
1

Performance issues of Bluetooth scatternets and
other asynchronous TDMA ad hoc networks

Theodoros Salonidis and Leandros Tassiulas
Electrical and Computer Engineering Department and Institute of Systems Research

University of Maryland, College Park
{thsalon,leandros}@eng.umd.edu

Abstract—
A common assumption of TDMA-based wireless ad hoc net-

works is the existence of network-wide slot synchronization. In
practice such a mechanism is difficult to support. In asynchronous
TDMA systems each link uses a local time slot reference provided
by the hardware clock tick of one of the node endpoints. In-
evitably, slots will be wasted when nodes switch time slot refer-
ences. This restricts the rate allocations that can be supported
when compared to a perfectly synchronized system. We address
this practical performance issue for the case of Bluetooth, a wire-
less technology operating according to the asynchronous TDMA
communication paradigm. We introduce scheduling algorithms
that not only guarantee upper bounds on the generated overhead
but also target its minimization.

I. INTRODUCTION

A wireless ad hoc network is a collection of nodes equipped
with radio interfaces forming a multi-hop all-wireless infras-
tructure. Time division multiple access (TDMA) is a well-
known medium access scheme for deterministic bandwidth al-
location and quality of service (QoS) provision in ad hoc net-
works. According to TDMA, bandwidth can be allocated to the
network links using a schedule of period Tsystem slots. At ev-
ery slot of such a schedule, several links are activated for trans-
mission such that no conflicts occur at the intended receivers.
The amount of conflict-free slots a link receives within a period
determines its allocated bandwidth.

A central performance issue that arises in a TDMA-based
ad hoc network is determination of the set of allocations it can
achieve. Given a set of end-to-end sessions, the sum of their
requested rates over the links they traverse creates a demand
allocation for each link. A demand link rate allocation r = [r l]
(0 ≤ rl ≤ 1) is feasible if the network can allocate τl = �rl ·
Tsystem� conflict-free slots to every link l without exceeding
the system period. Determination of feasibility is intrinsically
coupled with an optimization problem: to find a link schedule
of minimum period that realizes slot allocation τ = [τ l]. If the
solution of this problem is less than the system period, then the
allocation is feasible.

Optimal link scheduling in wireless ad hoc networks has been
studied by [2] [3] for various interference constraints. These
studies, along with most proposed centralized or distributed
TDMA protocols for slotted ad hoc networks, assume the time
slot boundaries are provided by a global system clock. This
system-wide synchronization mechanism is not always possible
to achieve in the distributed ad hoc network setting. Bluetooth

[1] is a new TDMA wireless technology that enables the forma-
tion of ad hoc networks called scatternets. While being a slotted
system, Bluetooth has the interesting feature of not supporting
a global slot synchronization mechanism. Instead, time refer-
ence is provided locally for each link by one of the node end-
points acting as master. Inevitably, slots will be wasted when
nodes switch time slot references as slaves. This phenomenon
has been reported in works related to scatternet scheduling [8]
[9] [10] [11] [12] as a source of overhead. However, no formal
study has examined its effect on the ability of the system to al-
locate bandwidth. This ability is linked to the determination of
the feasible allocations region, or, equivalently, the solution of
the related link schedule optimization problem.

Given a demand allocation, the minimum period achieved by
an asynchronous TDMA system is expected to be greater than
the one achieved by a perfectly synchronized one. This is be-
cause the various time reference switches over time can have
a cumulative additive effect on the overall minimum period re-
quired by the asynchronous system. The increase in the min-
imum period is essentially the overhead introduced by system
asynchronicity.

Based on this observation, we can use a two-step approach
to address the link schedule optimization problem for the asyn-
chronous scatternet setting. The first step finds a synchronized
schedule of minimum period that realizes the demand alloca-
tion. Bluetooth falls in the category of multi-channel systems
studied in [3] and the algorithms contained therein can be used
for this purpose. The second step, our contribution, utilizes the
optimal synchronized schedule to find an asynchronous sched-
ule of minimum overhead.

It turns out that the overhead depends on the order of link ac-
tivations in the reference synchronized schedule. We introduce
two algorithms for addressing this problem. The first algorithm
derives a minimum overhead asynchronous schedule for a spe-
cific link activation ordering of the synchronized schedule. It
also has an upper bound for the overhead it generates for any
possible input ordering or scatternet configuration. Using this
algorithm it is possible to reach the optimal solution by execut-
ing it over all possible orderings. This leads to a problem of
combinatorial nature that prohibits exhaustive search for large
problem sizes. To this end we introduce a heuristic algorithm
of polynomial complexity. The heuristic is shown to have ex-
cellent performance for problem sizes where the optimal can
be computed. For large problem sizes we investigate the effect

2

of the various system parameters to the generated overhead and
use the derived upper bound as a performance measure.

The paper is organized as follows. Section II is an intro-
duction to the architecture of Bluetooth scatternets and related
work on their scheduling. Section III introduces a scheduling
framework for allocating bandwidth in the asynchronous scat-
ternet setting by means of periodic conflict-free link schedules.
Sections IV and V provide the formulation of the asynchronic-
ity overhead problem and the algorithms used for minimizing
it. Section VI evaluates the algorithms’ performance. Section
VII concludes the paper.

II. BLUETOOTH ARCHITECTURE

Every Bluetooth node has an internal ”native” system clock
that determines the timing of the radio transceiver. Native
clocks of different nodes are not synchronized. Synchroniza-
tion is locally acquired when nodes are grouped in distinct com-
munication channels called ”piconets”. Each channel is defined
by a frequency hopping sequence derived from the identity of
one of the nodes acting as ”master”. The master provides its na-
tive clock as the piconet time slot reference. Each slot supports
full-duplex communication initiated by the master: During the
first part of the slot the master polls a slave; during the second
part a slave responds if polled by the master.

Bluetooth imposes the maximum number of piconet mem-
bers to be eight. However, piconets can be interconnected via
bridge nodes to form a larger ad hoc network known as a ”scat-
ternet”. Bridges can timeshare between multiple piconets, re-
ceiving data from one piconet and forwarding it to another. A
bridge may act as master in a single piconet and slave in oth-
ers (termed as M/S bridge) or act as slave in multiple piconets
(termed as S/S bridge).

The Bluetooth technology standard [1] has not yet speci-
fied the way bridges should schedule their visits in different
piconets; this is currently a subject of intense research ef-
fort. Emphasis is placed on distributed scheduling schemes
and approaches can be categorized according to the degree
of coordination they offer. According to ”hard coordination”
schemes [12][7], link scheduling is performed in such a way
that when a master polls a slave, this slave is guaranteed to
be tuned on this piconet. Since no transmission conflicts ex-
ist, these schemes can potentially achieve strict bandwidth al-
location guarantees. However, there exists an associated imple-
mentation and communication complexity for maintaining the
conflict-free property especially when the scatternet becomes
highly dynamic. Soft coordination schemes [10][9][11] trade-
off perfectly conflict-free transmissions for lower complexity.
The downside here is that this comes to a loss of the ability to
provide bandwidth guarantees.

While there is still a simplicity v.s. performance debate
between the two approaches, bandwidth loss due to piconet
switching always exists when slaves switch piconet time ref-
erences. In the next section we introduce a hard coordination
scheduling framework for overhead minimization. There are
mainly two reasons for doing this. First, in this case the over-
head is naturally linked to the ability of the system to allocate
bandwidth. Second, conflict-free scheduling is the best we can

do to minimize the overhead and this provides a useful point of
reference.

III. SCATTERNET COMMUNICATION MODEL

The scatternet is represented as a directed graphG(N,E). A
directed edge (i, j) ∈ E signifies that nodes i and j are within
wireless range and they have established a Bluetooth link where
i is the master and j the slave.

We assume that transmissions on a piconet are cleanly re-
ceived by a node listening on that piconet despite any in-range
transmissions that may be happening at other piconets. Re-
cent studies [4] have indicated that this is a good approxima-
tion for the frequency hopping sequences used in Bluetooth.
We also assume no losses due to channel errors. The access
problem arises because each Bluetooth node has a single ra-
dio transceiver and can communicate (transmit or receive) to at
most one piconet at a time. Thus, nodes need to coordinate their
presence on links during mutual time intervals.

Based on its own hardware clock, a node i divides time in
fixed-sized slots and coordinates transmissions on its adjacent
links using a local link schedule S i of period Tsystem slots.
The local schedule determines communication action for the
duration of a slot: the node can either be active on a single link
(polling if master or responding to a poll if slave) or remain idle.
Because the local schedules are not synchronized, for conflict-
free communication on τl consecutive slots on link l, the master
must allocate τl slots in its local schedule for polling, while the
slave must allocate at least τl + 1 time-overlapping slots for
tuning to the frequency hopping sequence and aligning to the
time reference of this master. Thus, certain slots in a node’s
local schedule are wasted. More specifically, an extra slot is
needed each time a node switches to a new piconet acting as
slave.

A slot allocation τ=[τl] is the number of slots every link l
transmits conflict-free during Tsystem slots and equals the num-
ber of slots allocated to the local periodic schedule of the link
master. Given a slot allocation, the various piconet switches
over time have a cumulative effect on the overall minimum pe-
riod required by the asynchronous system. Figure 1 illustrates
this phenomenon: under perfect synchronization, an allocation
of 3 slots per link could be realized by a minimum period of
6 slots. Both asynchronous schedules (a) and (b) need a larger
period for realizing it. In addition, the amount of overhead de-
pends on the order links are activated in the schedule. In (a)
only two slots are wasted, while in (b), node B switches time
reference every other slot, yielding a higher period of 12 slots.

According to this example, the asynchronicity overhead for
realizing a demand slot allocation can be defined as an increase
in period with respect to a perfectly synchronized system. Also,
the amount of overhead depends on the link activation order.
The problem then is to find an asynchronous schedule and link
activation order of minimum overhead. The following sections
provide with a formulation of this problem and an approach for
solving it.

IV. EQUIVALENT SCHEDULES

A link activation set consists of links that can simultaneously
transmit without conflicts to the intended receivers. A synchro-

3

- 1 1 1 - - - - -

2 1 1 1 1 2 2 2 2 1

2 - - - - - 2 2 2 -

SA

SB

SC

....

....

....

....

....

-

T=8

- 1 - - - 1 - - - 1 - - -

2 1 1 2 2 1 1 2 2 1 1 2 2 1

2 - - - 2 - - - 2 - - - 2 -

SA

SB

SC

....

....

....

....

....

....

-

T=12

(b)(a)

BA C

Fig. 1. Node B acts as slave on both links. The two asynchronous sched-
ules realize slot allocation (3, 3) with different periods, depending on the link
activation order.

nized link schedule S̃ of period T̃ is a collection of link acti-
vation sets {Ak : 1 ≤ k ≤ T̃}. A synchronized schedule
instanceS̃(π) is a periodic sequence of a specific ordering π of
the link activation sets of S̃:

S̃(π) = (Aπ(1), ..., Aπ(T̃)). (1)

where π is a mapping of the indexes {1, ..., T̃} → {1, ..., T̃}.
Given a reference synchronized schedule instance S̃(π), an
equivalent asynchronous schedule S (π) is the one that yields
minimum overhead for this order of link activations.

Algorithm EQUIVALENT constructs S (π) incrementally by

iterating over the link activation sets of S̃
(π)

. During iteration
k, let l be a link in activation set Aπ(k) and i and j be its mas-

ter and slave endpoints. Also let p(k−1)
i and p

(k−1)
j be the last

assigned slot positions in the local schedules S
(π)
i and S

(π)
j re-

spectively.
First, master i determines slot p(k)

i to be assigned to link l

in S
(π)
i . If l was not activated in the previous iteration and

p
(k−1)
j ≥ p

(k−1)
i , then p(k)

i is the earliest unassigned slot whose

start time exceeds the end time of slot p(k−1)
j in S

(π)
j . Other-

wise, p(k)
i = p

(k−1)
i +1. Any intermediate slots between p(k−1)

i

and p(k)
i are assigned idle in S

(π)
i .

Then, slave j determines p(k)
j as the earliest unassigned slot

in S
(π)
j whose end time exceeds the end time of p(k)

i in S
(π)
i .

Any intermediate slots between p(k−1)
j and p(k)

j are assigned to

link l in S
(π)
j .

The same steps are performed for every link l in Aπ(k). For

every node n not considered in iteration k, p (k)
n = p

(k−1)
n . At

the end of iteration k, the forward progress f(k) is the maxi-
mum progress over all local schedules after this iteration:

f(k) = max
n∈N

{p(k)
n } (2)

After T̃ iterations, the asynchronous schedule period T (π) is
set to the forward progress f(T̃). Then, the algorithm restarts
from Aπ(1) and performs one or more extra iterations until
all nodes assign their local schedules up to slot T (π). Upon
termination, all nodes use the first T (π) slots in their local
schedules to form an asynchronous schedule with this period.

The algorithm operation is illustrated in the example of Figure
2.

EQUIVALENT has the following important properties (es-
tablished in [13]):

1) The resulting asynchronous schedule incurs the minimum
possible overhead for the link activation ordering corre-

sponding to S̃
(π)

.

2) If T̃ is the period of S̃
(π)

, the period T (π) of the resulting
asynchronous schedule is always upper bounded by 2 T̃ .

Property 2 states that the maximum possible overhead of an
equivalent asynchronous schedule is T̃ slots. This leads to the
following statement for feasibility of allocations in scatternets:

Corollary on feasibility: Consider a demand allocation τ
and a scatternet operating with a period Tsystem. If τ can
be realized by a synchronized schedule S̃ of minimum period
T̃ (τ) ≤ �Tsystem/2�, then τ is guaranteed to be feasible by
the scatternet.

The corollary (also proved in [13]) establishes that EQUIV-
ALENT can realize at least half the allocations that are feasi-
ble under perfect synchronization. Also for allocations τ for
which the condition T̃ (τ) ≤ �Tsystem/2� holds, any refer-
ence synchronized schedule instance can be used to generate
an asynchronous schedule realizing this allocation. If the con-
dition does not hold we must solve the optimization problem
addressed in the next section.

V. MINIMUM-PERIOD ASYNCHRONOUS SCHEDULES

A. Optimal algorithm

The optimal asynchronous schedule can be found by execut-
ing EQUIVALENT for all T̃ ! synchronized schedule instances

S̃
(π)

and selecting the minimum period equivalent schedule
S(π). However, exhaustive search is prohibitive even for small
values of T̃ .

A link activation set may appear multiple times in the refer-
ence synchronized schedule. The search space can be reduced
if we only consider reference schedules where all instances of
each link activation set are scheduled in consecutive slots. This
is because there are no switching slots generated by EQUIVA-
LENT when Aπ(k−1) = Aπ(k) and the overhead is zero during
this iteration. If M(S̃) is the set of distinct link activation sets
appearing in the reference schedule, we only need to search
|M(S̃)|! schedule instances instead of T̃ !. Unfortunately even
|M(S̃)| can be prohibitively large for exhaustive searches. In
this case, we resort to the heuristic algorithm introduced in the
next section.

B. MIN PROGRESS

MIN PROGRESS is a heuristic for overhead minimization
that consists of two phases. The first phase determines an or-
dering πh of the distinct link activation sets in M(S̃). The sec-
ond phase first forms a synchronized schedule instance where
distinct link activation sets are ordered according to πh and the
instances of each set are activated in consecutive slots. This

4

B1

4D

E

AC

2

5

3

(a) Scatternet configura-
tion: Nodes C,D,E are
masters while A,B are
slaves to all their adjacent
links.

- 1 1 - - - 1 1 1 1 - 1 1 -

2 1 1 5 5 5 1 1 1 1 2 1 1 5
4 4 3 3 3 3 4 4 3 4 4 4 3 3

4 4 - 5 5 5 4 4 - 4 4 4 - 5

2 - 3 3 3 3 - - 3 - - 3 3

0 1 2 3 4 5 6 07 8 9 198

SA

SB

SC

SD

SE

........

....

........

....

........

T=10

2

(b) Reference synchronized schedule of
(minimum) period T̃ = 10, realizing allo-
cation (τ1, τ2, τ3, τ4, τ5) = (6, 1, 5, 5, 3)

1

1

3 3

3

(1)

(1) (1)

(1)

(1)

1 112 3 4 5 6 7 8 9 10 12 13 14 15

101 2 3 4 5 6 7 8 9 11 12 13 14

16 17

15 16

101 2 3 4 5 6 7 8 9 11 12 13 14 15 16

101 2 3 4 5 6 7 8 9 11 12 13 14 15

101 2 3 4 5 6 7 8 9 11 12 13 14 15 16

SA

SB

SC

SD

SE

........

....

........

....

........

5

5 5

-

(2) (2)

(2)(2)
5

5
(3)

(3)

(2)

(3)

3 3
(3)

3 3
(2)

3

3

5

5
(4)

(4)

(4)

(4)

1 1

1

4 4

4-

- - - - -

(5) (5)

(5)

(5)(5)

(5) (5)

(5) (5) (5) (5) (5)

1

1

4

4
(6)

(6)

(6)

(6)

1

1

3 3

3----

(7)

(7) (7)

(7)

(7) (7) (7) (7) (7)

1

1

4 4

4- - -

(8)

(8)

(8) (8)

(8) (8) (8) (8)

4

4

2

2

2

-
(9) (9)

(9) (9)

(9)

(9)

4

4

1

1 1

(10) (10)

(10) (10) (10)(10)

(10)

(10)

- - -

1

1

3

3 3

-

(11)

(11)(11)

(11)

(12)

(11)(11)(11) (11)

16

17

17

5

5 5

(12) (12)

-

3

3
(12)

(12)

(12) (12)

(c) The numbers in parentheses indicate the iteration where the slot
was placed by the algorithm on each node’s local schedule. Switch-
ing slots are indicated by red. The equivalent schedule period is
determined at the 10th iteration and is equal to 14. Two additional
iterations are performed so that all nodes fill their local schedules
up to this period.

2 3 4 5 7 8 1012 13 14

2 3 4 5 7 8 1012 13 14

1 3 4 5 7 8 9 10 12 14

1 1 1 1 7 8 9 10 10 14

0 2 3 4 6 7 7 11 13

(k) (1) (2) (3) (4) (5) (6) (10)(7) (8) (9)

12

1 2 3 4 4 4 9 9 1111

0

0

0

0

(0)

0

pD
(k)

pE
(k)

pA
(k)

pB
(k)

pC
(k)

f(k)

0

(d) Evolution of the p
(k)
n and progress

f(k).

Fig. 2. An example of the EQUIVALENT algorithm execution

synchronized schedule instance is then input to EQUIVALENT
to generate the equivalent asynchronous schedule.

We now describe phase I that selects permutation πh. An
asynchronous schedule is constructed using only the distinct
link activation sets instead of all their instances. The sets are
added to the asynchronous schedule in the same way as in-
stances are added in EQUIVALENT. Upon initialization, an ar-
bitrary set of M(S̃) is added to the asynchronous schedule. Let
U (k−1) be the set of all unassigned link activation sets at the
start of iteration k. The addition of each set M α of U (k−1)

will generate a forward progress f(α, k) for the asynchronous
schedule. The algorithm selects the link activation set yielding
minimum forward progress, with ties being broken arbitrarily.
Let Mαk be the selected set. Then the k-th entry of πh is set to
αk. At the end of iteration k, M αk is removed from the U -set
((Uk = U (k−1) − {Mαk)}). The same steps are repeated until
the U -set becomes empty after |M(S̃)| iterations.

The complexity of MIN PROGRESS is O(|M(S̃)|2) and is
dominated by phase I: During iteration k, |M(S̃)| − k sets are
considered for addition in the asynchronous schedule. The to-
tal number of link activation sets considered during phase I is
(|M(S̃)| − 1) + (|M(S̃)| − 2) + ...+ 1 = |M(S̃)|(|M(S̃)| −
1)/2 = O(|M(S̃)|2).

VI. PERFORMANCE EVALUATION

A. Experimental setting

The performance ofMIN PROGRESS must be evaluated
over a variety of scatternet topologies and optimal reference
synchronized schedules. For arbitrary topologies the problem
of determining a minimum period synchronized schedule for a
link demand allocation τ is NP-complete [6]. If the topology is
bipartite, the minimum period T̃ (τ) is equal to the maximum
node utilization imposed by τ :

T̃ (τ) = max
i∈N

∑

l∈L(i)

τl. (3)

where L(i) is the set of adjacent links to node i. Thus for bipar-
tite topologies we can easily construct optimal reference syn-
chronized schedules of period T̃ for arbitrary allocations: we
generate an arbitrary conflict-free schedule of period T̃ , where
at least one node transmits during all T̃ slots on its adjacent
links.

We consider |N |-node bipartite topologies1 with |N |/2
nodes per bipartite set. This provides a baseline topology of
|N |2/4 links. We use the restrictive parameters Bmax and f
to generate various topologies from the baseline. The piconet
degree parameter Bmax is an upper bound on the number of
piconets a node can participate. Such a constraint would arise
in practice to avoid excessive overhead due to piconet switch-
ing. In addition, Bluetooth restricts the number of links where
a node can act as master to 7. Combined with Bmax, this pro-
vides an upper bound of Bmax + 6 to the overall link degree of
each node in the topologies we consider. The density param-
eter f (0 ≤ f ≤ 1) generates topologies where an arbitrary

1Bipartite topologies arise very frequently in the Bluetooth setting. For ex-
ample, a scatternet where only S/S bridges exist (i.e. nodes acting only as slaves
on their adjacent links) is by definition bipartite.

5

f×100% links of the baseline topology remain intact while the
rest have been removed.

Given a topology constructed as above, asynchronicity is in-
troduced by master-slave role assignments on the links and in-
troduction of arbitrary phase differences on the hardware clocks
of the nodes in the network.

B. Performance of MIN PROGRESS with respect to optimal

Six 20-node bipartite topologies (10 masters and 10 S/S
bridges) of variable density Bmax are considered in this ex-
periment. For each topology we randomly generate 100 ref-
erence synchronized schedules of period T̃ = 7. This period
allows exhaustive search and determination of the optimal asyn-
chronous schedule. Figure 3 compares the resulting optimal and
MIN PROGRESS periods averaged over all reference sched-
ules. In general, MIN PROGRESS exceeds the optimal by less
than one slot on the average, while in topology 5 by 1.3 slots
on the average. The optimal and MIN PROGRESS periods in-

B
max

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14
T
T

opt
−T

T
h
−T

opt

Fig. 3. Each bar graph corresponds to a different 20-node bipartite scatternet
configuration, where density increases by varying Bmax from 2 to 7. The
reference synchronized schedule period is 7 slots. The optimal Topt and the
heuristic Th asynchronous periods of each bar are averages of 100 reference
synchronized schedules.

crease withBmax and forBmax = 7 they both come very close
to 14 slots, the upper bound of EQUIV ALENT . This stems
fromBmax being equal to the small reference period T̃ : Bridge
nodes with such a piconet degree need to switch time reference
almost every slot regardless the ordering of link activations.

C. Performance of MIN PROGRESS for large problem sizes

1) Effect of density: In this set of experiments, a 100-
node (50 masters, 50 S/S bridges) baseline bipartite topology
is used. For each set (Bmax, f) we generate 10 topologies and
for each topology, 100 arbitrary reference synchronized sched-
ules of period T̃ . The overhead is plotted as the %increase
in the reference period T̃ . If Th is the period computed by
MIN PROGRESS, this quantity is Th−T̃

T̃
. A value of 100% de-

notes that MIN PROGRESS yields an overhead equal to the
EQUIVALENT upper bound of 2 T̃ .

Figure 4 investigates the effect ofBmax on the overhead gen-
erated by MIN PROGRESS. For fixed T̃ the overhead consis-
tently increases with Bmax. At T̃ = 28, the overhead is 15%
when Bmax = 2 but reaches 60% when Bmax = 7. The over-
head decreases as the reference period increases. At Bmax = 7
the overhead reduces to 30% for T̃ = 896 slots. While this
decrease is more drastic for transitions between smaller periods

(e.g. from 28 to 56 slots), it is less for larger periods (e.g. from
448 to 896 slots). This implies that, in general, there may still
be a non-negligible overhead even if the system uses a large pe-
riod. Similar trends arise in Figure 5 where Bmax is fixed to 7
and only parameter f is used to vary the topology density. The
overhead generally increases with network density regardless
enforcement of a particular bound on the piconets each node
can participate.

2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

B
max

%
He

uri
sti

c O
ve

rhe
ad

T=28
T=56
T=112
T=224
T=448
T=896

Fig. 4. Overhead of MIN PROGRESS for 100-node scatternets as Bmax and
T̃ vary. f is set to 1.0.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

%
He

uri
sti

c O
ve

rhe
ad

f

T=28
T=56
T=112
T=224
T=448
T=896

Fig. 5. Overhead of MIN PROGRESS for 100-node scatternets as Bmax and
T̃ vary. Bmax is set to 7.

2) Effect of demand slot allocation: The previous exper-
iments investigated the algorithm performance averaged over
arbitrary demand allocations and scatternet topologies. A natu-
ral question is whether there exists a scatternet role assignment
and/or demand allocation for which the generated asynchronic-
ity overhead is maximized. In this section we make a first at-
tempt to informally classify such worst case instances and then
test our intuition via simulations.

Let G(N,E) be a bipartite topology graph and Ψ (T̃) the set
of all allocations realized by a synchronized schedule of min-
imum period T̃ . For any allocation τ of Ψ(T̃), let BN(τ) be
the set of bottleneck nodes that receive maximum utilization T̃
under τ .

BN(τ) = {n : argmax
i∈N

∑

j∈N(i)

τij}. (4)

We conjecture that maximum overhead will be generated if
the following conditions hold for a demand allocation τ max in
Ψ(T̃) and at least one of the bottleneck nodes inBN(τmax):

• P1: In addition to maximum utilization, the node must
have the maximum number of adjacent links in the net-
work.

6

• P2: The node has been assigned as an S/S bridge.
• P3: Allocation τ max is such that the node is requested to

allocate an equal number of slots to its adjacent links.
The intuition in the above conditions is that a maximum uti-
lization node will need to be considered at every iteration of an
overhead minimization algorithm. Also since this is a node of
maximum degree and acts as an S/S bridge it will visit the max-
imum possible number of piconets in the system (Bmax). If
the requested slots are evenly distributed for this node, then we
can show that the overhead will be maximized under the worst
activation ordering if its adjacent links. According to [?][7], a
maxmin fair allocation in a synchronized multi-channel wire-
less ad hoc network maximizes utilization of the maximum de-
gree nodes in the network. If at least one of these nodes is also
assigned as an S/S bridge, then the above conditions hold for at
least one node in the network.

Figure 6 compares the MIN PROGRESS overhead result-
ing from a maxmin fair synchronized schedule and the average
MIN PROGRESS overhead over 100 other schedules realizing
arbitrary allocations. (The maxmin fair schedule is computed
using the algorithm in [7]). Each point in the bar graphs is the
average of the overheads generated by the scatternet topologies
of Figures 4 and 5. Each bar graph corresponds to a differ-
ent synchronized schedule period T̃ . As expected, the average

%H
eu

ris
tic

 O
ve

rhe
ad

28 56 112 224 448 896
0

10

20

30

40

50

60

70

80

90
Average
MMF

Fig. 6. Comparing the MIN PROGRESS overhead for maxmin fair allocation
with the average MIN PROGRESS overhead generated by arbitrary allocations.
Both quantities are averaged over all topologies considered in Figures 4 and 5

MIN PROGRESS overhead for arbitrary allocations decreases
as the system period increases. However, the one due to the
maxmin fair allocation does not change significantly and it is
in the order of 80% for all cases. This shows that the overhead
can be very high for the allocations we identified even if we use
an overhead minimization algorithm such as MIN PROGRESS.
A counter-intuitive result is that the overhead remains constant
even if the period T̃ increases. Nevertheless, it will always be
less than the upper bound T̃ given by Theorem 2.

VII. CONCLUSIONS

In this paper we addressed for the first time the problem
of minimizing the piconet switching overhead in Bluetooth
scatternets. This overhead arises due to slots wasted when
bridge nodes synchronize to the different piconet time refer-
ences. While the problem was investigated in the Bluetooth
context, the results apply to any wireless ad hoc network using
slotted TDMA access and multiple local time references instead
of a global synchronization mechanism.

It was demonstrated that this overhead can significantly af-
fect the bandwidth allocation ability of a scatternet if no mea-
sures are taken to minimize it. We introduced two scheduling
algorithms that aim for overhead minimization while ensuring
that the generated overhead has an upper bound regardless of
the scatternet or demand allocation at hand. The first algorithm
reaches the optimal solution but cannot be applied to large prob-
lem sizes because it relies on exhaustive search. For large prob-
lem sizes a heuristic algorithm was devised and through sim-
ulations it was shown to have excellent performance. We also
identified certain conditions on demand allocations and scatter-
net configurations for which the overhead can be high even if
an overhead minimization algorithm is run. We outlined the
general properties of such allocations and verified our intuition
through simulations. A formal study of the exact nature of these
allocations is an interesting future work direction.

Both the optimal and heuristic overhead minimization algo-
rithms are centralized and can be used in settings where global
information is available. More important though is the fact that
that they can provide design insights and be used as a reference
performance measure for distributed overhead-aware scatternet
scheduling protocols.

Finally, we believe that the derivation of a similar over-
head minimization framework for ”soft-coordination” scatter-
net scheduling schemes is another challenging open research
issue.

REFERENCES

[1] Bluetooth Special Interest Group,Specification of the Bluetooth system,
ver 1.0B. , www.bluetooth.com, October 2000.

[2] E. Arikan, Some complexity results about packet radio networks. IEEE
Trans. Inform. Theory, Vol. IT-30 pp. 681-685, July 1984.

[3] B. Hajek and G. Sasaki, Link Scheduling in Polynomial Time. IEEE Trans.
Inform. Theory, No 5, Vol. 34, 1988.

[4] A. Kumar, R. Gupta Capacity Evaluation of Frequency Hopping Based
Ad-hoc Systems. Proceedings of ACM SIGMETRICS 2001

[5] M. Post, P. Sarachik and A Kershenbaum, A Biased Greedy Algorithm for
Scheduling Multihop Radio Networks. 19th Annu. Conf. on Information
Sciences and Systems, Johns Hopkins Univ., March 1985.

[6] I. Holyer, The NP-completeness of edge coloring SIAM J. Computing 10
(1981), 169-197.

[7] T. Salonidis and L. Tassiulas, Distributed on-line schedule adaptation for
balanced slot allocation in Bluetooth scatternets and other ad hoc net-
work architectures. Technical Report TR 2002-24, Institute of Systems
Research (ISR), University of Maryland, College Park.

[8] G. Miklos et al, Performance Aspects of Bluetooth Scatternet Formation.
Proceedings of IEEE/ACM MobiHoc, Boston, MA, Aug. 2000.

[9] N.Johansson, F. Alriksson, U. Jonsson, JUMP mode - a dynamic window-
based scheduling framework for Bluetooth scatternets. Proceedings of
IEEE/ACM MobiHoc, Long Beach CA, Oct. 2001.

[10] A. Racz, G. Miklos, F. Kubinszky, A. Valko A Pseudo Random Coor-
dinated Scheduling algorithm for Bluetooth Scatternets. Proceedings of
IEEE/ACM MobiHoc, Long Beach CA, Oct. 2001.

[11] Simon Baatz, Matthias Frank, Carmen K uhl, Peter Martini, Christoph
Scholz, Bluetooth Scatternets: An Enhanced Adaptive Scheduling
Scheme. Proceedings of Infocom 2002, New York, 2002.

[12] N. Johansson, U. Korner, L. Tassiulas, A distributed scheduling algorithm
for a Bluetooth scatternet. In Proc. Of the 17th International Teletraffic
Congress, ITC ’17. Salvador da Bahia, Brazil, Sep. 2001.

[13] T. Salonidis and L. Tassiulas, Performance Issues of Bluetooth scatternets
and other asynchronous TDMA ad hoc networks. Technical Report TR
2002-52, Institute of Systems Research (ISR), University of Maryland,
College Park.

