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Abstract

Microscopy based on voltage-sensitive dyes has proven effective for revealing spatio-temporal patterns of neuronal activity in vivo and
in vitro. Two-photon microscopy using voltage-sensitive dyes offers the possibility of wide-field visualization of membrane potential on
sub-cellular length scales, hundreds of microns below the tissue surface. Very little information is available, however, about the utility of
voltage-sensitive dyes for two-photon imaging purposes. Here we report on measurements of two-photon fluorescence excitation cros:
sections for nine voltage-sensitive dyes in a solvent, octanol, intended to simulate the membrane environment. Ultrashort light pulses from
Ti:sapphire laser were used for excitation from 790 to 960 nm, and fluorescein dye was used as a calibration standard. Overall, dyes RH79!
RH421, RH414, di-8-ANEPPS, and di-8-ANEPPDHQ had the largest two-photon excitation cross-seeti®nsl0-° cm* s photort?) in
this wavelength region and are therefore potentially useful for two-photon microscopy. Interestingly, di-8-ANEPPDHQ, a chimera constructed
from the potentiometric dyes RH795 and di-8-ANEPPS, exhibited larger cross-sections than either of its constituents.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction macroscopic tissue volumes are similarly difficult, requiring
large impractical electrode arrays.
Functional imaging of neuronal activity in three di- The use of voltage-sensitive (potentiometric) dyes as

mensions offers new possibilities for understanding brain molecular voltmetersGohen and Salzberg, 1978; Salzberg,
physiology. Since the functional architecture of the brain is 1983 is currently the only optical technique enabling
three-dimensional, one goal of neuroimaging is to accurately direct measurements of neuronal membrane potential. The
resolve neuronal activity in three-dimensions with high sensitivity of this methodology ranges froril0 mV scales,
spatial- and temporal-resolution. The work of Llinas and relevant for subthreshold membrane potential dynamics,
others, for example, has shown that large-scale aspectdo the ~100mV scales associated with action potentials.
of brain function can originate from electrical properties \oltage-sensitive dyes have proven to be effective for
of individual neurons I(linas, 1988; Llinas et al., 1998 measuring electrical activity in neurons in vitr@dntreras
underscoring the need for cellular and sub-cellular scale and Llinas, 2001; Grinvald et al., 1983; Salzberg et al., 1973,
imaging. Measurements of membrane potential in small 1977; Yuste et al., 1997nd in vivo Grinvald et al., 1994;
neurons and their processes, however, are extremely difficultOrbach and Cohen, 1983; Petersen et al., 20kBdate, sev-
using traditional electrode techniques. Measurements oferal studies have visualized voltage-sensitive dye responses
in three-dimensions using one-photon fluorescence in vivo
(Kleinfeld and Delaney, 1996; Petersen et al., 20@8&d re-
* Corresponding author. Tel.: +1 215 573 3463; fax: +1 215 573 6391.  cently gradient-index (GRIN) lens optics and computational
E-mail address: aafisher@physics.upenn.edu (J.A.N. Fisher). optical sectioning techniques have been used to achieve
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high-speed three-dimensional microscopy with voltage- Nile Blue A, which is a lipophilic membrane-permeant po-

sensitive dyes in near surface tissuEsliier et al., 2004 tentiometric dye Beeler et al., 1981; Cohen et al., 1974;

However, in all these studies optical sectioning is inherently Vergara et al., 19798 Using a ratiometric method\(bota et

limited by one-photon fluorescence microscopy techniques; al., 199§ with fluorescein as a reference, two-photon excita-

i.e. the images are sensitive to fluorescence from the entiretion cross-sections were obtained for nine voltage-sensitive

depth of focus and do not explicitly reject out-of-focus light. dyes at incident wavelengths ranging from 790 to 960 nm.
Two-photon laser scanning microscopenk etal., 199D We used octanol as a solvent to approximate the environ-

enables true three-dimensional imaging because of its intrin-ment of these dyes when bound to membraiené et al.,

sic optical sectioning properties. Additionally, high contrast 1974 and we identified dyes with comparatively high cross-

images can be obtained from deeper within biological tis- sections in this spectral region. Our investigation of the novel

sues compared to confocal microsco@g(itonze and White,  napthylstyryl-pyridinium “chimera” dye di-8-ANEPPDHQ,

1998. Since its inception, two-photon laser scanning mi- which is a combination of an RH79%(invald et al., 199%

croscopy has found wide-spread applicability throughout the quarternary ammonium head group and a di-8-ANEPPS

field of neuroscience, bothinvitrMainen etal., 1999; Yuste  (Bedlack et al., 1992chromophore, revealed that its two-

et al., 1997 and in vivo Helmchen et al., 2001; Stosiek et photon excitation cross-section in this spectral region was

al., 2003; Svoboda et al., 1999; Yoder and Kleinfeld, 2002 larger than that of either of its constituent components.

Calcium Green, GFP, and other fluorophores with absorption

peaks in the blue are among the most widely used dyes for in

vivo studies, in part because their peak absorption wavelength2. Materials and methods

can be reached by two photons within the tuning range of

most commercially available pulsed laser sources. Calcium-2.7. Background theory

indicators yield large signals following two-photon excitation

and can reveal rapid intracellular €&oncentration changes In two-photon absorption, an atom or molecule simulta-
dependent upon action potentiaBv/pboda et al., 1997but neously absorbs two photons and makes a transition from
they most certainly do not provide a direct measurement of its ground state to an excited state. Assuming no linear (i.e.
electrical activity. one-photon) absorption, the two-photon absorption of light
Second harmonic generation (SHG) imagiftelwarth propagating through an optically thin sample®iolecules

and Christensen, 1974; Sheppard et al., J@fS0 provides  per unit volume (cm?) is characterized by the following dif-
inherent optical sectioning, and has recently been used inferential equation for the input light intensity

conjunction with voltage-sensitive dyeSgmpagnola et al.,

1999; Dombeck et al., 2004; Millard et al., 20@8 produce dr — 812 1)
exceptional images of activity in cultured neurons. However, dz '

because SHG is a parametric nonlinear process, the resultinq_'erel is the source intensity (erg crs-1), and 8 is the
i urce i ity , [

second harmonic wave travels predominantly in the same di- h b . fici Th h b
rection as the incident lighMertz and Moreaux, 20QJand two-photon absorption coefficient. The two-photon absorp-
tion coefficient,8, can also be expressed in terms of the two-

yields signal in the reflectance direction only after backscat- . .
tering. By contrast, even at the scale of a single fluorophore, PNOton cross-sectior, i.e.
fluorescence emission following two-photon absorption of
polarized light by membrane-bound voltage-sensitive dyes 8 = ZC%, (2)
leads to a symmetric dipole radiation distributidiakowicz,
1999. In sub-surface tissue imaging conditions, where the Wherew is the angular frequency of the incident light field;
excitation volume is small compared to the imaging depth, the factor of 2 arises because two photons are absorbed,
photons are generally assumed to be emitted isotropicallyand X has cgs units of cfrs. In Eq.(2), &w is the energy
(Oheim et al., 2001 These factors make two-photon mi- per photon (erg photort) at the excitation wavelength. The
croscopy preferable to SHG for backward detection, a critical informal unit for X' is the Goeppert-Mayer (GM), where
criterion for in vivo imaging. 1GM=10"%Ccm*sphotonr. ¥ is described as a “cross-

Albota, Xu and Webb have measured two-photon exci- Section”in order to establish atwo-photon analogto the linear
tation cross-sections for a variety of biologically relevant (one-photon) absorption cross-section, which has true units
molecular fluorophoresA(bota et al., 1998; Xu, 2000; Xu  of area. The extra factor of chis due to the extra factor df
and Webb, 1996 Very little information, however, exists  in Eq.(1).
on the suitability of voltage-sensitive dyes for two-photon ~ The two-photon absorption cross-section, in turn, can be
imaging purposesHess and Webb, 1998To this end, we  defined in terms of the material third-order susceptibility,
have analyzed the two-photon spectral properties of somex®, i.e.
of the most common voltage-sensitive dyes, including re- _

- i 47%h w2 Im 5@

cent novel dyes di-8-ANEPPDH@paid et al., 200and = X ) (3)
RH1692 Shoham et al., 1999We also included in our study Cnc?
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Heren is the real part of the linear index of refractionaat Since the rate of two-photon absorption (TPA) depends on
andc is the speed of light. the spatial and temporal excitation beam profilsibota et

x® is a fourth-rank tensor. Thus the most general descrip- al. (1998)introduced a ratiometric technique wheretyof
tion of the third-order nonlinear Susceptibi“l’ﬁk)z(w4 = an unknown sample is deduced from identical measurements

w1 + w2 + w3) contains 81 terms. Significant simplifica- mMade of a reference sample with known valuesofWithin
tions, however, arise when the medium is an isotropic col- this approach the two-photon excitation cross-sectiog,
lection of random molecules, and when nonlinear terms suchof an unknown sample is
asy;ju(w =w+w — w) are large compared to the other terms,
e.g. as a result of small resonant denominators. In this case,OZS(k) = q2s¥'s(3)
x® Eq.(3)is well described as a frequency-dependent scalar @rCR (PR(1))? (F(1))s nR 6
(Hannaetal, 1979 | ORI pols (s P s’

The two-photon absorption cross-sectiéh,can be mea-
sured by absorption and excitation spectroscopy techniquesvhere subscripts S and R indicate “sample” and “reference,”
(Birge, 1983. Absorption spectroscopy measures the atten- respectively, and the cross-sections are written explicitly as a
uation of the incident light as it passes through a sample of function of wavelength to remind us about their wavelength-
known concentration and thickness. Excitation spectroscopydependence. In our measurements we monitored the second
measures the light emitted by the molecules following ab- harmonic signal SHGJ from a small fraction of the inci-
sorption. Generally, absorption measurements are difficult dent beam that was diverted through a beta-barium borate
because the high incident intensities required to generate(B-BaB204, or “BBO”) SHG crystal (Inrad, Northvale, NJ,
measurable absorption signals also lead to saturation, excitedYSA); the time-averaged second harmor&HG(t), is di-
state absorption, and photobleachiAtppta et al., 1998 On rectly proportional to{P(1))?.
the other hand, for molecules with reasonably large quan-
tum efficienciesq (>10~3), the fluorescence signal is read- 2.2. Experimental setup
ily detectable and can yield accurate measuremenss ibf
g is known. Hereg is the number of emitted photons by The optical setup for cross-section measurements is shown
the molecule per absorbed photon. The two-photon excita-in Fig. 1 In the experimentCr andCs are known,X'r, 7R,
tion cross-sectiony; is the product o2 and the two-photon  andns are taken from the literature, ariéi(s)), ¢r, ¢s, and
quantum efficiencyy,, defined as the number of emitted pho-  (P(1))? are measured for each sample. The laser excitation

tons by the molecule pewir of absorbed photons: source was a mode-locked Ti:sapphire laser (Mira Basic, Co-
herent Inc., Santa Clara, CA, USA) with a 76 MHz repetition
02 = q2X. (4) rate. The laser was pumped by an 8 W multi-line argon-ion

laser (Innova 310, Coherent Inc., Santa Clara, CA, USA).
In two-photon microscopy the measured signal is typically While two different optics sets were used to span the spectral
fluorescence emission, and therefoteis generally a more  region from 790 to 960 nm, optics sets that span the range

useful figure of merit thark. of 720-980 nm are now available. The wavelength was con-
Xu and Webb (1996have shown that for mode-locked firmed with an external spectrum analyzer (Ocean OpticsInc.,
laser sources, the time-averaged fluorescence sigiig} Dunedin, FL, USA). As noted above, a small fraction of the

(photons 51) detected by a spectroscopic system with col- excitation beam was focused onto a BBO SHG crystal (In-
lection efficiencye and time-averaged illumination power rad, Northvale, NJ, USA) to record a signal proportional to

(P(1)) (photons s1) is (P(1))2, which was time-averaged over the measurement pe-
riod. The ratio of reference and sample valuegSiG())
(F(1) ~ }quEC@ 871(P(l)>2' (5)  Was within the range of £0.01. To minimize distortion of
2 fr mA the beam profile, 4/2 plate and Glan—Thompson polarizer

) . . were used to adjust the average excitation power at the sample
Here C is the concentration of fluorophores in the sample tg pe~10 mw.

(cm™3), f is the repetition rate of the pulsed laseris the Pulse widths were measured with a home-built
laser pulse widthg, is a numerical constant of order unity,  packground-free autocorrelatokrigerer, 1998; Angerer et

Is the center wavelength of the laser pulse,gisdhe realpart 5] 1999. The pulse-width measured just before the sample
of the linear index of refraction at. The quantitﬁw was~200fs. The beam was expanded witha Gallilean
accounts for the temporal shape of the pulses and the spatiabeam-expander in order to back-fill an N.A. 0.4 objec-
profile of the beam in the excitation volumédpt and Neher,  tive (Carl Zeiss AG, Gottingen, Germany); the approximate
2001; Xu and Webb, 1996to compute this quantity the sam-  spot size in the sample was3 um. TPA-induced fluores-
ple thickness is assumed much larger than the depth of focuscence was collected at 90e-focused onto the slit of a
of the imaging system, and diffraction limited high numerical monochromator (Thermo Jarrell-Ash Corporation, Franklin,
aperture focusingRichards and Wolf, 1959; Sheppards and MA, USA). The fluorescence signal was detected by a photo-
Matthews, 198Yis also assumed. multiplier tube (Hamamatsu R943-02, Hamamatsu Photon-
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Fig. 1. Cross-section measurement setup. BG 39: Schott glass absorption filter, PMT: photomultiplier tube, SHG: second harmonic generatitgl BBO crys
(Inrad),A/2 = half wave plate, P: Glan—Thompson polarizer, BE: beam expand¢r (5

ics, Hamamatsu City, Japan) which then fed a gated photonmission, and the fluorophore emission spectrum. Monochro-
counter (SR400, Stanford Research Systems, Sunnyvale, CAmator transmission was measured using a white light source
USA). The excitation beam passed through a chopper whichemitting into the 90 fluorescence collection path to mimic
provided a reference signal enabling the photon counter tofluorescence emission. To this end, white light was focused at
perform background subtracted integration. Average power the point of two-photon excitation in the sample cuvette, and
levels of the incident light were also monitored by refocusing care was taken to ensure that all subsequently diverging light
the excitation beam onto a calibrated power meter (Newport was contained within the fluorescence collection solid angle
Corporation, Irvine, CA, USA). (a function of fluorescence collection optics and the accep-
One centimeter thick sample cells were used to ensure thattance numerical aperture of the monochromator). First, the
the entire focal volume of the excitation light was contained reference intensity was measured without the monochroma-
within the sample. We accounted for small absorptive lossestor in the optical path; then the monochromator was placed in
by measuring the location of the focal volume within the the position used throughout the entire experiment. A spec-
cuvette and using linear absorption theory with the known trophotometer (Ocean Optics, Dunedin, FL, USA) replacing
molar extinction coefficients of the fluorophores. For all  the fluorescence-collection PMT was used to generate trans-
measurements the linear absorption was negligible (i.e. itsmission curves as the monochromator scanned over all rele-
effects were much smaller than the systematic uncertainty invant wavelength settings. The uncertainty in calculatiogp of

the measurements). was by far the largest source of systematic error. This error
reflects uncertainty inmonochromator transmission as afunc-
2.3. Calculation of collection efficiency tion of wavelength, and errors due to numerical integration

of the transmission spectrum, since the fluorescein reference

Because the monochromator grating efficiency is andexperimental sample were typically measured at different
wavelength-dependent, it was necessary to meagUoe monochromator settings. By repeating the monochromator

each wavelength setting usegd.depends on the product transmission measurement procedure using a focused white
of several factors: photomultiplier tube quantum efficiency, light source, we obtained a standard deviation for this as-
solid angle of collection (expressed as a percentagerof 4 pect of the measurement. Error introduced by the numerical
radians), monochromator transmission, quartz cuvette trans-ntegration of the dye emission spectrum was estimated by
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Table 1

Sample summary

Fluorophore Source Aabsfem(nNM) Concentrationy(M) Reference
di-8-ANEPPS L. Loew 433/625 90 Bedlack et al. (1992)
di-8-ANEPPDHQ L. Loew 500/620 16 Obaid et al. (2004)
RH795 Molecular Probes 530/640 95 Grinvald et al. (1994)
RH414 Molecular Probes 525/636 150 Grinvald et al. (1988)
RH237 Molecular Probes 550/676 142 Gogan et al. (1995)
RH421 Molecular Probes 532/648 97 Grinvald et al. (1983)
RH1692 R. Hildesheim 600/680 117 Shoham et al. (1999)
Merocyanine 540 Eastman Kodak 533/615 128 Davila et al. (1973)
Nile Blue A Chroma Gesellsch&ft 649/660 118 Vergara et al. (1978)

Absorption and emission wavelengths are experimentally measured values in octanol.
a Eastman Kodak, Rochester, New York.
b Chroma Gesellschaft-Schmid & Co., Stuttgart, Germany.

comparing the results of numerical integration while varying cein in H,O at pH 13. Two-photon cross-sections are known
(1) numerical method, (2) interpolation resolution, and (3) for this reference samplélbota et al., 1998; Xu, 20Q00For
integration limits. We estimated the systematic error in mea- all other samples, octanol was used as a solvent. For solubility
surements of two-photon cross-sections to#t#9%, com- reasons, some samples were first prepared at high concentra-
parable to the uncertainty reported Aibota et al. (1998) tion in other solvents before adding octanol. For example,
This number represents the standard deviation obtained as &H1692 was first dissolved in a small quantity of ethanol;
result of propagating estimated errors in both sample and ref-di-8-ANEPPS and di-8-ANEPPDHQ were first prepared in
erence fluorescence collection efficiencigsandggr. Other a highly concentrated stock solution of DMSO/Pluronic. In
significant sources of systematic error were constant for boththese cases, solvents other than octanol comprise less than
sample and reference, and thus cancelled out. 1% of the total solution volume.
2.4. Sample preparation 2.5. Measurement procedure

Sample preparation and the sample sources are listed in Foreach wavelength, the fluorescein reference sample was
Table 1 Selected chemical structures are showirig. 2 first measured, and then the rest of the samples were mea-
Large stock solutions were prepared and then diluted to con-sured. Each measurement was followed by a blank sample
centrations of~100wM. The reference sample was fluores- in order to measure background stray light. Then the fluo-
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HOCH, ,CH:’?CH ;CHCH;NC\>—CH:CH Q 'on(cHz)}l@—CH:(;H Q
CH, — Q NI(CH,),CHJ, — Q NI(CH,),CH,],
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c‘H3 o
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CH.
’ 28Br
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Merocyanine 540 RH 421
<H5c:):»'4\@[o NH,
I$
(CHSCH2)3KI(CH:);NC\>—CH=CH—CH:CH@N(CH:CH3)Z “ \N
2Br
RH 414 Nile Blue A

Fig. 2. Chemical structures of voltage-sensitive dyes used in this investigation.
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Fig. 3. Log-scale plots of two-photon excitation (TPE) cross-sections of voltage-sensitive dyes. Valpeseplotted in units of 16°%cnt* s photort! as a
function of wavelength (nm):@) mid-wavelength optics set (790-900 nny) (ong-wavelength optics set (900-960 nm). Systematic errasfas +30%
for each point.

rescein reference was measured again. The monochromatomeasured with the calibrated power meter. The results were
was tuned to the peak of the emission spectrum for each flu-plotted on a log—log scale and fit to a line, the slope of which
orophore. Before placing the sample in the cuvette holder, yielded the power-dependence exponent.

the average excitation power was measured with the cali-

brated power meter. For each sample at each wavelength,

integrated fluorescence photon counts from the SR400 and’- Results

the averaged SHG signal were recorded. Background counts; ; - 73, photon excitation cross-sections

were subtracted from the total integrated fluorescence photon

counts. Integration times were 20-40s. Intensity tests con-  TPE cross-section measurements, for all samples
firming the power-squared dependence of the fluorescenceare shown inFig. 3 Cross-section values are in units
were performed by measuring the integrated fluorescenceof the Goeppert-Mayer (GM), where 1GM=1%cnt*s

at various excitation intensities. Excitation intensities were photorr . Values at selected wavelengths are listeEhible 2

Table 2

Values ofo at selected wavelengths

Dye 800 nm 840 nm 880 nm 920 nm 960 nm
di-8-ANEPPS 1.4-04 1.7+ 0.5 2.5+ 0.8 5.6+ 1.7 10+ 3.0
di-8-ANEPPDHQ 3.0+ 0.9 4.0+ 1.2 8.8+ 2.6 16+ 4.8 19+ 5.9
RH795 0.6+ 0.2 1.0+ 0.3 2.5+ 0.8 6.3+ 1.9 10+ 3.0
RH414 0.10+ 0.03 0.69+ 0.21 1.6+ 0.5 4.6+ 1.4 12+ 3.6
RH421 1.9+ 05 10+ 3.0 4.0+ 1.2 13.6+ 4.1 16+ 4.8
RH237 8.9+ 2.6 2.3+ 0.7 0.42+ 0.1 0.84+ 0.2 39+ 1.2
RH1692 1.5+ 04 — 0.274+ 0.08 0.68+ 0.2 —

Nile Blue A 0.6+ 0.2 0.13+ 0.04 0.244+ 0.07 - -
Merocyanine 540 0.2% 0.08 0.83+ 0.25 0.41+ 0.1 0.74+ 0.2 44+ 1.3

Cross-sections are given in GM (1 GM =18 cnt* s photort), and dashes represent measurements with insufficient signal-to-noise.



100 J.A.N. Fisher et al. / Journal of Neuroscience Methods 148 (2005) 94-102

Table 3 2-Photon Excitation Wavelength (nm)
Linearity tests for power-squared fluorescence dependence 0 35760 800 840 880 920 960 1000
Dye Slope '
Nile Blue

RH795 2.05+-0.06
RH421 1.96+0.06 g s e ; -p:0:0n azsor';ance 12 s
di-8-ANEPPS 2.06:0.08 = . —_* “-Pholon absorbance C}
di-8-ANEPPDHQ 1.95:0.08 £ 037 s
Values are slope of logarithmic plot of fluorescence (AU) as a function of § E
peak excitation intensity at 920 nm. s (g
All of the blue-green-absorbing dyes (RH795, RH414, & 02r <
RH421, RH237, di-8 dyes, and Merocyanine 540) exhibit § =
increases in cross-section between 900 and 960 nm. Thisis al
most certainly because the excitation photon wavelength ap-

0

proachestwice the peak one-photon absorptionwavelengthoi 02 : : : : '

the blue-green-absorbing dyes. In fact, all of the blue-green- %80 400 20 440 400 80 500
. 9 g dyes. . . 9 1-Photon Excitation Wavelength (nm)

absorbing dyes except for RH237 exhibited increases of over

an order of magnitude akex varied from 790 to 960nm.  Fig. 4. Comparison of linear (one-photon) absorbance and two-photon ex-

Both Nile Blue A and RH1692, the two red-absorbing dyes citation (TPE) cross-sections) for Nile Blue A. Absorbance (defined as

in the study, exhibit an overall decrease in cross-section be-—logéo(lllo), wherefllo is the sample transmittance) and (in units of

tween 790 and 960 nm. The high values near 790 nm are mos 0-%%cnt* s photort?) are plotted as a function of excitation wavelquth

. L . .. (nm) (bottom and top axes correspond to one- and two-photon excitation

likely due to one-photon absorption in the red absorption tail

. . . “" wavelengths, respectively).
which extends to 750 nm in both dyes. Very little spectral dis-

continuity was observed when changing optics sets. pared with that of its constituent componenEg( 5). No
peak in the TPE spectrum in this range is observed, and
3.2. Linearity tests none is expected since the one-photon absorption maximum

is at 500 nm. However, the chimera TPE cross-section values
Table 3reports the results of linearity tests for several were double those of RH795 and di-8-ANEPPS over the en-

fluorophores. The deviation from a pure intensity-squared tire tuning range. Di-8-ANEPPS has recently been shown to
law is within £6% for all samples. These results confirm that offer advantages for imaging of mammalian neuronal net-
the measured fluorescence emission was indeed true twoworks (Obaid et al., 2004 Combined with the fact that
photon induced fluorescence. 790-960 nm is a typical tuning range for most of the com-

mercially available laser sources for two-photon microscopy,

di-8-ANEPPDHQ shows significant promise for two-photon
4. Discussion voltage-sensitive dye imaging.

4.1. Comparison with one-photon absorption spectra T T T T T T T T T
251 | — di-8-ANEPPDHQ
When plotted as a function a,/2, all of the TPE cross- --- di-8-ANEPPS
section spectra mimic the trends of their one-photon ab- | | = RH 795
sorption spectra. di-8-ANEPPS was the only fluorophore for
which the two-photon absorption peak was within our tun-
ing range. A small peak in TPE cross-section at 850 nm is
observed in this case, which is likely a blueshifted corre-
late of twice the one-photon absorption peak expected at
866 nm. Other non-resonance featuresFig. 3 are also A4
likely to be physical trends corresponding to one-photon S
absorption spectra. For instance, the small peak at 425nm 51 5
in the one-photon absorption spectrum of Nile Blue A is '}_,5.-?'1
found in the TPE spectrum as a blueshifted peak at 830 nm oL & _.L.,_,_’_,i.__-‘lf:i..?fi. |
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4.2. di-8-ANEPPDHQ versus RH795 and di-8-ANEPPS . . ) .
Fig.5. Comparison af; for di-8-ANEPPDHQ, RH795, and di-8-ANEPPS.

. . . . . Solid line: di-8-ANEPPDHQ, dashed line: di-8-ANEPPS, dotted line:
A.stnklng result.m th is studyisthe greatly increased Cross- rH795, @) mid-wavelength optics set (790-900 n) fong-wavelength
section of the chimeric molecule di-8-ANEPPDHQ com- optics set (900-960 nm).
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