resolution image seems to be far from the true data in
terms of absolute pixel values, e.g. in the RMSE and RASE metric. At least for the
first test image all methods were able to improve these values in comparison to the
low resolution image. However, the SAM value is generally best for the low resolution
image, which encourages and strengthens our idea to explicitly constrain this spectral
metric in our energy functional. The SAM value of all VWP and AVWP fusion results
is the best or close to being the best. The combination of this result and the fact,
that VWP could be used to sharpen an arbitrary number of bands, motivates the
extension of VWP to hyperspectral image fusion.

4.2. Results on Hyperspectral Data. To demonstrate that our algorithm
easily extends to higher dimensional images we worked with two datasets: An 82-
band AVIRIS hyperspectral image of San Diego Harbor and a 210 band HYDICE
hyperspectral image of an urban scene in Texas which is freely available online ([38]).
Since the datasets were not accompanied by a master image, we looked at the same
scene on Google Maps

TM

([1]) (which offers very high resolution images) and extracted
several scenes as our master images. Unfortunately, the hyperspectral images are
spatially distorted in comparison to the Google Maps

TM

images. For the examples
shown in this report we did the required registration on small parts of the image
manually. Results of sharpening hyperspectral images are shown in Figure A.6 in the
appendix.

In general we can say that the visual quality is greatly increased by the sharpening
process. While in the low resolution hyperspectral images small objects can almost
not be visually identified, the sharpened images are very close to the master images
in terms of spatial quality. We should mention that we do not know when the Google
Maps

TM

picture was taken. The boxes in the second image of Figure A.6 for instance
could be things we see in the master image that were not present in the hyperspectral
image and therefore appear as phantoms. One has to be careful with the introduced
spatial information, if the two images were not taken at the same time.

As mentioned earlier the most important issue in sharpening hyperspectral im-
ages is not to change the spectral signature of during the sharpening process since
this information is used for material classification. To investigate how the spectral
signature changes we select two pixels in the 82 band hyperspectral scene and look
at their spectral signature. Figure A.7 shows the result of the sharpening process as
well as the two pixels we selected to examine the change of spectral response during
the sharpening process.

The upper left pixel is in the middle of a box where there are no edges or texture
even in the master image. At these pixels we match our current iteration to the low
resolution image and therefore do not change the intensity in any band. This can be
seen in its spectral signature before and after the image fusion. The curves match
almost exactly, the signature did not change. At the other pixel we are sure to change
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the signature because we want to increase the contrast and enhance the edge. Our
energy model allows this increase of contrast, but enforces the frequency vectors to
stay parallel. Investigating the spectral responses we can see that the signatures are
different after the sharpening process. However, norming both signature to 1 they
again match almost perfectly. The spectral angle is kept at almost zero degrees such
that any algorithm base on SAM will perform equally well on the sharpened image
as on the low resolution data.

4.3. Comparison of Split Bregman vs. ADI. For our energy minimization
problem the most important difference between these methods is the additional reg-
ularization parameter ε that is needed by the ADI method to smooth the TV term.
It can be shown that the time step for the ADI method is restricted proportional to
ε. The larger we choose ε the faster ADI will be, but on the other hand we minimize
an energy that is different from the original energy. Edges will be smoothed out for
too large ε.

Split Bregman does not need the additional regularization and minimizes our
energy more precisely. However, we still use an ε regularization for the calculation
of θε. This effect might partly compensate the big advantages the Split Bregman
method seems to have for standard TV-denoising as shown in [24].

Our original data multispectral intensity values are in the range between 0 and
a a little above 1000. To preserve this precision during the sharpening process, the
epsilon regularization should not exceed the reciprocal of the range of values, i.e.
ε ≤ 10−3. Comparing the two minimization methods is difficult, since they minimize
slightly different energies, the additionally regularized and the original energy. Figure
4.1 shows the decay of both types of energies for both methods. We can see that Split
Bregman minimizes the energy slightly faster. Note that ADIs runtime depends on
the choice of ε while Split Bregmans runtime is independent. We can see that the final
energy value for ADI is lower than the final Split Bregman energy in the additionally
regularized case and vice versa in for the original energy.

Fig. 4.1. Comparison of ADI and Split Bregman for energy minimization

To get a better and fairer comparison, we rewrite Split Bregman, such that it
minimizes the additional regularized energy. However, this is just for comparison
purposes, because it significantly slows down the method. Nevertheless we can directly
compare the two methods this way. To show the effect of an even smaller epsilon
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(which would for instance be necessary for higher resolved images), we ran the two
methods for ε = 10−4.

Figure 4.2 shows the decay of energy over 2000 iterations on the left. Both
methods have a steep drop in energy at the beginning, but ADI slows down and takes
many more iterations to reach the same energy as Split Bregman. The minimum
energy of Split Bregman is 479.26 while the minimum energy of ADI is 479.31 The
Split Bregman energy minimum is not reached at the last iteration. At some point the
energy doesn’t decrease any more; it slightly increases and than reaches an absolute
steady state. This could be due to numerical errors, rounding errors and the fact
the we use alternating minimization for the bands, and for the two Split Bregman
variables as well as the fact that we solve for these variables only approximately by
Gauss-Seidel (for each band) and a fixed point iteration (for the splitted variable d).
However, the difference to the minimal energy is 0.0026, which accords to an average
change of less than 4 ·10−8 per pixel. This precision is very hard to resolve and would
require much more computational afford. We can guess that the true minimal energy
might be around 479.2. To be able to resolve the speed of decay better, we use a semi
logarithmic plot of the energy divided by the minimal energy minus 1 (see Figure 4.2
right).

Fig. 4.2. Comparison of ADI and Split Bregman for energy minimization

Split Bregman minimizes the energy really fast and reaches a minimum after about
150 iterations. ADI takes longer, particularly to reach a very high precision solution.
However, we should mention that this examination (particularly with ε = 10−4) is of
interest for very exact solutions. It becomes more and more important the better the
resolution of the sensors gets. For our current data the choice ε = 10−3 (as examined
above) probably is sufficient and for visually satisfying results displayed in RGB colors
with values in [0, 255] we could even choose ε = 5 ∗ 10−3.

5. Conclusions. We proposed a variational method for sharpening high dimen-
sional spectral images which extends from usual pan-sharpening to an arbitrary num-
ber of bands with a master image that dose not need to be panchromatic. The energy
model incorporates the alignment of all unit normal vectors of the level sets of each
band with the master image and uses a fidelity term with a combination of the original
and a wavelet fused spectral image. By keeping the ratio of all bands constant we
assure spectral quality. Large weights on this spectral quality term force the spectral
angle between the original and the sharpened spectral image to be close to zero. For
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higher visual quality we chose different weights in the geometry forcing term and to
introduce higher edge curvature and therefore higher contrast.

For the optimization we compared a gradient descent ADI method with the Split
Bregman algorithm and can conclude that Split Bregman seems to be the superior
minimization method. A theoretical convergence speed for Split Bregman was proved.

For future research one could try to incorporate technical information about the
satellite sensors into the variational framework and other types of sensors and images
could be used. To automate the sharpening process a robust registration method is
needed. To reduce the bleeding of colors over some of the edges, deblurring could
be included in the sharpening method. Furthermore, this method could be combined
with hyperspectral analysis methods like demixing to not only improve the spatial but
also the spectral resolution of the image. New detection and classification methods
especially suitable for sharpened images could be developed, which take the spectral
as well as the spatial information into account.
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Appendix A. Figures and Tables.

Fig. A.1. Results for sharpening multispectral images

Table A.1
Image quality metrics for Figure A.1

ERGAS Q-AVE RASE RMSE SAM SID CC FCC
Brovey 3.29 0.923 13.29 51.5 0.0 0.0 4.11 0.98
IHS 3.35 0.917 12.69 49.15 1.239 5.54 5.14 0.98
PCA 3.29 0.938 12.96 50.23 1.427 5.57 3.69 0.98
Wavelet 1.96 0.976 7.87 30.51 0.716 0.46 1.48 0.97
P+XS 1.87 0.982 7.38 28.60 1.353 0.99 2.30 0.84
AVWP* 2.52 0.961 10.14 39.28 0.510 0.18 3.18 0.91
AVWP 1.60 0.984 6.44 24.95 0.546 0.19 1.24 0.91
VWP 1.59 0.984 6.35 24.61 0.222 0.05 1.08 0.90
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Fig. A.2. Results for sharpening multispectral images
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Table A.2
Image quality metrics for Figure A.2

ERGAS Q-AVE RASE RMSE SAM SID CC FCC
Brovey 3.45 0.877 13.99 51.69 0.0 0.0 3.79 0.98
IHS 3.60 0.862 13.57 50.16 1.338 1.33 6.02 0.98
PCA 3.83 0.874 14.65 54.13 2.168 3.24 6.54 0.97
Wavelet 2.23 0.954 8.88 32.83 0.726 0.42 3.11 0.97
P+XS 2.17 0.966 8.41 31.09 1.329 0.94 2.84 0.84
AVWP* 2.94 0.922 11.85 43.8 0.420 0.12 0.607 0.91
AVWP 1.81 0.968 7.28 26.92 0.467 0.14 2.03 0.91
VWP 1.70 0.972 6.81 25.15 0.232 0.04 2.31 0.90

Fig. A.3. Results for sharpening multispectral images
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Table A.3
Image quality metrics for Figure A.3

ERGAS Q-AVE RASE RMSE SAM SID CC FCC
Brovey 2.58 0.876 10.54 28.20 3.00 5.01 4.56 0.96
IHS 2.73 0.856 10.91 29.19 3.40 6.26 5.98 0.96
PCA 2.74 0.880 11.74 31.40 3.69 6.30 2.26 0.83
Wavelet 2.47 0.907 10.40 27.82 3.19 5.62 1.89 0.95
P+XS 3.22 0.879 12.53 33.52 3.02 4.83 4.00 0.81
AVWP* 2.37 0.914 9.83 26.31 2.99 4.97 3.61 0.92
AVWP 2.43 0.908 10.20 27.27 3.00 4.98 3.48 0.89
VWP 2.37 0.914 9.98 26.71 3.04 5.13 2.61 0.92
Lowres 3.26 0.83 13.61 36.40 3.00 5.01 7.92 0.49

Fig. A.4. Results for sharpening multispectral images
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Fig. A.5. Results for sharpening multispectral images
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Table A.4
Image quality metrics for Figure A.4

ERGAS Q-AVE RASE RMSE SAM SID CC FCC
Brovey 3.61 0.843 14.63 39.91 2.23 3.01 0.92 0.98
IHS 3.69 0.834 14.65 39.95 2.52 3.74 3.30 0.99
PCA 3.56 0.851 14.54 39.67 2.27 3.06 2.31 0.99
Wavelet 3.20 0.889 13.10 35.74 2.42 3.48 1.36 0.98
P+XS 3.47 0.889 13.56 36.97 2.47 3.37 0.98 0.86
AVWP* 3.38 0.882 13.77 37.57 2.24 3.02 3.85 0.94
AVWP 3.04 0.897 12.47 34.01 2.25 3.03 0.72 0.94
VWP 2.93 0.907 12.03 32.82 2.27 3.10 0.83 0.94
Lowres 3.41 0.867 13.99 38.15 2.23 3.01 2.44 0.44

Table A.5
Image quality metrics for Figure A.5

ERGAS Q-AVE RASE RMSE SAM SID CC FCC
Brovey 3.93 0.756 17.25 35.54 4.51 9.80 9.23 0.98
IHS 4.27 0.713 17.94 36.94 5.29 13.77 8.92 0.98
PCA 3.97 0.798 17.27 35.58 4.70 10.88 6.96 0.97
Wavelet 3.80 0.822 16.90 34.81 4.72 10.86 9.54 0.99
P+XS 3.94 0.845 17.16 35.34 4.52 9.86 7.97 0.88
AVWP* 4.37 0.757 18.97 39.06 4.52 9.84 10.86 0.95
AVWP 3.60 0.828 16.40 33.77 4.52 9.85 8.31 0.96
VWP 3.72 0.818 16.83 34.67 4.54 9.97 8.42 0.95
Lowres 3.78 0.823 17.93 36.92 4.51 9.80 6.94 0.34

Fig. A.6. Results for sharpening hyperspectral images
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Fig. A.7. Behavior of the spectral signature during the sharpening process
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