
Feng Bao Pierangela Samarati Jianying Zhou (Eds.)

Applied Cryptography and
Network Security

10th International Conference, ACNS 2012

Singapore, June 26-29, 2012

Proceedings (Industrial Track)

Preface

These proceedings contain the papers selected for presentation at the industrial
track of the 10th International Conference on Applied Cryptography and Net-
work Security (ACNS 2012), held during June 26-29, 2012 in Singapore. The
conference was organized by iTwin, sponsored by AdNovum, and supported by
Infocomm Development Authority of Singapore (IDA).

In response to the call for papers, 192 papers from 38 countries were submitted
to the conference. These papers were evaluated on the basis of their significance,
novelty, technical quality, and practical impact. Reviewing was “double-blind”:
the identities of reviewers were not revealed to the authors of the papers and
author identities were not revealed to the reviewers. The program committee
meeting was held electronically, yielding intensive discussion over a period of
two weeks. Of the papers submitted, 33 were selected for presentation at the
research track of ACNS 2012 and inclusion in Springer’s LNCS 7341, giving
an acceptance rate lower than 18%. In addition, the conference had 9 papers
presented in the industrial track and collated in the non-archival proceedings.

The conference was also featured with 3 keynote speeches, by Moti Yung (co-
founder of ACNS) entitled “Applied Cryptography and Network Security - 10
years in the past and 10 years in the future”, by Peng Ning entitled “Cloud
Computing Infrastructure Security”, and by Hongjun Wu entitled “JH in the
NIST Hash Function Competition”, respectively.

There is a long list of people who volunteered their time and energy to put to-
gether the conference and who deserve special thanks. Thanks to the program
committee members and the external reviewers, for all their hard work in the
paper evaluation. Owing to the large number of submissions, the program com-
mittee members were really required hard work in a short time frame, and we
are very thankful to them for the commitment they showed with their active
participation in the electronic discussion.

We are also very grateful to all those people whose work ensured a smooth or-
ganization process: Xinyi Huang and Giovanni Livraga, Publicity Chairs, for
their work in ensuring the wide distribution of the call for papers and participa-
tion; Shen-Tat Goh, Organizing Chair, as well as Lux Anantharaman and Kal
Takru for taking care of the local organization; and Ying Qiu for managing the
conference web site and the EasyChair system.

Last but certainly not least our thanks go to all the authors who submitted
papers and all the attendees. We hope you find the program is stimulating and
a source of inspiration for your future research and practical development.

April 2012 Feng Bao, Pierangela Samarati, Jianying Zhou

stgoh
Typewritten Text
i

ACNS 2012

10th International Conference on
Applied Cryptography and Network Security

Singapore
June 26-29, 2012

Organized by iTwin, Singapore

Sponsored by AdNovum, Singapore

Supported by

Infocomm Development Authority of Singapore (IDA)

General Chair
Jianying Zhou Institute for Infocomm Research, Singapore

Program Chairs
Feng Bao Institute for Infocomm Research, Singapore
Pierangela Samarati Università degli Studi di Milano, Italy

Program Committee

Michel Abdalla ENS & CNRS, France
Vijay Atluri Rutgers University, USA
Lucas Ballard Google, USA
Paulo Barreto University of São Paulo, Brazil
Lujo Bauer Carnegie Mellon University, USA
Marina Blanton University of Notre Dame, USA
Carlo Blundo Universitá degli Studi di Salerno, Italy
Levente Buttyan Budapest U. of Technology and Economics, Hungary
Liqun Chen Hewlett-Packard Laboratories, UK
Chen-Mou Cheng National Taiwan University, Taiwan
Jung Hee Cheon Seoul National University, Korea
Sherman S. M. Chow University of Waterloo, Canada
S. De Capitani di Vimercati Università degli Studi di Milano, Italy
Robert Deng Singapore Management University, Singapore
Roberto Di Pietro Università di Roma Tre, Italy
Xuhua Ding Singapore Management University, Singapore
Wenliang Du Syracuse University, USA
Wu-Chang Feng Portland State University, USA
Sara Foresti Università degli Studi di Milano, Italy

stgoh
Typewritten Text
ii

Keith Frikken Miami University, USA
Rosario Gennaro IBM Research, USA
Dieter Gollmann Hamburg University of Technology, Germany
Stefanos Gritzalis University of the Aegean, Greece
Dawu Gu Shanghai Jiao Tong University, China
Guofei Gu Texas A&M University, USA
Sushil Jajodia George Mason University, USA
Stanislaw Jarecki University of California, Irvine, USA
Aaron Johnson Naval Research Laboratory, USA
Angelos Keromytis Columbia University, USA
Steve Kremer INRIA Nancy, France
Ralf Kuesters University of Trier, Germany
Miroslaw Kutylowski Wroclaw University of Technology, Poland
Adam J. Lee University of Pittsburgh, USA
Hui Li Xidian University, China
Zhenkai Liang National University of Singapore, Singapore
Benoit Libert Université Catholique de Louvain, Belgium
Peng Liu Penn State University, USA
Michael Locasto University of Calgary, Canada
Javier Lopez University of Malaga, Spain
Mark Manulis University of Surrey, UK
Atsuko Miyaji JAIST, Japan
Refik Molva EURECOM, France
Yi Mu University of Wollongong, Australia
Peng Ning NC State University, USA
Elisabeth Oswald University of Bristol, UK
Vincent Rijmen Katholieke Universiteit Leuven, Belgium
Matt Robshaw Orange Labs, France
Radu Sion Stony Brook University, USA
Neeraj Suri TU Darmstadt, Germany
Willy Susilo University of Wollongong, Australia
Tsuyoshi Takagi Kyushu University, Japan
Vrizlynn Thing Institute for Infocomm Research, Singapore
Jaideep Vaidya Rutgers University, USA
Michael Waidner Fraunhofer, Germany
Haining Wang The College of William and Mary, USA
Steve Weis PrivateCore, USA
Duncan Wong City University of Hong Kong, China
Avishai Wool Tel Aviv University, Israel
Shouhuai Xu University of Texas at San Antonio, USA
Yanjiang Yang Institute for Infocomm Research, Singapore
Danfeng Yao Virginia Tech, USA
Moti Yung Google, USA

stgoh
Typewritten Text
iii

Organizing Chair
Shen-Tat Goh Institute for Infocomm Research, Singapore

Publicity Chairs
Xinyi Huang Fujian Normal University, China
Giovanni Livraga Università degli Studi di Milano, Italy

Steering Committee
Yongfei Han ONETS, China
Moti Yung Google, USA
Jianying Zhou Institute for Infocomm Research, Singapore

stgoh
Typewritten Text
iv

External Reviewers

Abu Rajab, Moheeb Agudo, Isaac Albanese, Massimiliano
Aliasgari, Mehrdad Asano, Tomoyuki Athanasopoulos, Elias
Au, Man Ho Baek, Joonsang Bandhakavi, Sruthi
Brzuska, Christina Cao, Jin Chen, Jiun-Ming
Cheng, Yueqiang Cheong, Kai Yuen Chu, Cheng-Kang
Coisel, Iwen Cremers, Cas Cui, Hui
D’Arco, Paolo De Caro, Angelo Ding, Ning
Dong, Xinshu Drogkaris, Prokopios Duan, Pu
Elkhiyaoui, Kaoutar Fernandez, Gerardo Fett, Daniel
Fiore, Dario Fuchs, Andreas Fuchsbauer, Georg
Galdi, Clemente Gorantla, Choudary Gu, Haihua
Guo, Fuchun Hakuta, Keisuke Han, Jinguang
Hanzlik, Lucjan Hao, Hao Henricksen, Matt
Huang, Qiong Huang, Tao Iovino, Vincenzo
Iskander, Marian Jee, Kangkook Jeske, Tobias
Jin, Xing Kalabis, Lukas Kalloniatis, Christos
Kemerlis, Vasileios P. Kim, Hongtae Kim, Myungsun
Kim, Sungwook Kohlweiss, Markulf Kolias, Constantinos
Kontaxis, Georgios Krzywiecki, Lukasz Kubiak, Przemyslaw
Kuo, Po-Chun Künnemann, Robert Lai, Junzuo
Laszka, Aron Le, Meixing Lee, Hyung Tae
Lee, Younho Leontiadis, Iraklis Li, Fagen
Li, Juanru Li, Xiaolei Li, Yen-Huan
Liang, Kaitai Lin, Jingqiang Liu, Joseph
Liu, Junrong Liu, Ya Liu, Zhen
Liu, Zhiqiang Lu, Jiqiang Luo, Tongbo
Luo, Weiliang Majcher, Krzysztof Morozov, Kirill
Najera, Pablo Neven, Gregory Nuñez, David
Ohtake, Go Omote, Kazumasa Oren, Yossef
Pala, Massimiliano Pappas, Vasilis Patil, Kailas
Pek, Gabor Pelosi, Gerardo Pereira, Geovandro
Petit, Christophe Pointcheval, David Polychronakis, Michalis
Portokalidis, Georgios Quaglia, Elizabeth A. Rangasamy, Jothi
Ratazzi, Paul Raykova, Mariana Rekleitis, Evangelos
Rizomiliotis, Panagiotis Roman, Rodrigo Roudier, Yves
Roy, Arnab Ràfols, Carla S. Shiva, Ashwathi
Sakiyama, Kazuo Schröder, Dominique Schuldt, Jacob
Schwabe, Peter Schäge, Sven Seo, Jae Hong
Shafiq, Basit Shin, Seungwon Simo, Hervais
Standaert, F.-X. Steinebach, Martin Stopczynski, Martin
Sun, Wenhai Sun, Xiaoyan Ta, Vinh Thonh
Tan, Xiao Tang, Qiang Tillich, Stefan
Triandopoulos, Nikos Tuengerthal, Max Tunstall, Michael
Tzouramanis, Theodoros Verde, Nino Vincenzo Villani, Antonio
Visconti, Ivan Vogt, Andreas Wang, Boyang
Wang, Guilin Wang, Jun Wang, Lusha
Wang, Yifei Wikström, Douglas Wolny, Kamil
Wu, Wei Wu, Wenling Xiong, Xi
Xu, Jia Xu, Zhaoyan Yang, Chao
Yang, Guomin Yap, Wun-She Yian, Chee Hoo
Ying, Jason Yu, Ching-Hua Yu, Yong
Yun, Aaram Zhan, Zhenxin Zhang, Bin
Zhang, Jialong Zhang, Lei Zhang, Mingwu
Zhang, Shengzhi Zhang, Xiao Zhang, Yinghui
Zhao, Mingyi Zhao, Xingwen Zheng, Qingji

Zhong, Chen Zhu, Youwen Önen, Melek

stgoh
Typewritten Text
v

Table of Contents

Security Analysis of an Open Car Immobilizer Protocol Stack 1

Stefan Tillich and Marcin Wojcik

Extended Abstract: Markov Game Analysis for Attack-Defense of Power
Networks . 10

Yu Tak Ma, David K. Y. Yau, Xin Lou and Nageswara S. V. Rao

SR-ORAM: Single Round-trip Oblivious RAM . 19

Peter Williams and Radu Sion

Extended Abstract: Cipher Techniques to Protect Anonymized Traces
from Privacy Attacks . 34

Yu Tak Ma, David K. Y. Yau, Nung Kwan Yip and Nageswara S. V.
Rao

AdHocSign: an Ad Hoc Group Signature Scheme for Accountable and
Anonymous Access to Outsourced Data . 43

Wensheng Zhang and Chuang Wang

The Security Impact of a New Cryptographic Library 51

Daniel Bernstein, Tanja Lange and Peter Schwabe

RSA Modulus Generation in the Two-Party Case . 69

Gérald Gavin and Francois Arnault

Enhanced Flexibility for Homomorphic Encryption Schemes via CRT 93

Berk Sunar, William Martin and Yin Hu

Invited Paper: A New Masking Scheme for Side-Channel Protection of the
AES . 111

Julien Bringer, Hervé Chabanne and Thanh Ha Le

Author Index . 119

stgoh
Typewritten Text
vi

Security Analysis of an Open Car Immobilizer
Protocol Stack

Stefan Tillich and Marcin Wójcik

University of Bristol, Computer Science Department, Merchant Venturers Building,
Woodland Road, BS8 1UB, Bristol, UK

{tillich,wojcik}@cs.bris.ac.uk

Abstract. Openness is a key criterion of security algorithms and pro-
tocols which enable them to be subjected to scrutiny by independent
security experts. The alternative “methodology” of secret proprietary
algorithms and protocols has often ended in practical breaks, e.g. of the
MIFARE Oyster cards for public transport or the KeeLoq remote control
systems. Open evaluation is common for general applications of security,
e.g. the NIST competitions for selection of the Advanced Encryption
Standard (AES) and the Secure Hash Algorithm 3 (SHA-3). Nowadays
an increasing number of embedded security applications apply the prin-
ciple of open evaluation as well. A recent example is the specification
of an open security protocol stack for car immobilizer applications by
Atmel, which has been presented at ESCAR 2010. This stack is primarily
intended to be used in conjunction with automotive transponder chips
of this manufacturer, but could in principle be deployed on any suitable
type of transponder chip. In this paper we analyze the security of this
protocol stack. We were able to uncover a number of potential security
vulnerabilities, for which we suggest fixes.
Keywords: Security, car immobilizer, algorithms, protocols, openness,
analysis.

1 Introduction

Securing systems through secrecy of the involved algorithms and protocols is not
always successful. Often, once the details of the algorithm have been disclosed
through various channels, practical attacks quickly become possible, e.g. on
the MIFARE Oyster card for the London transport system [6] or the KeeLoq
algorithm used in remote control systems [7]. In contrast, subjection of crypto-
graphic methods to public scrutiny is a widely accepted method of preventing
such breaks during deployment. Prominent examples of this strategy are the
Advanced Encryption Standard (AES) competition [11] and the Secure Hash
Algorithm-3 (SHA-3) competition [12]. In this paper we analyze the security of
a car immobilizer protocol stack which is facilitated by its openness.

A car immobilizer is a system that requires the presence of a security token
(often in the form of a key fob) to allow a car to run. If this token is not present,
the car’s Engine Control Unit (ECU) interrupts key components like the ignition,

1

the starter motor circuit, or the fuel pump. The communication between car and
key fob is typically done via RFID, where the car is fitted with an RFID reader
and the key fob contains an RFID tag. While earlier models used a static code
in the key fob, modern immobilizers utilize either rolling codes or cryptography
to prevent duplication of the key fob. Communication between car and key fob
involves the use of a protocol stack which defines frame sizes, data formats, error
detection, data transformations, etc.

An open security protocol stack for car immobilizer applications has been
presented in [8]. It is mainly intended for use with specific automotive transpon-
der chips. According to [8], the stack consists of a physical layer, a logical
layer, a protocol layer, and the AES crypto layer. The physical layer deals with
modulation types, data encoding, and bit timing. The logical layer defines the
functional behavior of the reader and the transponder and includes communica-
tion link controls, controls configuration, setup of functional dependencies and
error resolution. The protocol layer allocates data frames and buffers for reading
and writing. It implements the user command interface, authentication, and key
learning (i.e. changing cryptographic keys before and after deployment). The
AES crypto layer controls the data authentication results1. Both physical and
AES crypto layer are already industry standards. The logical and protocol layer,
which are usually proprietary, are made open. This means the specification of
these layers is available for inspection and modification.

The protocol stack implements a number of commands to be issued by
the reader to the key fob. In most cases, the car featuring the immobilizer
functionality acts as reader but the reader can also be a programming device
used by the car manufacturer or distributor. The communication between reader
and key fob uses the LF band at 125 kHz. In this band, the normal read range
is usually very limited (commonly a few centimetres), but there are readers
available which can extend it to up to one metre [3, 5] and thus allowing for
attacks in close proximity of the key fob.

The command set out in the protocol stack’s specification [1] encompasses
eleven commands. They include reading of the key fob’s unique ID (UID) and
error status, initiation of authentication, setting of the used secret keys, initiation
and leaving of the so-called enhanced mode (for RF communication powered by
the battery), a request to repeat the last response, reading and writing of user
memory as well as setting memory access protection to certain memory sections.
Authentication can be configured to be unilateral (only key fob authenticates
itself to the reader) or bilateral (both key fob and reader authenticate themselves
to each other). If bilateral authentication is configured, some commands like
reading and writing user memory can only be executed when there has been a
previous successful authentication.

1 The description of this protocol layer in [8] probably refers to the use of the AES
block cipher in the execution of various commands by reader and key fob. As such it
is debatable whether it constitutes a separate layer or should be considered as part
of the protocol layer.

2

Authentication follows the challenge-response pattern [10]. The party who
wants to authenticate sends out a challenge (usually a random number) and
the other participant transforms the challenge cryptographically using a secret
or private key and returns the response. The first party then checks this result
using its knowledge of the same secret key or the according public key. The point
of the challenge is to prevent replay attacks, where messages recorded from a
genuine protocol run are replayed by an attacker at a later time to achieve
authentication. Therefore, the challenge must be non-repeating or only repeat
with negligible probability.

The investigated protocol stack has the caveat that the key fob is not ex-
pected to be able to generate challenges. This is no problem for unilateral
authentication, where the challenge is generated by the reader alone, but poses
difficulties for bilateral authentication. Bilateral authentication works by reusing
the challenge from the reader for the challenge of the key fob. The cryptographic
transformation involved in the authentication is AES encryption with one of two
shared keys. Figure 1 shows the essential steps of bilateral authentication as given
in [1]. Note that the complete authentication also includes the car reading the
UID from the key fob in order to allow early termination of the protocol when
a wrong key fob is accidentally in read range. We have omitted this part of the
authentication protocol as it is not of interest from a security point of view.

���������	��
�

������������� �����

�������������

�������������
���	��
��

�����

	��
���	��
�

������� ��

������������������

������������������

!���"#��$

	��
�

	
�
�

�

�%&'

�

(

	����

�������������
���	�����

!���"#��$ �%&'

�

(

)�*!+

Fig. 1: Bilateral authentication between key fob and car.

Car and key fob share two AES keys (Key 1 and Key 2). The car generates
the N-bit challenge RandN, encrypts it with Key 1 and selects M bits of the

3

resulting ciphertext as RandM. N and M can be configured to be less than the
AES block size of 128 bits in order to reduce communication overhead. RandN
and RandM are sent to the key fob, which validates that RandM originated from
RandN via encryption with Key 1. If this is successful, the car is authenticated
to the key fob. The key fob uses the output of the first AES encryption as input
for a second AES encryption with Key 2. As this value is not fully known to an
eavesdropper (M being usually smaller than 128), it is also denoted as hidden
challenge. M bits of the second encryption result are selected as RespM, which
is sent to the car. The car then verifies that RespM resulted from encryption
with Key 2. On success, the key fob is authenticated to the car and bilateral
authentication is finished.

2 Tracking

The protocol stack includes the “ReadUID” command to retrieve the 32-bit UID
from the key fob. There is no security mechanism in place which would require
authentication by the reader. Therefore, any reader can request the UID and the
key fob can be potentially tracked via a number of readers installed at various
places.

Tracking could be prevented if the UID is not returned in cleartext, but
dependent on a shared secret and a nonce. A simple example is to use the
existing AES encryption EK with one of the pre-shared keys K in a tweakable
block cipher construction ẼK [9].

ẼK(nonce,UID) = EK(nonce⊕ EK(UID)) (1)

The result of ẼK will vary with the nonce and the UID will be protected even
when the nonce is revealed. Thus, even though the key fob can be still queried
by any reader, the result cannot be used any more to track it.

There are two options for the values returned by the key fob depending on the
actual functional requirements. If the complete result of ẼK is returned alongside
with the nonce, the reader can decrypt it and arrive at the original UID. Thus,
the full functionality of the original “ReadUID” command is retained. This comes
at the price of a relatively high communication overhead as the key fob needs
to send the 128-bit ciphertext ẼK and the nonce. The computational overhead
would essentially be the generation of the nonce and two AES encryptions on
the key fob side and two AES decryptions on the reader side.

Alternatively, the reader could still check for a specific UID if only a part
of the result of ẼK were returned with the nonce. This could be useful if the
reader requires the “ReadUID” command exclusively to check for a specific UID.
We denote this new command as “CheckUID” and its functionality is shown in
Figure 2. It’s advantage is a shorter response and a better response time of the
key fob compared to the enhanced “ReadUID” command.

By varying the size of the nonce and the portion of ẼK to be checked
(M-bit RespM), the security and communication overhead can be balanced. For
example, using a 32-bit portion of ẼK for checking, a similar resilience against

4

Fig. 2: Enhanced “CheckUID” command with resistance against tracking.

accidentally matching UIDs would be introduced as in the original protocol stack
with 32-bit UIDs. The communication overhead would consist of the extra bits of
the nonce and the computational overhead would be the generation of the nonce
for the key fob and two extra AES encryptions for key fob and reader each. The
encrypted UID (EK(UID)) could also be pre-computed and stored which would
reduce the computational overhead by one AES encryption for each side.

In both cases, the key fob must be able to generate nonces. This might
require a key fob with slightly higher capabilities as set out in the protocol stack
specification. Generation of nonces is also required by the countermeasure to the
attack described in Section 5.

3 Denial-of-Service Attacks

The protocol stack includes commands for writing new cryptographic keys to
the key fob, which replaces the old keys used for authentication. There are two
different modes for doing this: In open mode, a “Learn Secret Key1” or “Learn
Secret Key2” can be issued by any reader in order to set new keys. In secure
mode, an encrypted key is sent by the reader device, decrypted by the key fob
and the result is set as new key as shown in Figure 3. The key used for encrypting
the new key is the so-called Default Secret Key which is factory set.

Overwriting keys in open mode is trivial, as the malicious reader only has
to send the according command to set the keys to those of her choice. However,

5

Fig. 3: LearnSecretKey command in secure mode.

even in secure mode it is possible to overwrite keys though the value of the new
keys stays hidden to the attacker. This is possible because the secure key learn
command only uses the encrypted key but no integrity check for it. Therefore,
an attacker can send a random value as encrypted key and the key fob will set
the decrypted value as new key.

Thus, in both open and secure mode, keys can be overwritten without the
need of knowing a shared secret. Once this has been done, the key fob will no
longer work with the car. If the key fob is queried in intervals while the car is
in motion, it might even be possible to force the immobilizer to stop the car by
overwriting the keys.

The open mode is vulnerable against this attack per design. To defend
against the attack in secure mode, a message authentication code (MAC) should
be included with the encrypted key and the key should only be overwritten
when the MAC is verified successfully. This entails communication overhead for
transmission of the MAC from the reader to the key fob and computational
overhead of MAC generation in the reader and MAC verification in the key fob.

4 Relay Attack with Genuine Key Fob

Another type of attack tricks the car into thinking that the key fob is in its
immediate vicinity when it is actually located further away. Such relay attacks
have been known as early as 1976 [2] and have been practically demonstrated,
e.g. in [4] for the EMV chip and PIN setting. In the current setting, this attack
relays messages between the genuine key fob and the car through a transparent
reader (close to the genuine key fob) connected to a transparent key fob (close
to the car) as shown in Figure 4. Such an attack would require two cooperating
attackers, one bringing the transparent reader close to the genuine key fob and
the other gaining entry to the car and bringing the transparent key fob close to
the car’s reader.

6

Fig. 4: Relay attack with transparent reader and key fob.

A potential countermeasure to this relay attack is to measure the communi-
cation delay between the reader’s challenge and the key fob’s response in order to
detect the actual distance between the communicating endpoints. Alternatively,
a dedicated protocol, like the distance bounding protocol used in [4] could be
employed. However, the protocol stack includes a mechanism to defeat such
countermeasures. If the transparent key fob fakes an uplink CRC error, this
forces the car to send a “Repeat Last Response” command. The attacker can
use the extra time for the repeated response to get the actual response from the
genuine key fob.

This remote attack could be defended against with the measurement of the
communication delay of the key fob by the car and by abandoning the mechanism
of requesting a repeat of the the key fob’s response in answer to a CRC error.
Instead the whole sequence of commands and responses should be repeated
when a CRC error is encountered. This gives the attacker no time to hide the
extra communication delay introduced by the transparent reader and key fob.
Measurement of the communication delay might require extra components (e.g.
a high-precision oscillator) at the car’s side.

5 Replay Attack on Authentication

A unique property of the bilateral authentication protocol in the immobilizer
stack is that the key fob is not required to generate nonces. Instead, the encrypted
nonce from the reader is “reused” as the challenge from the key fob. While this
makes the structure of the key fob simpler, it also means the commands from
the reader can be recorded and replayed at a later time to achieve authentica-
tion. Thus an attacker can pretend to be an authenticated reader, which gives
her access to advanced commands like ”Read User Memory” and ”Write User
Memory”.

A defense against this attack is to have the key fob generate the challenges
for the reader. Without a challenge from the key fob, the replay of the reader
command will lead to a successful authentication of the reader.

6 Spoofing Attack on Memory Access Protection

The protocol stack allows the reader to lock the EEPROM sections AP1 to AP3
via a “Write Memory Access Protection” command. This command is accepted
by the key fob without prior authentication. Depending on the actual use of
these EEPROM sections, an attacker could impair the functionality of the key
fob by locking them with a spoofed command.

7

By requiring prior authentication for the “Write Memory Access Protection”
command this attack can be prevented.

7 Conclusions

In this paper we have identified a number of potential security vulnerabilities in
an open car immobilizer stack. The vulnerabilities include tracking of key fobs,
denial-of-service attacks to render key fobs useless, achieving key fob authentica-
tion despite absence of the key fob (relay attack), achieving reader authentication
via a replay attack, and a spoof attack to lock out EEPROM sections of the key
fob. For each of the identified vulnerabilities we propose countermeasures. This
proves the great value of the openness of the protocol stack to public review.
Some of our proposed countermeasures can be implemented rather easily while
others require enhanced functionalities from the reader and/or the key fob.

Acknowledgements. The research described in this paper has been supported
by EPSRC grant EP/H001689/1. The information in this document reflects only
the author’s views, is provided as is, and no guarantee or warranty is given
that the information is fit for any particular purpose. The user thereof uses the
information at its sole risk and liability.

References

1. Atmel. Open Source Immobilizer Protocol Stack. Available online at http:

//www.atmel.com/dyn/products/tools_card.asp?tool_id=17197 (registration
required), 2010.

2. J. H. Conway. On Numbers and Games. Academic Press, 1976.

3. Daily RFID Co., limited. LF RFID Reader-03. http://www.rfid-in-china.com/
2008-09-06/products_detail_2140.html.

4. S. Drimer and S. J. Murdoch. Keep Your Enemies Close: Distance Bounding
Against Smartcard Relay Attacks. In Proceedings of the 16th USENIX Security
Symposium, pages 87–102, 2007.

5. GAO RFID Inc. 125 kHz Long Range Reader. http://www.gaorfid.com/index.
php?main_page=product_info&products_id=363.

6. F. D. Garcia, G. de Koning Gans, R. Muijrers, P. van Rossum, R. Verdult, R. W.
Schreur, and B. Jacobs. Dismantling MIFARE Classic. In S. Jajodia and J. Lopez,
editors, 13th European Symposium on Research in Computer Security (ESORICS
2008), Malaga, Spain, 6-8 October, 2008, Proceedings (to appear), Lecture Notes
in Computer Science. Springer Verlag, 2008.

7. S. Indesteege, N. Keller, O. Dunkelman, E. Biham, and B. Preneel. A Practical
Attack on KeeLoq. In N. Smart, editor, Advances in Cryptology - EUROCRYPT
2008, volume 4965 of Lecture Notes in Computer Science, pages 1–18. Springer,
2008.

8. P. Lepek. Configurable, Secure, Open Immobilizer Implementation. In Proceedings
of the 8th Embedded Security in Cars (ESCAR) Conference.

8

9. M. Liskov, R. L. Rivest, and D. Wagner. Tweakable Block Ciphers. In
Proceedings of the 22nd Annual International Cryptology Conference on Advances
in Cryptology, pages 31–46. Springer, 2002.

10. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. Series on Discrete Mathematics and its Applications. CRC Press,
1997. ISBN 0-8493-8523-7, Available online at http://www.cacr.math.uwaterloo.
ca/hac/.

11. National Institute of Standards and Technology. AES Competition Website
(archived). http://csrc.nist.gov/archive/aes/index.html.

12. National Institute of Standards and Technology. SHA-3 Competition Website.
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html.

9

Extended Abstract: Markov Game Analysis for
Attack-Defense of Power Networks

Chris Y. T. Ma�, David K. Y. Yau♦�, Xin Lou†�, and Nageswara S. V. Rao‡

� Advanced Digital Sciences Center, Illinois at Singapore
♦ Purdue University, West Lafayette, IN, USA
† City University of Hong Kong, Hong Kong
‡ Oak Ridge National Laboratory, TN, USA

Abstract. Electricity grids are critical infrastructures. They are cred-
ible targets of active (e.g., terrorist) attacks since their disruption may
lead to sizable losses economically and in human lives. It is thus crucial
to develop decision support that can guide administrators in deploying
defense resources for system security and reliability. Prior work on the
defense of critical infrastructures has typically used static or Stackelberg
games. These approaches view network interdictions as one-time events.
However, infrastructure protection is also a continual process in which
the defender and attacker interact to produce dynamic states affecting
their best actions. In this paper, we use zero-sum Markov games to model
these interactions subject to underlying uncertainties of real-world events
and actions. We solve equilibrium mixed strategies of the players that
maximize their respective minimum payoffs with a time-decayed metric.
Using results for a 5-bus system [1] and a WCSS 9-bus system [2], we
illustrate that our game model can provide useful insights.

1 Introduction

Electricity networks are critical infrastructures. Their disruptions can have se-
vere economic, social, and security consequences. For example, lives may be
endangered if power is lost for life saving procedures in hospitals. Loss of power
may also prevent communication, stall work, cripple transportation, and/or lead
to other major failures that can bring entire nations to a standstill. Because of
their importance, power networks are credible targets for active (e.g., terrorist)
attacks. On the other hand, protecting these networks is extremely challenging,
due to their expansive geographical extents and complex interdependencies be-
tween system components. For example, transmission lines may run for miles in
the open, and the system must maintain stable and prespecified power quality
(e.g., frequency, voltage, and phase synchronization) for performance and safety
of equipment.

To protect critical infrastructures from attacks, administrators need tools
that support prudent decision making. In particular, administrators need to
make informed decisions about where to deploy finite resources to harden a sys-
tem formaximum resiliency against adversaries. Such guidance for infrastructure
protection has been obtained using Markov decision processes (MDP) or game

10

theory. In MDP [3], the system is modeled as a set of states with Markov transi-
tions between them. The problem is to optimize the actions of a “player” (e.g.,
the defender) under probabilistic outcomes of these actions. The solution opti-
mizes the actions of a single player only. It is suitable for a defender to maximize
system reliability against passive disruptors of known probabilistic behavior.
Collectively, these disruptors may represent “nature,” which may disrupt com-
ponents by indeliberate events such as bad weather or normal wear-and-tear.

Game theoretic approaches for infrastructure protection, on the other hand,
postulate a strong attacker – one capable of devising its own best counter strate-
gies against the defender. In a static game [4], both players choose their moves
simultaneously. In another form of leader-follower Stackelberg games [5], the op-
timization of the players’ strategies is a bilevel problem. At the inner level, the
follower maximizes its payoff given a leader’s strategy. At the outer level, the
leader chooses a strategy S to maximize its own payoff subject to the follower’s
solution of the inner problem defined by S.

The above kinds of games view network interdictions as one time events.
However, infrastructure protection is also a continual process in which the play-
ers interact to produce dynamic states affecting their respective best actions.
Markov games model these interactions subject to inherent uncertainty in the
underlying physical system. They can be viewed as generalizations of MDP to
an adversarial setting. For the protection of power networks, we assume that the
attacker deploys resources to disrupt transmission lines in a power grid,1 and
its goal is to maximize the amount of load shedding. The defender’s goal, on
the other hand, is to deploy defense resources to minimize the amount of load
shedding in the face of such attacks. The directly opposing goals of the attacker
and defender lead to a zero-sum game formulation naturally.

Game theoretic analysis has typically assumed a full information setting.
In practical situations, information is a valuable asset having significant effects
on achieved payoffs. Control and sensing information communicated in future
smart grids may be a valuable source of information for would-be attackers.
For example, advanced meter infrastructures (AMIs) may give a comprehensive
view of the distribution of load and resulting power flows. More sophisticated
attackers may even infer the types of load based on their power signatures [6],
leading to knowledge about the cost functions in our model. The role of on-line
information gives a cyber dimension of smart grid protection as a cyber-physical
system problem.

Our contributions are as follows. (i) We model the attack-defense of power
networks as a Markov game. We solve equilibrium mixed strategies of the players
that maximize their respective minimum payoffs by a time-decayed metric under
uncertainty. (ii) We show that after our algorithm converges, the solution in
each state is equivalent to that of a static game with a composite payoff matrix.
Analysis of this compositematrix simplifies the interpretation of results obtained
by our algorithm. (iii) We apply our solution to two realistic power systems. We

1 Transmission lines can be considered particularly vulnerable targets due to the im-
possibility of physical isolation. However, our problem can be readily generalized to
consider other system components.

11

contrast our numerical results with those of static games, and show that their
analysis leads to useful insights in sometimes subtle situations.

2 Related Work

MDP has been used to analyze the security and vulnerability of urban infras-
tructures. Jones et al. [7] use it to analyze the actions of an intruder into trans-
portation facilities. Jha et al. [3] use MDP to interpret attack graphs in commu-
nication networks, so that a minimal set of security measures can be determined
that will guarantee the safety of a system. Their work optimizes the actions of
the defender against a passive attacker, whose strategy is fixed and given.

Game theory has been widely used to analyze the security of critical systems.
The competition between a defender and an attacker in this context has been
modeled as leader-follower Stackelberg games [5], [8], and static games [4], [9].
These games analyze one move of each player only, and so they treat network
interdictions as one time events. In practice, the defender may interact with the
attacker in repeated plays that evolve the system state dynamically. Alpcan et
al. model these repeated plays under uncertainty as a Markov game. They use
the game model to design an intrusion detection system for a communication
network [10], and compare their results with those obtained using static games.

3 Problem Formulation

In a power grid, generators supply electricity and loads consume it. They are
attached to a set of buses – which we call generation and load buses, respec-
tively – interconnected by a network of transmission lines of given capacities.
Henceforth, we refer to transmission lines as links.

An attacker aims to disrupt the power network by bringing down one or
more links, in order to cause maximum “disruption” of the load. A defender
aims to minimize this disruption. It does so by reinforcing links that are up,
and repairing links that are down. In a baseline case, disruption is measured
simply as the amount of load (in power unit) that must be shed due to the
link failures. More generally, shedding different loads may have different adverse
impact which we call cost. A cost function for a load bus, say l, is given by
ul(x, y), which specifies the cost of reducing the load from x to y (in power
units) on l. In this case, disruption is measured as the total cost of shed load
due to the link failures.

We define a Markov game as follows. The state of the game refers to the set of
links that are currently up (links that are not up are down) in the power network.
The game proceeds in discrete time steps. In each time step, the players choose a
pair of actions which, together with underlying probabilistic physical events,may
cause state transitions in a Markov manner. For the attacker, the action is the
link that it chooses to attack. For the defender, the action is the (down) link that
it chooses to repair or the (up) link that it chooses to reinforce. The players have
limited budgets in that in each time step, the attacker (respectively defender)
can choose a limited number of links to attack (respectively repair/reinforce)
only.

12

We use the following notations throughout the paper.

– Ap: Action set of player p, where p = a, d, corresponding to the attacker and
defender, respectively.

– S: Set of game states, where each state is an enumeration of the status of
the links in order. We use “u” and “d” to denote the up or down status,
respectively.

– PD(A): Set of mixed strategies over the action set A.
– ppf : Probability for an up link to fail in a time step upon attack, when it is

reinforced by the defender in that time step.
– pupf : Probability for an up link to fail upon attack, when it is not reinforced.

We have 0 ≤ ppf ≤ pupf ≤ 1.
– ppr: Probability for a down link to recover (i.e., become up) in a time step,

when it is repaired by the defender and not attacked by the attacker in that
time step.

– pupr: Probability for a down link to recover when it is not repaired by the
defender and not attacked by the attacker. We have 0 ≤ pupr ≤ ppr ≤ 1.

We assume that the attacker can attack a link that is already down. Such
an action will reduce the probability that the link recovers. For example, if a
down link is repaired by the defender and further attacked by the attacker in a
time step, then its probability of recovery is ppr × (1 − pupf). If the down link
is not repaired by the defender, then its probability of recovery under attack is
pupr × (1− pupf).

Since the load shedding goals of the attacker and defender are directly op-
posing, we have a zero-sum game. A pair of player actions in a state will bring an
immediate reward for the players. For the attacker, this reward is the expected
cost of shed load due to the resulting probabilistic transitions to the possible
next states. The defender’s immediate reward is the negative of this number.
Further to the immediate reward, each possible state transition if realized will
bring the game to a new state, where the game will carry on. A further immedi-
ate reward will be obtained in the new state with further new state transitions,
and so on. Hence, a pair of actions taken in a state will accrue a long-term reward
in general.

Formally, define R(s, a, d) as the expected immediate reward for the attacker
when it takes action a and the defender takes action d in state s. (Reward for the
defender is the negative of this number.) Further define Q(s, a, d) as the expected
long-term reward for the attacker when it takes action a and the defender takes
action d in state s. (Expected long-term reward for the defender is the negative
of this number.) The value of state s ∈ S for the attacker in the Markov game is

Va(s) = max
π∈PD(Aa)

min
d∈Ad

∑
a∈Aa

Q(s, a, d)πa, (1)

where πa is the probability of action a in the optimal mixed strategy π of the
attacker. The expected long-term reward, quality, of action a against action d in
state s is

Q(s, a, d) = R(s, a, d) + γ
∑
s′

T (s, a, d, s′)Va(s
′), (2)

13

where T (s, a, d, s′) is the state transition T : S×Aa×Ad → S, and γ is a discount
factor satisfying 0 ≤ γ < 1. γ gives the discount factor of future rewards on the
optimal decision. Small values of γ emphasize near-term gains while large values
emphasize future rewards. γ may also be interpreted as the belief of possible
future interactions held by the players.

Similarly, the value of state s ∈ S for the defender is

Vd(s) = min
π∈PD(Ad)

max
a∈Aa

∑
d∈Ad

Q(s, a, d)πd. (3)

Notice that in general, Va(s) and Vd(s) computed from Eq. 1 and Eq. 3 are
different. In particular, Va(s) ≤ Vd(s), where Eq. 1 corresponds to the primal
problem and Eq. 3 corresponds to the dual problem. The inequality expresses
weak duality relating the primal and dual problems in general [11, Section 5.4].
When the Markov game is zero-sum, however, strong duality applies [11, Sec-
tion 5.4] and equality holds due to the strong max-min property. Hence, we use
V (s) to denote the value of state s ∈ S, and V (s) = Va(s) = Vd(s). The optimal
solutions computed individually by the two players are therefore best responses
to each other and they are in Nash equilibrium. The equilibrium solutions are
necessarily Pareto-optimal, because we cannot improve the payoff of one player
without hurting that of the other in a zero-sum game.

4 Markov Game Solution

We now solve the Markov game defined in Sec. 3. Our goal is to compute equilib-
rium best policies for both players, where a policy is the set of per-state optimal
mixed strategies of the player concerned, and an optimal strategy is one that
maximizes the minimum long-term reward under the best strategy of the oppo-
nent. It is known that every Markov game has a non-empty set of optimal policies
for each player, and one of them is stationary, i.e., it is time-independent [12].
Our solution will find this optimal stationary policy for each player. Once the
optimal policies of the players are determined, the Markov transition probabil-
ities are completely defined and the system will evolve as a standard Markov
process.

We consider the case in which both players have complete information about
the game. The solution is a generalization of value iteration, a common dynamic
programming technique for solving MDPs [12], [10], to a game-theoretic setting.

Recall from Sec. 3 that the value of state s ∈ S in the game is given by Eq. 1
for the attacker, and by Eq. 3 for the defender. The optimal mixed strategy π
of the attacker can be obtained by solving the following linear program:

max
π∈PD(Aa)

V (s),

s.t.
∑
a∈Aa

Q(s, a, d)πa ≥ V (s),

∑
a∈Aa

πa = 1,

πa ≥ 0.

14

1. Set V (s) = 0 for all s ∈ S
2. repeat
3. for all s ∈ S and a ∈ Aa and d ∈ Ad do
4. Update Q according to Eq. 2
5. end for
6. for all s ∈ S do
7. Update V according to Eq. 1
8. end for
9. until V (s) → V ∗, i.e., V (s) converges.

Fig. 1. Dynamic programming algorithm for solving the Markov game.

� � � � �
� ���	� 	 ����� �
��� ��	
� ����� 	 ����� �
��� ��	
� ����� 	 ���	� �
��� ��	
� ����� 	 ����� ����� ��	
� ����� 	 ����� �
��� ���

������������������������

��
�

��
��

��
��

��
�

��
��

��
�

��
�

� � � � �
� ��	�� ����� �
��
 �
��� �����
� ����� ��	�� �
��
 �
��� �����
� ����� ����� �	��� �
��� �����
� ����� ����� �
��
 �	��� �����
� ����� ����� �
��
 �
��� ��
��

������������������������

��
�

��
��

��
��

��
�

��
��

��
�

��
�

(a) (b)
Table 1. Quality of actions of the two players in state {u,u,u,u,u} for (a) a static game
that does not consider future rewards, (b) the full Markov game. Numbers are payoffs
for the attacker. Hence, the attacker prefers larger numbers, while the defender prefers
smaller numbers. ppf = 0.5, pupf = 1, ppr = 0.6, pupr = 0.

The optimal π of the defender can be obtained by the above formulation with
the order of the maximization and minimization swapped.

The value iteration algorithm to compute the optimal Q and V for given
s, a, d is specified in Fig. 1. The algorithm iteratively estimates the values of V
and Q by treating the equal signs in Eqs. 2 and 1 as assignment operators for
updating the estimates. These estimates will converge to their correct values [13].
Notice that each iteration of the algorithm produces a mixed strategy for one
player in state s by linear programming (Line 7). These mixed strategies will
similarly converge to the optimal one, and hence we obtain one player’s optimal
policy when the algorithm terminates. We then use the converged Q’s to solve
for V ’s by linear programming from the perspective of the other player, and
obtain the optimal policy of the other player.

Notice that we initialize V (s) = 0. As a result, the mixed strategy of the
player after the first iteration is its optimal mixed strategy in a static game
that does not consider rewards in future time steps, and the obtained V (s)
corresponds to the payoff in state s of this static game. For instance, for the 5-
bus system shown in Fig. 2, Table 1(a) shows the payoffmatrix of the static game
for state {u,u,u,u,u}. Notice that the matrix shows the payoff to an attacker,
and hence, the attacker prefers an action that returns a larger number, while
the defender prefers an action that returns a smaller number. As we consider
future rewards, the payoff matrix will evolve during the iterative process of
the algorithm. When their effects are fully considered, Table 1(b) shows the
“composite” payoff matrix for the same state {u,u,u,u,u} after the convergence
of V in Line 9. For any state s, the optimal mixed strategy of the player in
the Markov game is equivalent to the optimal mixed strategy solved for an
equivalent static game with the compositematrix as payoffs. This view facilitates
the interpretation of results obtained for the Markov game.

15

G G

2 54

1

3

2+j1

2#1#

1.6+j0.8

3.7+j1.3

(a) Bus diagram (b) Link diagram

Fig. 2. 5-bus system.

���� ! � � � � �
�����"#$% ��	 �		 �
	 	 	
&���'��"#$% 	 	 	 �		 ��
��

Table 2. Load and supply distribution of 5-bus system.

5 Evaluations

We present numerical results to illustrate solutions of the Markov games, which
include the static games as a special case (γ = 0), using the failure and recovery
probabilities as follows, ppf = 0.5, pupf = 1, ppr = 0.6, pupr = 0, unless stated
otherwise. We assume that both players have complete information of the game.
The cost function of load shedding is the amount of load shed. We have results
for a 5-bus system [1] and a WCSS 9-bus system [2]. Their bus and link diagrams
are given in Figures 2 and 3, respectively, and their per-bus aggregate generation
and load are listed in Tables 2 and 3, respectively. We will focus on the 5-bus
system for illustration of the more detailed results, since its relative simplicity
facilitates the exposition.

Notice that certain links in a power system are particularly important, in that
interdicting such a link by itself will already cut off a large amount of power flow
from generation to load. In the 5-bus system, links l4 and l5 are particularly
important, with l4 being more so. In the 9-bus system, links l1, l2, and l3 are
particularly important, with l2 being the most. These important links usually
form the focus of the player strategies.

Fig. 4 shows the player strategies in selected states of the Markov game for
the 5-bus system. In the figure, a bar labeled pa(x) gives the probability that
the attacker will attack link x, and a bar labeled pd(x) gives the probability
that the defender will repair link x (if x is down) or reinforce link x (if x is up).

G2 Bus 2 Bus 3Bus 7 Bus 9

Bus 8

Bus 5 Bus 6

Bus 4

Bus 1

G3

G1

2 72 84 95 33

5 6

4

1

6 7

98

1

(a) Bus diagram (b) Link diagram

Fig. 3. Standard WCSS 9-bus system.

16

���� ! � � � � � �
 � �
�����"#$% 	 	 	 	 ��� �	 	 �		 	
&���'��"#$%
���� ��� �� 	 	 	 	 	 	

Table 3. Load and supply distribution of WCSS 9-bus system.

	

	��

	��

	��

	��

�

���

&����� #����()�*�+�	�� #����()�*�+�	�

��
��

��
���

	

��"�%��������"�%��������"�%��������"�%

	

	��

	��

	��

	��

�

���

&����� #����()�*�+�	�� #����()�*�+�	�

��
��

��
���

	

��"�%��������"�%��������"�%��������"�%

(a) State {u,u,u,u,u} (b) State {d,u,u,u,u}
Fig. 4. Player strategies in selected states of the Markov game for the 5-bus system. Both players
have budgets to affect one link only in a time step.

For example, pa(5) represents the probability for the attacker to attack l5. Only
actions with non-zero probabilities are included in the figure. The defender and
the attacker have budgets to affect one link only in a time step. The results show
that the optimal policies of the players may change significantly as we vary γ
from zero (static game) to 0.7.

For instance, Fig. 4(a) shows that in state {u,u,u,u,u}, the defender progres-
sively shifts its focus from reinforcing l4 to reinforcing l5, while the attacker also
attacks l5 apart from l4, as γ increases. This observation can be explained us-
ing the payoff matrix of the static game (Table 1(a)) and the composite payoff
matrix of the Markov game when γ = 0.3 (Table 1(b)). Notice that the num-
bers shown are the costs of load shedding and hence represent payoffs for the
attacker – the attacker prefers higher numbers while the defender prefers lower
numbers. Table 1(a) shows that in the static game, the payoff of attacking l4 is
always higher than that of attacking l5, i.e., both l4 and l5 are important but
l4 is even more so. Hence, the attacker will only attack l4, and the defender
will always defend l4 to minimize its cost. However, Table 1(b) shows that in
the Markov game, the payoff of attacking l4 is always higher than attacking l5,
except in the case that the defender is also reinforcing l4. Hence, when l4 is being
reinforced with sufficiently high probability, the attacker begins to use a mixed
strategy that includes l5. This illustrates a subtle interplay between the players:
Although a successful attack on l4 will bring higher benefit for the attacker, it
is also more difficult if l4 is also reinforced by the defender. Hence, the attacker
shifts some of its focus to the easier target l5 since that link is also important.

Fig. 5 shows selected strategies of the players in the Markov game for the
9-bus system.

6 Conclusion

We have presented a Markov game analysis of attack-defense in power systems.
Our results complement related results using static games or Stackelberg games.
We show that consideration of repeated plays under Markov-type uncertainties
will in general modify the strategies of the players relative to games with single

17

	

	��

	��

	��

	��

�

&����� #����()�*�+�	�� #����()�*�+�	�

��
��

��
���

	

��"�%��������"�%��������"�%��������"�%��������"
%

	

	��

	��

	��

	��

�

���

&����� #����()�*�+�	�� #����()�*�+�	�

��
��

��
���

	

��"�%��������"�%��������"�%��������"�%

(a) State {d,u,u,u,u,u,u,u,u} (b) State {u,u,d,u,d,u,u,u,u}
Fig. 5. Selected player strategies for the 9-bus system. Both players have budgets to affect one link
in a time step. ppf = 0.5, pupf = 1, ppr = 0.6, pupr = 0.

plays. This is because the players will need to consider the impact of a current
action on the future plays, although the future rewards are generally discounted
by a factor γ. We have applied our analysis to a 5-bus system that has been
studied in the literature and a WCSS 9-bus system. The relative simplicity of
the 5-bus system has allowed us to analyze its results in detail. Our analysis
exposes subtle features of the game solutions, considering the values of different
game states to the players and the intricate interplay between their strategies.
It is also interesting to apply our analysis to other critical infrastructures.

References

1. : Calculation of The Electrical Power System. Hydro-electricity Press (1978)
2. Anderson, P.M., Fouad, A.A.: Power System Control and Stability. Galgotia (1981)
3. Jha, S., Sheyner, O., Wing, J.: Two formal analysis of attack graphs. In: Proc. of

the IEEE workshop on Computer Security Foundations. (2002)
4. Holmgren, A., Jenelius, E., Westin, J.: Evaluating strategies for defending electric

power networks against antagonistic attacks. IEEE Trans. Power Syst 22(1) (2007)
5. Salmeron, J., Wood, K., Baldick, R.: Analysis of electric grid security under ter-

rorist threat. IEEE Trans. Power Syst 19(2) (2004)
6. Laughman, C., Lee, K., Cox, R., Shaw, S., Leeb, S., Norford, L., Armstrong, P.:

Power signature analysis. IEEE Power & Energy Magazine 1(2) (2003)
7. Jones, D.A., Davis, C.E., Turnquist, M.A., Nozick, L.K.: Physical security and

vulnerability modeling for infrastructure facilities. In: Proc. of the Hawaii Inter-
national Conference on System Sciences. (2006)

8. Brown, G., Carlyle, M., Salmeron, J., Wood, K.: Defending critical infrastructure.
Interfaces 36(6) (2006)

9. Chen, G., Dong, Z.Y., Hill, D.J., Xue, Y.S.: Exploring reliable strategies for de-
fending power systems against targeted attacks. IEEE Trans. Power Syst 26(3)
(2011)

10. Alpcan, T., Basar, T.: Network Security: A Decision and Game Theoretic Ap-
proach. Cambridge University Press (2010)

11. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press
(2004)

12. Littman, M.: Markov games as a framework for multi-agent reinforcement learning.
In: Proc. of the International Conference on Machine Learning. (1994)

13. Owen, G.: Game Theory: Second edition. Academic Press (1982)

18

SR-ORAM: Single Round-trip Oblivious RAM

Peter Williams and Radu Sion

{petertw, sion}@cs.stonybrook.edu
Stony Brook University

Abstract. We present the first single-round-trip polylogarithmic time
Oblivious RAM requiring only logarithmic client storage. Taking only
a single round trip to perform a query, SR-ORAM has a communica-
tion/computation cost of O(log n), with O(log2 n log log n), and under 2
round trips, overall amortized per-query communication requirements.
The trusted client folds an entire interactive sequence of Oblivious RAM
requests into a single query object that the server can unlock incremen-
tally, to satisfy a query without learning its result. This results in an
Oblivious RAM secure against an actively malicious adversary, with un-
precedented speeds in accessing large data sets over high-latency links.

1 Introduction
Oblivious RAM (ORAM) allows a client to read and write data hosted by an
untrusted party, while hiding both the data and the access pattern from this
untrusted host. Access pattern privacy is a critical component of data privacy.
Without access pattern privacy, the act of reading and writing remote data leaks
potentially essential information about the data itself, making it impossible to
achieve full data confidentiality. Since the introduction of the first Oblivious
RAM in [6], approaches to increase query throughput have been relentlessly
sought. Nevertheless, and despite the wide range of potential applications, prac-
tical Oblivious RAM constructions have remained elusive until very recently.

One of the most significant challenges to providing practical ORAM is that
these interactive protocols require a large number of client-server round trips,
resulting in large, often impractical, online query latencies. For example, [7]
requires log2 n round trips, translating to an online cost alone of over 1200-
1500ms per query on a 1 terabyte database (e.g., for 10KB blocks), assuming a
network link with a latency of just 50ms.

This paper provides a simple and direct solution to the challenge: SR-ORAM,
a single-round-trip ORAM. SR-ORAM requires a single message to be sent from
the client to the server and thus incurs a single round-trip (for a total online cost
of 50ms in the example above). Moreover, SR-ORAM does not greatly affect the
offline, amortized cost.

The basic idea behind SR-ORAM is to fold the interactive queries into a single
non-interactive request without sacrificing privacy. The client constructs a set
of values (a “query object”) that allows the server to selectively decrypt pieces,
depending on new values obtained during its traversal of the database. Each

19

component of the query object unlocks only a specific single new component—
which allows server database traversal progress while preventing it from learning
anything about the overall success of the query.

Our construction is based on the Bloom filter ORAM of [14], since it lends
itself conveniently to use of a non-interactive query object and provides defenses
against actively malicious adversaries (not only curious). We also make use of
the randomized shell sort defined in [8], since it allows the more stringent client
storage requirements of SR-ORAM (when compared to [14]).

Other ORAMs with constant numbers of round trips exist; Section 3 reviews
recent solutions. However, SR-ORAM is the first to provide a constant-round-trip
polylogarithmic time construction that assumes only logarithmic client storage.

2 Model
A capacity-constrained client desires to outsource storage to an untrusted party
(the server). The client has enough local non-volatile storage to manage keys
and certificates, plus enough volatile RAM to run the ORAM client software
(logarithmic in the size of the outsourced data). Moreover, since the client reads
and writes sensitive data, it needs to hide both the data content and access
pattern. Thus, the client needs low-latency, private access to this remote disk.

Data is accessed in “blocks”, a term used to denote a fixed-size record.
“Block” is used instead of “word” to convey target applications broader than
memory access (file system and database outsourcing, in particular, seem to be
lucrative targets). Block IDs can be arbitrary bit sequences.

Participants
Communication between the user and the ORAM Client is secured, e.g., with
access controls on inter-process-communication if they are on the same machine,
or with SSL otherwise. Communication between the ORAM Client and ORAM
Server is also secured, e.g., with a transport-layer protocol such as SSL.

ORAM Client: The trusted party providing the following (self-explanatory)
interface to the user: read(id): val; write(id, val). The Client-Server protocol
details are implementation-specific (and typically optimized to the instance to
minimize network traffic and the number of round trips).

The client keeps track of two values between queries: its secret key and the
current access count. From this, the current level keys, and the reshuffle count
of each level, can be derived.
ORAM Server: the untrusted party providing the storage backend, filling re-
quests from the instance.

Security Definitions
We will assume, and defend against, curious and potentially malicious (not con-
strained to follow the protocol) polynomially-bounded adversary in the random
oracle model. The actively malicious defense is inherited from the underlying
ORAM of [14].

For simplicity, timing attacks are not discussed here. Defenses include the
introduction of client-side delays to uniformize query times—which can be done

20

without affecting overall protocol complexity. Additionally, SR-ORAM assumes
semantically secure symmetric encryption primitives and secure hash functions.

Notation
Throughout the paper, n refers to the database size, in blocks. The client secret
key is sk. The number of times a given level has been shuffled (i.e. reconstructed)
is called the “generation,” and is abbreviated as gen. Oblivious Random Access
Memory is ORAM; Bloom Filter is BF. Key size and hash function output size
are both assumed to be c0; c1 is the Bloom filter security parameter.

To represent computational and communication costs in a comparable man-
ner, complexities are represented in words, not bits. It is assumed that each word
can hold an entire identifier, e.g., O(log n) bits.

3 Background
We start with an review of ORAM, and in particular, Bloom-filter-based ORAMs.
We next review the highly-interactive Bloom-filter-based ORAM [14], which pro-
vides a convenient construction to build SR-ORAM from. Finally, we look at
recent approaches to reduce the round trip cost.

3.1 ORAM Overview
Oblivious RAM [6] provides access pattern privacy to a single client (or software
process) accessing a remote database (or RAM), requiring only logarithmic stor-
age at the client. The amortized communication and computational complexities
are O(log3 n) for a database sized n.

In ORAM, the server-hosted database is a set of n semantically-secure en-
crypted blocks (with a secret key held by the client). Supported operations are
read(id), and write(id, newvalue). The data is organized into log2(n) levels, as a
pyramid. Level i consists of up to 2i blocks; each block is assigned to one of the
2i buckets at this level as determined by a hash function.1 Due to hash collisions
each bucket may contain from 0 to O(log n) blocks. 2

ORAM Reads. To obtain the value of block id, a client must perform a read
query in a manner that maintains two invariants: (i) it never reveals which level
the desired block is at, and (ii) it never looks twice in the same spot for the same
block. To maintain (i), the client always scans a single bucket in every level,
starting at the top (Level 0, 1 bucket) and working down. The hash function
informs the client of the candidate bucket at each level, which the client then
scans. Once the client has found the desired block, the client still proceeds to
each lower level, scanning random buckets instead of those indicated by their
hash function. For (ii), once all levels have been queried, the client re-encrypts
the query result with the secret key and a different nonce (so it looks different
to the server) and places it in the top level. This ensures that when it repeats a

1 log4(n) levels sized 4i in the original, but for simplicty we use a branch factor of 2.
2 This was originally specified as log n blocks, with a non-negligible probablity of
bucket overflow, in which case a new hash function is tried. It was later shown (e.g.,
in [10]) that this results in an information leak.

21

search for this block, it will locate the block immediately (in a different location),
and the rest of the search pattern is randomized. The top level quickly fills up;
how to dump the top level into the one below is described later.

ORAM Writes. Writes are performed identically to reads in terms of the data
traversal pattern, with the exception that the new value is inserted into the top
level at the end. Inserts are performed identically to writes, since no old value
will be discovered in the query phase. Note that semantic security properties
of the re-encryption function ensure the server is unable to distinguish between
reads, writes, and inserts, since the access patterns are indistinguishable.

Level Overflow. Once a level is full, it is emptied into the level below. This
second level is then re-encrypted and re-ordered, according to a new hash func-
tion. Thus, accesses to this new generation of the second level will hence-forth
be completely independent of any previous accesses. Each level overflows once
the level above it has been emptied twice. The resulting re-ordering must be
performed obliviously: once complete, the adversary must be unable to make
any correlation between the old block locations and the new locations. A sorting
network (e.g., [1] or [8]) is used to re-order the blocks thusly.

To enforce invariant (i), note also that all buckets must contain the same
number of blocks. For example, if the bucket scanned at a particular level has no
blocks in it, then the adversary would be able to determine that the desired block
was not at that level. Therefore, each re-order process fills all partially empty
buckets to the top with fake blocks. Recall that since every block is encrypted
with a semantically secure encryption function, the adversary cannot distinguish
between fake and real blocks.

3.2 Bloom filters

Bloom filters [3] offer a compact representation of a set of data items. They
allow for relatively fast set inclusion tests. Bloom filters are one-way, in that,
the “contained” set items cannot be enumerated easily (unless they are drawn
from a finite, small space). Succinctly, a Bloom filter can be viewed as a string of
b bits, initially all set to 0. To insert a certain element x, the filter sets to 1 the
bit values at index positions H1(x), H2(x), . . . , Hk(x), where H1, H2, . . . , Hk are
a set of k crypto-hashes. Testing set inclusion for a value y is done by checking
that the bits for all bit positions H1(y), H2(y), . . . , Hk(y) are set.

By construction, Bloom filters feature a controllable rate of false positives r
for set inclusion tests—this rate depends on the input data set size z, the size
of the filter b and the number of cryptographic hash functions k deployed in its

construction: r =
(
1− (1− 1/b)kz

)k

.

As will be seen below, the SR-ORAM Bloom filters are constrained by two
important considerations. First, we need to minimize k, since this determines
directly the number of disk reads required per lookup. Second, we need to guar-
antee that with high probability, there will be no false positives; i.e., r must be
negligible to prevent a privacy leak, since a false positive reveals lookup failure
to the curious server.

22

Encrypted Bloom Filters. The idea behind remotely-stored encrypted Bloom
filters is to store their bit representation encrypted while still allowing client-
driven Bloom filter lookups. This can be achieved, e.g., by storing the Bloom
filters as bit strings XORed with client-side PRNG-driven key strings, or with
individual bits stored and encrypted separately with semantic security (at the
expense of additional storage).

Again, as will be shown, in SR-ORAM, instead of storing an encrypted bit
for each position of the Bloom filter, we store part of a decryption key. Since
the server cannot distinguish between the keys for bit-values of 1 and keys for
bit-values of 0, we retain the property that the server does not learn the success
of the Bloom filter lookup.

3.3 Bloom filter-based ORAMs

The main contribution of [14] is the separation of level membership testing from
item storage. Instead of checking for an item at a given level by reading the
entire relevant bucket of O(log n)-blocks, an encrypted Bloom filter is queried
first. This indicates to the client which of two potential items (the real, if there,
or a specific fake, otherwise) to retrieve. This saves a factor of O(log n) server
storage while simultaneously speeding up level construction and querying.

More specifically, item location is encoded via a Bloom filter; any given item
hasmembership in one of log2 n Bloom filters, corresponding to one for each level.
The level corresponding to the Bloom filter that contains this item is the level
where the item must be retrieved from. Bloom filters are queried from the top
down; maintaining access privacy requires that any given lookup be performed
only once on any given Bloom filter. Once an item is found at a particular level,
it is copied up to the top, so the request will be satisfied at a higher level next
time. Random lookups will be performed on those levels and Bloom filters below
where the item is found.

This is an interactive process requiring log2 n round trips: the client needs
to know the success of a lookup at a given level before it can start the query at
the next level. Figure 1 illustrates this process of querying.

Fig. 1. Interactive Bloom filter querying. Both the lower level Bloom filter lookups and
item lookups are dependent on the Bloom filter results of the levels above.

23

It is shown in [11] that the security analysis of [14] is incomplete, suggesting
larger Bloom filters are needed to obtain negligible false positive rates. They also
recommend a different selection in the tradeoff between Bloom filter size (affect-
ing server storage and shuffle cost), and the number of hash functions chosen
(affecting online cost). This adds a factor of log logn to the Bloom filter con-
struction cost. We apply these insights in the choices of Bloom filter parameters
(number of hash functions k, and size in bits) and in the performance analysis
(Section 7) of SR-ORAM.

We also note that [14] assumes a significant amount of temporary client
storage necessary in the reshuffle step. This assumption is not suitable for our
model. Instead, SR-ORAM uses an oblivious randomized shell sort [8] to support
the level reshuffle and construct Bloom filters obliviously without client storage.
This reduction in client storage requirements comes with performance penalties,
as will be discussed later.

3.4 Other constant-round-trip ORAMs
Other recent approaches provide ways around the penalty of highly interactive
protocols, at the cost of additional hardware or overwhelming requirements of
client storage. The main issue in constructing a single round trip ORAM is that
a request for an item depends on how recently an item was accessed. Maintaining
this information at the client requires storage at least linear in the size of the
outsourced database. Moreover, retrieving this information privately from the
server is almost as difficult as providing ORAM. 3

Secure Hardware. Secure hardware such as the IBM 4764 [9] can be placed
server-side, using remote attestation to retain security guarantees for clients [2].
Secure hardware is typically an order ofmagnitudemore expensive than standard
processors. Due to heat dissipation difficulties it is typically also an order of
magnitude slower. Moreover, the necessity of physical security to provide any
guarantees makes such solutions vulnerable to a different class of attacks.

Constant-round-trip protocols using client storage. [12] maintains item
location information at the client. Although at the outset, n log2 n bits of client
storage seems like a big assumption, the authors argue this is reasonable in some
situations, since the block size is typically larger than logn. They show that in
practice, the local required client storage in practice is only a small fraction
of the total database size. The recursive construction, using a second ORAM
to store this level membership information, however, is interactive. SR-ORAM
requires only O(log2 n) bits of client storage (Section 5).

The non-interactive cache-based ORAM in [13] relies on k client storage
to provide an amortized overhead of O(n/k). The idea is to add previously
unseen items to a cache, which gets shuffled back into the remote database
when it fills. The high client storage requirements (and poor storage/performance
tradeoff) make it unsuitable for our model. This idea is revisited under different
assumptions in [4], with security formalization, but still requiring client storage.

3 With the difference that this recursive ORAM only requires storing O(log log n) bits
per item, which is enough location information about the item to build the query.

24

A large number of interactive ORAM solutions have been proposed. An ex-
haustive review [5] is out of scope here; a full review should also include re-
cent interactive de-amortized ORAMs. These resolve another drawback of many
ORAMs (SR-ORAM included), the disparity between average-case and worst-
case query cost.

4 A First Pass
This strawman construction modifies the Bloom filter ORAM of [14]. It has
the structure, but not yet the performance, of the SR-ORAM construction. As
detailed in Section 3.3, that Bloom filter ORAM uses encrypted Bloom filters
to store level membership of items. To seek an item, the querying client must
request a known fake item from each level, except from the level containing this
item: the item is requested here instead. Which level the item is at depends
only on how recently this item was last accessed. Since the client does not have
storage to keep track of that, it checks the Bloom filters one at a time to learn
if the item is at each level.

Moreover, since the main principle of level-based ORAMs requires each item
be sought once per level instance, it is unsafe to query the Bloom filters past the
level where this item is present. This explains why the checksmust be interactive:
once the item is found at level i, further accesses at the levels below (i + 1
through log2 n) entail only random Bloom filter queries corresponding to fake
item requests. Then, putting the found item back at the top of the pyramid
guarantees that later, it will be sought and found elsewhere, since the only way
it gets back down to the lower levels is by riding a wave of level reshuffles.

We now describe how to safely turn this into a non-interactive process. Ob-
serve that in an interactive ORAM, if the client is requesting a recently accessed
item j that happens to be in level 2, the access sequence will proceed as follows.
This example is also illustrated in Figure 1. We use j to denote the item iden-
tifier, and sk for the secret key, and gen to represent the current generation of
that level (a function of the total, global number of accesses, accesscount).

1. The client checks the level 1 Bloom filter for the item: reading the positions
generated by Hash(sk | level = 1 | gen | j)

2. Upon seeing Encrypt(0) at one ormore of those positions in the Bloom filter,
the client learns the item is not at level 1. So it asks for a fake item instead,
that is labeled as Hash(sk | level = 1 | gen | “fake” | accesscount)

3. The client now checks the level 2 Bloom filter for the item: reading the
positions indicated by Hash(sk | level = 2 | gen | j)

4. Seeing Encrypt(1) at all of those positions, the client learns the item is at
this level. This means it is safe to request the item here; the client asks for
the block labeled Hash(sk | level = 2 | gen | “block” | accesscount)

5. Having already found the item, to maintain appearances and not reveal this
fact to the server, the client continues to issue random Bloom filter lookups
at each level i below. At each level it requests the fake blocks labeled Hash(sk
| level | gen | “fake” | accesscount)

25

Note that there are only log2 n possible such access sequences, based on which
level the item is found at (Figure 2). Each path starts with a real query. Real
queries continue until an item is found, at which point only fake queries are
issued from there on down. This limited number of possible sequences makes
non-interactive querying possible.

Fig. 2. Left: query paths. The client does not know at the time of query object con-
struction which of the log n possible paths will be taken: it depends on where the data
is ultimately found. Right: the query object. The server learns the edges corresponding
to exactly one path. The gray shaded nodes contain the Bloom filter positions to read
and a set of encrypted messages. The server will be able to decrypt one such edge at
each level, revealing the data ID, to retrieve and include in the response to the client,
and decrypting a node of the query object in the level below.

Since we have a finite number of these paths, our goal is to follow one of
these paths non-interactively, not knowing ahead of time which level the item is
at (and thus which of the log2 n paths will be followed).

To achieve this, we propose to have the Bloom filter results themselves be
used in unlocking one of the two possible edges leading to the next query. A
successful lookup will unlock the edge leading to a “finished” path, under which
only fake queries will follow. Conversely, failure must unlock the edge continuing
down the “active” search path. Once on the “finished” path, it is impossible to
return back to the “active” path. Most importantly, the server must not gain
any ability at identifying which path it is currently on.

One strawman idea, exponential in the number of Bloom filter hashes k, is
to make each bit in the Bloom filter a piece of a decryption key. For each level,
the client prepares 2k results, corresponding to each possible state of the Bloom
filter. The Bloom filter keys are generated deterministically by the client using
a cryptographic hash, so that the client can efficiently keep track of them with

26

only logarithmic storage. That is, a bit set to 1 at position pos in the Bloom
filter is represented by Tpos = Hash(sk | pos | level | gen | 1), and a bit set to 0
by Fpos = Hash(sk | pos | level | gen | 0). The server learns only one of the two
(never both).

A Bloom filter lookup involves k bit positions (k is the number of underlying
Bloom filter hash functions). For each new level it traverses, the server needs
to know the k associated Bloom filter bit positions to retrieve, constituting
this level’s query. For the first level, these are provided by the client. For each
successive level, the server will get this information by incrementally decrypting
portions of a client-provided “query object” data structure.

Illustrated in Figure 2 (right), the “query object” is composed of logn levels
and is traversed by the server top-down synchronized with the traditional ORAM
traversal. The query object allows the server to progress in its database traversal
without learning anything.

Each level in the query object (with the exception of the root), contains
two nodes: a “finished” node and an “active” node. Each node contains the k
positions defining the current level Bloom filter query. The nodes also contain a
“keying” set of 2k elements.4

After performing the Bloom filter lookup, the server will be able to decrypt
one of these elements (only). Once decrypted, this element contains a key to
decrypt one of the query object’s next level two nodes; it also contains the
identifier for a current level item to return to the client.5

In effect this tells the server where to look next in the query object—i.e.,
which of the query object’s next level two nodes (“finished” or “active”) to
proceed with. This guides the server obliviously down either the “finished” or
the “active” path, as follows:

– If the current level contains the sought-after item, the server’s work is in fact
done. However, the server cannot be made aware of this. Hence, it is made
to continue its traversal down the ORAM database, via a sequence of fake
queries. The “finished” node of the next query object level allows the server
to do just that, by providing the traversal information down the “active”
path.

– If, however, the current level does not contain the sought-after item, the
server must be enabled to further query “real” data in its traversal down the
ORAM database—it will thus receive access to “active” node of the next
query object level.

To prevent the server from decrypting more than one element from a node’s
“keying” set, a special encryption setup is deployed. Each of the 2k elements of
the “keying” set is encrypted with a special query object element key (QOEK),

4 After encryption, these elements are sent in a random order to prevent the server
from learning any information.

5 To prevent leaks, the server will return one item for each level, since we do not want
to reveal when and where we found the sought-after real item.

27

only one of which the server will be able to reconstruct correctly after its Bloom
filter query.

More specifically, for a Bloom filter lookup resulting in k bit representations
(i.e., biti is the representation of the bit at position i – either Ti or Fi

6), the
QOEK is defined as QOEK = Hash(bit1 | bit2 | bit3 | ... | bitk).

The encryption setup of the “keying” set ensures that this key decrypts
exactly one of its elements. The element corresponding to a Bloom filter “hit”
(the sought-after element was found at this level, i.e., all the underlying Bloom
filter bits are set to 1) leads down the “finished” path, i.e., the element that
QOEK decrypts now, leads down the “finished” path in the query object’s next
level.

5 Efficient Construction
We now present an efficient construction, with only O(log n) client storage,
O(log n) per-query online message size, O(log2 n log logn) amortized commu-
nication, and still only O(1) round trips. We reduce the size of the query object
of Section 4 from 2k logn to just k logn.

Themain insight is to allow compression of the 2k decryption key possibilities
into only k + 1 possibilities. This is achieved by representing the Bloom filter
bits and their combination in a commutative format. By allowing the decryption
key pieces stored in the Bloom filter (described in the previous section) to be
added together, rather than concatenated, the client only has to account for k+1
different outcomes at each level.

To this end, we start by first establishing a secret level-instance-specific token
v = Hash(sk | level | gen), not known to the server. In the Bloom filter, a bit
set to 1 at position pos is represented as Tpos = Hash(sk | level | gen | pos); a
bit set to 0 is represented as Fpos = Tpos + v mod 2c0 (Figure 3), where c0 is a
security parameter. In the following we will continue to operate in Z2c0 . We also
assume that Hash(·) operates in Z2c0 .

Now, the query object encryption key (QOEK) is generated by combining
(adding) values using modular arithmetic, instead of concatenation as in the
strawman solution. This allows the client to only account for k+ 1 possibilities,
each key corresponding to the number of times v might show up among the
selected Bloom filter positions.

The server sums together the values found in the Bloom filter, and performs
a hash, yielding, e.g., Hash(bit1 + bit2 . . . + bitk mod 2c0) as the QOEK. The
commutativity of modular addition means each permutation of bits set to 0 and
bits set to 1 in a given Bloom filter yields the same key. A successful Bloom
filter lookup occurs in the case that the QOEK is Hash(Tpos0 +Tpos1 + ...+Tposk

mod 2c0), which unlocks the edge from the “active” to the “finished” path.
Further, each of the k values from Hash(Tpos0+Tpos1+...+Tposk+v mod 2c0)

through Hash(Tpos0 + Tpos1 + ... + Tposk + kv mod 2c0)—the result of a failed
Bloom filter lookup (the server does not know they are failures)—unlocks an

6 Recall that biti does not reveal to the server anything about the actual underlying
Bloom filter bit.

28

F0 = T0 + v
F2 = T2 + v
F3 = T3 + v
F4 = T4 + v

Bloom filter, for generation gen
of level (stored on server)

T1 = H(sk | level | gen | 1)

T5 = H(sk | level | gen | 5)

Query object decryption keys
for Bloom filter lookup (x, y, z)

key0: all True = H(Tx + Ty + Tz)

key1: one False = H(Fx + Ty + Tz)
 = H(Tx + Fy + Tz)
 = H(Tx + Ty + Fz)
 = H(Tx + Ty + Tz + v)
key2: two False positions

 = H(Tx + Ty + Tz + 2v)

Fig. 3. Left: Bloom filter format. A bit set to 1 in the Bloom filter is represented
by a hash of the position and current level key; a bit set to 0 is represented by the
same value, plus the secret value v. Right: decryption keys used with the query object.
The server obtains the decryption key for a given query stage by hashing together the
specified Bloom filter results. Since there are k hash functions used in a Bloom filter
check, the client includes in the query object an edge corresponding to each of the k+1
possible keys.

edge in the query object that results in continuing on the current (“finished”
or “active”) path (Figure 2). Figure 4 provides a summary of the query object
format.

5.1 Obliviously building the Bloom filter and levels

This section describes how to construct the Bloom filter without revealing to the
server which Bloom filter positions correspond to which items. Further, it shows
how to obliviously scramble the items as a level is constructed. Both processes
are mostly non-interactive (only a constant small number of round trips).

In the Bloom filter construction, the key privacy requirement is that the
server is unable to learn ahead of time any correlation between Bloom filter po-
sitions and data items. Constructing a new level in a BF-based ORAM requires
first randomly and obliviously permuting all the items, renaming them according
to the new level hash function, and introducing a fake item for each (again, obliv-
iously, and using the appropriate hash-function defined name). Constructing the
Bloom filter requires first scanning the new set of items, building an encrypted
list of positions that will be need to set, and then obliviously rearranging this
encrypted list into the appropriately-sized segments of the resulting encrypted
Bloom filter. The result is a pristine new level, generated using a deterministic
read and write pattern (independent of the contents or history).

Further, note that we differ from previous work in that we store decryption
keys in the Bloom filter, instead of single encrypted bits. Recall that these com-
ponents are computed on the client by a secure keyed hash of the position, and
added to the value v if this position is intended to represent a bit value of 0.

The other main difference from existing work is that [14] assume a significant
amount of temporary client storage, which is not suitable in our model. To
avoid this requirement we propose to use two passes of an O(n log2 n) oblivious
randomized shell sort from [8].

29

– Level 1 active node:
• Bloom filter lookup index positions L1pos1 . . . L1posk (integer values)
• the client computes, but does not send:

∗ keyL1, success = Hash(TL1pos1
+ TL1pos2

+ ...+ TL1posk
mod 2c0)

∗ keyL1,1 = Hash(TL1pos1
+ TL1pos2

+ ... + TL1posk
+ v mod 2c0)

∗ keyL1,k = Hash(TL1pos1
+ TL1pos2

+ ... + TL1posk
+ kv mod 2c0)

• included in a random order:
∗ EkeyL1, success

(L1 active data ID, and key2F—key for L2 finished node)

∗ EkeyL1,1
(L1 fake data ID and key2R—key for L2 active node)

∗ EkeyL1,k
(L1 fake data ID and key2R—key for L2 active node)

– Both the L2 active and the L2 finished nodes, in a random order:

• L2 real node, encrypted with key2R:

∗ Bloom filter lookup index positions L2pos1 . . . L2posk
∗ the client computes, but does not send:

· key success = Hash(TL2pos1
+ TL2pos2

+ ...+ TL2posk
mod 2c0)

· key1 = Hash(TL2pos1
+ TL2pos2

+ ...+ TL2posk
+ v mod 2c0)

· keyk = Hash(TL2pos1
+ TL2pos2

+ ...+ TL2posk
+ kv mod 2c0)

∗ included in a random order:
· E success (L2 real data ID, and key for L3 finished node)
· Ekey1

(L2 finished data ID and key for L3 active node)
· Ekeyk

(L2 finished data ID and key for L3 active node)

• L2 finished node, encrypted with key2F:

∗ k random Bloom filter lookup index positions L2pos1 . . . L2posk
∗ the client computes, but does not send:

· key0 = Hash(TL2pos1
+ TL2pos2

+ ... + TL2posk
mod 2c0)

· key1 = Hash(TL2pos1
+ TL2pos2

+ ...+ TL2posk
+ v mod 2c0)

· keyk = Hash(TL2pos1
+ TL2pos2

+ ...+ TL2posk
+ kv mod 2c0)

∗ included in a random order:
· Ekey0

(L2 fake data ID and key for L3 random node)
· Ekey1

(L2 fake data ID and key for L3 random node)
· Ekeyk

(L2 fake data ID and key for L3 random node)

– Both the L3 active and the L3 finished nodes, in a random order etc.
– And so forth.

Fig. 4. Query Object Format. For each level, the query object is composed of two
possible nodes (with the exception of the root/top which only has one node), and is
constructed thusly. This set constitutes a total of 2 log n nodes (containing associated
Bloom filter requests), and 2k log n edges. Of these nodes, the server will be able to
unlock log n. Each of the unlocked ones provides k edges, of which the server will be
able to unlock exactly one. This contains the decryption key for a single node at the
next level, as well as the data item ID to retrieve etc.

This shell sort will be applied to a list produced by the client as follows. The
client starts by producing a list of (encrypted) positions that need to be set in the
Bloom filter. The client will then also add a number of “segment delimiters” to
this list. These delimiters will aid later. One delimiter is issued per segment (e.g.,
32 adjacent positions) in the Bloom filter. These delimiters will later provide an
excuse to output something for positions that are not to be set, to prevent the
server from learning which bits are set.

The client then performs a first sorting pass, outputting the list sorted by
positions, with the delimiters interspersed (delimiters include information that
allows their sorting). This sorted list is then scanned, and, for each of its non-
delimiter elements, a fake 32 bit value is issued. For each encountered segment
delimiter however, a 32 bit (encrypted) segment of the Bloom filter is output.

30

This segment’s bits are set correctly according to the recently seen (since the
last segment’s delimiter encounter) encrypted set positions.

This simple mechanism prevents the server from learning how many bits are
set in each segment. To complete the process, a second oblivious sort pass then
moves the fake 32 bit values to the end of this new list, where they can be safely
removed by the server.

Finally, the encrypted bit-storing Bloom filter needs to be converted into a
key-storing Bloom filter in one final step: in a single non-oblivious pass, we read
each bit and output either Tpos for 1s and Fpos for 0s (where pos is the current
bit’s position in the Bloom filter). Note this multiplies the size of the remotely
stored object by the key size.

We do not need tomodify the level construction from [14], except in replacing
their storage-accelerated merge sort with the storage-free randomized shell sort.
Non-interactivity of sort. It is worth noting that the shell sort, like the
storage-accelerated merge sort, can be implemented in only a handful of round
trips. Each step in both sorting algorithms requires reading two items from
the server, and writing them back, possibly swapped (which is an interactive
process). However, the item request pattern (of both sorting algorithms) is known
ahead of time to the server, so it can send data to the client ahead of time,
without waiting for the request from the client (likewise, the client can issue
requests for future items far in advance of the time they will be used). This
process is trivial in the merge sort: the access pattern consists of simultaneous
scans of two (or sometimes up to

√
n) arrays; the server streams these to the

client. This process of non-interactive streaming of sort data to the client is not
as trivial in the randomized shell sort. Once the random seed is chosen, however,
both the client and server know in advance the order the items will be requested
in. The server can run a simulation of this sort, for example, to know which
items the client needs to read next, and avoid waiting for network round-trips
throughout the construction of the level.

6 Security
SR-ORAM directly inherits the privacy properties of the server-side ORAM
database traversal, as well as the integrity defenses from the base ORAM con-
struction in [14]. We must now establish the privacy of the query object con-
struction, as well as the new Bloom filter construction.

We establish privacy of the query object construction in Theorem 1. The
server learns only one set of Bloom filter positions and one item label to retrieve
at each level for a given query. In other words, the server sees only what it would
see in an equivalent, interactive instantiation.

Lemma 1. The server gains no non-negligible advantage at guessing v = Hash
(sk | level | gen) from observing (i) the Bloom filter contents or (ii) the hashes
included in the query object.

Lemma 2. For a constant u > 1, a Bloom filter using k hashes, with the size-
to-contained items ratio of k × u, has a false positive rate bounded by u−k.

31

Lemma 3. For a security parameter c1, a constant u > 1, and a number of
logn lookups on Bloom filters with size-to-contained items ratios of k×u, where
k = c1 + logu logn hashes, the overall false positive rate is negligible in c1.

Theorem 1 The server can only unlock one path down the query object, and all
paths appear identical to the server.

Theorem 2 The server learns nothing from the Bloom filter construction.

Theorem 3 An honest but curious adversary gains no non-negligible advantage
at guessing the client access pattern by observing the sequence of requests.

Theorem 4 An actively malicious adversary has no advantage over the honest
but curious adversary at violating query privacy.

7 Analysis
Following from the construction in Section 5, the query object size is O(log n).
This is transmitted to the server, which performs k logn decryption attempts (of
which logn are successful) before sending logn blocks back to the client. This
yields the online cost of O(log n).

The amortized offline cost per query considers the time required to build
each level. A level sized z is built twice every z queries. Shuffling these items
using a randomized shell sort costs O(z log z). Since, as shown in Lemma 3,
the Bloom filter is sized z log log n, and it must also be shuffled, the Bloom filter
construction cost of O(z log z log logn) dominates asymptotically. Summing over
the i levels sized z = 4i, and amortizing over the queries for each level between
rebuilding, we find a total amortized offline cost of O(log2 n log logn)

A query requires a single online round trip: the client generates a query
object, sends it to the server, and receives a response containing the answer.
The offline shuffle process requires several round trips (as discussed in Section
5.1), but this cost is amortized over a period corresponding to many queries, so
that the average number of round trips per query is still well under 2.

8 Acknowledgements
We would like to thank our anonymous reviewers, who provided helpful com-
ments about the manuscript.

9 Conclusion
We introduced a new single-round-trip ORAM. We analyzed its security guar-
antees and demonstrated its utility. While non-interactivity is of significant the-
oretic interest in itself, we also showed this to be the most efficient storage-free-
client ORAM to date for today’s Internet-scale network latencies.

32

References
1. M. Ajtai, J. Komlos, and E. Szemeredi. An O(n log n) sorting network. In Pro-

ceedings of the 25th ACM Symposium on Theory of Computing, pages 1–9, 1983.
2. Dimitri Asonov. Querying Databases Privately: A New Approach to Private Infor-

mation Retrieval. Springer Verlag, 2004.
3. B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun.

ACM, 13(7):422–426, 1970.
4. Dan Boneh, David Maziéres, and Raluca Ada Popa. Remote oblivious storage:

Making Oblivious RAM practical. Technical report, MIT, 2011. MIT-CSAIL-TR-
2011-018 March 30, 2011.

5. W. Gasarch. A WebPage on Private Information Retrieval. Online at http:

//www.cs.umd.edu/~gasarch/pir/.
6. Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on

Oblivious RAMs. Journal of the ACM, 45:431–473, May 1996.
7. Michael Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto Tamas-

sia. Oblivious RAM simulation with efficient worst-case access overhead. In ACM
Cloud Computing Security Workshop at CCS (CCSW), 2011.

8. Michael T. Goodrich. Randomized shellsort: A simple oblivious sorting algorithm.
In Proceedings 21st ACM-SIAM Symposium on Discrete Algorithms (SODA), 2010.

9. IBM. IBM 4764 PCI-X Cryptographic Coprocessor (PCIXCC). Online at http:

//www-03.ibm.com/security/cryptocards/pcixcc/overview.shtml, 2006.
10. Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)security of hash-

based Oblivious RAM and a new balancing scheme. Cryptology ePrint Archive,
Report 2011/327, 2011.

11. Benny Pinkas and Tzachy Reinman. Oblivious RAM revisited. In CRYPTO, pages
502–519, 2010.

12. Emil Stefanov, Elaine Shi, and Dawn Song. Towards Practical Oblivious RAM. In
To Appear in Proceedings of the Network and Distributed System Security Sympo-
sium (NDSS), 2012.

13. Shuhong Wang, Xuhua Ding, Robert H. Deng, and Feng Bao. Private information
retrieval using trusted hardware. In Proceedings of the European Symposium on
Research in Computer Security ESORICS, pages 49–64, 2006.

14. Peter Williams, Radu Sion, and Bogdan Carbunar. Building castles out of mud:
practical access pattern privacy and correctness on untrusted storage. In ACM
Conference on Computer and Communications Security, pages 139–148, 2008.

33

Extended Abstract: Cipher Techniques to
Protect Anonymized Mobility Traces from

Privacy Attacks

Chris Y. T. Ma�, David K. Y. Yau♦�, Nung Kwan Yip♦, and Nageswara Rao‡

� Advanced Digital Sciences Center, Illinois at Singapore
♦ Purdue University, West Lafayette, IN, USA
‡ Oak Ridge National Laboratory, TN, USA

Abstract. We study the problem of privacy protection of openly pub-
lished mobility traces of people and other real-world entities, beyond
standard protection techniques of anonymization and spatial/temporal
cloaking. It has been shown that an adversary, armed with side informa-
tion learned from real-world channels, could use powerful Bayesian infer-
ence methods to compromise the standard protection significantly [1]. In
this paper, we argue that a major challenge of more effective protection
is the need to balance between secrecy for protection and transparency
for functional usefulness of the protected traces. We present “classical ci-
pher” techniques applied to the spatial and/or temporal domains to give
a useful tradeoff between the two antagonistic requirements. Driven by
real-world mobility traces, diverse simulation results illustrate the per-
formance of the proposed location cipher and time-zero cipher. We show
that these ciphers can mitigate the privacy problem, and the ciphers
work best when combined.

1 Introduction

Mobility traces of people, vehicles, and other real-world entities are valuable
for numerous purposes. In marketing, knowing the places likely to be visited by
individuals in sequence would allowmarketers to plan their advertising strategies
and custom design messages sent to say users’ smartphones to sell products or
services. In the research community, the usefulness of mobility traces has led to
their widespread publication for general use by researchers and system designers.

The public availability of information about individuals has led to natural
privacy concerns, even though the true identities of participants in traces are
made anonymous. The concerns arise because mobility traces do not exist in
a vacuum. Rather, they give information about individuals who can be openly
observed in public places and who engage in diverse communication channels –
everyday conservations, written articles, twitters, and blogs – to reveal snapshots
of their whereabouts. Armed with such “side information” about the locations
of participants (of known identities) in a mobility trace, a curious individual,
whom we call an “adversary,” could infer the extended location information of
one or more of these participants.

In view of the privacy problem, publishers of mobility traces have resorted
to standard “cloaking” techniques which introduce random noise in the spatial

34

and/or temporal dimensions to reduce the precision of recorded data points and
hence their linkability to real-world side information, which is itself oftentimes
noisy due to imperfect references and/or learning. It turns out, however, that
common noise models are not quite sufficient to confound the adversary [1]. This
is because, faced with the noise, an intelligent adversary could employ powerful
Bayesian inference techniques to arrive at high confidence conclusions neverthe-
less, much like robust sensing and statistical estimation under uncertainty.

For strong protection of secrets (in our case, the true identities of anonymous
participants in a trace), standard cryptography based on one-way functions could
be used [2], [3]. For mobility traces, however, privacy must be protected against
attacks by even a legitimate user of the traces. Hence, on the one hand, the user
may not be given a key to unlock the secret. On the other hand, the unavailability
of the key implies that the traces in “encrypted” form must preserve sufficient
original information to remain useful to the user. The last requirement rules out
strong cryptography as a protection strategy.

In this paper, we tackle the problem of balancing between secrecy for pri-
vacy protection and transparency for functional effectiveness by introducing a
prudently chosen puzzle (or a “cipher”) to encrypt (or “transform”) the trace
beyond the introduction of commonly applied statistical noise. The chosen ci-
pher serves one key purpose based on important features of the mobility problem
domain – it aims to reduce the linkability between recorded trace data points
and any side information obtained by the adversary.

We present a set of specific proposed ciphers that realizes a spectrum of
tradeoff between the strength of privacy protection and the range of applicability
of the transformed traces in different concrete problems. We classify a cipher
according to whether or not it randomizes (A) the identities of recorded locations
(if so, we call the cipher a location cipher) and (B) the absolute time of recorded
sampling points (if so, we call the cipher a time-zero cipher). Notice that the
location cipher A can be used either by itself, or in combination with cipher B.

Our contributions are as follows. (i) We propose a set of protection ciphers
for the privacy of mobility traces. Importantly, these ciphers preserve informa-
tion needed by various real-world applications by design, and hence can increase
privacy without compromising usefulness. (ii) We design adversary strategies
that aim to solve the ciphers in conjunction with Bayesian techniques to infer a
victim’s trace under noise, while considering all available information in diverse
forms. (iii) Our quantitative results show that applied individually, the ciphers
A and B can clearly mitigate the privacy attack.

2 Problem Definition

We assume that a set of traces, each recording intermittently the time and corre-
sponding location of a mobile node, are published to the public. We call a mobile
node that is included in the published trace set a participant in the trace set.
We assume that each trace entry is given in the format of {id, time, location},
where id is a random and unique ID replacing consistently the true identity of
the mobile node, time is the sampling time of the node’s location, and location
is that recorded location. We assume that spatial cloaking of the location infor-
mation has been applied to the traces before publication, for increased privacy

35

protection. Specifically, the traced area is divided into a grid of cells, each of
size S × S, and location is published as the cell ID instead of a more precise
point within the cell. Further to the spatial cloaking, for privacy protection, we
study two cipher techniques that may be applied to transform the original traces
before publication. Details of these techniques are presented in Section 4.

In addition, we assume that there is an adversary whose purpose is to learn
the true identities of one or more participants in the trace set. To assist this
endeavor, the adversary has learned snapshots, in the form of {time, location}
pairs (where time and location are possibly noisy real-world information), of the
whereabouts of each potential victim who is a trace participant. In addition, the
adversary is equipped with background (e.g., common sense) knowledge about
the world, such as the geography of the traced area, the popularity of different
locations in this area, and the general mobility patterns and preferences of the
participants.

3 Related Work

Data privacy is well studied in the database literature [4], [5]. Sweeney [4] pro-
poses a protection model named k-anonymity, as well as a set of accompanying
policies for the privacy protection. When k-anonymity is satisfied, each individ-
ual is indistinguishable from k − 1 other individuals. Xiao and Tao [5] propose
a generalization principle of m-invariance to effectively limit the risk of privacy
disclosure in data re-publications, given the many potential correlations among
various snapshots of each data entry in subsequent publications that could be
used to derive sensitive information.

Privacy protection ofmobile nodes in location-based services has also received
attention [6], [7], [8]. One proposed approach is to reduce the spatial/temporal
granularity of the location information made available to the service provider,
while achieving satisfactory service effectiveness [6]. Hoh et al. [7] devise a pro-
tection strategy to release user data only when certain privacy constraints are
met. Meyerowitz and Choudhury [8] suggest sending fake requests with the real
ones to reduce the ability of an eavesdropper to trace a mobile node over time.

Various approaches have also been published in the literature to address the
privacy concern in publishing geo-located datasets. They include data perturba-
tion, and data generalization or granularity reduction. Nergiz et al. [9] extend
the notion of k-anonymity to trajectories, and propose a generalization-based ap-
proach to publish trajectories for enhanced privacy protection. Abul et al. [10]
propose the use of space translation to achieve (k, δ)-anonymity for moving ob-
ject databases, where δ is the radius of a cylindrical volume representing the
trajectory imprecision.

The solutions proposed in these papers do not suit our purposes because (1)
some of them publish only summary statistical information about the traces [9],
(2) some reduce the precision of the trace information solely for the purpose of
making traces indistinguishable from each other but without regard for the appli-
cation requirements [6], [7], [10], and (3) some do not preserve sufficient fidelity
of information about the movements of individual nodes (e.g., they may reorder
events, or introduce bogus events) [8]. In particular, nodal contact information

36

� �
���	���������������	���� ���������������������������

��	����
6��'�'���������������'�����7��8�
����9� !����������'�

&�9�'�;���9�����������������
���'��8���7��8�����������9����
�������������������'�

�����	�����
	�����

&�<����������������������
�'�����)���9����'���9���������
�'�����

&�<�����������������������>
���������9����������'�������������
�������������'�����

�����	�����
�		�����

�����������������
�99������'���������������
9���'����9���'��������������
������'�

?����99������'���'����78��
�8���������������''����������������������
#���'����9���'�������''��������

�������	����
&����������9����'����������
�����'�������������)����������
�����;���'��������'�(��������

&����������9����'����������
�����'�������������)����������
�����;���'��������'�(��������

���	��	����
��������

Table 1. Overview summary of and comparison between the proposed protection ci-
phers.

	

	�	�

	�	�

	�	�

	�	�

	��

	���

	���

� � � � � � 8 � � ' � � 9 7 � ; � � � (� @ A < B

!�
��

	�"
��

��
�#

$�
��

�		��

	
	�	�
	�	�
	�	�
	�	�

	��
	���
	���
	���
	���

� �� �� �
 �� ��
� �� �
 �	
�

��
�

��
�

��
�

��

��
�

��
�

��
�

�	
�

��

��
�

!�
��

	�"
��

��
�$

��
��	

%���
(a) English text (b) 235 San Francisco cab locations

Fig. 1. Comparison of symbol frequency between popularity of San Francisco locations for cabs and
frequency of letters in general English text.

is lost in the published traces, rendering them unsuitable for the applications
discussed in Sections 1 and 4.

4 Protection Measures

Apart from anonymizing the true identities of participants in mobility traces,
transformation techniques can be applied to other attributes of the traces. In
this paper, we focus on classical cipher solutions. Specifically, we will study the
location cipher and the time-zero cipher mentioned in Section 1. Definitions
of these ciphers will be presented below, but an overview summary of their
properties is given in Table 1.

4.1 Location cipher (A)

In this technique, each real-world location in the original trace is replaced con-
sistently by a unique and random ID in the published traces. The random IDs
are not correlated in any way with the real locations. The IDs can be generated
by using a hash or cipher function on the locations’ geographical coordinates.

With encrypted locations, the adversary cannot attack by directly comparing
the side information snapshots with the published traces, and mobility inference
is not possible since the geography of the locations is lost. To overcome the
problem, the adversary would need to solve the location cipher first, before
further attack actions. Substitution ciphers have been used to encrypt English

37

text, where they could be attacked by say frequency analysis of different letters in
the alphabet. Similar attacks could be launched in our problem domain, but they
face significantly increased challenges. First, there are far more possible locations
than letters in the English alphabet. Second, it is less likely for an adversary to
have fine-grained distinction between cells based on popularity. Indeed, as shown
in Fig. 1 for cabs in San Francisco, many real-world locations would have very
similar popularity. Unlike letters in the English alphabet, with the exception of
a few very popular ones, most locations are almost indistinguishable from each
other based on frequency analysis. Hence, we expect that our adversary will have
significantly lower confidence in solving the location cipher.

4.2 Time-zero cipher (B)

In this technique, the sampling times of locations in a trace are not published in
absolute values, but they are all relative to a start time, t0, whose true value is
not released. For example, if a location sample is taken at 4pm and the unknown
start time is 2pm on the same day, then the published sample time will be the
(t0 + 2)-th hour instead of 4pm.

Time-zero cipher is solved if the absolute time of any of the recorded sam-
plings is revealed, so that the adversary can determine the time shift applied.
Although the adversary cannot learn absolute time directly from the traces, she
may still use sub-sequence matching [11] to infer the trace corresponding to a
victim, especially if she has collected a long enough sequence of the side infor-
mation snapshots. In this method, the adversary treats the collected snapshots
as a “sub-sequence” of symbols and looks for its occurrence in each trace treated
as a complete sequence.

5 Adversary Strategy

In this section, we detail the adversary’s attack strategy. We assume that the
trace set has been protected by (i) the location cipher only, (ii) the time-zero
cipher only, or (iii) both the location and time-zero ciphers. The adversary knows
which of the above three situations she is facing.

5.1 Attacking the location cipher

To solve the location cipher, we assume that the adversary has general world
knowledge about the relative popularity of locations in the traced area (cor-
responding to an order-0 Markov model of the mobility) and the patterns of
movements between adjacent locations (order-n Markov model), which captures
the physical constraints of the movements as well as preferences of nodes in
moving between locations.

In the attack, the adversary first computes, from the published trace set, the
statistics of location popularity and the transition probabilities from one location
to the next. After that, she compares the computed statistics from the traces
with her general knowledge of the real-world statistics. The attack consists of
two steps and works as follows:

38

Frequency analysis of symbols (FA-0). According to her general world
knowledge captured in the order-0 Markov model, the adversary ranks the real-
world locations in decreasing order of popularity. According to what she com-
putes from the trace sets, the adversary ranks the randomized locations in de-
creasing order of popularity. For each randomized location, the adversary assigns
the correspondingly ranked real-world location as a tentative solution for that
randomized location. Notice that we cannot have more randomized locations
than real-world locations in the order-0 Markov model. Hence, every random-
ized location must be assigned a (possibly tentative) solution.

Frequency analysis of sequences up to order-n (FA-n). Sometimes, the
tentative solutions assigned in the previous step are not reliable as the successive
randomized locations (rank-ordered by in the above step) differ little by their
popularity. In this case, we put randomized locations with similar popularity
into an equivalence set L, and their tentative solutions into a corresponding
equivalence set C for further evaluations. For each randomized location i ∈ L, we
call C its candidate solution set, and each solution j ∈ C is assigned a probability,
qij , representing the likelihood for j to be the solution of i. We define Qi �
{(j, qij) : j ∈ C} as the likelihood distribution for the solutions of i. To refine the
solutions for locations in the same equivalence set, we use higher-order (up to
order-n) Markov knowledge of the real-world movement and the corresponding
computed statistics from the trace set.

Notice that increasingly higher-order Markov knowledge could be used re-
cursively to refine the solutions in principle. In practice, however, such detailed
information may not be beneficial to the adversary, as it is often noisy and rep-
resents mainly the average information about all the mobile nodes instead of
individual ones.

5.2 Identifying the victim’s trace using Bayesian inference

In this part of the attack, the goal of the adversary is to identify in some opti-
mal fashion the complete path history of a victim, given some snapshots of the
victim. We divide the discussion into cases according to whether the times of
the snapshots are known to coincide with the sampling times in the traces, and
whether or not the traces have been protected with the location cipher and/or
time-zero cipher.

Without any cipher This is the case studied in [1] in which Bayesian inference
is used to overcome the noise in the spatial domain of the snapshots and/or
the traces, and return a robust answer of the victim’s trace to the adversary.
In particular, it is shown in [1] that the maximum likelihood estimator
(MLE) method is a robust and effective attack strategy, when information is
noisy but the adversary could have some estimation about the model of the noise
perturbing the traces and/or snapshots.

Considerations for the location cipher (A) When the location cipher is
used, the structure and the equations of the Bayesian inference are kept. How-
ever, as mentioned before, each randomized location in a published trace is in

39

Cells visited # nodes Time
SF cabs 3997 536 17/05/2008 - 10/06/2008

Table 2. Parameters of the real traces.

general resolved by the cipher only up to a likelihood distribution (Section 5.1).
To account for this uncertainty, we generalize the compatibility value between a
snapshot and a trace to be the expectation of compatibility values over candidate
solutions of relevant randomized locations recorded in the trace.

Note that in the attack, the Bayesian inferencing makes use of all available
snapshots, whether they are collected at popular locations to which relevant en-
crypted locations can be resolved with high confidence, or at unpopular locations
to which the encrypted locations can only be resolved to uncertain likelihood dis-
tributions.

Considerations for time-zero cipher When the time-zero cipher is used, the
adversary uses sub-sequence matching [11] as a basis of her attack strategy.

6 Performance Evaluation

In this section, we evaluate the effectiveness of the protection ciphers by quantify-
ing the effectiveness of the privacy attack by the adversary. The results reported
are averages for simulation experiments each repeated 1,000 times using the San
Francisco cab traces [12]. Parameters of these traces are listed in Table 2.

We study the performance of the privacy attack in Section 5.2. If the traces
are protected with the location cipher, we assume that the adversary has already
deciphered the random location IDs, even though the cipher attack may not be
complete or correct. We assume that the adversary then uses the maximum
likelihood estimator (MLE) inference strategy. We study the special case
where the snapshots of the victim collected by the adversary coincide with the
sampling times of the traces.

We quantify the performance of the strategies with the following metrics, (i)
Correct conclusion percentage. A conclusion is correct if the victim is uniquely
identified by the adversary according to the criterion of highest compatibility
metric; (ii) Incorrect conclusion percentage. A conclusion is incorrect when the
victim is not among the set of candidates having the highest compatibilitymetric.

In the simulations, we assume that the spatial granularity is of 0.01◦ in lati-
tude and longitude, the snapshots are perturbed with zero-mean Gaussian noise
with σ = 5, and a randomized/real-world location is unpopular if its popularity
is less than 0.01% of the total length of visit duration.

6.1 Comparison of attack performance between various ciphers (A,
B, A + B)

Fig. 2 compares the performance of the attack strategy used by the adversary
when the anonymized traces use different approaches for privacy protection,
namely the location cipher and/or the time-zero cipher for the cab traces. We
assume that the adversary only has order-0 and order-1 Markovmodel knowledge
about the movement of the mobile nodes. The curve with the label baseline in

40

	

�	

�	

�	

�	

�		

	 �	 �	 �	

%�
��

��
	��

��
��

$�
��

��
�&

'$��������*	���+�����	���-���������"����.

����'��
C
�
C�D��

����'��

�

C

C�D��
	

�	
�	
�	
�	

�		
��	

	 �	 �	 �	

/�
��

��
��

	��
��

��
$�

��
��

�&

'$��������*	���+�����	���-���������"����.

����'�� C � C�D��

����'��

�

C

C�D��

(a) Fraction of correct conclusions (b) Fraction of incorrect conclusions

Fig. 2. Performance of attack when traces are protected with different ciphers. S = 1 km, San
Francisco cab traces, zero-mean Gaussian noise with σ = 5, sampling interval of eight minutes.

	

�	

�	

�	

�	

�		

	 �	 �	 �	

%�
��

��
	��

��
��

$�
��

��
�&

'$��������*	���+�����	���-���������"����.

EC>	 EC>� EC>�

EC>�

EC>	

EC>�

	
�	
�	
�	
�	

�		
��	

	 �	 �	 �	

/�
��

��
��

	��
��

��
$�

��
��

�&

'$��������*	���+�����	���-���������"����.

EC>	 EC>� EC>�

EC>�

EC>	

EC>�

(a) Fraction of correct conclusions (b) Fraction of incorrect conclusions

Fig. 3. Performance of attack when the adversary has different details of world knowledge about
the mobility. Traces are protected with the location cipher. S = 1 km, San Francisco cab traces,
zero-mean Gaussian noise with σ = 5, sampling intervals of eight minutes.

the two figures corresponds to the performance of the privacy attack studied
in [1] when the traces are not protected with any ciphers.

Summary of main results. (i) The location cipher A clearly mitigates the
privacy attack in all the experiments (Fig. 2), compared with the baseline of no
cipher protection. (ii) In general, the time-zero cipher B is more effective than A.
This is observed in Fig. 2 for as many as 16 side-information snapshots. However,
since the cipher B attack is based on subsequence matching, it can benefit a lot
from a longer sequence of snapshots. (iii) The combined A+B cipher performs
the best: The attacker fails to identify the victim at all with up to 8 pieces of
side information, and her accuracy drops from 80% to 15% for the cab traces
(Fig. 2(a)). This shows that the A+B cipher offers highly effective protection in
practical attack scenarios.

6.2 Comparison of attack performance with different order of
general world knowledge

Given that the traces are location-cipher protected, we further evaluate the per-
formance of the attack strategy when the adversary has different details of knowl-
edge about the topology of the traced area and the mobility preferences of the
nodes.

Fig. 3 shows the results when the adversary has different details of knowl-
edge. In the figure, FA-0 means that the adversary only knows the popularity of
the locations but not the order-1 mobility model; FA-1 means that the adver-
sary also knows the order-1 Markov model; and FA-2 means that the adversary
also knows the order-2 Markov model. We can observe from the figure that as
the adversary gains order-1 Markov model knowledge, the attack becomes more
effective. However, using additional knowledge from the order-2 Markov model,
the effectiveness of the attack is reduced (Fig. 3).

41

7 Conclusion

We have presented a set of ciphers to protect the privacy of mobility traces
while retaining their usefulness for different applications. These ciphers can be
applied to the spatial dimension, temporal dimension, or both of them at the
same time. We have assumed an intelligent adversary, and studied how she can
exploit information in the traces, in general world knowledge, and in real-world
snapshots obtained about potential victims, to increase the effectiveness of her
attacks. We provide simulation results, driven by real-world mobility traces,
to demonstrate that the ciphers, applied individually or in combination, may
significantly increase the effectiveness of privacy protection, compared with, in
particular, the results in [1], where privacy protection is by standard cloaking of
spatial and temporal information in the original traces.

References

1. Ma, C.Y.T., Yau, D.K.Y., Yip, N.K., Rao, N.S.V.: Privacy Vulnerabilities of Pub-
lished Anonymous Mobility Traces. In: ACM MobiCom, Chicago, IL (September
2010)

2. : Data Encryption Standard. Federal Information Processing Standards Publica-
tion 46-1 (1977)

3. Jonsson, J., Kaliski, B.: Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1. RFC 3447, Internet Engineering Task
Force (February 2003)

4. Sweeney, L.: k-anonymity: a Model for Protecting Privacy. International Journal
on Uncertainty, Fuzziness and Knowledge-based Systems 10(5) (2002)

5. Xiao, X., Tao, Y.: M-invariance: Towards Privacy Preserving Re-publication of
Dynamic Datasets. In: ACM SIGMOD, Beijing, China (June 2007)

6. Gruteser, M., Grunwald, D.: Anonymous Usage of Location-Based Services through
Spatial and Temporal Cloaking. In: ACM MobiSys, San Francisco, CA (May 2003)

7. Hoh, B., Gruteser, M., Xiong, H., Alrabady, A.: Preserving Privacy in GPS Traces
via Uncertainty-Aware Path Cloaking. In: ACM CCS, Alexandria, VA (October
2007)

8. Meyerowitz, J., Choudhury, R.R.: Hiding Stars with Fireworks: Location Privacy
through Camouflage. In: ACM MobiCom, Beijing, China (September 2009)

9. Nergiz, M.E., Atzori, M., Saygin, Y., Guc, B.: Towards Trajectory Anonymization:
a Generalization-Based Approach. Transactions on Data Privacy 2(1) (2009)

10. Abul, O., Bonchi, F., Nanni, M.: Never Walk Alone: Uncertainty for Anonymity
in Moving Objects Database. In: IEEE ICDE, Cancun, Mexico (April 2008)

11. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast Subsequence Matching
in Time-Series Databases. In: ACM SIGMOD, Minneapolis, MN (May 1994)

12. Piorkowski, M., Sarafijanovic-Djukic, N., Grossglauser, M.: CRAW-
DAD data set epfl/mobility (v. 2009-02-24). Downloaded from
http://crawdad.cs.dartmouth.edu/epfl/mobility (February 2009)

42

An Ad Hoc Group Signature Scheme for Accountable
and Anonymous Access to Outsourced Data

Wensheng Zhang and Chuang Wang

Department of Computer Science

Iowa state University, Ames, IA, USA

Email:{wzhang, chuangw}@iastate.edu

Abstract. This paper presents a group signature scheme called AdHocSign for

dynamically formed groups, to support accountable and anonymous access to

outsourced data. Each user is assigned a certain set of attributes and the secrets

associated with these attributes when joining the system; the access to outsourced

data is regulated by a logical expression of attribute which defines an ad hoc group

of authorized users. The proposed AdHocSign enables a user who is allowed to

access a piece of data to authenticate himself/herself to the host of the data using

its preloaded secrets and some auxiliary information provided by the host; no

extra secrets are needed to be distributed to the users when new access structures

are constructed or existing access structures are modified. The selfless-anonymity

and traceability of the AdHocSign scheme has been proved based on the hardness

assumption of the q-SDH and the Decisional Linear problems.

1 Introduction
With wide application of Internet, especially the increasing adoption of the cloud com-

puting paradigm, storing sensitive user data to un-trusted, remote hosts on Internet has

been popular. The outsourced sensitive data are often stored in an encrypted form to

protect the confidentiality from their hosts. To realize fine-grained control of accesses

to the encrypted data, attribute-based encryption schemes (ABE) [1,8,3] have been pro-

posed. Particularly, with the ciphertext-policy ABE scheme (CP-ABE) [3], each user

owns a set of attributes and a set of secrets derived from the attributes. When a piece

of encrypted data is outsourced to a host, the data is labeled with an access structure to

specify who are allowed to access the data; the access structure is expressed in attributes

and logical operations over the attributes. A user is allowed to access certain data if and

only if the attributes owned by the user satisfy the access structure of the data.

In addition to fine-grained access control, the ABE schemes also supports anonymity

as well as system dynamism and scalability. Specifically, a user can access the data that

he/she is authorized to access without exposing his/her identity to the data host; also,

when a new access structure is defined for certain encrypted data, there is no need to

distribute new attributes or secrets to users or change the attributes or secrets owned

already by users. The ABE schemes, however, do not provide accountability, which

is necessary to trace out misbehaving users and stop them from abusing the privacy

preservation features.

To provide user accountability while supporting access control and user anonymity,

the existing group signature schemes [2,5,7] may be applied in some simple scenarios.

43

Particularly, if an access structure is defined as only one attribute, i.e., who are allowed

to access a piece of data can always be specified as the set of users who own a certain

attribute, the group signature schemes can be applied as follows: For each attribute, all

users owning the attribute form a group. A group public key can be computed for the

group by a trusted authority. When a user is given this attribute, the trusted authority

computes a unique private key and gives it to the user. For a host hosting some data

that can only be accessed by users owning this attribute, it is given the public key of

the group. Based on the above key distribution, each user owning this attribute can

authenticate himself/herself to the data host without exposing his/her identity. When

needed, the authority is able to reveal the identify of authenticated user according to the

messages (i.e., signature) sent by the user during the authentication process.

If the access structure of the data is complex, however, applying the group signature

schemes may be inefficient or infeasible. Suppose the access structure for certain data is

a1∧a2∧(a3∨a4), meaning only users who own attribute a1, a2 and either a3 or a4, are

allowed to access the data. To apply the group signature scheme, an ad hoc group may

have to be formed to include all the users who are allowed to access the data according

to the above access structure.

We propose a new signature scheme, named AdHocSign, for ad hoc groups that are

defined dynamically according to access structures. The key ideas are as follows: (i)

Instead of distributing group private keys to the members of an ad hoc group when the

group is created (i.e., when a new access structure is defined), the new scheme pre-

loads some key materials to individual users when they join the system and are given

attributes. (ii) When certain data is posted to a host, the host is given certain auxiliary

information that is computed by a trusted authority according to the access structure of

the data. (iii) When a user needs to access a piece of data, it contacts the host of the data

to obtains the access structure of the data and the afore-mentioned auxiliary information

pre-loaded to the host by the authority. If the user’s attributes satisfy the access structure

(i.e., the user is a member of the ad hoc group defined by the access structure), the

user can compute his/her own private key for the ad hoc group based on the auxiliary

information and pre-loaded key materials, and authenticates himself/herself to the host.

The user does not expose his/her identity or ownership of attributes (unless the ad hoc

group is defined based on a single attribute or a conjunction of attributes) during the

authentication.

In the following, background and formal overview of the AdHocSign scheme are

presented in Section 2. Sections 3 and 4 elaborate the design and analysis of the AdHoc-

Sign scheme for conjunction-only access structures and for general access structures.

Section 5 summarizes related work and Section 6 concludes the paper.

2 Preliminaries

System Model We consider a distributed system composed of one or multiple data

storage sites (called data hosts), multiple users, and an authority trusted by all the users

and hosts. To facilitate access control to the data stored at the hosts, a set of attributes

are defined. Each user e has a unique identity number denoted as xe ∈ Zp, where Zp

is a finite field of p elements and p is a large prime number, and is assigned a set of

attributes denoted as {ae,1, · · · , ae,ne}.

44

When a piece of data is posted to a host, who are allowed to access the data is

specified as a logical expression containing attributes and conjunction (∧) or disjunc-

tion (∨) operators on the attributes. We call the logical expression an access structure.

Generally, an access structure T can be defined as

T = DT1 ∧ · · · ∧DTs, (1)

where

DTi = aT,i,1 ∨ · · · ∨ aT,i,si (2)

for each i = 1, · · · , s. For example, T = a1 ∧ (a2 ∨ a3) ∧ (a4 ∨ a5 ∨ a6) is an access

structure defined based on attributes a1, · · · , a6.

As an access structure can be defined on the fly when a piece of data is posted, the

group of users allowed to access the data is not predefined; hence, we call such a group

an ad hoc group and our proposed scheme is to provide a mechanism for members of

such a group to sign messages in an anonymous and accountable manner. To protect

the confidentiality of the data, we assume a certain encryption scheme, for example, the

CP-ABE scheme [3], is used to encrypt the data to prevent the host and unauthorized

users from decrypting the data.

To summarize, when a user in our system wants to access a piece of data, he/she

first authenticates himself/herself to the host of the data using our proposed ad hoc

group signature (AdHocSign) scheme. After the authentication succeeds, the data, in

the encrypted form, is returned to the user, who can decrypt the data using the ABE

schemes. To facilitate the authentication and data decryption, a user is assigned some

attributes and secrets associated with the attributes when he/she joins the system.

Bilinear Pairing Let G1 be a multiplicative cyclic group of prime order p. Let g be a

generator of G1 and E be a bilinear map defined as E : G1 × G1 → G2. The bilinear

map E has the following properties: (i) Bilinearity: ∀g1, g2 ∈ G1 and a, b ∈ Zp, it

holds that E(ga1 , g
b
2) = E(g1, g2)

ab. (ii) Non-degeneracy: E(g, g) �= 1. We also assume

that G1 is a bilinear group. That is, the group operation in G1 and the bilinear map

E : G1 ×G1 → G2 are both efficiently computable.

Group Signature Scheme by Boneh and Shacham Our proposed AdHocSign scheme

is designed based on Boneh and Shacham’s verifier-local group signature scheme [5],

which includes the following primitives:

– BSG KeyGen(n). The primitive outputs a group public key gpk, user private keys

(gsk[1], · · · , gsk[n]), and user revocation tokens grt = (grt[1], · · · , grt[n]).
– BSG Sign(gpk,gsk[i],M). The primitive outputs a signature σ of message M for

user i who owns private key gsk[i].

– BSG Verf(gpk,RL,σ,M). The primitive verifies whether σ is a valid signature of

message M signed by any user whose membership has not been revoked (i.e., the

revocation key of the user is not in the revocation list RL).

– BSG Trace(M ,σ,grt). Given a message M , a signature σ of the message and the

vector of revocation tokens grt, the primitive outputs the index of the user who

generated the signature.

45

AdHocSign Primitives The AdHocSign scheme provides the following primitives:

– Setup. The primitive chooses system parameters.

– AttributeInit(a). The primitive chooses and outputs the secrets S[a] for attribute a.

– UserInit(e,A[e],S). The primitive takes as inputs an user ID e, the set of attributes

A[e] owned by the user, and the set of secrets S for all attributes. It outputs the

private key gske of the user.

– AccessStructureInit(T ,S). It takes as inputs an access structure T and the set of

secretes S for all attributes. It outputs the public key gpkT regarding T .

– Sign(gpkT ,gske,M). This primitive takes as inputs the public key gpkT , a private

key gske of a certain user e, and a message M . It outputs signature σM,T , or NULL
if the attributes owned by the user do not satisfy T .

– Revoke(gpkT ,gske). The primitive is called to get the revocation token of user e
regarding access structure T . It takes as inputs the public key gpkT and the private

key gske, and outputs the revocation token grtT [e].
– Verf(gpkT ,RL,σ,M). The primitive takes as inputs the public key gpkT , list RL of

revocation tokens, a signature σ and message M . It outputs valid if and only if σ is

a valid signature of M regarding T that was generated by a user not revoked.

– Trace(M ,σ,grtT). This primitive takes as inputs M , σ and the set of revocation

tokens grtT . It outputs the ID of the user who generated σ.

Security Assumptions The AdHocSign scheme is designed based on the assumptions

about the hardness of the following problems. (i) q-Strong Diffie-Hellman (q-SDH)

Problem in G1: Given a (q + 1)-tuple g, gx, g(x
2), · · · , g(x

q) of group G1 as input,

output a pair (c, g1/(x+c)) where c ∈ Zp. We say that the (q, t, ε)-SDH assumption

holds in G1 if no t-time algorithm has the probability of at least ε in solving the q-SDH

problem in G1. (ii) Decision Linear Problem in G1: Given u, v, h, ua, vb, hc ∈ G1 as

input, output yes if a+ b = c and no otherwise. We say that the (t, ε)-Decision Linear

assumption holds in G1 if no t-time algorithm has probability of at least ε + 1/2 in

solving the Decision Linear problem in G1.

3 Construction for Conjunction-only Access Structures

In this section, we present the design of AdHocSign when the access structure is a

conjunction-only logical expression of attributes as T = aT,1 ∧ · · · ∧ aT,s, where each

aT,i (i = 1, · · · , s) is an attribute.

3.1 Algorithms
The following algorithms implement the primitives defined in Section 2.

CO Setup. The setup algorithm chooses the following system parameters: (i) a finite

field of integers Zp where p is a large prime number, (ii) a multiplicative cyclic and

bilinear group G1 of prime order p, (iii) bilinear map E: G1×G1 → G2, (iv) a generator

g of group G1, and (v) a secret element γ ∈ Zp.

CO AttributeInit(a). The attribute initialization algorithm takes as input an attribute

a, and outputs a secret number denoted as αa, where αa is picked from Zp uniformly

at random. αa is also stored at vector S at index a; i.e., S[a] ← αa.

46

CO UserInit(e,A[e], S). The user initialization algorithm takes the following inputs:

(i) user ID e, (ii) the set A[e] = {ae,i|i = 1, · · · , ne} of attributes assigned to user e,

and (iii) the set S of secret numbers for attributes. The algorithm outputs a private key

of the user, i.e., gske = 〈xe, {(ae,i, Ae,ae,i)|i = 1, · · · , ne}〉, where xe is picked from

Zp uniformly at random and Ae,ae,i = g
αae,i
γ+xe .

CO AccessStructureInit(T , S). The algorithm takes as inputs the access structure T
and the set of secrets S for all attributes. It picks raT,i

(i = 1, · · · , s) from Zp uniformly

at random, for each attribute aT,i present in T . Then, it computes and outputs the pub-

lic key gpkT = 〈T, {raT,1 , · · · , raT,s}, gT , wT 〉, where gT = g
∑s

k=1
(raT,k

·αaT,k
)

and

wT = gγT .

CO Sign(gpkT ,gske,M). The inputs of the signature generation algorithm include

(i) gpkT : the public key regarding access structure T for which a signature is to be

generated; (ii) gske: the private key held by user e for whom the signature is to be

generated; and (iii) M : the message to be signed.

The algorithm outputs σM,T , signature of message M regarding T . The signa-

ture is generated in the following steps: If user e does not have all attributes present

in T , NULL is returned. Otherwise, the following steps are executed. (i) Âe,T ←∏s
i=1 A

raT,i
e,aT,i ; (ii) σM,T ← BSG Sign({gT , wT }, {Âe,T , xe},M). Here, BSG Sign

is the signing primitive in the group signature scheme proposed by Boneh and Shacham,

{gT , wT } is the public key, and {Âe,T , xe} is the user private key.

CO Revoke(gpkT ,gske). This algorithm takes as inputs the public key gpkT for a

certain access structure T and the private key gske for a certain user e. It computes

the revocation token of e regarding T as grtT [e] ←
∏s

i=1 A
raT,i
e,aT,i . Then, the algorithm

returns grtT [e].

CO Verf(gpkT ,RLT ,σ,M). To verify if σ is a signature of message M regard-

ing access structure T , the verification algorithm takes the public key gpkT and the

list RLT of revocation keys as inputs. The algorithm can be implemented by calling

BSG V erf({gT , wT }, RLT , σ, M). Here, BSG V erf is the revocation primitive

in the group signature scheme proposed by Boneh and Shacham.

CO Trace(M,σ, grtT). It can be implemented by calling BSG Trace(M,σ, grtT).

3.2 Security Analysis

The security properties of our design are stated in the following theorems, which are

proved in [12].

Theorem 1. If a user e has all attributes in a conjunction-only access structure T , then

{CO V erf(gpkT , RLT , CO Sign(gpkT , gske,M),M) = valid} ⇔ {grtT [e] �∈ RLT }.
Theorem 2. If the (q, t′, ε′)-SDH assumption holds in G1, the AdHocSign scheme for
conjunction-only access structures is (t, qH , qS , n,m, ε)-traceable, where n = q − 1,
ε = 8n

√
ε′qH + 2n/p, and t′ = Θ(1) · (t+m · q).

Theorem 3. The AdHocSign scheme for conjunction-only access structures is (t, qH ,
qS , n, m, ε)-selflessly-anonymous assuming the (t′, ε′) Decision Linear assumption
holds in group G1 for ε′ = ε

2 (
1
n2 − qSqH

p) and t′ = Θ(1) · (t+mn).

47

4 Construction for General Access Structures
To lay the foundation for our construction for general access structures, the construction

for disjunction-only access structures is presented first, which is then extended to the

construction for general access structures.

4.1 Construction for Disjunction-only Access Structures
A disjunction-only access structure can be represented as T = aT,1 ∨ · · · ∨ aT,s, where

each aT,i (i = 1, · · · , s) is an attribute.

DO Setup. The algorithm is the same as CO Setup, except that (i) a secret ξ is also

randomly chosen from Zp, and (ii) hash functions H1 : Zp ×Zp ×Zp ×Zp → G1 and

H2 : Zp × Zp × Zp → Zp are chosen.

DO AttributeInit(a, N). The algorithm takes two inputs: a which is ID of the at-

tribute, and N which is an integer. The algorithm outputs N secret numbers to be as-

sociated with attribute a, denoted as αa,i for i = 1, · · · , N , where each αa,i is picked

from Zp uniformly at random. All these secret numbers are recorded in vector S[a].

DO UserInit(e, A[e], S). The inputs to the algorithm include the user ID e, the set

of attributes A[e] = {ae,i|i = 1, · · · , ne} owned by the user, and the set of secret keys

S = {αae,i,j |i = 1, · · · , ne; j = 1, · · · , N} for the above attributes. The algorithm

outputs the private key for user e, i.e., gske = 〈 xe, { (ae,i, A
′
e,ae,i,1, · · · , A′

e,ae,i,N
)

|i = 1, · · · , ne } 〉, where xe is picked from Zp uniformly at random, A′
e,ae,i,j

=

Ae,ae,i,j ·H1(e, ae,i, j,H2(ξ, ae,i, j))
−1 for j = 1, · · · , N , and Ae,ae,i,j = g

αae,i,j

γ+xe .

DO AccessStructureInit(T , S). The inputs to the algorithm include the access struc-

ture T and the set of secret keys S for all attributes. The algorithm picks rT from Zp

uniformly at random. For each aT,i, the algorithm also picks δT,i from {1, · · · , N}
such that αaT,i,δT,i is a secret associated with aT,i that has not been used in access

structure initialization before. If such δT,i cannot be found successfully, the primitive

fails. Otherwise, the algorithm computes and outputs the following public key regard-

ing T : gpkT = 〈 T , R̃T , gT = grT , wT = gγT 〉, where R̃T = {(rT,i =
rT

αaT,i,δT,i
, δT,i,

hT,i = H2(ξ, aT,i, δT,i))| i = 1, · · · , s}.

DO Sign(gpkT , gske, M). The signature generation algorithm takes as inputs public

key gpkT regarding T , private key gske of user e, and message M . It outputs signature

σM,T on message M regarding T for user e as follows: If user e does not have any

attribute appearing in T , NULL is returned. Otherwise, assuming the user owns at-

tribute aT,i, the user computes Ae,aT,i,δT,i
= (A′

e,aT,i,δT,i
) ·H1(e, aT,i, δT,i, hT,i) and

Âe,T = A
rT,i

e,aT,i,δT,i
, and returns σM,T = BSG Sign({gT , wT }, {Âe,T , xe},M).

DO Verify(gpkT ,RLT ,σ,M). The algorithm is the same as CO Verify.

4.2 Construction for General Access Structures: The Algorithms
Based on the schemes for disjunction-only and conjunction-only access structures, the

scheme for general access structures is designed as follows.

G Setup, G AttributeInit(a,N), G UserInit(e, A[e], S) and G Verify(gpkT , RLT ,
σ, M). The algorithms are the same as DO Setup, DO AttributeInit, DO UserInit and

CO Verify, respectively.

48

G AccessStructureInit(T , S). The inputs to the algorithm include the access structure

T as defined in Equations (1) and (2), and the set of private keys S. For each DTi =
aT,i,1 ∨ · · · ∨ aT,i,si , the algorithm picks rT,i from Zp uniformly at random. Then, for

each aT,i,j that is a part of DTi, the algorithm finds δT,i,j from {1, · · · , N} such that

αaT,i,j ,δT,i,j
is a secret associated with attribute aT,i,j and has not been used in access

structure initialization before, and computes rT,i,j =
rT,i

αaT,i,j ,δT,i,j
. If such δT,i,j for

j = 1, · · · , si cannot be found in {1, · · · , N} successfully, the primitive fails. Finally,

the algorithm computes and outputs the following public key: gpkT = 〈 T , { (rT,i,j ,

δT,i,j , hT,i,j) |i = 1, · · · , s; for each i, j = 1, · · · , si}, gT = g
∑s

i=1
rT,i , wT = gγT 〉,

where hT,i,j = H2(ξ, aT,i,j , δT,i,j).

G Sign(gpkT , gske, M). The algorithm takes as inputs public key gpkT regard-

ing T , private key gske of user e, and message M . It computes and outputs signature

σM,T as follows: If the attributes owned by user e do not satisfy T , NULL is returned.

Otherwise, assuming the user owns attribute aT,i,ki for i = 1, · · · , s, the user com-

putes Âe,T =
∏s

i=1[A
′
e,aT,i,ki

,δT,i,ki
·H1(xe, aT,i,ki , δT,i,ki , hT,i,ki)]

rT,i,ki and returns

σM,T = BSG Sign({gT , wT }, {Âe,T , xe}, M).

G Revoke(gpkT ,gske) This algorithm takes as inputs the public key gpkT for a cer-

tain access structure T and the private key gske for a certain user e. It computes the

revocation token of e regarding T as grtT [e] ← Âe,T , where the computation of Âe,T

is the same as step 2 in primitive G Sign. Then, the algorithm returns grtT [e].

G Trace(M,σ, grtT). This can be implemented with BSG Trace(M,σ, grtT).

4.3 Security Analysis
Theorem 4. If the attributes owned by a user e satisfy an access structure T as defined
in Equation (1), then

{G V erf(gpkT , RLT , G Sign(gpkT , gske,M),M) = valid} ⇔ {grtT [e] �∈ RLT }.
Theorem 5. If the (q, t′, ε′)-SDH assumption holds in G1, then the AdHocSign scheme
for general access structures is (t, qH , qS , n,m, ε)-traceable, where n = q − 1, ε =
8n

√
ε′qH+2n/p, t′ = O(t·m·N), and N is the maximum number of secrets associated

with each attribute.

Theorem 6. The AdHocSign scheme for general access structures is (t, qH , qS , n,
m, ε)-selflessly-anonymous assuming the (t′, ε′) Decision Linear assumption holds in
group G1 for ε′ = ε

2 (
1
n2 − qSqH

p), where t′ = Θ(1) · (t + m · n · N), and N is the
maximum number of secrets associated with each attribute.

The theorems are proved in [12].

5 Related Work
Attribute based encryption (ABE) [1,8,3] provides fine-grained access control to shared

data. With ABE, data are encrypted based on their access structures, where an access

structure is a logical expression over attributes. A user is able to decrypt a piece of data

if and only if she owns the access attributes that satisfy the access policy. However,

49

ABE does not provide accountability. Though it ensures that only authorized users can

access the data, it is hard to trace who have accessed the data.

With group signature schemes [2,5,4,7,6,9] every member of a group can sign a

message anonymously on behalf of the group, a verifier of the signature can determine

whether the singer is a valid member of the group without knowing the identity of the

signer, but a trusted authority is able to trace out the identity of the signer when nec-

essary. Different from these works, our proposed AdHocSign is a new group signature

scheme that not only inherits the features of accountable and anonymous signature gen-

eration/verification, but also enables on-the-fly formation of new groups according to a

newly defined access structure (policy). If the AdHocSign is used together with ABE,

accountable attribute-based fine-grained access control can be realized.

Khader proposed attribute based group signature schemes [10,11], with a similar

design goal as that of AdHocSign. However, a signer in the schemes should inform the

verifier of the attributes he/she owns for signature verification. On the contrary, Ad-

HocSign does not let the verifier know what attributes are owned by a singer (unless the

access structure is a conjunction-only expression of attributes), and therefore provides

more privacy preservation.

6 Conclusion
We have presented a new group signature scheme for dynamically formed groups, to

support accountable and anonymous access to outsourced Data. Rigorous security anal-

ysis of the scheme has been conducted to prove its selfless-anonymity and traceability

based on the hardness assumption of q-SDH and Decisional Linear problems.

References
1. Fuzzy identity-based encryption. In: EUROCRYPT. pp. 457–473 (2005)
2. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-

resistant group signature scheme. In: CRYPTO. pp. 255–270 (2000)
3. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE

S&P. pp. 321 –334 (2007)
4. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: CRYPTO. pp. 41–55 (2004)
5. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: ACM CCS. pp.

168–177 (2004)
6. Camenisch, J., Groth, J.: Group signatures: Better efficiency and new theoretical aspects. In:

SCN. pp. 120–133 (2004)
7. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear

maps. In: CRYPTO. pp. 56–72 (2004)
8. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained

access control of encrypted data. In: ACM CCS. pp. 89–98 (2006)
9. Groth, J.: Fully anonymous group signatures without random oracles. In: ASIACRYPT. pp.

164–180 (2007)
10. Khader, D.: Attribute based group signature. In: Cryptology ePrint Archive, Report 2007/159

(2007), http://eprint.iacr.org/
11. Khader, D.: Attribute based group signature with revocation. In: Cryptology ePrint Archive,

Report 2007/241 (2007), http://eprint.iacr.org/
12. Zhang, W., Wang, C.: An ad hoc group signature scheme for accountable and anony-

mous access to outsourced data (2012), http://www.cs.iastate.edu/˜wzhang/
papers/adhocsign.pdf

50

The security impact
of a new cryptographic library

Daniel J. Bernstein1, Tanja Lange2, and Peter Schwabe3

1 Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607–7053, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven
P.O. Box 513, 5600MB Eindhoven, the Netherlands

tanja@hyperelliptic.org
3 Research Center for Information Technology Innovation and

Institute of Information Science
Academia Sinica

No. 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
peter@cryptojedi.org

Abstract. This paper introduces a new cryptographic library, NaCl,
and explains how the design and implementation of the library avoid var-
ious types of cryptographic disasters suffered by previous cryptographic
libraries such as OpenSSL.

Keywords: confidentiality, integrity, simplicity, speed, security

1 Introduction

For most cryptographic operations there exist widely accepted standards, such
as the Advanced Encryption Standard (AES) for secret-key encryption and 2048-
bit RSA for public-key encryption. These primitives have been extensively stud-
ied, and breaking them is considered computationally infeasible on any existing
computer cluster.

For each of these cryptographic primitives there exist various implementa-
tions and software libraries, and it has become common best practice in the
development of secure systems to use the implementations in these libraries as
building blocks. One should thus expect that the cryptographic layer of modern

This work was supported by the National Science Foundation under grant 1018836;
by the European Commission through the ICT Programme under Contract ICT-
2007-216499 CACE and Contract ICT-2007-216676 ECRYPT II; and by the National
Science Council, National Taiwan University and Intel Corporation under Grant
NSC99-2911-I-002-001 and 99-2218-E-001-007. Part of this work was carried out
when Peter Schwabe was employed by National Taiwan University; part of this
work was carried out when Peter Schwabe was employed by Technische Universiteit
Eindhoven. Permanent ID of this document: 5f6fc69cc5a319aecba43760c56fab04.
Date: 2012.04.24.

51

information systems does not expose any vulnerabilities to attackers. Unfortu-
nately this expectation is far from reality, as demonstrated by one embarrassing
cryptographic failure after another.

A new cryptographic library: NaCl. To address the underlying problems
we have designed and implemented a new cryptographic library. The library
name, NaCl, is pronounced “salt” and stands for “Networking and Cryptogra-
phy Library”. This paper discusses only the cryptographic part of NaCl; the
networking part is still in prototype form.

NaCl is in the public domain and is available from http://nacl.cr.yp.to

and http://nacl.cace-project.eu, along with extensive documentation. The
signature component of NaCl is integrated only into the latest development
version, which is not yet online, but the same code is available separately as
part of the SUPERCOP benchmarking package at http://bench.cr.yp.to.
NaCl steers clear of all patents that we have investigated and has not received
any claims of patent infringement.

The first announcement of NaCl was in 2008. We considered changing the
name of the project when Google announced Native Client, but decided that
there was no real risk of confusion. The first release of NaCl was in 2009 but was
missing some of the important features discussed in this paper; the C++ NaCl
API was not released until 2010, for example, and signatures were not released
until 2011.

A research paper on cryptographic software normally focuses on optimizing
the choice and implementation of a single cryptographic primitive at a specified
security level: for example, [11] reports speed records for signatures at a 2128 se-
curity level. This paper is different. Our goal is to analyze the real-world security
benefits of switching from an existing cryptographic library such as OpenSSL
[29] to a completely new cryptographic library. Some of these security benefits
are tied to performance, as discussed later, so we naturally use the results of
papers such as [11]; but what is new in this paper is the security analysis.

Credits. Several of the implementations used in NaCl are partially or entirely
from third parties. The portability of NaCl relies on the ref implementation of
Curve25519 written by Matthew Dempsky (Mochi Media, now Google). From
2009 until 2011 the speed of NaCl on common Intel/AMD CPUs relied on the
donna and donna c64 implementations of Curve25519 written by Adam Lan-
gley (Google)—which, interestingly, also appear in Apple’s acknowledgments
[4] for iOS 4. The newest implementations of Curve25519 and Ed25519 were
joint work with Niels Duif (Technische Universiteit Eindhoven) and Bo-Yin
Yang (Academia Sinica). The core2 implementation of AES was joint work
with Emilia Käsper (Katholieke Universiteit Leuven, now Google).

Prototype Python wrappers around C NaCl have been posted by Langley; by
Jan Mojzis; and by Sean Lynch (Facebook). We will merge these wrappers and
integrate them into the main NaCl release as a single supported Python NaCl,
in the same way that we support C++ NaCl.

52

2 The NaCl API

The reader is assumed to be familiar with the fact that most Internet commu-
nication today is cryptographically unprotected. The primary goal of NaCl is to
change this: to cryptographically protect every network connection, providing
strong confidentiality, strong integrity, and state-of-the-art availability against
attackers sniffing or modifying network packets.

Confidentiality is limited to packet contents, not packet lengths and timings,
so users still need anti-traffic-analysis tools: route obfuscators such as Tor [37],
timing obfuscators, etc. Of course, users also need vastly better software security
in operating systems, web browsers, document viewers, etc. Cryptography is only
one part of security.

This section introduces the functions provided by NaCl, with an emphasis
on the simplicity of these functions: more precisely, the simplicity that these
functions bring to cryptographic applications. This section is meant mostly as
background for the security analysis in subsequent sections, but there are enough
differences between the NaCl API and previous APIs to justify a discussion of
the details.

The crypto_box API. The central job of a cryptographic library is public-
key authenticated encryption. The general setup is that a sender, Alice,
has a packet to send to a receiver, Bob. Alice scrambles the packet using Bob’s
public key and her own secret key. Bob unscrambles the packet using Alice’s
public key and his own secret key. “Encryption” refers to confidentiality: an
attacker monitoring the network is unable to understand the scrambled packet.
“Authenticated” refers to integrity: an attacker modifying network packets is
unable to change the packet produced by Bob’s unscrambling. (Availability, to
the extent that it is not inherently limited by network resources, is provided by
higher-level networking protocols that retransmit lost packets.)

A typical cryptographic library uses several steps to authenticate and encrypt
a packet. Consider, for example, the following typical combination of RSA, AES,
etc.:

– Alice generates a random AES key.
– Alice uses the AES key to encrypt the packet.
– Alice hashes the encrypted packet using SHA-256.
– Alice reads her RSA secret key from “wire format.”
– Alice uses her RSA secret key to sign the hash.
– Alice reads Bob’s RSA public key from wire format.
– Alice uses Bob’s public key to encrypt the AES key, hash, and signature.
– Alice converts the encrypted key, hash, and signature to wire format.
– Alice concatenates with the encrypted packet.

Often even more steps are required for storage allocation, error handling, etc.
NaCl gives Alice a simple high-level crypto_box function that does every-

thing in one step, putting a packet into a box that is protected against espionage
and sabotage:

53

c = crypto_box(m,n,pk,sk)

The function takes the sender’s secret key sk (32 bytes), the recipient’s public
key pk (also 32 bytes), a packet m, and a nonce n (24 bytes), and produces an
authenticated ciphertext c (16 bytes longer than m). All of these objects are C++
std::string variables, represented in wire format as sequences of bytes suitable
for transmission; the crypto_box function automatically handles all necessary
conversions, initializations, etc. Bob’s operation is just as easy, with the keys and
packets reversed, using his secret key, Alice’s public key, and the same nonce:

m = crypto_box_open(c,n,pk,sk)

Each side begins with

pk = crypto_box_keypair(&sk)

to generate a secret key and a public key in the first place.
These C++ functions are wrappers around C functions; the C functions

can also be used directly by C applications. The C NaCl API has the same
function names but more arguments: for example, std::string m is replaced
by unsigned char *m and unsigned long long mlen, and std::string c is
replaced by unsigned char *c. The formats of m and c in the C NaCl API are
padded so that clen matches mlen, removing the need to pass clen explicitly
and allowing ciphertexts to be stored on top of plaintexts. Failures are indicated
by exceptions in C++ NaCl and a -1 return value in C NaCl.

Validation of the API. The API described above might seem too simple
to support the needs of real-world applications. We emphasize that NaCl has
already been integrated into high-security applications that are running on the
Internet today.

DNSCurve [9], designed by the first author, provides high-security authen-
ticated encryption for Domain Name System (DNS) queries between a DNS
resolver and a DNS server. (The server’s public key is provided by its parent
DNS server, which of course also needs to be secured; the client’s public key is
provided as part of the protocol.) NaCl has been used successfully for several
independent DNSCurve implementations, including an implementation used [18]
by the OpenDNS resolvers, which handle billions of DNS queries a day from mil-
lions of computers and automatically use DNSCurve for any DNSCurve server.
OpenDNS has also designed and deployed DNSCrypt, a variant of DNSCurve
that uses NaCl to authenticate and encrypt DNS queries from a DNS client to a
DNS resolver; two months after the introduction of DNSCrypt, [39] stated that
DNSCrypt was already in use by tens of thousands of clients. Other applications
of NaCl so far include the QuickTun VPN software [32]; the Ethos operating
system [34]; and the first author’s prototype implementation of CurveCP [10], a
high-security cryptographic version of TCP.

C NaCl allows crypto_box to be split into two steps, crypto_box_beforenm
and crypto_box_afternm, slightly compromising simplicity but gaining extra
speed as discussed in Section 4. The beforenm step preprocesses pk and sk,

54

preparing to handle any number of messages; the afternm step handles n and
m. Most applications actually use this two-step procedure.

Nonces. The crypto_box API leaves nonce generation to the caller. This is not
meant to suggest that nonce generation is not part of the cryptographer’s job;
on the contrary, we believe that cryptographers should take responsibility not
just for nonces but also for other security aspects of high-level network protocols.
The exposure of nonces simply reflects the fact that nonces are integrated into
high-level protocols in different ways.

It might seem simplest to always generate a random 24-byte nonce n, and
to transmit this nonce as part of the authenticated ciphertext; 24-byte random
strings have negligible chance of colliding. If ciphertexts are long then one can
tolerate the costs of generating this randomness and of expanding each ciphertext
by 24 bytes. However, random nonces do nothing to stop the simplest type of
forgery, namely a replay. One standard strategy to prevent replays is to include
an increasing number in each packet and to reject any packet whose number is not
larger than the number in the last verified packet; using these sequence numbers
as nonces is simpler than giving each packet a number and a random nonce. On
the other hand, choosing public nonces as sequence numbers means giving away
traffic information that would otherwise be somewhat more expensive for an
attacker to collect. Several different solutions appear in the literature; constraints
on nonce generation are often tied directly to questions of the security and
privacy that users expect.

Current applications of NaCl, such as DNSCurve and CurveCP, have different
requirements regarding nonces, replays, forward secrecy, and many other security
issues at a higher level than the crypto_box API. A nonceless API would require
higher-level complications in all of these applications, and would not simplify
their security analysis.

The crypto_sign API. Sometimes confidentiality is irrelevant: Alice is sending
a public message to many people. In this situation it is helpful for a cryptographic
library to provide public-key signatures: Alice scrambles the message using
her own secret key, and Bob unscrambles the message using Alice’s public key.
Alice’s operations are independent of Bob, allowing the scrambled message to be
broadcast to any number of receivers. Signatures also provide non-repudiation,
while authenticators are always repudiable.

NaCl provides simple high-level functions for signatures: Alice uses

pk = crypto_sign_keypair(&sk)

to generate a key pair (again 32 bytes for the public key but 64 bytes for the
secret key), and

sm = crypto_sign(m,sk)

to create a signed message (64 bytes longer than the original message). Bob uses

m = crypto_sign_open(sm,pk)

55

to unscramble the signed message, recovering the original message.

Comparison to previous work. NaCl is certainly not the first cryptographic
library to promise a simple high-level API. For example, Gutmann’s cryptlib
library [21] advertises a “high-level interface” that “provides anyone with the
ability to add strong security capabilities to an application in as little as half
an hour, without needing to know any of the low-level details that make the
encryption or authentication work.” See [22, page 1].

There are, however, many differences between high-level APIs, as illustrated
by the following example. The first code segment in the cryptlib manual [22, page
13] (“the best way to illustrate what cryptlib can do”) contains the following six
function calls, together with various comments:

cryptCreateEnvelope(&cryptEnvelope, cryptUser,

CRYPT_FORMAT_SMIME);

cryptSetAttributeString(cryptEnvelope,

CRYPT_ENVINFO_RECIPIENT,

recipientName, recipientNameLength);

cryptPushData(cryptEnvelope, message, messageSize,

&bytesIn);

cryptFlushData(cryptEnvelope);

cryptPopData(cryptEnvelope, encryptedMessage, encryptedSize,

&bytesOut);

cryptDestroyEnvelope(cryptEnvelope);

This sequence has a similar effect to NaCl’s

c = crypto_box(m,n,pk,sk)

where message is the plaintext m and encryptedMessage is the ciphertext c.
The most obvious difference between these examples is in conciseness: cryptlib

has separate functions

– cryptCreateEnvelope to allocate storage,
– cryptSetAttributeString to specify the recipient,
– cryptPushData to start the plaintext input,
– cryptFlushData to finish the plaintext input,
– cryptPopData to extract the ciphertext, and
– cryptDestroyEnvelope to free storage,

while NaCl handles everything in one function. The cryptlib program must also
call cryptInit at some point before this sequence.

A much less obvious difference is in reliability. For example, if the program
runs out of memory, NaCl will raise an exception, while the above cryptlib code
will fail in unspecified ways, perhaps silently corrupting or leaking data. The
cryptlib manual [22, page 35] states that the programmer is required to check
that each function returns CRYPT_OK, and that the wrong code shown above is
included in the manual “for clarity”. Furthermore, [22, page 53] says that if mes-
sages are large then “only some of the data may be copied in” by cryptPushData;

56

the programmer is required to check bytesIn and loop appropriately. Trouble
can occur even if messages are short and memory is ample: for example, [22, page
14] indicates that recipient public keys are retrieved from an on-disk database,
but does not discuss what happens if the disk fails or if an attacker consumes
all available file descriptors.

Some of the differences between these code snippets are really differences
between C and C++: specifically, NaCl benefits from C++ exceptions and C++
strings, while cryptlib does not use these C++ features. For applications written
in C, rather than C++, the cryptlib API should instead be compared to the C
NaCl API:

crypto_box(c,m,mlen,n,pk,sk)

This C NaCl function cannot raise C++ exceptions, but it also does not need to:
its only possible return value is 0, indicating successful authenticated encryption.
C NaCl is intended to be usable in operating-system kernels, critical servers, and
other environments that cannot guarantee the availability of large amounts of
heap storage but that nevertheless rely on their cryptographic computations to
continue working. In particular, C NaCl functions do not call malloc, sbrk,
etc. They do use small amounts of stack space; these amounts will eventually
be measured by separate benchmarks, so that stack space can be allocated in
advance and guaranteed to be adequate.

Perhaps the most important difference between these NaCl and cryptlib ex-
amples is that the crypto_box output is authenticated and encrypted using
keys from Alice and Bob, while the cryptlib output is merely encrypted to Bob
without any authentication; cryptlib supports signatures but does not add them
without extra programming work. There is a long history of programs omitting
cryptographic authentication, incorrectly treating all successfully decrypted data
as authentic, and being exploited as a result; with cryptlib, writing such pro-
grams is easier than writing programs that include proper authentication. With
NaCl, high-security authenticated encryption is the easiest operation.

3 Security

This section presents various case studies of cryptographic disasters, and explains
the features of NaCl that eliminate these types of disasters.

Two specific types of disasters are addressed in subsequent sections: Section 4
discusses users deliberately weakening or disabling cryptography to address cryp-
tographic performance problems; Section 5 discusses cryptographic primitives
being broken.

No data flow from secrets to load addresses. In 2005, Osvik, Shamir, and
Tromer described a timing attack that discovered the AES key of the dm-crypt
hard-disk encryption in Linux in just 65 milliseconds. See [30] and [38]. The
attack process runs on the same machine but does not need any privileges (for
example, it can run inside a virtual machine) and does not exploit any kernel
software security holes.

57

This attack is possible because almost all implementations of AES, including
the Linux kernel implementation, use fast lookup tables as recommended in the
initial AES proposal; see [17, Section 5.2]. The secret AES key inside the kernel
influences the table-load addresses, which in turn influence the state of the CPU
cache, which in turn influences measurable timings of the attack process; the
attack process computes the AES key from this leaked information.

NaCl avoids this type of disaster by systematically avoiding all loads from
addresses that depend on secret data. All of the implementations are thus in-
herently protected against cache-timing attacks. This puts constraints on the
implementation strategies used throughout NaCl, and also influences the choice
of cryptographic algorithms in NaCl, as discussed in Section 5.

For comparison, Gutmann’s cryptlib manual [22, pages 63–64] claims that
cache-timing attacks (specifically “observing memory access latencies for cached
vs. un-cached data”) and branch-timing attacks (see below) provide almost the
same “level of access” as “an in-circuit emulator (ICE)” and that there are
therefore “no truly effective defences against this level of threat”. We disagree.
Software side channels on common CPUs include memory addresses and branch
conditions but do not include, e.g., the inputs and outputs to a XOR operation;
it is well known that the safe operations are adequate in theory to perform
cryptographic computations, and NaCl demonstrates that the operations are
also adequate in practice. Typical cryptographic code uses unsafe operations, and
cache-timing attacks have been repeatedly demonstrated to be effective against
such code, but NaCl’s approach makes these attacks completely ineffective.

OpenSSL has responded to cache-timing attacks in a different way, not pro-
hibiting secret load addresses but instead using complicated countermeasures
intended to obscure the influence of load addresses upon the cache state. This
obviously cannot provide the same level of confidence as the NaCl approach: a
straightforward code review can convincingly verify the predictability of all load
addresses in NaCl, while there is no similarly systematic way to verify the efficacy
of other countermeasures. The review of load addresses and branch conditions
(see below) can be automated, as explained in [27] and [26], and in fact has
already been formalized and automated for large parts of NaCl; see [3] (which
comments that “NaCl code follows strict coding policies that make it formal
verification-friendly” and explains how parts of the code were verified).

No data flow from secrets to branch conditions. Brumley and Tuveri an-
nounced in 2011 that they had used a remote timing attack to find the ECDSA
private key used for server authentication in a TLS handshake. See [14]. The im-
plementation targeted in this attack is the ECDSA implementation in OpenSSL.

The underlying problem is that most scalar-multiplication (and exponentia-
tion) algorithms involve data flow from secret data into branch conditions: i.e.,
certain operations are carried out if and only if the key has certain properties.
In particular, the OpenSSL implementation of ECDSA uses one of these algo-
rithms. Secret data inside OpenSSL influences the state of the CPU branch unit,
which in turn influences the amount of time used by OpenSSL, which in turn

58

influences measurable timings of network packets; the attacker computes the
ECDSA key from this leaked information.

NaCl avoids this type of disaster by systematically avoiding all branch condi-
tions that depend on secret data. This is analogous to the prohibition on secret
load addresses discussed above; it has pervasive effects on NaCl’s implementation
strategies and interacts with the cryptographic choices discussed in Section 5.

No padding oracles. In 1998 Bleichenbacher successfully decrypted an RSA-
encrypted SSL ciphertext by sending roughly one million variants of the cipher-
text to the server and observing the server’s responses. The server would apply
RSA decryption to each variant and publicly reject the (many) variants not
having “PKCS #1” format. Subsequent integrity checks in SSL would defend
against forgeries and reject the remaining variants, but the pattern of initial
rejections already leaked so much information that Bleichenbacher was able to
compute the plaintext. See [13].

NaCl has several layers of defense against this type of disaster:

– NaCl’s authenticated-encryption mechanism is designed as a secure unit,
always wrapping encryption inside authentication. Nothing is decrypted un-
less it first survives authentication, and the authenticator’s entire job is to
prevent the attacker from forging messages that survive authentication.

– Forged messages always follow the same path through authenticator verifi-
cation, using constant time (depending only on the message length, which is
public) and then rejecting the message, with no output other than the fact
that the message is forged.

– Even if the attacker forges a variant of a message by sheer luck, the forgery
will be visible only through the receiver accepting the message, and standard
nonce-handling mechanisms in higher-level protocols will instantly reject any
further messages under the same nonce. NaCl derives new authentication and
encryption keys for each nonce, so the attacker will have no opportunity to
study the effect of those keys on any further messages.

Note that the third defense imposes a key-agility requirement on the underlying
cryptographic algorithms.

Most cryptographic libraries responded to Bleichenbacher’s attack by trying
to hide different types of message rejection, along the lines of the second defense;
for example, [23] shows that this approach was adopted by the GnuTLS library
in 2006. However, typical libraries continue to show small timing variations, so
this defense by itself is not as confidence-inspiring as using strong authentica-
tion to shield decryption. Conceptually similar attacks have continued to plague
cryptographic software, as illustrated by the SSH attack in [1] in 2009 and the
very recent DTLS attack in [2].

Centralizing randomness. In 2006 a Debian developer removed a critical line
of randomness-generation code from the OpenSSL package shipped with Debian
GNU/Linux. Code-verification tools had complained that the line was producing
unpredictable results, and the developer did not see why the line was necessary.
Until this bug was discovered in 2008 (see [33]), OpenSSL keys generated under

59

Debian and Ubuntu were chosen from a set of size only 32768. Breaking the
encryption or authentication of any communication secured with such a key was
a matter of seconds.

NaCl avoids this type of disaster by simply reading bytes from the operating-
system kernel’s cryptographic random-number generator. Of course, the relevant
code in the kernel needs to be carefully written, but reviewing that code is a
much more tractable task than reviewing all of the separate lines of randomness-
generation code in libraries that decide to do the job themselves. The benefits
of code minimization are well understood in other areas of security; we are
constantly surprised by the amount of unnecessary complexity in cryptographic
software.

A structural deficiency in the /dev/urandom API provided by Linux, BSD,
etc. is that using it can fail, for example because the system has no available
file descriptors. In this case NaCl waits and tries again. We recommend that
operating systems add a reliable urandom(x,xlen) system call.

Avoiding unnecessary randomness. Badly generated random numbers were
also involved in the recent collapse of the security system of Sony’s PlayStation
3 gaming console. Sony used the standard elliptic-curve digital-signature algo-
rithm, ECDSA, but ignored the ECDSA requirement of a new random secret
for each message: Sony simply used a constant value for all messages. Attackers
exploited this mistake to compute Sony’s root signing key, as explained in [15,
slides 122–130], breaking the security system of the PlayStation 3 beyond repair.

NaCl avoids this type of disaster by using deterministic cryptographic oper-
ations to the extent possible. The keypair operations use new randomness, but
all of the other operations listed above produce outputs determined entirely by
their inputs. Of course, this imposes a constraint upon the underlying crypto-
graphic primitives: primitives that use randomness, such as ECDSA, are rejected
in favor of primitives that make appropriate use of pseudorandomness.

Determinism also simplifies testing. NaCl includes a battery of automated
tests shared with eBACS (ECRYPT Benchmarking of Cryptographic Systems),
an online cryptographic speed-measurement site [12] designed by the first two
authors; this site has received, and systematically measured, 1005 implementa-
tions of various cryptographic primitives from more than 100 people. The test
battery found, for example, that software for a cipher named Dragon was some-
times reading outside its authorized input arrays; the same software had passed
previous cryptographic test batteries. All of the core NaCl functions have also
been tested against pure Python implementations, some written ourselves and
some contributed by Matthew Dempsky.

4 Speed

Cryptographic performance problems have frequently caused users to reduce
their cryptographic security levels or to turn off cryptography entirely. Consider
the role of performance in the following examples:

60

– https://sourceforge.net/account is protected by SSL, but https://

sourceforge.net/develop redirects the user’s web browser to http://

sourceforge.net/develop, actively turning off SSL and exposing the web
pages to silent modification by sniffing attackers. Cryptography that is not
actually used can be viewed as the ultimate disaster, providing no more se-
curity than any of the other cryptographic disasters discussed in this paper.

– OpenSSL’s AES implementations continue to use table lookups on most
CPUs, rather than obviously safe bitsliced computations that would be
slower on those CPUs. The table lookups have been augmented with several
complicated countermeasures that are hoped to protect against the cache-
timing attacks discussed in Section 3.

– Google has begun to allow SSL for more and more services, but only with a
1024-bit RSA key, despite
• recommendations from the RSA company to move up to at least 2048-bit

RSA by the end of 2010;
• the same recommendations from the U.S. government; and
• analyses from 2003 concluding that 1024-bit RSA was already breakable

in under a year using hardware that governments and large companies
could already afford.

See, e.g., [31] for an analysis by Shamir (the S in RSA) and Tromer; [24]
for an end-of-2010 recommendation from the RSA company; and [5] for an
end-of-2010 recommendation from the U.S. government.

– DNSSEC recommends, and uses, 1024-bit RSA for practically all signa-
tures rather than 2048-bit RSA, DSA, etc.: “In terms of performance, both
RSA and DSA have comparable signature generation speeds, but DSA is
much slower for signature verification. Hence, RSA is the recommended al-
gorithm. . . . The choice of key size is a tradeoff between the risk of key
compromise and performance. . . . RSA-SHA1 (RSA-SHA-256) until 2015,
1024 bits.” See [16].

– The Tor anonymity network [37] also uses 1024-bit RSA.

Speed of NaCl. We do not provide any low-security options in NaCl. For
example, we do not allow encryption without authentication; we do not allow
any data flow from secrets to load addresses or branch conditions; and we do
not allow cryptographic primitives breakable in substantially fewer than 2128

operations, such as RSA-2048.
The remaining risk is that users find NaCl too slow and turn it off, replacing it

with low-security cryptographic software or no cryptography at all. NaCl avoids
this type of disaster by providing exceptionally high speeds. NaCl is generally
much faster than previous cryptographic libraries, even if those libraries are
asked for lower security levels. More to the point, NaCl is fast enough to handle
packet rates beyond the worst-case packet rates of a typical Internet connection.

For example, using a single AMD Phenom II X6 1100T CPU, NaCl performs

– more than 80000 crypto_box operations (public-key authenticated encryp-
tion) per second;

61

– more than 80000 crypto_box_open operations (public-key authenticator
verification and decryption) per second;

– more than 70000 crypto_sign_open operations (signature verification) per
second; and

– more than 180000 crypto_sign operations (signature generation) per second

for any common packet size. (For comparisons to the speeds of other libraries,
see, e.g., [11].) To put these numbers in perspective, imagine a connection flooded
with 50-byte packets, each requiring a crypto_box_open; 80000 such packets per
second would consume 32 megabits per second even without packet overhead. A
lower volume of network traffic means that the CPU needs only a fraction of its
time to handle the cryptography.

NaCl provides even better speeds than this, for four reasons:

– NaCl uses a single public-key operation for a packet of any size, allowing
large packets to be handled with very fast secret-key cryptography; 80000
1500-byte packets per second would fill up a gigabit-per-second link.

– A single public-key operation is shared by many packets from the same
public key, allowing all the packets to be handled with very fast secret-key
cryptography, if the caller splits crypto_box into crypto_box_beforenm and
crypto_box_afternm.

– NaCl uses “encrypt-then-MAC”, so forged packets are rejected without being
decrypted; a flood of forgeries thus has even more trouble consuming CPU
time.

– The signature system in NaCl supports fast batch verification, effectively
doubling the speed of verifying a stream of valid signatures.

Most of these speedups do not reduce the cost of handling forgeries under new
public keys, but a flooded server can continue providing very fast service to
public keys that are already known.

The optimized implementations in the current version of NaCl are aimed at
large CPUs, but all of the cryptographic primitives in NaCl can fit onto much
smaller CPUs: there are no requirements for large tables or complicated code.
NaCl also makes quite efficient use of bandwidth: as mentioned earlier, public
keys are only 32 bytes, signed messages are only 64 bytes longer than unsigned
messages, and authenticated ciphertexts are only 16 bytes longer than plaintexts.

5 Cryptographic primitives in NaCl

Stevens, Sotirov, Appelbaum, Lenstra, Molnar, Osvik, and de Weger announced
in 2008 (see [35] and [36]) that, by exploiting various weaknesses that had been
discovered in the MD5 hash function, they had created a rogue CA certificate.
They could, if they wanted, have impersonated any SSL site on the Internet.

This type of disaster, cryptographic primitives being broken, is sometimes
claimed to be prevented by cryptographic standardization. However, there are
many examples of standards that have been publicly broken, including DES,

62

512-bit RSA, and these MD5-based certificates. More to the point, there are
some existing standards that can reach NaCl’s speeds, but those standards fall
far short of NaCl’s security requirements.

Our main strategy for avoiding dangerous primitives in NaCl has been to
pay attention to cryptanalysis. There is an extensive cryptanalytic literature ex-
ploring the limits of attacks on various types of cryptographic primitives; some
cryptographic structures are comfortably beyond these limits, while others in-
spire far less confidence. This type of security evaluation is only loosely related
to standardization, as illustrated by the following example: Dobbertin, Bosse-
laers, and Preneel wrote “It is anticipated that these techniques can be used to
produce collisions for MD5 and perhaps also for RIPEMD” in 1996 [19], eight
years before collisions in MD5 (and RIPEMD) were published and a decade be-
fore most MD5-based standards were withdrawn. They recommended switching
to RIPEMD-160, which fifteen years later has still not been publicly broken.

This strategy, choosing cryptographic algorithms in light of the cryptanalytic
literature, has given us higher confidence in NaCl’s cryptographic primitives than
in most standards. At the same time this strategy has given us the flexibility
needed to push NaCl to extremely high speeds, avoiding the types of disasters
discussed in Section 4.

The rest of this section discusses the cryptographic primitives used in NaCl,
and explains why we expect these choices to reduce the risk of cryptographic
disasters. Specifically, NaCl uses elliptic-curve cryptography, not RSA; it uses
an elliptic curve, Curve25519, that has several advanced security features; it uses
Salsa20, not AES (although it does include an AES implementation on the side);
it uses Poly1305, not HMAC; and for an elliptic-curve signature system it uses
EdDSA, not ECDSA.

We are aware that many existing protocols require AES and RSA, and that
taking advantage of NaCl as described in this paper requires those protocols to be
upgraded. We have prioritized security over compatibility, and as a consequence
have also prioritized speed over compatibility. There are other projects that
have explored the extent to which speed and security can be improved without
sacrificing compatibility, but NaCl is aiming at a different point in the design
space, and at applications that are not well served by the existing protocols.
DNSCrypt (see Section 2) illustrates the feasibility of our deployment approach.

Cryptographic choices in NaCl. RSA is somewhat older than elliptic-curve
cryptography: RSA was introduced in 1977, while elliptic-curve cryptography
was introduced in 1985. However, RSA has shown many more weaknesses than
elliptic-curve cryptography. RSA’s effective security level was dramatically re-
duced by the linear sieve in the late 1970s, by the quadratic sieve and ECM in
the 1980s, and by the number-field sieve in the 1990s. For comparison, a few
attacks have been developed against some rare elliptic curves having special al-
gebraic structures, and the amount of computer power available to attackers has
predictably increased, but typical elliptic curves require just as much computer
power to break today as they required twenty years ago.

63

IEEE P1363 standardized elliptic-curve cryptography in the late 1990s, in-
cluding a stringent list of security criteria for elliptic curves. NIST used the
IEEE P1363 criteria to select fifteen specific elliptic curves at five different se-
curity levels. In 2005, NSA issued a new “Suite B” standard, recommending the
NIST elliptic curves (at two specific security levels) for all public-key cryptog-
raphy and withdrawing previous recommendations of RSA.

Curve25519, the particular elliptic curve used in NaCl, was introduced in [7]
in 2006. It follows all of the standard IEEE P1363 security criteria; it also satis-
fies new recommendations for “twist security” and “Montgomery representation”
and “Edwards representation”. What this means is that secure implementations
of Curve25519 are considerably simpler and faster than secure implementations
of (e.g.) NIST P-256; there are fewer opportunities for implementors to make
mistakes that compromise security, and mistakes are more easily caught by re-
viewers.

Montgomery representation allows fast single-scalar multiplication using a
Montgomery ladder [28]; this is the bottleneck in Diffie–Hellman key exchange
inside crypto_box. It was proven in [7] that this scalar-multiplication strategy
removes all need to check for special cases inside elliptic-curve additions. NaCl
uses a ladder of fixed length to eliminate higher-level branches. Edwards repre-
sentation allows fast multi-scalar multiplication and general addition with the
same advantage of not having to check for special cases. The fixed-base-point
scalar multiplication involved in crypto_sign uses Edwards representation for
additions, and eliminates higher-level branches by using a fixed sequence of 63
point additions as described in [11, Section 4].

Salsa20 [8] is a 20-round 256-bit cipher that was submitted to eSTREAM,
the ECRYPT Stream Cipher Project [20], in 2005. The same project collected
dozens of submissions from 97 cryptographers in 19 countries, and then hun-
dreds of papers analyzing the submissions. Four refereed papers from 14 cryp-
tographers studied Salsa20, culminating in a 2151-operation “attack” against 7
rounds and a 2249-operation “attack” against 8 rounds. After 3 years of review
the eSTREAM committee selected a portfolio of 4 software ciphers, including
Salsa20; they recommended 12 rounds of Salsa20 as having a “comfortable mar-
gin for security”.

For comparison, AES is a 14-round 256-bit cipher that was standardized ten
years ago. Cryptanalysis at the time culminated in a 2140-operation “attack”
against 7 rounds and a 2204-operation “attack” against 8 rounds. New research
in 2011 reported a 2254-operation “attack” against all 14 rounds, marginally
exploiting the slow key expansion of AES, an issue that was avoided in newer
designs such as Salsa20. (Salsa20 also has no penalty for switching keys.) Overall
each round of Salsa20 appears to have similar security to each round of AES,
and 20 rounds of Salsa20 provide a very solid security margin, despite being
faster than 14 rounds of AES on most CPUs.

A further difficulty with AES is that it relies on lookup tables for high-speed
implementations; avoiding lookup tables compromises the speed of AES on most
CPUs. Recall that, as discussed in Section 3, NaCl prohibits loading data from

64

secret addresses. We do not mean to say that AES cannot be implemented
securely: the NaCl implementation of AES is the bitsliced assembly-language
implementation described in [25], together with a portable C implementation
following the same approach. However, we are concerned about the extent to
which security for AES requires compromising speed. Salsa20 avoids these issues:
it avoids all use of lookup tables.

Poly1305 is an information-theoretically secure message-authentication code
introduced in [6]. Using Poly1305 with Salsa20 is guaranteed to be as secure as
using Salsa20 alone, with a security gap of at most 2−106 per byte: an attacker
who can break the Poly1305 authentication can also break Salsa20. HMAC does
not offer a comparable guarantee.

EdDSA was introduced quite recently in [11]. It is much newer than other
primitives in NaCl but is within a well-known cloud of signature systems that
includes ElGamal, Schnorr, ECDSA, etc.; it combines the safest choices available
within that cloud. EdDSA is like Schnorr and unlike ECDSA in that it diversifies
the hash input, adding resilience against hash collisions, and in that it avoids
inversions, simplifying and accelerating implementations. EdDSA differs from
Schnorr in using a double-size hash function, further reducing the risk of any
hash-function problems; in requiring Edwards curves, again simplifying and ac-
celerating implementations; and in including the public key as a further input to
the hash function, alleviating concerns regarding attacks targeting many keys at
once. EdDSA also avoids a minor compression mechanism, as discussed in [11];
the compression mechanism is public, so it cannot improve security, and skip-
ping it is essential for EdDSA’s fast batch verification. Finally, EdDSA generates
per-message secret nonces by hashing each message together with a long-term
secret, rather than requiring new randomness for each message.

NaCl’s implementation of crypto_sign does use lookup tables but never-
theless avoids secret indices: each lookup from the table loads all table entries
and uses arithmetic to obtain the right value. For details see [11, Section 4].
NaCl’s signature verification uses signed-sliding-window scalar multiplication,
which takes different amounts of time depending on the scalars, but this does
not create security problems and does not violate NaCl’s prohibition on secret
branches: the scalars are not secret.

To summarize, all of these cryptographic choices are quite conservative. We
do not expect any of them to be broken until someone succeeds in building a
large quantum computer; before that happens we will extend NaCl to support
post-quantum cryptography.

References

1. Martin R. Albrecht, Kenneth G. Paterson, and Gaven J. Watson. Plaintext recov-
ery attacks against SSH. In David Evans and Andrew Myers, editors, 2009 IEEE
Symposium on Security and Privacy, Proceedings, pages 16–26. IEEE Computer
Society, 2009. http://www.isg.rhul.ac.uk/~kp/SandPfinal.pdf. 3

65

2. Nadhem J. Alfardan and Kenneth G. Paterson. Plaintext-recovery attacks against
datagram TLS. http://www.isg.rhul.ac.uk/~kp/dtls.pdf; NDSS 2012, to ap-
pear. 3

3. J. Bacelar Almeida, Manuel Barbosa, Jorge S. Pinto, and Bárbara Vieira. Formal
verification of side channel countermeasures using self-composition. Science of
Computer Programming. http://dx.doi.org/10.1016/j.scico.2011.10.008; to
appear. 3

4. Apple. iPhone end user licence agreement. Copy distributed inside
each iPhone 4; transcribed at http://rxt3ch.wordpress.com/2011/09/27/

iphone-end-user-liscence-agreement-quick-refrence/. 1
5. Elaine Barker, William Barker, William Burr, William Polk, and Miles Smid. Rec-

ommendation for key management—part 1: General (revised). NIST Special Pub-
lication 800-57, 2007. http://csrc.nist.gov/groups/ST/toolkit/documents/

SP800-57Part1_3-8-07.pdf. 4
6. Daniel J. Bernstein. The Poly1305-AES message-authentication code. In Henri

Gilbert and Helena Handschuh, editors, Fast Software Encryption, volume 3557 of
LNCS, pages 32–49. Springer, 2005. http://cr.yp.to/papers.html#poly1305. 5

7. Daniel J. Bernstein. Curve25519: new Diffie-Hellman speed records. In Moti
Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key
Cryptography—PKC 2006, volume 3958 of LNCS, pages 207–228. Springer, 2006.
http://cr.yp.to/papers.html#curve25519. 5

8. Daniel J. Bernstein. The Salsa20 family of stream ciphers. In Matthew Robshaw
and Olivier Billet, editors, New stream cipher designs: the eSTREAM finalists,
volume 4986 of LNCS, pages 84–97. Springer, 2008. http://cr.yp.to/papers.

html#salsafamily. 5
9. Daniel J. Bernstein. DNSCurve: Usable security for DNS, 2009. http://dnscurve.

org/. 2
10. Daniel J. Bernstein. CurveCP: Usable security for the Internet, 2011. http:

//curvecp.org/. 2
11. Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.

High-speed high-security signatures. In Bart Preneel and Tsuyoshi Takagi, editors,
CHES 2011, volume 6917 of LNCS, pages 124–142. Springer, 2011. http://eprint.
iacr.org/2011/368. 1, 4, 5

12. Daniel J. Bernstein and Tanja Lange (editors). eBACS: ECRYPT benchmarking
of cryptographic systems. http://bench.cr.yp.to. 3

13. Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on
the RSA encryption standard PKCS#1. In Hugo Krawczyk, editor, Advances
in Cryptology—CRYPTO ’98, volume 1462 of LNCS, pages 1–12. Springer, 1998.
http://www.bell-labs.com/user/bleichen/papers/pkcs.ps. 3

14. Billy Bob Brumley and Nicola Tuveri. Remote timing attacks are still practical.
In Vijay Atluri and Claudia Diaz, editors, Computer Security—ESORICS 2011,
volume 6879 of LNCS, pages 355–371. Springer, 2011. http://eprint.iacr.org/
2011/232/. 3

15. “Bushing”, Hector Martin “marcan” Cantero, Segher Boessenkool, and Sven
Peter. PS3 epic fail, 2010. http://events.ccc.de/congress/2010/Fahrplan/

attachments/1780_27c3_console_hacking_2010.pdf. 3
16. Ramaswamy Chandramouli and Scott Rose. Secure domain name system (DNS)

deployment guide. NIST Special Publication 800-81r1, 2010. http://csrc.nist.
gov/publications/nistpubs/800-81r1/sp-800-81r1.pdf. 4

17. Joan Daemen and Vincent Rijmen. AES proposal: Rijndael, version 2, 1999. http:
//csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf. 3

66

18. Matthew Dempsky. OpenDNS adopts DNSCurve. http://blog.opendns.com/

2010/02/23/opendns-dnscurve/. 2
19. Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. RIPEMD-160: A strength-

ened version of RIPEMD. In Dieter Gollmann, editor, Fast Software Encryption,
volume 1039 of LNCS, pages 71–82. Springer, 1996. 5

20. ECRYPT. The eSTREAM project. http://www.ecrypt.eu.org/stream/. 5
21. Peter Gutmann. cryptlib security toolkit. http://www.cs.auckland.ac.nz/

~pgut001/cryptlib/. 2
22. Peter Gutmann. cryptlib security toolkit: version 3.4.1: user’s guide and manual.

ftp://ftp.franken.de/pub/crypt/cryptlib/manual.pdf. 2, 3
23. Simon Josefsson. Don’t return different errors depending on con-

tent of decrypted PKCS#1. Commit to the GnuTLS library, 2006.
http://git.savannah.gnu.org/gitweb/?p=gnutls.git;a=commit;h=

fc43c0d05ac450513b6dcb91949ab03eba49626a. 3
24. Burt Kaliski. TWIRL and RSA key size. http://web.archive.org/web/

20030618141458/http://rsasecurity.com/rsalabs/technotes/twirl.html. 4
25. Emilia Käsper and Peter Schwabe. Faster and timing-attack resistant AES-GCM.

In Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware and Em-
bedded Systems—CHES 2009, volume 5747 of LNCS, pages 1–17. Springer, 2009.
http://cryptojedi.org/papers/#aesbs. 5

26. Adam Langley. ctgrind—checking that functions are constant time with Valgrind,
2010. https://github.com/agl/ctgrind. 3

27. David Molnar, Matt Piotrowski, David Schultz, and David Wagner. The program
counter security model: Automatic detection and removal of control-flow side chan-
nel attacks. In Dongho Won and Seungjoo Kim, editors, Information Security and
Cryptology: ICISC 2005, volume 3935 of LNCS, pages 156–168. Springer, 2005. 3

28. Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of
factorization. Mathematics of Computation, 48(177):243–264, 1987. http:

//www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/

S0025-5718-1987-0866113-7.pdf. 5
29. OpenSSL. OpenSSL: The open source toolkit for SSL/TLS. http://www.openssl.

org/. 1
30. Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermea-

sures: the case of AES. In David Pointcheval, editor, Topics in Cryptology—CT-
RSA 2006, volume 3860 of LNCS, pages 1–20. Springer, 2006. 3

31. Adi Shamir and Eran Tromer. Factoring large numbers with the TWIRL device.
In Dan Boneh, editor, Advances in Cryptology—CRYPTO 2003, volume 2729 of
LNCS, pages 1–26. Springer, 2003. http://tau.ac.il/~tromer/papers/twirl.

pdf. 4
32. Ivo Smits. QuickTun. http://wiki.ucis.nl/QuickTun. 2
33. Software in the Public Interest, Inc. Debian security advisory, DSA-1571-1

openssl—predictable random number generator, 2008. http://www.debian.org/

security/2008/dsa-1571. 3
34. Jon A. Solworth. Ethos: an operating system which creates a culture of security.

http://rites.uic.edu/~solworth/ethos.html. 2
35. Alexander Sotirov, Marc Stevens, Jacob Appelbaum, Arjen Lenstra, David Molnar,

Dag Arne Osvik, and Benne de Weger. MD5 considered harmful today, 2008.
http://www.win.tue.nl/hashclash/rogue-ca/. 5

36. Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Arjen Lenstra, David Molnar,
Dag Arne Osvik, and Benne de Weger. Short chosen-prefix collision for MD5

67

and the creation of a rogue CA certificate. In Shai Halevi, editor, Advances in
Cryptology—CRYPTO 2009, volume 5677 of LNCS, pages 55–69. Springer, 2009.
http://eprint.iacr.org/2009/111/. 5

37. Tor project: Anonymity online. https://www.torproject.org/. 2, 4
38. Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient cache attacks on AES,

and countermeasures. Journal of Cryptology, 23(1):37–71, 2010. 3
39. David Ulevitch. Want to do something that matters? Then read on. http://blog.

opendns.com/2012/02/06/dnscrypt-hackers-wanted/. 2

68

RSA modulus generation in the two-party case

Gérald Gavin1 and François Arnault2

1ERIC Lab - University of Lyon - 5, avenue Pierre Mendès France
E-mail: gavin@univ-lyon1.fr

2 Département de Mathématiques et Informatique, Laboratoire XLIM Faculté des
Sciences et Techniques 123 avenue Albert Thomas, 87060 LIMOGES cedex

E-mail: arnault@unilim.fr

Abstract. In this paper, secure two-party protocols are provided in
order to securely generate a random k-bit RSA modulus n keeping its
factorization secret. We first show that most existing two-party protocols
based on Boneh’s test are not correct: an RSA modulus can be output in
the malicious case. Recently, Hazay et al. [13] proposed the first proven
secure protocol against any polynomial active adversary. However, their
protocol is very costly: several hours are required to output a 1024-bit
RSA modulus on a standard platform. In this paper, we propose an other
approach consisting of post-processing efficient existing Boneh’s based
protocols. The running time of this post-processing can be neglected
with respect to the running time of the whole protocol.

Keywords: RSA modulus, Boneh’s test, keys share.

1 Introduction

Many cryptographic schemes are based on RSA moduli, for example RSA
and Paillier. Many threshold versions have been proposed [20], [19], [11],
[9], [7]. In these versions, parties must generate an RSA modulus n and
distribute public and private keys such that the factorization of n is kept
secret. A solution consists of invoking a third party, called the trusted
dealer, which generates RSA moduli and shared keys.

The natural question is to know whether the dealer can be efficiently
removed. Boneh and Franklin [3] provided a positive answer when the
number of parties is larger than 3. This result is based on an adap-
tation of the Fermat’s primality test for RSA moduli, called Boneh’s
test. It is shown secure against passive adversaries. Frankel et al. [22],
Algesheimer et al. [1] have proposed a robust protocol for the multi-party
case in the presence of a minority of arbitrarily misbehaving malicious
parties. Damgard and Mikkelsen [10] have proposed an other biprimality
test with a better error estimate, but it cannot be used directly in the

69

two-party setting with active adversaries. The security of threshold Pail-
lier’s scheme requires that moduli are safe, i.e the product of safe primes.
Fouque and Stern [11] have shown that it suffices that the sub-group
QR(n) of quadratic residues is cyclic to ensure security. They provide
secure multi-party protocols for RSA moduli having this property.

This paper deals with the two-party case. Gilboa [12] Poupard and
Stern [18] and Straub [21] have proposed a solution based on Oblivious
Transfert (OT). They propose a robust protocol ModulusGeneration which
computes n = (pA + pB)(qA + qB) where pA, qA and pB, qB are two k-bit
integers randomly chosen respectively by Alice and by Bob. They then
apply Boneh’s test [4]. For concreteness, this biprimality test consists
of randomly choosing a ∈ Z∗

n such that (an) = 1, then Alice computes

vA = a(n−pA−qA+1)/4 mod n and Bob computes vB = a(pB+qB)/4 mod n.
If vA/vB �= ±1 mod n then the test fails. If the test does not fail for
several values of a there is a high probability that n is an RSA modulus.
However, let us imagine that n is not an RSA modulus and that Alice
knows the factorization of n while Bob does not (Alice could have greater
resources or better factorization algorithms). In this case, Alice can guess
(with non negligible probability) pB + qB and thus vB. She could there-
fore force Bob to believe that n is an RSA modulus. It proves that this
solution is only secure against passive adversary (see appendix A for a
concrete presentation and evaluation of this attack). In [2], the authors
have proposed solutions against this attack. However their protocols have
not been proven secure and above all their solution is not at all practical.
For instance, 1, 6.108 El Gamal encryptions/decryptions are required to
output a 1024-bit RSA modulus. Recently, Hazay et al. [13] proposed the
first proven secure protocol against any polynomial active adversary. To
reach this security level, authors propose a zero-knowledge proof to prove
that vA and vB are correctly computed. However, this zero-knowledge
proof is executed for each candidate n. This protocol based on a cut-
and-choose approach is very costly: it requires O(l) (l being a security
parameter) exponentiations per loop in Boneh’s test. As the number of
candidates n which should be tested is about O(k2), the number of expo-
nentiation of their protocol is O(l2k2). We roughly estimate that several
hours are needed to output a 1024-RSA modulus with this protocol (more
than 107 modular exponentiations are required).

The key idea of this paper consists of post-processing existing (effi-
cient) protocols based on Boneh’s test with a running time in O(l) (few
seconds are requiring for 1024-bit numbers): this post-processing can be
neglected with respect to the whole protocol. This idea was already sug-

70

gested in [13] (section ”Practical considerations”) in order to drastically
improve efficiency. However, security was not proven in this setting: au-
thors claim: ”We cannot simply postpone all proofs; care must be taken
to allow simulation and not to reveal information that would allow a ma-
licious party to, e.g., fake some zero-knowledge proof at a later point”.
While our approach differs from theirs, this paper can be seen as a posi-
tive answer to this claim.

For concreteness, the output n of classical Boneh’s test based protocols
is tested again. Here, it is assumed the existence of a correct and private
protocol ModulusGeneration computing n = (pA + pB)(qA + qB) (many
versions can be found in the literature [12], [3], [18], [21]). The parties
then test whether n is an RSA modulus with the classical Boneh’s test
(see [4]). As discussed before, this test may be incorrect against active
adversaries. Thus, if (and only if) n has been determined an RSAmodulus
previously, it is tested again with a test directly derived from Boneh’s test.
This test is implemented in protocols Gamma and RSAModulusTest. The
efficiency improvement comes from the fact that this second test is applied
only once. The main protocol of this paper, RSAModulusGeneration is an
implementation of the following generic scheme:

1. Each party generates a public key and a secret key of an additively
homomorphic encryption scheme S. EA (resp. EB) refers to the en-
cryption function generated by Alice (resp. Bob).

2. They invoke ModulusGeneration to get moduli n until n succeeds the
classical Boneh’s test. Each time the test fails, each party checks that
the other party has behaved honestly.

3. Alice (resp. Bob) invokes Gamma to get an encryption ΓB = EB((p−
1)(q − 1)) (resp. ΓA = EA((p− 1)(q − 1))) where n = pq

4. Alice (resp. Bob) invokes RSAModulusTest (as party 1) on the input
ΓB (resp. ΓA) to be convinced that n is really an RSA modulus. If
the test fails, the protocol fails (it means that a party has behaved
dishonestly in step 2.)

It is important to notice that an adversary does not gain any advantage
when RSAModulusGeneration fails. This is used to simplify and improve
protocols and their security proof. We propose original tools to prove
that an adversary cannot learn the factorization of n without making
the protocol fails: this is captured in the definition of the property nPri-
vate introduced in section 2. This property is dedicated to factorization
problem but can be straightforwardly extended to other problems.

71

2 Problem and security statements

Let us make explicit the conjecture intrinsically made in Boneh’s test
based protocols. This conjecture is related to the difficulty of factorizing
RSA moduli.

Conjecture 1. Let k ∈ N and n = pq be an RSA modulus chosen at
random such that p ≡ q ≡ 3 mod 4, p ∈ [pA + 2k, pA + 2k+1[

⋂
N and

q ∈ [qA+2k, qA+2k+1[
⋂

N where pA, qA are two arbitrary integers. There
exists a negligible function δ such that for all probabilistic polynomial-
time (p.p.t) algorithms A, A outputs the factorization of n with a prob-
ability smaller than δ(k) only given n, pA and qA.

In this paper we wish to design a two-party protocol for securely generat-
ing RSA moduli. Existing protocols for securely computing RSA moduli
are decomposed in two parts. First, parties securely compute a candidate
n = pq by using a secure protocol called here ModulusGeneration, they
then test n with Boneh’s test. In this paper, we assume the existence of
such a protocol ModulusGeneration whose the specifications are detailed
in the next definition. In particular, it should be correct and private (see
[14]).

Definition 1. ModulusGeneration is protocol implementing the following
ideal scheme. Alice chooses two secret positive integers pA, qA and Bob
chooses two secret positive integers pB, qB. Then, they send these values
to a trusted party which outputs n = pq where p = pA + pB and q =
qA + qB if and only if pA ≡ qA ≡ 3 mod 4 and pB ≡ qB ≡ 0 mod 4.
ModulusGeneration is assumed to be correct and private against any
active polynomial adversary.

ModulusGeneration checks that pA + pB ≡ qA + qB ≡ 3 mod 4 because
it is required for Boneh’s test but ModulusGeneration does not need to
verify the size of the input integers pA, qA, pB and qB. It will be done in
the protocol Gamma only once, i.e. on the first modulus n which success-
fully passes Boneh’s test. Versions of ModulusGeneration can be found in
the literature (see [12], [18]). In section 3, we present a two-party proto-
col, called RSAModulusGeneration, which securely (we will clarify what it
means below) generates RSA moduli. The idea consists of generating an
RSA modulus n in the classical way (ModulusGeneration + Boneh’s test).
If n is determined to be an RSA modulus then it is tested again (Gamma
+ RSAModulusTest). The second test make RSAModulusGeneration fail if
n is not an RSA modulus. Thus, the second test is applied only once. The

72

RSAModulusGeneration security proof exploits the fact that an adversary
A does not gain any advantage when the protocol fails. For this reason,
weaker security requirements will be considered by restricting the security
analysis of RSAModulusGeneration to the two following issues :

1. RSAModulusGeneration is correct, i.e. the output n is not a k-bit RSA
modulus with negligible probability with respect to k.

2. Assuming conjecture 1, for any polynomial adversary A, the proba-
bility that the protocol does not fail and that A factors the output n
is negligible with respect to k.

In order to prove the second issue, we introduce a property dedi-
cated to our problem, called nPrivate. This property can be interpreted
as the difficulty for an adversary to learn the factorization of n during
the execution of P without making P fail. This composable property is
formalized in the next definition. In section 4, we will show that Gamma
and RSAModulusTest satisfy this property. Roughly speaking, these pro-
tocols are private against adversaries which do not make the protocol fail
with non-negligible probability.

Definition 2. For any k ∈ N, Γk refers to the set of k-bit integers. Let
P be an arbitrary two-party protocol where a public integer n ∈ Γk is
input to P by both parties. Parties may have arbitrary other inputs. Let
us assume that the party 1 is honest and the party 2 is controlled by a
polynomial adversary A.

1. For any k ∈ N, Dk denotes a probability distribution over Γk×{0, 1}∗.
A family of such probability distributions D = (Dk)k∈N is said nPri-
vate1 if for any p.p.t algorithm F , the probability that F outputs the
factorization of n given (n, zn) ← Dk is negligible.

2. Let D = (Dk)k∈N be an arbitrary nPrivate probability distribution fam-
ily. We propose the following experiment :

(a) a pair (n, zn) ∈ Γk × {0, 1}∗ is randomly generated according to
Dk, i.e. (n, zn) ← Dk.

(b) The corrupted party receives (n, zn)

(c) The honest party receives n and arbitrary information about n.

(d) Parties execute P where the honest party inputs n (and arbitrary
other inputs).

1 Assuming conjecture 1, such distributions exist.

73

We say that P is nPrivate against A if the probability that P has not
failed and A outputs the factorization of n at the end of the previous
experiment is negligible

This definition is maybe difficult to understand because it is not only
a security definition but it also depends on the functionality computed
by P : for instance, P is not nPrivate against passive adversary if the
factorization of n is expected to be output. On the other hand, classi-
cal Boneh’s test is trivially nPrivate meaning that if an RSA modulus is
tested, an adversary cannot learn the factorization of n without cheating
the test (even by making it fail). Typically, the vector zn contains the
information learnt during the previous protocols. For instance, before the
execution of Boneh’s test (at the end of the execution of ModulusGenera-
tion), (n, zn) is computationally indistinguishable of (n, pA, qA) assuming
ModulusGeneration is correct and private. A can use zn

2 to behave (mali-
ciously) within P . Party 1 may know the factorization of n or may have
partial information regarding n which he may use in the execution. At
the end of the execution of P , A knows an information set zn,A,P ”big-
ger” than zn which intuitively contains zn and its view in P . Roughly
speaking, if an adversary cannot factor an integer n (chosen at random
and input by the honest party) before the execution of an nPrivate pro-
tocol, it cannot collect enough information to factor n without making
the protocol P fail. Let us see informally the link between the property
nPrivate and UC-security3. In Gamma and RSAModulusTest parties output
an encryption. Under the assumption of semantic security of the under-
lying encryption scheme, such output cannot ”help” them to factor n.
In such protocols (where the output is not informative about the factor-
ization of n), it is easy to see that UC-security implies ”nPrivateness”:
otherwise the ideal case and the real case could be distinguished with
non negligible probability (factorization possible in the real-case but not
the ideal-case). However the converse is not true. In particular, Gamma
will be shown nPrivate but trivially not UC-secure. The property nPrivate
especially dedicated to our problem allows to simplify the sub-protocols
Gamma and RSAModulusTest and their security proofs. The price to pay
is to understand why the next generic protocol GenFact is nPrivate. It will

2 zn can been interpreted as prior information about n known by A before the
execution of P (see [17]).

3 The UC-model was developed by R. Canetti [5]. Here UC stands for universally
composable, which denotes that if a protocol is UC-secure according to the formal
definition, then it is secure to use in any context (where it would have been secure
to use the ideal functionality).

74

be used to prove that Gamma and RSAModulusTest, which are restricted
implementations of this generic protocol, are nPrivate.

Definition 3. Let k be a security parameter. GenFact is a protocol be-
tween an arbitrary oracle O and a party 2. The oracle O inputs a public
k-bit integer n and it is assumed that O answers (correctly or not, de-
pending of the characteristics of O) to any binary question4 (a question
whose answer is ”yes” or ”no”). Party 2 first asks an arbitrary binary
question. If the answer is ”no” the protocol fails. If the protocol does not
fail, party 2 can ask a second binary question. If the answer is ”no” the
protocol fails and so on.... The number of questions is assumed polyno-
mial in k. Moreover, it is assumed that party 2 receives arbitrary
information (e.g. the factorization of n) when the protocol fails.

The next result states that a polynomial adversary controlling party
2 cannot ”learn” the factorization of n without making GenFact fails.
Intuitively, ifA wants to learn r bits, GenFact fails with probability 1−2−r.

Lemma 1. GenFact is nPrivate against any polynomial adversary A con-
trolling party 2.

Proof. (Sketch.) Let D = (Dk)k∈N be an nPrivate probability distribution
family (see definition 2) and A be a polynomial adversary controlling
party 2. Let (n, zn) ← Dk. The probability that A factors n without
making GenFact fail is denoted by PA. Let us suppose that GenFact is not
nPrivate by assuming that PA > p(k) where p is a polynomial.

GenFact fails if A receives at least one ”no” to any of the arbitrary
binary questions mentioned in definition 3. Thus, when A chooses its ith

question, it has received i−1 positive answers5, i.e. (”yes”, ”yes”,...,”yes”).
Thus, the received messages are not informative (the transcript of the
protocol can be exactly simulated in polynomial time without knowing
the factorization of n) to choose its ith question. Consequently, A can
choose the polynomial-size list L of its questions a priori, i.e. before the
execution of GenFact.

Let us show that there exists a polynomial adversary A′, only given
n, zn, able to factor n with probability larger than p(k) without interacting
with the oracle O. Indeed, A′ chooses the same list L of questions a priori,
assumes that the answers are ”yes” and then computes the factorization

4 For instance, ”Does God exist?” is a binary question. In order to factor n, the party
2 should ask questions relative to n, e.g. n is a RSA-modulus n = pq? Is the ith bit
of p equal to 1? etc...

5 Otherwise the protocol has failed previously.

75

of n as A would do (one could imagine that A′ invokes A on the same
list L of questions with positive answers). We consider the three following
events S, F, F ′:

1. S = Genfact does not fail.
2. F = A factors n
3. F ′ = A′ factors n

The protocol does not fail when all the questions of L get a positive
answer. In this case, A′ correctly assumes that all the answers are positive
implying that A and A′ have the same information: consequently they
factor n with the same probability (by construction of A′), i.e.

P (F |S) = P (F ′|S)
By noting that PA = P (F |S)P (S), we have

P (F ′) ≥ P (F ′|S)P (S) = P (F |S)P (S) = PA

It implies that P (F ′) ≥ PA > p(k) meaning that A′ factors n with non
negligible probability. It contradicts that D is nPrivate. Consequently,
PA < p(k) proving that GenFact is nPrivate.

�

As expected, this lemma implies that Boneh’s test is nPrivate (but
not correct) against any polynomial adversary. Indeed, this protocol can
be seen as a restricted implementation of GenFact where the oracle is

replaced by the honest party and the ith binary question is tia
sB

?≡ 1
mod n, ti being an arbitrary value chosen by A (recall that in GenFact,
party 2 receives arbitrary information if the protocol fails: in Boneh’s test,
it receives tia

sB).
The next intuitive result (see appendix C for the proof) states that

the property nPrivate is stable by (serial) composition.

Proposition 1. (Composition.) If R and S are two nPrivate protocols
then the composed protocol P = R → S consisting of executing R and S
successively (where honest parties input the same integer n in R and S)
is also nPrivate.

3 RSA Moduli Generation

In this section, we propose a secure (according to the security require-
ments presented in the previous section) implementation of the main

76

protocol of this paper, i.e. RSAModulusGeneration. This protocol is based
on the protocols RSAModulusTest and Gamma as schematically explained
in the introduction. These protocols assume the existence of a semanti-
cally secure additively homomorphic public key encryption scheme S =
(G,E,D). It is also assumed the existence of the following UC-secure
protocols:

1. CorrectKey is a ZK-proof proving correctness of keys.

2. EncryptProof is a ZK-proof allowing the private key owner to prove
that a public encryptionX encrypts a public value x without revealing
anything about the private key.

3. Multiplication. Alice has 2 secret encryptions X = EB(x) and Y =
EB(y) of 2 unknown values x and y. She outputs an encryption of
Z of xy, i.e. Z = EB(xy), without learning and without revealing
anything about x and y.

4. Bound is ZK-proof allowing Alice to prove that an encryption XA =
EA(x) is a valid encryption of a value x smaller than some public
threshold B without revealing anything else about x.

Paillier’s encryption scheme is a good candidate. Indeed to prove that
X encrypts x, the private key owner sends the random value r of the
encryption, i.e. X = gxrn mod n2, obtained in the decryption phase6.
A version of CorrectKey (which consists of proving that n and φ(n) are
co-prime) can be found in [13]. A version of Multiplication can be found
in appendix B and A version of Bound can be found in [8]. The classic
solution for the protocol Bound is to provide encryptions to the individual
bits and prove in zero-knowledge that they are bits using a zero-knowledge
proof (e.g. see [8]). A more sophisticated solution for Bound requiring only
O(1) exponentiations is presented in [13].

Throughout the paper, the security of the protocols will be studied
in the (CorrectKey, EncryptProof, Bound and Multiplication)-hybrid model
where these protocols can be replaced by an oracle. According to the
composition theorem (see [5]), provided that CorrectKey, EncryptProof,
Bound and Multiplication are UC-secure, the security in the hybrid model
ensures security in the classical model.

In this paper, Alice (resp. Bob) generates an encryption function EA

(resp. EB) defined over ZnA (resp. ZnB) where nA (resp. nB) is a 5k-size
integer. Generally, XA (resp. XB) will refer to an encryption done with
EA (resp. EB). Parties invoke CorrectKey to prove correctness of keys.

6 El Gamal’s encryption scheme does not satisfy this property.

77

3.1 Protocol Gamma.

In this section, we suppose that the parties have already computed n =
(pA+ pB)(qA+ qB) with ModulusGeneration assumed correct and private:
pA, qA (resp. pB, qB) refer to the secret values input by Alice (resp. Bob)
in this protocol. Let us recall that pA, qA, pB, qB are expected to be k-bit
integers such that pA ≡ qA ≡ 3 mod 4 and pB ≡ qB ≡ 0 mod 4. Mod-
ulusGeneration is not required to check the size of pA, qA, pB, qB because
it is done here (and thus only once). Gamma aims to securely compute
an encryption of γ = (p − 1)(q − 1)/2 such that n = pq. For concrete-
ness, at the end of the execution of Gamma, Alice obtains an encryption
ΓB = EB(γ); Bob does not output anything ensuring correctness against
any adversary controlling Alice. Let A be a polynomial adversary control-
ling Bob. If the parties honestly behave then p = pA+pB and q = qA+qB.
If the adversary modifies Bob’s inputs, it might happen that p �= pA+ pB
or q �= qA + qB but it is ensured that pq = n with p and q two k-bit
such that p ≡ q ≡ 3 mod 4. In this sense, Gamma is correct against any
polynomial adversary Bob. We denote the secret (k − 2)-bit size integers
by p′A, q

′
A, p

′
B, q

′
B such that p′A = (pA − 3)/4, q′A = (qA − 3)/4, p′B = pB/4

and q′B = qB/4. Bob publicizes encryptions of p′B and q′B and proves that
these encryptions encrypt (k − 2)-bit integers with Bound.

By using homomorphic properties, Alice gets encryptions PB and QB

of p and q. Alice then invokes Multiplication to get an encryption NB of pq
and checks (by asking Bob to decrypt it) that pq ≡ n. She then invokes
Multiplication to securely compute an encryption of γ = (p− 1)(q − 1)/2.

Proposition 2. Assume that the encryption scheme S is semantically
secure. Gamma is correct and nPrivate against any polynomial adversary
in the (Multiplication, Bound, EncryptProof)-hybrid model.

Proof. The protocol is intrinsically correct against adversary control-
ling Alice because Bob is not expected to output anything. Let A be
a polynomial adversary controlling Bob. In the (Multiplication, Bound,
EncryptProof)-hybrid model, A does not interact with Alice except in the
choice of the input values. Let us imagine that A inputs (k − 2)-bit in-
tegers p′′B and q′′B such that p′′B �= p′B or q′′B �= q′B. In this case, either the
protocol fails (step 3) or ΓB encrypts (p′ − 1)(q′ − 1)2−1 mod nB with
p′ = 4(p′A+p′′B)+3, q′ = 4(q′A+q′′B)+3 and p′q′ ≡ n mod nB (recall that
EB is an encryption function over ZnB). As nB was chosen sufficiently
large (5k-bit integer), there are not modular reductions and the equalities
remain true over Z).

78

Protocol 1 : Gamma.

Require : Let k be a security parameter. Let n be a public composite odd integer.
Alice (resp. Bob) knows two (k − 2)-bit integers p′A, q

′
A (resp. p′B , q

′
B) such that n =

(4(p′A + p′B) + 3)(4(q′A + q′B) + 3).

1. Bob publicizes encryptions A = EB(p
′
B) and B = EB(q

′
B). He then proves that A

and B encrypt a (k − 2)-bit integer by invoking Bound.
2. Alice computes, by using homomorphic properties, encryptions PB , QB of respec-

tively p = 4(p′B + p′A) + 3 and q = 4(q′B + q′A) + 3. By invoking Multiplication, she
then computes an encryption NB of pq.

3. Alice sends NB and Bob decrypts it and he sends the decrypted value and proves
the decryption with EncryptProof. If NB does not encrypt n, the protocol fails.

4. Alice computes encryptions of p−1 and q−1 by using homomorphic properties and
invokes Multiplication on these encryptions to compute an encryption of (p−1)(q−
1). By using homomorphic properties She computes and outputs an encryption
ΓB of (p− 1)(q − 1)/2, i.e. 2−1(p− 1)(q − 1) mod nB .

In the (Multiplication, Bound, EncryptProof)-hybrid model, the pro-
tocols Multiplication, Bound, EncryptProof can be replaced by a trusted
party. Thus, the steps (1)+(2) and the step (4) can be seen as sub-
protocols without direct interaction between parties (just with the trusted
party). Moreover parties only receive encryptions (and ”true” from the
trusted party simulating Bound). Assuming S semantically secure, these
sub-protocols are nPrivate. According to the composition property (see
proposition 1), it suffices to prove that step (3) (interpreted as a sub-
protocol) is nPrivate.

Let A be a polynomial adversary controlling Alice. In step 3, A can
send any encryption NB. However if NB does not encrypt n, the pro-
tocol fails. This step can be seen as a restricted implementation of the
nPrivate protocol GenFact, described in section 2, where A asks only one
question, i.e. n =? DB(NB). It proves that Gamma is nPrivate against any
polynomial adversary controlling Alice.

Let A be a polynomial adversary controlling Bob. In the same way, A
can send encryptions of p′′B and q′′B such that p′′B �= p′B or q′′B �= q′B. The
protocol fails if NB does not encrypt n. Thus Gamma can be also seen
for A as a restricted implementation of GenFact, described in section 2,
where A only asks if n =? (4(pA+ p′′B)+ 3)(4(qA+ q′′B)+ 3). According to
lemma 1, Gamma is nPrivate against any polynomial adversary controlling
Bob.

�

79

It is easy to see that that Gamma is not UC-secure. Indeed, A can
send an encryption NB of pB for instance. By doing this, A can learn the
Bob’s private value pB but the protocol would fail in step 3. To avoid this,
it suffices that Bob checks that DB(NB) = n before to send DB(NB).

3.2 Protocol RSAModulusTest

RSAModulusTest is used to check that a non-RSA modulus has not erro-
neously succeeded Boneh’s test (because of a malicious behavior). Thus,
RSAModulusTest simply consists of checking that n is an RSA modulus.
The party 1, Alice by convention, wants to be convinced with a high prob-
ability that n is an RSA modulus: Alice (note that Bob does not output
anything) outputs ok if n is an RSA modulus and otherwise RSAModu-
lusTest fails (in RSAModulusGeneration, at the beginning of the execution
of RSAModulusTest, n should be an RSA modulus if parties honestly be-
haved). RSAModulusTest implements the following test derived from the
classical Boneh’s test:

1. choose at random a ∈ Z∗
n such that (an) = 1 and choose a random

integer α ∈ {n, n+ 1}
2. compute v = aαγ mod n with γ = (p− 1)(q − 1)/2
3. If v �= 1 then n is not an RSA modulus.

This test is less efficient than Boneh’s test in the sense that a non-
RSA modulus n has a larger probability of succeeding the test. Indeed,
if aγ �= 1 mod n, the probability (over the choice of α) that aαγ/2 = 1
mod n is less than 1/2 (because a(n+1)γ/2 = anγaγ). As the probability
(over the choice of a ∈ Zn assuming that p, q are not Carmichael integers)
that aγ �= 1 mod n is larger than 1/2 (see [4]), the probability (over the
independent choices of α and a) that aαγ ≡ 1 mod n is smaller than 3/4.

In RSAModulusTest, αγ is shared by using homomorphic properties of
the underlying homomorphic cryptosystem S. For concreteness, Alice has
a secret encryption ΓB of γ with pq = n. Alice and Bob jointly choose
a random number a over Z∗

n such that (an) = 1. Then, she randomly
chooses α ∈ {n, n+1}, randomly chooses s1 ∈ [18αn,

3
8αn]

⋂
N, computes

t1 = as1 mod n, commits it and sends an encryption of s2 = αγ −
s1.

7 Bob decrypts it and sends t2 = as2 mod n. If t2t1 �= 1 mod n the
test fails. Let us suppose that n is not an RSA modulus and that an
adversary A controlling Bob has guessed γ �= λ(n)/2 before the execution

7 Note that these numbers can be encrypted by EB defined over ZnB because nB is
assumed to be large enough, i.e. a 5k-bit integer.

80

of RSAModulusTest. As s2 has been randomly chosen in a set statistically
indistinguishable from [18n

2, 38n
2]
⋂
N, A is shown unable to choose t2 ∈

Z∗
n, with probability larger than 3/4, such that t1t2 = 1 mod n. This

ensures correctness against any polynomial adversary controlling Bob.
RSAModulusTest is trivially nPrivate against any polynomial adversary.
Furthermore, RSAModulusTest can be seen, for Alice, as an instance of
the generic protocol GenFact. It ensures that this protocol is nPrivate
against any polynomial adversary controlling Alice (according to lemma
1).

Protocol 2 : RSAModulusTest

Require : Let k be a security parameter and l ∈ N be indexed by k. Let n = pq be
an odd composite integer where p and q are k-bit integers such that p ≡ q ≡ 3 mod 4.
Party 1 (Alice by convention) has a secret encryption ΓB of γ = (p− 1)(q − 1)/2.

For i = 1 to l

1. Alice and Bob jointly choose a ∈ Z∗
n at random such that (a

n
) = 1

2. Alice randomly chooses α ∈ {n, n + 1} and s1 ∈ [1
8
αn, 3

8
αn]

⋂
N and sends U =

EB(αγ − s1) where U is computed only by using homomorphic properties. She
computes an encryption T1 of t1 = as1 mod n with the encryption function EA,
i.e. T1 = EA(t1) and sends it (t1 is committed).

3. Bob decrypts U , i.e s2 = DB(U) and sends t2 = as2 mod n
4. Alice sends t1 = DA(T1) and proves the decryption with EncryptProof.
5. Alice and Bob compute v = t1t2 mod n. If v �= 1 then the protocol fails.

End for

Alice outputs ok

Proposition 3. Assuming the encryption scheme S is semantically se-
cure, RSAModulusTest is correct and nPrivate against any polynomial ad-
versary in the (EncryptProof)-hybrid model.

Proof. First, let us note that the encryption domain ZnB of EB was cho-
sen large enough (nB is a 5k-bit integer and all the considered integers are
at most 4k-bit integers) to avoid modular reductions8 (modulo nB). Let
A be a polynomial adversary controlling Bob. Let us prove that RSAMod-
ulusTest is correct against A. As the only possible output is ok, RSAMod-
ulusTest is intrinsically correct if n is an RSA modulus. Let us suppose

8 It can be imagined that the encryption domain of EB is N.

81

that n is not an RSA modulus such that A knows its factorization, λ(n)
and γ �= λ(n)/2. RSAModulusTest is correct if Alice outputs ok with a
negligible probability. Let 9 a ∈ Z∗

n s.t. aγ �= 1 mod n. In order to make
Alice output ok, A should guess, at each iteration, t−1

1 mod n (and send
it to Alice at step 3). If A knows γ, it knows that

t−1
1 ∈ {as2−iγ mod n|i ∈ {n, n+ 1}}

By assuming aγ �= 1 mod n, this set contains two distinct elements m1

and m2. A receives a value s2 such that s1 + s2 = αγ (the equality holds
because the domain size ZnB of EB is sufficiently large) where s2 is a
random number over a distribution statistically indistinguishable to the
uniform distribution over [18n

2, 38n
2]
⋂
N: the statistical indistinguishabil-

ity holds by noticing that γ − n/2 = O(n
1
2) (here, it is assumed that p

and q are k-bit integers) is negligible implying that for any α ∈ {n, n+1}

[αγ − 3

8
αn, αγ − 1

8
αn]

⋂
N

s≡ [
1

8
n2,

3

8
n2]

⋂
N

Consequently, A cannot distinguish between α = n or α = n+1 implying
that it cannot distinguish between t−1

1 ≡ m1 mod n or t−1
1 ≡ m2 mod n

with probability significantly larger than 1/2. The probability to choose
a ∈ Z∗

n such that aγ �= 1 mod n is larger than 1/2 see [4]10. Therefore
the probability that A guess t−1

1 mod n is smaller than 3/4. Also, the
probability to do this at each iteration is smaller than (3/4)k.

RSAModulusTest is trivially nPrivate against A. Indeed, the view of A
(when the protocol does not fail) can be simulated by a list of k indepen-
dent triplets of values (T1, a

−s2 , s2) where T1 is randomly chosen in the
ciphertext domain of EA, s2 is chosen at random in a set statistically in-
distinguishable from [18n

2, 38n
2]
⋂
N. Assuming the semantic security of S,

the simulation and the real view are computationally indistinguishable.

Let A be a polynomial adversary controlling Alice. Correctness is implicit
because Bob does not output anything. RSAModulusTest can be seen, for
A, as a restricted implementation of GenFact, described in section 2, where
the k questions are as2 ≡? t−1

1 mod n (the commitment of t1 is required
to get this). According to lemma 1, RSAModulusTest is nPrivate against
any polynomial adversary controlling Alice.

�
9 Throughout this paper, we neglect the probability that n is a Carmichael modulus.

10 By supposing that n is not a Carmichael RSA modulus.

82

3.3 Protocol RSAModulusGeneration

The following protocol RSAModulusGeneration implements the function-
ality described in section 2. As mentioned in section 2, ModulusGeneration
denotes a correct and private (in the malicious case) protocol computing
n = (pA + pB)(qA + qB). This protocol is used to build an RSA modulus
candidate n = pq. The parties then use the classical Boneh’s test to test
if n is an RSA modulus. If not, the parties exchange the current values
pA, pA, pB, qB (which do not need to be kept secret anymore) and check
that the other party behaved honestly before generating an othermodulus
n (by executing a new iteration of the loop). If Boneh’s test claims that n
is an RSA modulus, the parties then invoke Gamma to get an encryption
of (p− 1)(q− 1)/2. They then check that n is really an RSA modulus by
executing RSAModulusTest twice (exchanging their positions each time).
The idea is to execute RSAModulusTest only if n is an RSA modulus or if
the adversary did not behave honestly. RSAModulusTest will distinguish
these two cases. Note that either RSAModulusGeneration outputs the first
RSA modulus n0 output by ModulusGeneration in step 1.a.: it will be used
in the security analysis of RSAModulusGeneration.

Theorem 1. Let A be a polynomial adversary controlling Alice or Bob.
Assume that the encryption scheme S is semantically secure, the fol-
lowing assertions are true in the (CorrectKey, EncryptProof, Bound and
Multiplication)-hybrid model.

1. RSAModulusGeneration is correct against A, i.e. the probability that
the output n is not an RSA modulus is negligible.

2. Assuming conjecture 1, the probability that the protocol does not fail
and that A factors the output n is negligible.

Proof. Let k be the security parameter. Let us suppose that Bob is honest
and that Alice is controlled by an active adversary A.

ModulusGeneration is assumed to correctly compute n = (pA+pB)(qA+
qB). If n is not an RSA modulus and A cheats Boneh’s test in step (1.b),
the protocol fails in step (4) according to proposition 1. Thus, RSAMod-
ulusGeneration cannot output a non-RSA Modulus. If pA or qA is not a
k-bit size integer, if pA �≡ 3 mod 4 or if qA �≡ 3 mod 4 then the protocol
fails in step 2. Thus, the output is a well-formed RSA modulus. It proves
correctness.

Let us show that either the first RSA modulus generated by Mod-
ulusGeneration is output or RSAModulusGeneration fails. Let n0 = pq =
(pA + pB)(qA + qB) be the first (by assuming the protocol has not failed

83

Protocol 3 : RSAModulusGeneration

Require : Let k be a security parameter. Alice (resp. Bob) generates an encryption
function EA (resp. EB) defined over ZnA (resp. ZnB) where nA (resp. nB) is a 5k-size
integer. Parties invoke CorrectKey to prove correctness of keys.

1. While Boneh’s test fails

(a) Alice and Bob randomly choose k-bit numbers, respectively pA, qA and
pB , qB such that pA ≡ qA ≡ 3 mod 4 and pB ≡ qB ≡ 0 mod 4. They then
invoke ModulusGeneration to get n = (pA + pB)(qA + qB).

(b) Alice and Bob invoke Boneh’s test to decide if n is an RSA modulus or not.
(c) if n failed Boneh’s test then parties broadcast pA, qA, pB , qB and verify that

n = (pA + pB)(qA + qB) and pA + pB or qA + qB are not prime. If n is an RSA
modulus then the protocol fails.

End while

2. Alice and Bob invoke Gamma twice (by exchanging their position) on the private
inputs ((pA−3)/4, (qA−3)/4), (pB/4, qB/4) and the public input n. Alice gets the
encryption ΓB and Bob gets the encryption ΓA.

3. Alice invokes RSAModulusTest on the input n, ΓB (Alice is party 1)

4. Bob invokes RSAModulusTest on the input n, ΓA (Bob is party 1)

5. If Alice and Bob have output ok in the previous steps, n is output.

84

before) RSA modulus output by ModulusGeneration in loop 1. If A cheats
Boneh’s test in step (1.b) then the protocol fails in step (1.c) else the step
2 is executed. If p or q are not k-bit size integers then the execution of
Gamma makes RSAModulusGeneration fails in step 2. As RSAModulusTest
is correct, either n0 is output or the protocol fails in step 4. Thus, the
output RSA modulus n0 is randomly chosen such that p ≡ q ≡ 3 mod 4,
p ∈ [pA+2k, pA+2k+1[

⋂
N and q ∈ [qA+2k, qA+2k+1[

⋂
N where pA, qA are

two arbitrary k-bit integers (chosen by the adversary). According to con-
jecture 1 and assuming that ModulusGeneration is assumed to be private,
A cannot factor n0, with non negligible probability, at the end of step 1.a..
Indeed, in the ideal case (see [5]) an adversary AI knows n, pA, qA and in
the real case the adversary A knows n0, zn0,A (zn0,A being the view of A in
ModulusGeneration). Indeed, according to conjecture 1, there there does
not exists any polynomial adversary AI able to factor n0 with non negli-
gible probability in the ideal case (given n0, pA, qA). Thus, if there exists a
polynomial adversary A able to factor n0 with non negligible probability,
then the real view and the ideal view can be distinguished with non neg-
ligible probability: it contradicts that ModulusGeneration is private. Thus
such an adversary A does not exist. In other words, by denoting Dk the
distribution of n0, zn0,A, the family of distributions (Dk)k∈N is nPrivate.
Boneh’s test is nPrivate and according to proposition 2 and 3, Gamma
and RSAModulusTest are nPrivate. According to the composition prop-
erty (see proposition 1), the sub-protocols composed by steps (1b.)(2),(3)
and (4) is nPrivate. According to the definition 2, A cannot output the
factorization of n0 without making the nPrivate sub-protocol composed
of the steps (1.b.)(2),(3),(4) (thus RSAModulusGeneration) fail with non
negligible probability.

�

Efficiency Analysis. Classical Protocols generating RSA moduli corre-
spond to the steps (1a) (1b) of RSAModulusGeneration. The steps (1c)
(2), (3), (4) were introduced in order to make the protocol robust against
active adversaries. Let us evaluate the supplementary cost of these steps.

In a first analysis, we only take into account modular exponentiations,
encryptions and decryptions (ME/E/D) that Alice (and symmetrically
Bob) must compute (neglecting, for instance, modular multiplications).
The underlying encryption scheme S is assumed to be the Paillier cryp-
tosystem. The number of iterations of the loop is approximatively equal
to log2 n on average. As (1c) consists of doing log2 n primary tests, the
cost of (1c) is approximately equal to log2 n exponentiations. However,

85

(1c) should be added in all classical Boneh’s test protocols to not allow
an adversary to cheat Boneh’s test on RSA moduli. Furthermore, (1c)
does not need to be executed at each iteration but only with a given
probability.

Gamma and RSAModulusTest are executed twice. Gamma requires
O(log n) ME/E/D (assuming Bound requiresO(1) ME/E/D) and RSAMod-
ulusTest requires O(1) ME/E/D. Thus, steps (2),(3),(4) can be neglected
with respect to step (1) (which requires O(log2 n) ME/E/D) when log n
is large. Let us detail our analysis.

In Gamma, the protocol Bound is invoked twice. For classical security
level, approximatively 103 ME/E/D are required. Without any optimiza-
tion, the total running time of steps (2), (3), (4) is a few minute on a
standard platform.

However, as far as we know, there does not exist two-party really
efficient Boneh’s test based protocols (while there exists such efficient
protocol in the multi-party case [16]): hours are required to output a
1024-bit RSA modulus. It is very challenging to find such a protocol.

Complementary approaches to reach efficiency consist of modifying
the distribution of the inputs (see [15]). For instance, it should be asked
to Alice to choose pA, qA as multiples of some small primes and it should
be asked to Bob to choose pB, qB as multiples of other small primes. By
doing this pA + pB and qA + qB are not multiple of the involved small
primes increasing their probability to be prime.

4 Conclusion and future work

We first showed that existing two-party protocols based on Boneh’s test
are not secure against actives adversaries. In this paper, we have provided
a provably secure (with security requirements dedicated to our applica-
tion) protocol to solve this problem. We propose a simple and efficient
”patch” making most Boneh’s test-based protocols correct against any
polynomial active adversaries. We develop ad-hoc security tools to prove
that a polynomial adversary cannot learn the factorization of n with-
out making the protocol fail. These new security tools could be re-used
for other applications. A natural extension would consist of considering
the multi-party case in presence of an arbitrary number of misbehaving
parties.

Acknowledgements. The authors thank the reviewers for their helpful
comments.

86

References

1. J. Algesheimer, J. Camenisch, and V. Shoup. Efficient computation modulo a
shared secret with application to the generation of shared safe-prime products. In
CRYPTO, pages 417–432, 2002.

2. Simon R. Blackburn, Simon Blake-Wilson, Mike Burmester, and Steven D. Gal-
braith. Weaknesses in shared rsa key generation protocols. In IMA Int. Conf.,
pages 300–306, 1999.

3. D. Boneh and M.K. Franklin. Efficient generation of shared rsa keys (extended
abstract). In CRYPTO, pages 425–439, 1997.

4. D. Boneh and M.K. Franklin. Efficient generation of shared rsa keys. J. ACM,
48(4):702–722, 2001.

5. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, pages 136–145, 2001.

6. R. Cramer, I. Damg̊ard, and J. B. Nielsen. Multiparty computation from threshold
homomorphic encryption. In EUROCRYPT, pages 280–299, 2001.

7. I. Damg̊ard and K. Dupont. Efficient threshold rsa signatures with general moduli
and no extra assumptions. In Public Key Cryptography, pages 346–361, 2005.

8. I. Damg̊ard and M. Jurik. A generalisation, a simplification and some applications
of paillier’s probabilistic public-key system. In Public Key Cryptography, pages
119–136, 2001.

9. Ivan Damg̊ard and Maciej Koprowski. Practical threshold rsa signatures without
a trusted dealer. In EUROCRYPT, pages 152–165, 2001.

10. Ivan Damg̊ard and Gert Læssøe Mikkelsen. Efficient, robust and constant-round
distributed rsa key generation. In TCC, pages 183–200, 2010.

11. P. Fouque and J. Stern. Fully distributed threshold rsa under standard assump-
tions. In IACR Cryptology ePrint Archive: Report 2001/2008, February 2001.

12. N. Gilboa. Two party rsa key generation. In CRYPTO, pages 116–129, 1999.
13. Carmit Hazay, Gert Lsse Mikkelsen, Tal Rabin, and Tomas Toft. Efficient rsa

key generation and threshold paillier in the two-party setting. Cryptology ePrint
Archive, Report 2011/494, 2011. http://eprint.iacr.org/.

14. Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In CRYPTO,
pages 36–54, 2000.

15. Daniel Loebenberger and Michael Nüsken. Analyzing standards for rsa integers.
In AFRICACRYPT, pages 260–277, 2011.

16. Michael Malkin, Thomas D. Wu, and Dan Boneh. Experimenting with shared
generation of rsa keys. In NDSS, 1999.

17. O.Goldreich, S.Michali, and A.Wigderson. How to play any mental game or a
completeness theorem for protocols with honest majority. In STOC, pages 218–
229, 1987.

18. G. Poupard and J. Stern. Generation of shared rsa keys by two parties. In Asi-
acrypt’98, LNCS 1514, Springer-Verlag, pages 11–24, 1998.

19. Tal Rabin. A simplified approach to threshold and proactive rsa. In CRYPTO,
pages 89–104, 1998.

20. Victor Shoup. Practical threshold signatures. In EUROCRYPT, pages 207–220,
2000.

21. T. Straub. Efficient two party multi-prime rsa key generation. In IASTED In-
ternational Conference on Communication, Network, and Information Security,
2003.

22. P. MacKenzie Y. Frankel and M. Yung. Robust efficient distributed rsa key gen-
eration. In STOC’98, pages 663–672, 1998.

87

A Attack on Boneh’s test

Boneh and Franklin [3] have proposed a test to decide if n = pq is an RSA
modulus assuming that p ≡ q ≡ 3 mod 4. This test consists of randomly
choosing a ∈ Z∗

n such that (an) = 1, computing11 v = a(p−1)(q−1)/2 mod n
and checking if v �= 1. For a value n which passes the test t times, n is not
an RSAmodulus with probability smaller than 2−t. This test is not a com-
plete probabilistic test in the sense that there are some integers n, which
are not RSA moduli, but which succeed the test for any basis a. However,
this probability can be considered as negligible (around 10−60) for the
number sizes considered in our application. In existing protocols [4], [12],
[18], [21], Alice and Bob generate n = (pA + pB)(qA + qB) with a secure
protocol ModulusGeneration where pA ≡ qA ≡ 3 mod 4 and pB ≡ qB ≡ 0
mod 4. Alice then computes sA = (n − pA − qA + 1)/2 and Bob com-
putes sB = −(pB + qB)/2 in order to additively share (p − 1)(q − 1)/2,
i.e. sA + sB = (p− 1)(q − 1)/2. Finally, Alice computes asA mod n, Bob
computes asB mod n and they check that asAasB = 1 mod n. This test
is secure against passive adversary. However, this protocol may be inse-
cure against an active adversary because there is nothing to ensure that
parties send the correct value as mod n in Boneh’s test. To secure the pro-
tocol, each party should prove that it sends as mod n. Classical methods
(based on zero-knowledge proofs which ensure two values as mod n and
gs mod n have the same discrete logarithm s) cannot be used because
the shared values s are chosen before n (they are used to build n). In the
next section, an attack in a dissymmetric environment is presented and
evaluated (note that nothing excludes that other attacks exist, even in a
symmetric environment).

A.1 Presentation of a brute force attack

This attack works in a dissymmetric environment where one party has
more resources than the other.12 Let us suppose that an active polynomial
adversary A controls Alice. We suppose that A has more resources than
Bob. We denote the ratio of resources between Alice and Bob by r > 1.

11 The original Boneh test consists of checking if a(p−1)(q−1)/4 = ±1 mod n. This
formulation is equivalent to ours. Indeed, as it is assumed that p ≡ q ≡ 3 mod 4,
1 and -1 are the two square roots of 1 with a Jacobi symbol equal to 1. Thus,
a(p−1)(q−1)/2 = 1⇔ a(p−1)(q−1)/4 = ±1.

12 The ”power ” party ressource can be, for instance, only linear with respect to the
resource of the other. It is obviously assumed that the ”power” party is not able to
factor output RSA moduli, i.e. 1024-bit RSA moduli.

88

Typically, A computes r times faster than Bob. In Boneh’s test, each
party computes a modular exponentiation. We denote the time needed
by Bob to compute the modular exponentiation, by te. A can try to
factorize n during (1 − 1/r)te time units and keeps te/r time units to
compute a modular exponentiation. Let us suppose that q = qA + qB
is prime and that Alice manages to decompose n in prime factors, i.e.
n = p1p2...pmq. This situation can be identified by A with probability
1/2 (A cannot distinguish it from the symmetric case where p = pA + pB
is prime) because |q| = k > |pi|. Thus, A can deduce pB = p1p2...pm− pA
and qB = q− qA. Consequently A can compute Bob’s secret share sB. By
sending a−sB mod n instead of asA mod n, Boneh’s test succeeds and
Bob is convinced that n is an RSA modulus. A first naive approach would
consist of letting time tB to Bob to test if n is a RSA modulus after the
Boneh’s test. In the next section, we experiment with this type of attack
against this naive approach.

A.2 Concrete scenario of the attack

In this section, Bob’s simulations were implemented on a standard PC
(Pentium 2 GHz) with the java class BigInteger. The factorization al-
gorithm is ECM. This algorithm is particularly efficient for discovering
small factors in large integers. In a sense this algorithm is very relevant
for Bob’s problem which consists of checking whether n is an RSA modu-
lus or not. In our simulations, A computes on the same platform but the
obtained computations times are divided r.

In order to correctly evaluate this attack, we should evaluate the prob-
ability of getting ”malicious” values of n. A malicious n = p1...pmq can
be factored in a small amount of time by A while Bob cannot find any
factor pi. Typically, p1, .., pm should be large enough but not too large. In
the following experiment, we simulate the attack with the following pa-
rameters |n| = 1024, r = 105 and te = 100ms (this is approximately the
time that Bob needs to compute a modular exponentiation considering
1024-bit size integers). We denote the time available to Bob after apply-
ing Boneh’s test in order to check if n is an RSA modulus by tB. We wish
to estimate the probability of finding n such that A is able to factorize
it in (1 − 1/r)te ≈ te time units and such that Bob is not able to find
a factor within tB time units. In our experiments, if |pi| ∈ {80, ..., 110}
(and |q| = 512) then A is able to factorize n within te = 100ms (3h with
our platform) and Bob needs at least 3mins to find a factor.

Now, let us evaluate the ratio between the probability of getting an
RSA modulus and the probability of finding such malicious values of n.

89

This ratio provides a lower bound of the probability to output a non-
RSA modulus. A short analysis 13 based on prime theorem shows that
this ratio is approximately equal to 10−4.

To summarize, if the ratio of performance between Bob and A is larger
than 105 and if Bob is given less than 3 minutes after applying Boneh’s
test in order to verify whether n is an RSA modulus, then the adversary
is able to convince Bob that a non-RSA modulus is a RSA-modulus with
probability larger than 10−4.

In this paper, we propose a ”patch” to the classical Boneh’s test in
order to ensure that a value n is an RSA modulus against any polynomial
adversary, in particular against a more powerful adversary (whatever the
performance ratio r is). The computation of this patch requires only few
seconds.

B Protocol Multiplication

MultProof. A party builds 3 encryptions X,Y, Z from 3 values x, y, z such
that z = xy. MultProof is a Σ− protocol which proves that Z encrypts
xy without revealing anything about x and y.

A version of MultProof is dedicated to Paillier’s encryption scheme.
It can be found in [6] (generic versions can also be found). We have as
inputs encryption Cx = gxrn mod n2, Cy = gysn mod n2, D = Cy

xγn

mod n2 and a player Pi who knows in addition s, y, γ. What we need is a
proof that D encrypts xy mod n. We proceed as follows:

1. Pi chooses a ∈ Zn and b, c ∈ Z∗
n at random, computes and sends

A = Ca
xb

n mod n2, B = gacn mod n2

2. The verifier sends a random challenge e
3. Pi computes and sends

w = a+ ey mod n, z = csegt mod n2, z′ = bCt
xγ

e mod n2

where t is defined by a+ ey = w + tn.

13 We assume that the number of primes smaller than any integer t is equal to t/ log t.
By using this approximation, we can estimate the number Pk of primes of size k.
To estimate the number of 512-bit size integers p = p1...pm with |pi| ∈ {80, ..., 110},
it suffices to consider each possible value of 7 ≥ m ≥ 5, each possible size (without
taking into account permutations) of p1, p2, ..., pm belonging to {80, ..., 110}. Given
m and |p1|, ..., |pm|, it is easy to count the numbers of 512-bit size integers p knowing
P|p1|, ..., P|pm|. By considering all size configurations, we approximately obtain the
number of 512-bit size integers which can be written as product of {80, ..., 110}-bit
size primes pi.

90

4. The verifier checks that

gwzn = BCe
y mod n2, Cw

x y
n = ADe mod n2

and accepts if and only if it is the case.

This zero-knowledge proof is shown secure under composition. Based
on such proofs, a secure protocol Multiplication can be easily built.

Multiplication

Require : Alice has two encryptions EB(x), EB(y) of unknown values x, y ∈ ZnB

1. Alice sends EB(r + x), EB(s + y) where r and s are random numbers chosen in
ZnB

2. Bob computes and sends Z = EB((x+r)(y+s)). He then proves that Z encrypts
the correct value with MultProof.

3. Alice computes an encryption of (x+r)(y+s)−sx−ry−rs by using homomorphic
properties and outputs it.

C Proof of proposition 1

Let D = (Di)i∈N be an nPrivate probability distribution family (see defi-
nition 1) and k be a security parameter. Let A be a polynomial adversary
and (n, zn) ← Dk. Without loss of generality, an adversary A in P can
be decomposed in two adversaries AR, AS , denoted by A = AR → AS

as follows: AR receives (n, zn) ← Dk before the execution of R, outputs
(n, zn,A,R) and sends it to AS which starts the protocol S given (n, zn,A,R).

Let us change the rules of interaction with the adversary A. If R fails,
A is given ”another chance” by letting it execute S but by deleting the
information it learns about n. More formally, this can be interpreted as
the interaction between party 1 and a new polynomial adversary A′ =
A′

R → AS in a new composed protocol P ′ = R′ → S: R′ is the same
protocol as R except that the A′

R outputs zn (the honest party outputs
an arbitrary value) when R fails and A′

R outputs zn,A,R otherwise (note
that R′ never fails). By summary

zn,A′,R′ =

{
zn,A,R, if R does not fail;
zn, otherwise.

91

It is clear that the probability that A′ outputs the factorization of n
without making P ′ fail is larger than the probability that A outputs the
factorization of n without making P fail. Let us show that this probability
is negligible. Let D′

k be the probability distribution of (n, zn,A′,R′). As S
is nPrivate, it suffices to prove that (D′

k)k∈N is nPrivate.
Let us suppose that it is not the case and that there exists a p.p.t algo-

rithm F able to factor n, with non negligible probability, given n, zn,A′,R′ .
This implies that one of the two following issues is satisfied with non
negligible probability:

1. F factors n given n, zn
2. F factors n given n, zn,A,R and R does not fail.

If F cannot factor n, with non negligible probability, given n, zn because
(Dk)k∈N is nPrivate. Let A′′ be a polynomial adversary behaving like A in
R and applying F on n, zn,A,R. Issue 2 implies that the probability that
A′′ factors n without making R fail is not negligible. Thus, issue 2 cannot
hold assuming that R is nPrivate. It proves that (D′

k)k∈N is nPrivate.

92

Enhanced Flexibility for Homomorphic
Encryption Schemes via CRT

Yin Hu, William J. Martin, Berk Sunar

Worcester Polytechnic Institute

Abstract. The Chinese Remainder Theorem (CRT) has numerous ap-
plications including in cryptography. In a striking example of this utility,
we demonstrate how the CRT facilitates making one additive homomor-
phic encryption scheme viable and making another more flexible. First
we show that the CRT may be used to turn an intractable problem into
a tractable one. Specifically, using the CRT to replace a single group ele-
ment by a logarithmic number of elements in the same group, we lay the
foundation for additively homomorphic encryption schemes using well-
known and previously deployed primitives. Our solution is shown to be
secure and quite general in nature. We present a simple technique for
ElGamal-type encryption schemes which facilitates encryption in an ad-
ditively homomorphic manner. Secondly we apply the CRT to a previous
encryption scheme proposed by Boneh, Goh and Nissim that supports
efficient homomorphic evaluations of 2-DNF circuits [4]. One drawback
mentioned in [4] was a restriction on the size of the output message space
– prompting an open problem posed by the authors. Again employing the
CRT, we devise an elegant modification in which we solve the problem,
supporting arbitrary output sizes.

Keywords: Homomorphic Encryption, ElGamal, CRT.

1 Introduction

One of the most significant developments in cryptography in the last few years
has been the introduction of the first fully homomorphic encryption scheme by
Gentry [1]. Since addition and multiplication on any non-trivial ring constitute a
Turing-complete set of gates, a fully homomorphic encryption scheme – if made
efficient – allows one to employ untrusted computing resources without risk of
revealing sensitive data. Computation is carried out directly on ciphertexts and
the true result of circuit evaluation is not revealed until the decryption stage. In
addition to this powerful applicability, Gentry’s lattice-based scheme appears to
be secure and hence settles an open problem posed by Rivest et al. in 1978 [2].

While fully homomorphic encryption has great potential and implementa-
tions are rapidly improving, a number of important applications call for schemes
with milder homomorphic properties. Such technologies as blinded data aggre-
gation, electronic voting, biometrics, and private information retrieval may all

93

make use of existing partially homomorphic encryption systems as soon as ef-
ficient implementations become available. Systems such as Paillier’s additively
homomorphic scheme [3] and the 2-DNF evaluation scheme of Boneh, et al. [4]
admit implementations that are far more efficient than current implementations
of the fully homomorphic Gentry scheme. In fact, it is clear that, even when fully
homomorphic schemes enter the realm of practical implementation, streamlined
partially homomorphic schemes tailored to particular applications of economic
importance will remain worthy of study and optimization. And the study of such
schemes holds theoretical value as well: the contrast between efficient candidates
and more powerful ones allows us to explore new alternatives, new algebraic con-
texts, and new optimizations, for prospective fully homomorphic schemes. Our
contribution therefore has not only immediate practical applications, but in its
simplicity and generality is of theoretical interest as well.

Our Contribution. We have two contributions: first, we present a modification
to the ElGamal scheme which makes additive homomorphic evaluation viable.
Second, we eliminate the restriction on the circuit output size in the 2-DNF
scheme introduced by Boneh, Goh and Nissim [4]. Both ideas employ the Chinese
Remainder Theorem (CRT), but to slightly different effect.

It is well known that ElGamal-type encryption schemes are homomorphic
with respect to one algebraic operation. However, this feature has been widely
dismissed as useless since in the additive context, message recovery involves
solving a discrete logarithm problem in the group, and this is precisely the
problem whose difficulty ensures security. Our solution is simple: we employ
the CRT to replace one discrete logarithm problem in a large space by several
similar problems in a more tractable search space while retaining full security.
On the one hand, this yields for us a general form for two ElGamal variants
which are homomorphic with respect to addition: one based on the ElGamal
set-up in the multiplicative group Z

∗
p and another using the group of Fq-rational

points on an elliptic curve. These schemes are homomorphic with respect to
addition in Z. This simple CRT expansion technique has a second application.
We show that this technique solves an open problem in the paper of Boneh, et
al. [4], alleviating message size limitations on the BGN encryption scheme which
was shown to allow homomorphic evaluation of 2-DNF circuits. We finish with
a discussion of performance of CRT-based ElGamal, which compares favorably
to the leading additively homomorphic scheme of Paillier[3].

2 Background

The aim of this section is to survey existing partially homomorphic encryption
schemes with special emphasis on systems that play a role in later sections.

2.1 Overview of Homomorphic Encryption Schemes

Homomorphic properties of several standard public key encryption schemes were
recognized early on [2]. Both the RSA and ElGamal encryption schemes were

94

Scheme Homomorphism Computation

Textbook RSA Multiplicative Mod. Exp. in Zpq

Textbook ElGamal Multiplicative Mod. Exp. in GF (p)
Goldwasser Micali [10] XOR Mod. Exp. in Zpq

Benaloh [11] Additive Mod. Exp. in Zpq

Paillier Scheme [3] Additive Mod. Exp. in Z(pq)2

Paillier ECC variations [21] Additive Scalar-point mult. in elliptic curves
Naccache-Stern [12] Additive Mod. Exp. in Zpq

Kawachi-Tanaka-Xagawa [16] Additive Lattice Algebra
Okamoto-Uchiyama [14] Additive Mod. Exp. in Zp2q

Boneh-Goh-Nissim [4] 2-DNF formulas Mod. Exp. in Z(pq)2 , Bilinear Map

Melchor-Gaborit-Herranz [18] d-op. mult. Lattice Algebra

Table 1. Survey of partially homomorphic encryption schemes

immediately seen to have homomorphic properties, but only with respect to one
operation. Ironically, this aspect of these schemes was largely seen as a weakness
rather than an asset. Applications where data is static typically require non-
malleable encryption. However, the community has grown to trust the security
of these schemes and, recently, the work of Gentry and others demonstrates that,
when carefully employed, such homomorphic properties can be quite valuable.
Indeed, a number of recent specific applications such as data aggregation in
distributed networks [5, 6], electronic voting [7], biometrics [8] and privacy pre-
serving data mining [9] have led to reignited interest in homomorphic schemes.

A list of prominent partially homomorphic schemes is presented in Table 1.
One of the earliest discoveries relevant here was the Goldwasser-Micali cryp-
tosystem [10] whose security is based on the quadratic residuosity problem and
which allows homomorphic evaluation of a bitwise exclusive-or. This scheme
has already been applied to the problem of securing biometric information [8].
Other additive homomorphic encryption schemes that provide semantic security
are Benaloh [11], Naccache-Stern [12], Paillier [3], Damg̊ard-Jurik [13], Okamoto-
Uchiyama [14] and Boneh-Goh-Nissim [4]. Some additively homomorphic encryp-
tion schemes use lattices or linear codes [15–19]. For instance, the lattice-based
encryption scheme introduced by Melchor, Gaborit and Herranz [18] allows ho-
momorphic computation of functions expressible as d-operand products of terms,
each of which is a sum of inputs.

Of particular interest to us is the Boneh-Goh-Nissim partially homomor-
phic encryption scheme [4], which allows evaluations of arbitrary 2-DNFs, i.e.,
functions whose evaluation requires one multiplication per term followed by an
arbitrary number of additions of terms. The scheme is based on Paillier’s earlier
additive partially homomorphic scheme and bilinear pairing. As a consequence,
the Boneh-Goh-Nissim scheme allows the secure evaluation of degree-two mul-
tivariate polynomials, with dot product computation being a particularly useful
primitive arising as a special case. Paillier’s scheme is the most efficient among
currently known additively homomorphic schemes. In order to compare a spe-

95

cific implementation of our scheme against this system (Sec. 4.2), we review in
Section 2.3 some details of the Paillier scheme and an extension by Galbraith
[24] to the elliptic curve context. Likewise, we present a brief overview of the
Boneh-Goh-Nissim scheme mentioned above in Section 2.4 as we will later use
our general setup in Section 3.3 to devise a modification which eliminates its
current restriction on output size.

2.2 Homomorphic Properties of ElGamal Encryption

Let G be a finite group and let g ∈ G be a generator of a cyclic subgroup H
of size N . In the standard generic form of ElGamal encryption [20], a user Bob
chooses a secret random exponent k ∈ ZN and publishes (g, h) where h = gk in
G; the value k = logg h remains secret. A second user, Alice say, who wishes to
send a message m ∈ H to Bob first generates a random exponent � and sends
the ordered pair Ench(m) = (g�, h�m) to Bob who, upon receipt of the ordered
pair (x, y), computes m = x−ky. As is well-known this encryption scheme is
homomorphic with respect to multiplication in H: if (x1, y1) is a valid encryption
for message m1 and (x2, y2) is a valid encryption of another message m2 (with
the same key (g, h)), then (x1x2, y1y2) is a valid encryption of m1m2. We now
present two additively homomorphic specializations of this set-up and highlight
a fundamental deficiency of such systems.

– Additive ElGamal encryption using a finite field. As pointed out by
Cramer, et al. [23, Sec. 2.5], among others, one easily obtains an additively
homomorphic encryption function by placing plaintexts in the exponent. If
H = G = 〈g〉 is the group of units in some finite field Fq and N = q − 1,
then the general setup above is modified to map a, b ∈ ZN to Ench(g

a) and
Ench(g

b), respectively, so that componentwise multiplication of ciphertexts
yields a valid encryption of ga+b, which is viewed as an encryption of a+ b ∈
ZN .

– Elliptic curve version of ElGamal encryption. Assume E represents an
elliptic curve over a finite field Fq. We work in the cyclic subgroup H = 〈P 〉
generated by a point P on the curve having order N . Bob chooses a secret
random k ∈ ZN and defines Q = kP . To encrypt a message m, Alice first
encodes it as the point M = mP ; she then picks a random � ∈ ZN and sends
Enck(M) = (�P, �Q+M). Upon receipt of an ordered pair (U, V) of elliptic
curve points, the corresponding decryption function computes Deck(U, V) =
M . This elliptic curve ElGamal scheme is also additively homomorphic: if m1

and m2 are mapped to Mi = miP and encrypted as (�iP, �iQ+Mi) for i =
1, 2, we easily find Enck(M1)+Enck(M2) is a valid form for Enck(M1+M2)
(with a different randomizer, �1 + �2).

Unfortunately, recovering the integer m from the elliptic curve point M =
mP in the above scheme requires us to solve an elliptic curve discrete logarithm
problem (ECDLP), the hardness of which is the very essence of the security we
seek. Since an additively homomorphic scheme of this sort can be quite useful in

96

data aggregation, it has been suggested [6] that some applications warrant this
expensive decryption process. We do not find this practical. Likewise, the finite
field variant above is hampered by a difficult discrete logarithm computation for
proper decryption. As noted in [23], the scheme appears to be useful only if all
plaintexts m are limited to a small range. Our first contribution in Section 3
below is to propose a simple tool to overcome these deficiencies for additively
homomorphic ElGamal schemes.

2.3 The Paillier Scheme

Paillier [3] proposed a very interesting additive homomorphic encryption scheme
based on a decision problem1 closely related to the problem of deciding nth

residues in the ring Zn2 . Let p and q be large primes and set n = pq; the group
of units in the ring Zn has exponent λ = λ(n) = lcm(p− 1, q− 1). The nth roots
of unity in Zn2 are u = 1 + kn (0 ≤ k < n) and k is recovered as L(u) = u−1

n .
The Paillier’s scheme requires a base g satisfying gcd(L(gλ mod n2), n) =

1. Primes p and q and the integer λ are kept private while the public key is
(n, g). To encrypt a message m ∈ Zn, Alice generates a random r and computes
Enc(m) = gmrn (mod n2). Paillier [3] gives evidence that recovering m from
c = Enc(m) without the knowledge of p, q or λ is hard. However, with the
knowledge of private key λ (or, equivalently, the factorization n = pq), m may
be easily recovered from c by computing

m = Dec(c) =
L(cλ mod n2)

L(gλ mod n2)
(mod n) .

The encryption function is additively homomorphic, i.e., Enc(m1)Enc(m2) =
gm1rn1 g

m2rn2 (mod n2) = Enc(m1 + m2). Paillier’s scheme requires only sim-
ple operations in the encryption, decryption and addition procedures and thus
achieves high performance. In addition, Paillier also proposed several modifica-
tions to further improve the decryption speed.

In 2000, Paillier [21] proposed several extensions of the above scheme to
groups based on elliptic curves. In order to accomodate efficient decryption, the
technique requires one to employ elliptic curves over rings of the form Zn2 or Zpq.
These schemes, while similar to the above approach using modular arithmetic,
generated certain skepticism due to their reliance on anomalous curves. In 2002,
Galbraith [24] published a critique of these elliptic curve-based Paillier schemes,
using p-adic methods to show that the second and third schemes are insecure.
Galbraith brings Lenstra’s elliptic curve factoring method to bear in his attack
of the Paillier schemes. In one case, he constructs a quadratic twist of the curve
and uses this to factor the public parameter n = p2q to recover the secret key
{p, q}. In the other case, a probabilistic argument comes into play, potentially
leading to a factorization of the public modulus n = pq.

1 In [3], Paillier defines the “Composite Residuosity Class Problem” and gives com-
pelling evidence for its hardness.

97

In the same paper, Galbraith proposes an alternative generalization of the
original Paillier scheme to elliptic curves, this time using random elliptic curves.
While a somewhat convincing argument is given in [24] for the security of this
approach, Galbraith observes that the scheme is “mainly of theoretical interest”
since the exponent of the elliptic curve group must remain secret, requiring ellip-
tic curve computations over large moduli which are much slower than comparable
integer computations.

2.4 The BGN homomorphic scheme

In this section, we review the encryption scheme of Boneh, Goh and Nissim [4],
which we henceforth refer to as the BGN scheme.

Groups admitting Bilinear Pairing The BGN scheme uses what is known
as a bilinear pairing to effect the required multiplication in evaluating a 2-DNF
formula. We use a notation similar to the one in [4] in order to facilitate easier
comparison:

1. Let G and G1 be two (multiplicative) cyclic groups of finite order n;
2. let g be a generator of G;
3. let e : G×G → G1 satisfy three conditions:

(a) e(·, ·) is efficiently computable,
(b) e(g, g) is a generator of G1,
(c) for all u, v ∈ G and a, b ∈ Z

+, e(ua, vb) = e(u, v)ab.

The map e above is a special case of a bilinear pairing; one source of such
pairings is Tate pairings and another is Weil pairings [30], but this beautiful and
complex mathematics is beyond the scope of this paper; we need nothing more
here than to know that such maps exist for various groups.

To abstract the construction process in the scheme, define an algorithm G
that given a security parameter τ ∈ Z

+ outputs a tuple (q1, q2,G,G1, e) where
G,G1 are groups of order n = q1q2 and e : G×G → G1 is a bilinear pairing. On
input τ , algorithm G works as follows:

1. Generate two random τ -bit primes q1, q2 and set n = q1q2 ∈ Z;
2. Generate two groups G and G1 of order n such that there exists a generator

g for G and a bilinear pairing e : G×G → G1;
3. Output (q1, q2,G,G1, e).

The BGN Scheme Using the definition of the bilinear pairings and the con-
struction function G(τ) presented above, the BGN scheme can be described as
follows. (The presentation here differs slightly from that in [4] in order to match
our notation and use.)

KeyGen(τ): Given a security parameter τ ∈ Z
+, run G(τ) to obtain a tuple

(q1, q2,G,G1, e). Let n = q1q2. Pick two random generators g, u
R← G and

set h = uq2 . Then h is a random generator of the subgroup of G of order q1.
The public key is PK = (n,G,G1, e, g, h). The private key is SK = (q1).

98

Encrypt(PK,m): We assume the message space consists of integers in the set
{0, 1, . . . , T} with T < q2. To encrypt a message m using public key PK,

pick a random r
R← {0, 1, . . . , n− 1} and compute C = gmhr ∈ G. Output C

as the ciphertext.
Add(C(1), C(2)): Addition is quite straightforward in the scheme. To evaluate

the sum of two messages homomorphically, pick a random r
R← {0, 1, . . . , n−

1} and compute

C = C(1)C(2)hr = gm
(1)

hr(1)gm
(2)

hr(2)hr = gm
(1)+m(2)

hr̃

Output C as the resulting ciphertext.
Mul(C(1), C(2)): The bilinear map is used to perform the one multiplication

computation. Set g1 = e(g, g), and h1 = e(g, h). Then g1 is of order n and
h1 is of order q1. Also, write h = gαq2 for some unknown α ∈ Z. Then
to evaluate the product of two messages homomorphically, pick a random

r
R← {0, 1, . . . , n− 1} and compute

C = e(C(1), C(2))hr
1 = e(gm

(1)

hr(1) , gm
(2)

hr(2))hr
1

= gm
(1)m(2)

1 hm(1)r(2)+m(2)r(1)+αq2r
(1)r(2)+r

1 = gm
(1)m(2)

1 hr̃
1 ∈ G1

Output C as the resulting ciphertext. Note that any number of outputs of
multiplication gates (i.e., values produced by the bilinear pairing) will have
the form gm

′
1 hr′

1 and these can all be viewed as secure encryptions of the
corresponding plaintexts m′, but instead in the group G1, where the same
additive homomorphic properties hold.

Decrypt(SK, C): To decipher C using private key SK = (q1), observe that
Cq1 = (gmhr)q1 = (gq1)m. Let ĝ = gq1 . To recover m, it suffices to compute
the discrete log of Cq1 base ĝ. Since 0 ≤ m ≤ T this takes expected time
Õ(

√
T) using Pollard’s lambda method [31]. It is clear that the message space

of the BGN scheme is limited due to the complexity of this decryption.

3 Our Contribution

We propose a new approach to overcome this discrete logarithm impasse in the
additive version of ElGamal encryption and in the decryption step of the BGN
schemes. This new CRT-based technique holds promise for making the additively
homomorphic schemes described above more practical. The technique also has
potential as a building block for a variety of other protocols where one party
needs an advantage over another in computing discrete logarithms.

3.1 The CRT-Based ElGamal Scheme

We now present, in generic form, our CRT-based ElGamal scheme E which we
shall henceforth refer to as the CEG Scheme. The CEG scheme, with security
parameter λ, is specified using four procedures: KeyGen, Encrypt, Decrypt and
Eval as follows.

99

KeyGen: Choose a group G with subgroup H generated by g ∈ G and require |H|
to have at least one large prime factor. Pick2 k

$← [0, 2λ−1]. Compute h = gk.
Choose di ∈ Z

+ for i = 1, . . . , t such that d =
∏

di < |H| and gcd(di, dj) = 1
for i �= j. Set the message space as M = {0, 1, . . . , N} where N < d. The
secret key is SK = (k) and the public key is PK = (g, h, 〈d1, . . . , dt〉).

Encrypt: A message m ∈ M is encrypted as the t-tuple of pairs

Encrypt(m) = 〈(g�i , h�igmi) , i = 1, . . . , t〉 ,

where mi = m (mod di) and �i
$← [0, 2λ − 1].

Decrypt: A ciphertext c = 〈(ui, vi) , i = 1, . . . , t〉 is decrypted as follows.

Decrypt(c) = CRT−1
(〈logg(viu−k

i) , i = 1, . . . , t〉) ,

where CRT−1(〈mi , i = 1, . . . , t〉) = ∑t
i=1 mi

d
di

(
d
di

−1
mod di

)
mod d. The

function logg(·) denotes the discrete logarithm with respect to generator g.

Eval: Given encryptions of S values m(1), . . . ,m(S), it is straightforward to ob-
tain an encryption of their sum. We simply perform componentwise multi-

plication in group G. The resulting 2t-tuple lists t pairs (gLi , hLig
∑

m
(r)
i)

where the sum of residues m
(r)
i ≡ m(r) (mod di) suffice to reconstruct the

sum of the integers m(r) via CRT−1.

Correctness. The correctness of the scheme follows from the correctness of
ElGamal encryption and the correctness of the CRT. The CRT will yield correct
results as long as d > N . Let c = 〈(ui, vi) , i = 1, . . . , t〉 be the entrywise sum
of valid ciphertexts cj whose corresponding plaintexts satisfy

∑
Decrypt(cj) <∏

di. Then 〈m1, . . . ,mt〉 = 〈logg(viu−k
i) , i = 1, . . . , t〉 satisfies gmiuk

i = vi. So
m = CRT−1(〈mi , i = 1, . . . , t〉) satisfies m mod di = mi as long as 0 ≤ m <∏

di.

Efficiency. The CEG scheme converts one carefully constructed DLP in the
subgroup H := 〈g〉 into a sequence of tractable discrete logarithm problems in
the same group. The factors di of the composite modulus d = d1d2 . . . dt are
pairwise relatively prime and [1,max(di)] represents a tractable search space
(for the DLP). If each di is not too large (say, w = 16 bits each) Alice may
retrieve each integer mi, even if she must resort to exhaustive search. But she
can exploit standard techniques to do better than this; we present some ideas
on this step below. However she obtains these logarithms, Alice can then recover
the message m via a simple CRT inversion step.

– CEG-Zp: Additive CRT-ElGamal Encryption using a Prime Field.
The integer specialization of the generic CEG will be denoted by CEG-Zp.

2 The notation k
$← U stands for k drawn uniformly at random from a universe U .

100

KeyGen: Choose a large prime p with generator g for Z∗
p; we require p− 1 to

have at least one large prime factor. Pick a random k as above and set h =
gk; the integer SK = (k) remains secret, while PK = (g, h, 〈d1, . . . , dt〉)
are made public, where, as in the general case, the message space is
M = [0, N] and we have small coprime integers di with d =

∏
di > N .

Encrypt: A message m ∈ M is encrypted as

Encrypt(m) = 〈(g�i , h�igmi) , i = 1, . . . , t〉 ,

where mi = m mod di.
Decrypt: A given ciphertext c = 〈(ui, vi) , i = 1, . . . , t〉 is decrypted as

Decrypt(c) = CRT−1
(〈logg(viu−k

i) , i = 1, . . . , t〉) .

The function logg(·) denotes the discrete logarithm with respect to gen-
erator g in Z

∗
p.

– CEG-ECC: Elliptic Curve Version of CRT-ElGamal Encryption: The
elliptic curve specialization of the above scheme will be denoted by CEG-
ECC. For illustrative purposes, we concisely present the three procedures as
they specialize to elliptic curve encryption.

KeyGen: Choose an elliptic curve E with element P ∈ E such that |〈P 〉| is a
large prime. Pick k

$← [0, 2λ − 1]. Compute Q = kP . Choose di ∈ Z for
i = 1, . . . , t as in the general case. The secret key is again SK = (k) and
the public key is PK = (P,Q, 〈d1, . . . , dt〉). The message space is again
M = [0, N].

Encrypt: A message m ∈ M is encrypted as Encrypt(m) = 〈(�iP, �iQ +

miP) , i = 1, . . . , t〉, where mi = m mod di and �i
$← [0, 2λ − 1].

Decrypt: Letting logP (·) denote the discrete logarithm in 〈P 〉 with respect
to P , ciphertext c = 〈(Ai, Bi) , i = 1, . . . , t〉 is decrypted as Decrypt(c) =
CRT−1 (〈logP(Bi − kAi) , i = 1, . . . , t〉).

Semantic Security of CRT-ElGamal The semantic security of our scheme
follows from the semantic security of the ElGamal cryptosystem. If the Decisional
Diffie Hellman (DDH) assumption holds in a group, then the ElGamal crypto-
system defined over the same group has semantic security3. Note that the CEG
scheme works by bundling together t independent ElGamal encryptions of small
messages. Due to the semantic security of the generic ElGamal cryptosystem
[29] neither message sizes nor dependencies between the messages matter.

Proposition 1. If the DDH assumption holds in group H, then the CEG defined
on H is semantically secure.

3 If, for instance, the group permits a bilinear map then the DDH assumption will not
hold.

101

Proof Sketch: Assume there exists a CEG distinguisher D with advantage ε.
Then we can turn this distinguisher into an ElGamal distinguisher D′ for small
messages. This is achieved by simply forging two CEG ciphertexts with first
components set to the ElGamal ciphertexts and the remaining components filled
with the ElGamal encryption of zero.

3.2 Additive Homomorphism

It is not hard to see that CEG is additively homomorphic. In practice, this
additive property is limited in two subtle ways:

Overflow in CRT: Assume we are given S inputs m(1),m(2), . . . ,m(S) and we
wish to obtain an encryption of their sum by utilizing the additive homo-
morphic property. We simply perform componentwise multiplication in the

group G. The resulting 2t-tuple lists t pairs of the form (gLi , hLig
∑

m
(r)
i).

The CRT inversion step computes the isomorphism Zd1
×·×Zdt

→ Zd; so, in
order to yield a correct decryption result, we must have

∑
m(r) < d. To make

this more concrete, we define CEG parameters as follows. Let w be a given
word size (e.g., w = 16, 32); let d1, . . . , dt be t distinct w-bit primes. Then
d = d1 · · · dt < (2w)t. On the other hand, assume each operand m(j) fits into
a W -bit word and that the maximum number of additions to be supported
is S. Then

∑
m(r) ≤ S 2W . So, with these parameters, we may precisely

state necessary and sufficient conditions on our parameters for overflow pre-
vention: 2wt > d ≥ S 2W . Therefore, given w, W and S, we can determine
the required number of components in the CRT expansion by picking the
smallest integer t satisfying t > (W + log2(S))/w.

Tractability of Decrypt: The computational bottleneck for Decrypt is still the
computation of t discrete logarithms. This will give us the main restriction
on the CEG scheme. In order to make each DLP tractable, we must restrict

how large each prime di can be. But S values m
(j)
i ∈ {0, . . . , di−1} are being

summed without wraparound and this can result in a value as large as Sdi.
So, if we consider a search space of size 2u manageable, we need to ensure
that S ·max(di) < 2u, which can be interpreted as a limit on the number of
operands that can be handled in a single sum.
For example, if u = 60 and w = 16 (i.e., di < 216 for all i), then we can sum
S = 244 operands and still have an acceptable search space. Alternatively,
we can increase S by choosing smaller di; but this comes at the expense of a
larger t value. (Security requirements require d large.) For instance, choosing
very small primes di < 28 enables us to increase the number of operands to
roughly S ≈ 252.

As we have seen, we have various tradeoffs to consider. For small S and
moderate di, the DLP search is tractable. As the primes di are made smaller,
we accomodate more summands but the necessary increase in t leads to longer
encryptions and increased computation per encryption and per ciphertext ad-
dition. Clearly there is room for further research here; for instance, intelligent

102

pre-computation can further reduce decryption time at the expense of several
gigabytes of storage to accomodate a lookup table.

3.3 Applying CRT to the BGN homomorphic scheme

As discussed earlier in Section 2.4, the (output) message size of the BGN scheme
is limited since decryption requires a discrete logarithm computation. In fact, the
BGN paper [4] leaves the message size restriction as an open problem. We find
that the application of CRT presents a solution to this problem, i.e. we employ
CRT to break large messages into smaller pieces and then encrypt the smaller
pieces using the BGN scheme. Since the BGN scheme has semantic security, the
overall scheme will still be semantically secure even with smaller message sizes.
We present the CRT-BGN scheme first and discuss its efficiency later.

KeyGen(τ): Given a security parameter τ ∈ Z
+, run G(τ) to obtain a tuple

(q1, q2,G,G1, e). Let n = q1q2. Pick two random generators g, u
R← G and set

h = uq2 . Then h is a random generator of the subgroup of G of order q1. Sup-
pose the message space consists of integers in the set {0, 1, . . . , N}. Choose
di ∈ Z for i = 1, . . . , t such that di < T , d =

∏
di > N and gcd(di, dj) = 1

for i �= j. The public key PK = (n,G−���,G1, e, g, h, 〈d1, . . . , dt〉). The
private key is SK = (q1).

Encrypt(PK,M): We will encrypt the message with t tuples of BGN scheme.
The message space for each tuple will be {0, 1, . . . , T}, T < q2. To encrypt a

message m using public key PK, pick random variables ri
R← {0, 1, . . . , n−1}

and compute t-tuple of pairs

C = 〈Ci , i = 1, . . . , t〉 = 〈gmihri ∈ G , i = 1, . . . , t〉 .

where mi = m (mod di). Output C as the ciphertext.

Add(C(1), C(2)): The addition is done pairwise for the t-tuples. To evaluate

the sum of two messages homomorphically, pick random variables ri
R←

{0, 1, . . . , n− 1} and compute

C = 〈C(1)
i C

(2)
i hri , i = 1, . . . , t〉 = 〈gm(1)

i hr
(1)

i gm
(2)

i hr
(2)

i hr
i , i = 1, . . . , t〉

= 〈gm(1)

i +m
(2)

i hr
(1)

i +r
(2)

i +ri , i = 1, . . . , t〉 = 〈gm(1)

i +m
(2)

i hr̃i , i = 1, . . . , t〉 .

Output C as the resulting ciphertext. After the multiplication, the addition
can be evaluated in the same way using g1 and h1.

Mul(C(1), C(2)): Similarly, the multiplication is done pairwise for the t-tuples.
Set g1 = e(g, g), and h1 = e(g, h). Then g1 is of order n and h1 is of order q1.
Also, write h = gαq2 for some unknown α ∈ Z. Then to evaluate the product

of two message homomorphically, pick random variables ri
R← {0, 1, . . . , n−1}

103

and compute

C = 〈e(C(1)
i , C

(2)
i)hri

1 , i = 1, . . . , t〉
= 〈e(gm(1)

i hr
(1)

i , gm
(2)

i hr
(2)

i)hri
1 , i = 1, . . . , t〉

= 〈gm
(1)

i m
(2)

i
1 h

m
(1)

i r
(2)

i +m
(2)

i r
(1)

i +αq2r
(1)

i r
(2)

i +ri
1 , i = 1, . . . , t〉

= 〈gm
(1)

i m
(2)

i
1 hr̃i

1 ∈ G1 , i = 1, . . . , t〉 .
Output C as the resulting ciphertext.

Decrypt(SK, C): To decrypt a ciphertext C using a private key SK = (q1), for
each tuple we have: Cq1

i = (gmihri)q1 = (gq1)mi where the g, h here could
be g1, hi if the multiplication is computed.
Let ĝ = gq1 . To recover mi, it suffices to compute t tuples of the discrete
log of Cq1

i base ĝ. Since 0 ≤ mi ≤ T this takes expected time Õ(
√
T) using

Pollard’s lambda method. After recovering all the mi values, the plaintext
can be reconstructed as m = CRT−1(mi mod di , i = 1, . . . , t).

Correctness: The correctness of the CRT-BGN scheme follows from the cor-
rectness of the BGN and CRT schemes. The correctness of each component in
CRT comes from the property of the multiplicative cyclic group. As long as the
sub-result of each component is smaller than T , the residues can be efficiently
decrypted. After the recovery of eachmi, if the result of the computation satisfies
m < d =

∏
di, then m can be correctly recovered by the definition of CRT.

Efficiency: The main efficiency concern in the CRT-BGN scheme is the latency
of decryption since it requires DLP computations. In comparison, the cost of
the inverse CRT computation is negligible. The scheme is constructed using
a composite modulus d > N with factors d1, d2 . . . dt, where di are pairwise
relatively prime. The selection of the size of di and the number of components
t is limited by the size of the message space N . We refer to the largest di as
d̃ = max{di, i = 1 . . . t}. Then it is clear that d̃ > (N)1/t. On the other hand,
suppose A additions will be evaluated before the multiplication and B additions
after, then the message space T for each component has to satisfy T > A2Bd̃2

for correct decryption.
By combining the two equations we obtain T > A2B(N)2/t. If T is not too

large, one may recover the plaintext efficiently even if exhaustive search is used.
Pollard’s lambda method [31] may cut the search time for each CRT component
from O(T) to Õ(

√
T). Therefore, the complexity for decrypting all the t compo-

nents will be Õ(tAN1/t
√
B) compared to Õ(

√
N) in the original BGN scheme.

By this we increase the tractable message space significantly. We note that if we
want to increase the message space N while keeping the decryption complexity
for each component Õ(AN1/t

√
B) the same, the number of components t need

grow only logarithmically with the size of the message space.

Security Analysis of CRT-BGN The security of the BGN scheme relies on
the subgroup decision assumption defined as follows.

104

Definition 1. Subgroup Decision Problem: Given (n,G,G1, e) where e is
a bilinear pairing from G × G to G1 (two cyclic groups of order n = q1q2) and
an element x ∈ G, output ‘1’ if the order of x is q1. Otherwise output ‘0’.

When q1 and q2 are τ -bit primes, the advantage of any algorithm A in solving
the subgroup decision problem is:

SD-AdvA(τ) = |Pr [A(n,G,G1, e, x) = 1]− Pr [A(n,G,G1, e, x
q2) = 1] |

where the probability is over x chosen uniformly from G.
Using this and referring to the subgroup decision problem, the definition of

the subgroup decision assumption can be described as follows:

Definition 2. Subgroup Decision Assumption: Given algorithm G gener-
ating bilinear group (n = q1q2,G,G1, e), we say G satisfies the subgroup decision
assumption if for any polynomial time algorithm A we have that SD-AdvA(τ) is
a negligible function in τ .

Similar to the BGN scheme, the semantic security of the system with CRT
can be proved under the subgroup decision assumption.

Theorem 1. The CRT-BGN scheme is semantically secure assuming G satisfies
the subgroup decision assumption.

Proof. Suppose a polynomial time algorithm B breaks the semantic security of
the CRT-BGN scheme with advantage ε(τ). We can construct an algorithm A
that breaks the subgroup decision assumption with the same advantage.

Given (q1, q2,G,G1, e) generated by G and for an input x ∈ G, we execute
the following procedure:

1. A receives (n = q1q2,G,G1, e, x) as input (A does not have access to q1
and q2). A then runs the KeyGen process. After calling G(τ) to obtain a
tuple (q′1, q

′
2,G

′,G′
1, e

′) and set n′ = q′1q
′
2, A substitutes n′,G′,G′

1, e
′ with

the corresponding respective input values. Since the input is also generated
using the same function G(τ), the bilinear groups should follow the same
distribution. A can then continue the KeyGen process. However, A directly
picks x as the h in the process instead of computing h = uq2 . Since the other
steps of the KeyGen process are independent of the unknown parameters q1
and q2, A can complete KeyGen and output (n,G,G1, e, g, x, 〈d1, . . . , dt〉).
Note that if x is of order q1, it will follow the same distribution as h, and
the output becomes a valid public key for the CRT-BGN scheme.

2. B outputs two valid messages m(0),m(1) to A. A picks a random b
$← {0, 1}

and encrypts the message m(b) using the CRT-BGN scheme and sends back
the ciphertext.

3. B outputs its guess b′ ∈ {0, 1} for b. If b = b′, A outputs 1; otherwise A
outputs 0.

If x is uniform in G, then with high probability, x has order q1q2 (so the system
is not a working CRT-BGN system). The ciphertext will then also be uniformly

105

distributed in G, independent of x. Algorithm B will then have no non-negligible
advantage. Therefore, the probability of a correct guess will be 1/2. If x is of
order q1, the system works as a CRT-BGN system. By our hypothesis on B, we
know that Pr[b = b′] > 1/2+ ε(τ). Therefore, SD-AdvA(τ) > ε(τ). A breaks the
subgroup decision assumption with advantage ε(τ).

4 Performance

4.1 Optimizations for the CEG-CRT Scheme

For the sake of simplicity we focus our attention on the elliptic curve specializa-
tion CEG-ECC. Similar optimizations may be applied to the other specializations.

Encryption. There are number of optimization techniques we can utilize in
the implementation of the CEG scheme. Recall that each component of the CEG
ciphertext is in the form (�P, �Q+mP). The encryption procedure for each com-
ponent involves only three point-scalar multiplications and one point addition
neglecting the generation of the random integer �. This simple approach improves
the speed of the encryption procedure. In addition, the encryption can be further
sped up using Shamir’s Trick. Since the plaintext m is much smaller than the
random number �, the latency of the encryption procedure is dominated by the
computation of �P and �Q. For different CRT components, we would compute
different �iP and �iQ however with the same P and Q, this is ideally suited for
Shamir’s Trick [20]. With Shamir’s Trick, the complexity of CEG encryption for
all t components would become c · t+2

3t instead of ct, where c represents the time
required for the encryption of a single component.

Decryption. The CEG decryption may use the Pollard Kangaroo Algorithm to
solve the discrete logarithm problem. More specifically, in the CEG scheme, if we
want to solve for m given C0 = mP , where m ∈ [0, b], we generate random walks
from T0 = bP with iterations defined as Ti = xiP + Ti−1, xi = f(Ti−1) where f
is a hash function. After a number of steps we place a trap T = (b +

∑
xi)P .

Then we start a similar procedure from C0 = mP and get Ci = yjP +Cj−1, yj =
f(Cj−1). If the trap is placed after sufficiently many steps, the second run (the
kangaroo) will collide with the trap with a high probability. When this collision
happens, we can then solve for m from m = b+

∑
xi −

∑
yj . In our experiment

the steps xi and yj are generated with an average size of 0.5
√
b and the trap is

placed after
√
b steps. It is clear that the expectation of the trap position would

be 1.5b. Therefore, 2
√
b steps are expected before the kangaroo is caught by the

trap. The complexity of this algorithm is O(
√
b).

We can exploit the fact that we need to perform t parallel DLP computa-
tions to reduce the overall decryption complexity. After the accumulation of S

operands with word size w the upper limit of the value of m would be 2
w+log(S)

2 .
Therefore, the complexity of recovering each CRT component using the Pollard

Kangaroo algorithm will be O(2
w+log(S)

2). However, in recovering the various
CRT components, we are solving discrete logarithm problems in the same known

106

group. Therefore, only one trap is required. Therefore, the first phase of the Pol-
lard Kangaroo procedure needs only to be executed for the first CRT component;
for all remaining components we need only find the collision. This approach saves
about 1/3 of the steps. Therefore, the complexity for all t components together

can be reduced to O(2t+1
3 · 2w+log(S)

2).

Decryption with Precomputation. Since we envision a scheme where the
same group, the same generator and the same primes di will be used repeatedly,
we can significantly exploit precomputation techniques to speed up the Pollard
Kangaroo Algorithm. For instance, the “trap” can be pre-computed as it is inde-
pendent of the ciphertext. Also, when we are computing Ci = yjP +Cj−1, yj =
f(Cj−1) during the second run, the costly multiplication yjP can be significantly

speed up by using table lookup;
√
b entries are required for such a table.

Moreover, since the search space of our scheme is relatively small, we can
even get rid of the Pollard Kangaroo Algorithm and directly apply table lookup
techniques on the DLP computation. For instance, a naive approach is to store
all b = S · 2w possible pairs (i, gi) in a table sorted by the second coordinate. At
the expense of substantial storage this reduces the DLP to t lookup operations
requiring tw log2(S) computational steps. A more reasonable compromise is to
precompute a fraction of the search space, say z out of b evenly spaced points.
The table lookup remains negligible while the search space is reduced to only
b/z. After this many iterations y �→ y · g we are assured a collision and the table
lookup completes the computation of our DLP. For example, for 160-bit CEG-
ECC with b = 232 and z = 216, we will need a table of z = 216 rows with each
row contains the 32-bit i and the 160-bit gi (representing elliptic curve points
by their x coordinate). (only x part of the points is more than enough.). Then
the lookup table contains about 192 · 216 bits≈ 1.6 Mbytes. 4 The number of
components will not affect the storage overhead as all t components can share
the same table.

4.2 Implementation Results

To evaluate the performance of the CEG scheme, we implemented one CRT com-
ponent and used the measured performance to estimate the addition, encryption
and decryption speed of the full CEG scheme. We also implemented the standard
version of Paillier’s scheme (Page 7, [3]) for comparison. The implementation is
realized on an Intel Core i5 2.4GHz CPU.

In the implementation for both our CEG schemes and Paillier’s scheme we
made use of the Crypto++ library [26]. The Crypto++ library is modestly
optimized. Therefore, the performance of Paillier’s scheme may be worse than
some optimized implementations [27]. To be thorough we also present results
for a more efficient implementation of Paillier’s scheme using the MPIR library
[28]. But we note that the first implementation may be the most natural one

4 In practice, we do not need to store the entire operand, but sufficiently many bits,
e.g. 64-bits, enough to uniquely identify the point with high confidence.

107

to compare against as our CEG scheme implementations are using the same
optimization level.

Several parameter choices such as w,W, S and t will affect the performance
of the CEG scheme. The efficiency of Paillier’s scheme is not tied to these pa-
rameters. The performance for the original CEG-ECC scheme, CEG-Zp scheme
and Paillier’s scheme for various numbers of summands with various word sizes
is given in Table 2. We chose a 224-bit NIST curve for the CEG-ECC scheme and
selected a Paillier scheme with roughly equivalent security level of 2048-bits [25].
Our CEG-Zp scheme implementation also uses a 2048 bit prime number.

Parameters Addition Encryption Decryption
Normal Shamir’s Pollard Precomputation

trick Kangaroo

CEG-Zp-2048
w = 8, S = 224, t = 7 0.22 ms 115.71 ms 79.63 sec 1.35 sec (0.75 Mbytes)
CEG-ECC-224
w = 8, S = 224, t = 7 0.22 ms 12.37 ms 5.30 ms 99.61 sec 2.76 sec (0.75 Mbytes)
w = 16, S = 224, t = 4 0.12 ms 7.07 ms 3.53 ms 15.93 min 25.17 sec (12 Mbytes)
w = 8, S = 240, t = 9 0.28 ms 15.90 ms 6.48 ms 8.97 hours 15.10 min (192 Mbytes)
Paillier - Crypto++
n = 2048 0.028 ms 29.60 ms 28.10 ms
Paillier - MPIR
n = 2048 0.013 ms 25.90 ms 24.90 ms

Table 2. Performance comparison of CEG with Paillier’s Scheme

From Table 2 we can see that the CEG-ECC scheme is about 4 times faster
than the Paillier scheme in encryption at comparable security levels. In this
simplest approach, the decryption performance of CEG is significantly worse than
that of Paillier. However, with precomputation the decryption performance may
be improved. The precomputation tables were fixed to have

√
b =

√
S2W rows.

For instance, for a very modest precomputation table of 0.75 Mbytes we can
reduce the decryption time to less than 3 seconds5. In many applications of
homomorphic encryption schemes the encryption and evaluation speeds matter
more than the decryption speed since typically decryption is performed only
once after the computations are completed.

5 Conclusion

We proposed a simple solution to the pervasive bottleneck in additive homomor-
phic encryption schemes based on the hardness of the DLP. We employed the
CRT to replace one discrete logarithm problem in a large space by several simi-
lar problems in a more tractable search space while retaining full security. This
yields, the first practical elliptic curve-based additive homomorphic encryption

5 In the table, we assume that 64 bits is sufficient to uniquely identify the points in
the precomputation table.

108

scheme. More generally, our CRT technique makes discrete logarithm problems
asymmetric, thereby lending itself as a tool to build a number of practical DLP
based additive homomorphic schemes.

As an example, our CEG-ECC scheme is shown to be almost 4 times faster
than Paillier scheme on the encryption side while maintaining comparable se-
curity. This maybe useful in applications where encryption is used much more
often than decryption. A key feature of the proposed scheme is its flexible mes-
sage space. Solely for the sake of security, the Paillier encryption scheme always
requires 4096-bit operations, even for single bit computations. In contrast, the
CEG-ECC scheme can be customized to meet the message space demands of any
application; the lower limit is set by the difficulty of the ECC discrete logarithm
problem. But the message space of the proposed scheme can be easily expanded
by simply adding more CRT components. As the number of components grows
only logarithmically with the message space, the performance impact is quite
manageable.

We also found the CRT approach valuable as a way to solve an open problem
in [4] where Boneh, Goh and Nissim describe a scheme which homomorphically
evaluates 2-DNF formulas. In their paper, the need to perform a discrete loga-
rithm as part of the decryption process seemed to place a strict limitation on the
size of their message space. The Chinese Remainder Theorem variant CRT-BGN
maintains security while replacing this hard discrete logarithm computation with
t discrete logarithm problems in a completely manageable search space.

References

1. C. Gentry, Fully homomorphic encryption using ideal lattices, Symposium on the
Theory of Computing (STOC), 2009, pp. 169-178.

2. R.L. Rivest, L. Adleman, and M.L. Dertouzos. On data banks and privacy homo-
morphisms. In Foundations of Secure Computation, 1978.

3. P. Paillier, Public-key cryptosystems based on composite degree residuosity
classes, in Advances in Cryptology EUROCRYPT’99, LNCS 1592, pp. 223–238,
Springer, New York, NY, USA, 1999.

4. D. Boneh, E. Goh, K. Nissim, Evaluating 2-DNF Formulas on Ciphertexts, TCC
’05, LNCS 3378, pp. 325-341, 2005.

5. E. Mykletun, J. Girao, and D. Westhoff. Public Key Based Cryptoschemes for
Data Concealment in Wireless Sensor Networks. In IEEE Int. Conference on
Communications ICC, Istanbul, Turkey, June 2006.

6. Osman Ugus, Dirk Westhoff, Ralf Laue, Abdulhadi Shoufan, Sorin A. Huss, Opti-
mized Implementation of Elliptic Curve Based Additive Homomorphic Encryption
for Wireless Sensor Networks. WESS ’07, Salzburg, Austria, 2007.

7. Aggelos Kiayias, Moti Yung, Tree-Homomorphic Encryption and Scalable Hier-
archical Secret-Ballot Elections. Financial Cryptography 2010: pp. 257–271.

8. Julien Bringer, Hervé Chabanne, Malika Izabachéne, David Pointcheval, Qiang
Tang and Sébastien Zimmer, An Application of the Goldwasser-Micali Cryptosys-
tem to Biometric Authentication, Information Security and Privacy, LNCS 4586,
pp. 96–106, 2007.

109

9. M. Kantarcioglu, Privacy-preserving distributed data mining and processing on
horizontally partitioned data, PhD. dissertation, Department of Computer Sci-
ence, Purdue University, 2005.

10. S. Goldwasser, S. Micali, Probabilistic Encryption, J. Comp. Sys. Sci., 28, pp.
270–299, 1984.

11. Josh Benaloh, Dense Probabilistic Encryption, SAC 94, pages 120–128, 1994.
12. D. Naccache, J. Stern. A New Public Key Cryptosystem Based on Higher

Residues. Proceedings of the 5th ACM CCS, pages 59–66, 1998.
13. I. Damg̊ard and M. Jurik. A Length-Flexible Threshold Cryptosystem with Ap-

plications. ACISP ’03, pp. 350–356.
14. T. Okamoto and S. Uchiyama. A New Public-Key Cryptosystem as Secure as

Factoring. Eurocrypt’ 08, LNCS 1403, pp. 308-318, 1998.
15. C. Peikert and B. Waters. Lossy Trapdoor Functions and Their Applications.

STOC 08, pp. 187–196.
16. A. Kawachi, K. Tanaka, K. Xagawa. Multi-bit cryptosystems based on lattice

problems. PKC ’07, pp. 315–329.
17. C.A. Melchor, G. Castagnos, and P. Gaborit. Lattice-based homomorphic encryp-

tion of vector spaces. ISIT ’08, pp. 1858–1862.
18. Carlos Aguilar Melchor and Philippe Gaborit, Javier Herranz, Additively Homo-

morphic Encryption with d-Operand Multiplications CRYPTO 2010, pp. 138–154,
2010.

19. F. Armknecht and A.-R. Sadeghi. A new approach for algebraically homomorphic
encryption. Eprint 2008/422.

20. T. ElGamal. A public-key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, IT- 31(4):469–472, 1985.

21. P. Paillier, Trapdooring discrete logarithms on elliptic curves over rings, ASI-
ACRYPT 2000, LNCS 1976, pp. 573–584. 2000.

22. Craig Gentry Shai Halevi, Implementing Gentry’s Fully-Homomorphic Encryp-
tion Scheme Preliminary Report, August 5, 2010. https://researcher.ibm.com/
researcher/files/us-shaih/fhe-implementation.pdf

23. Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A Secure and Opti-
mally Efficient Multi-Authority Election Scheme. EUROCRYPT’97, LNCS 1233,
pp. 103–118, 1997.

24. S. Galbraith, Elliptic curve paillier schemes, Journal of Cryptology, vol. 15, no.
2, pp. 129–138, 2002.

25. Arjen K. Lenstra, Eric R. Verheul, Selecting Cryptographic Key Sizes. Vol 14, No
4, Journal of cryptology, Springer, 2001. pp. 255–293.

26. Crypto++ Library 5.6.1, http://www.cryptopp.com/
27. Frederiksen, T.K., A Practical Implementation of Regev’s LWE-based Cryptosys-

tem, 2010.
28. MPIR 2.4.0, http://www.mpir.org/
29. Y. Tsiounis and M. Yung, On the security of ElGamal based encryption. pp.

117–134 PKC98 LNCS 1431, 1998.
30. Victor S. Miller, The Weil Pairing, and Its Efficient Calculation, Journal of Cryp-

tology 17(4):235-261, Springer, 2004
31. Menezes, A.J. and Van Oorschot, P.C. and Vanstone, S.A., Handbook of applied

cryptography, CRC Press, 2005.

110

Invited Paper: A New Masking Scheme for
Side-Channel Protection of the AES�

Julien Bringer1, Hervé Chabanne1,2, and Thanh Ha Le1

1 Morpho, Safran group
2 Télécom ParisTech

Abstract. We introduce a new protection of data against Side Channel
Analysis (SCA) based on wire-tap codes that we illustrate here on the
AES cipher. We point out that it brings two novel features: the possibility
to unmask without the knowledge of the mask and its capability to detect
some faults.
Keywords. Side Channel Analysis, Wire-tap codes, AES cipher.

1 Introduction

Side-Channel Analysis (SCA) has been introduced to recover secret data that are
inputs of a cryptographic algorithm. SCA exploits the physical characteristics of
the physical token where the algorithm is implemented. Namely, it exploits its
leakage (timing, power consumption, electromagnetic emanations) made during
the execution of this algorithm. Statistical treatments are then performed to
extract secret data from all the captures.

To enhance security against higher-order DPA, a few masking techniques are
suggested. In particular, it is possible to use several random additive masks at the
same time [11] to ensure provable security against higher-order DPA (d masks
for security against (d − 1)th-order DPA). Affine masking is another solution
that was first discussed in [14] and recently further studied in [3] that combines
additive masking and multiplicative masking (either as a linear multiplication
by a matrix or as a field multiplication). Compared with multiple padding, [3]
shows that the affine masking is provably secure only at first order DPA but that
it can achieve higher order resistance against DPA in practice (i.e. an important
number of consumption traces is needed). Affine masking is based on a mapping
x ∈ {0, 1}k �→ x.L ⊕ m where m is a random element in {0, 1}k and L is
either a random linear bijection in {0, 1}k [14] or a random element in GF (2k)
[3]. Note that many other masking methods, not based directly on additive or
multiplicative masking, have been designed for block ciphers implementations, in
particular for the AES, see for instance [1, 7, 2, 10, 4]. Nonetheless, improvements
or new methods are still requested to increase the resistance against more and
more advanced high-order attacks.

� This work has been partially funded by the JST/ANR SPACES (Security evaluation
of Physically Attacked Cryptoprocessors in Embedded Systems) project.

111

In this paper, we consider another secrecy system, namely the wire-tap chan-
nel. [15] has shown a way to convey information confidentially whenever a re-
ceiver enjoys a better channel than its adversary does.

We introduce a new masked version of the AES following to this principle of
wire-tap channel. Our masking method is based on the mapping x ∈ {0, 1}k �→
x.L ⊕ c ∈ {0, 1}n where c is a random codeword from a well-chosen code of
length n and L is a linear transformation from {0, 1}k into a subspace of {0, 1}n.
This method can be interpreted as an improvement of the affine masking to
the wire-tap channel context. Our proposal has the property that the length
of the message is expanded during the protection. Due to wire-tap secrecy this
gives us a secure Simple Power Analysis resistant masking, and we show that it
also achieves first and second-order resistance in practice. As a side effect of the
presence of error correcting codewords, we can efficiently detect the presence of
some faults during an execution of the algorithm.

Our protection technique has the unique property that one can unmask with-
out the need to use the mask itself. In [13], the authors show how to mount an
High Order DPA attack on the AES using at the same time both the masked
value and its mask. With respect to this result, we can stress the importance of
this asset of our proposal. To the best of our knowledge, our countermeasure is
the sole masking solution with this feature.

2 Wire-Tap Codes

The wire-tap channel problem was first introduced by Wyner [15] in 1975 and
later extended in [9]. The context is a transmission channel (noisy or not) be-
tween two parties Alice and Bob where an eavesdropper Eve can only see a
degraded version of the transmitted messages. Assume that the channel between
Alice and Bob is noiseless, then it means that the transmission channel from Al-
ice to Eve (or from Bob to Eve) is either with noise or with erasures. We consider
here the second case, i.e. the erasure wire-tap channel [9] with a probability of ε
to have an erasure (this is a Binary Erasure Channel BEC(ε)).

The principle to encode a secret message in the context of an erasure wire-tap
channel is the following. To transmit k-bit messages, a binary linear code C of
length n is chosen and each message is associated to a coset of C in such a way
that it is not possible for Eve to gain information on the transmitted message
when observing at most μ < n bits of the encoded message. More precisely, let

– G be a generator matrix of size (n − k) × n of C, with rows (g1, . . . , gn−k),
– L = (l1, ..., lk) be a family of k linearly independent vectors from {0, 1}n,

not in C,
– m = (m1, ..., mn−k) be a uniformly random vector of (n − k) bits,

then a message x = (x1, . . . , xk) in {0, 1}k is encoded as z = x.L ⊕ mG where
x.L = x1l1 ⊕ · · · ⊕ xklk ∈ {0, 1}n and c = mG is the random codeword related
to m (c = m1g1 ⊕ · · · ⊕ mn−kgn−k). Here L and G are in fact chosen such that
(g1, . . . , gn−k, l1, . . . , lk) span the entire space vector {0, 1}n.

112

Let H be the parity matrix of C, i.e. the k×n matrix such that for all c ∈ C,
HcT = 0.

In this construction, the information rate of the channel is R = k/n (1 minus
the information rate of C). Tolerating an information rate below 1 enables to
resist to the leakage of some bits to an eavesdropper.

Indeed, consider the received message z̃ by Eve. Eve has to search which
coset of C corresponds to z̃. A coset will correspond to z̃ if it contains at least
one vector that is equal to z̃ ∈ {0, 1}n in the unerased positions. The maximum
value for the total number of cosets of C that correspond to z̃ is 2k in this
construction. When this is reached for any input message, this means that the
conditional entropy H(X|Z̃ = z̃) is equal to the entropy of X, i.e. k. This leads
to perfect secrecy. A way to ensure this condition is given by the following result.

Lemma 1 ([8, 12]). Let C be a linear code with a parity matrix H =
(
h1 · · ·hn

)

of size k × n where hi is the i-th column of H. Consider an eavesdropper’s
observation z̃ ∈ {0, 1, ?}n with n − μ erased positions given by {i s.t. zi =?} =
{i1, i2, . . . , in−μ}. Then the original message x remains perfectly secret if and

only if the sub-matrix H̃ =
(
hi1 · · ·hin−μ

)
is of rank k.

Therefore, to achieve perfect secrecy in the above construction against eaves-
dropping of any μ bits of the transmitted message, it is necessary and sufficient
that the parity matrix H of the code C satisfies that all of its k × (n − μ) sub-
matrices have rank k. It is known [5] that this is equivalent to having a minimum
distance equal to μ + 1 for the code generated by H, i.e. for the dual code of C.
This implies that μ ≤ n − k and the optimal choice for given parameters n, k is
to take for C the dual code of an [n, k, d] binary linear code with the greatest
possible minimum distance d.

Various constructions for efficient wire-tap channels are studied under the
constraints of high information rate, encoding/decoding performances and ap-
proaching secrecy capacity (see for instance [12]). In our case, we will consider
small values for n and k so we will rely on more classical code constructions.

3 Protecting AES with Wire-Tap Codes

In the following, we explain how to protect a block cipher algorithm like AES
against side-channel analysis thanks to wire-tap codes.

3.1 Brief description of AES

AES [6] takes as input a 16-byte block and consists mainly in the iteration of a
round. The 16-byte block is represented as a 4 × 4 square called a state and is
subject to the following operations. AddRoundKey: this operation adds a round
key to the state by a bitwise XOR operation; SubBytes: the non-linear byte
substitution operates independently on each byte (each byte is replaced with
another according to a lookup table); ShiftRows: it is a permutation on the 16

113

bytes where each row of the state is shifted cyclically a certain number of times;
MixColumns: this operation treats each column of the state as a 4-byte vector
and multiplies it by a matrix.

The high-level execution of the AES-128 algorithm is to chain the operations
as follows. 1/ Key Expansion: round keys K0, ..., K10 are derived from the cipher
key using Rijndael’s key schedule; 2/ AddRoundKey(K0);
3/ for i from 1 to 9 do SubBytes- ShiftRows- MixColumns- AddRoundKey(Ki) ;
And finally 4/ SubBytes- ShiftRows- AddRoundKey(K10).

3.2 Our Proposal

Let k be the number of bits in the secret data handled in a cryptographic algo-
rithm. The objective is to encode the k data bits into n > k bits, such that an
adversary who observes a bit subset of size μ < n can gain no information on the
secret data. We choose a code C with a generator matrix G and a parity matrix
H, a set L = (l1, ..., lk) of k linearly independent vectors from {0, 1}n\C and we
encode a vector x = (x1, ..., xk) ∈ {0, 1}k as explained in Section 2: z = x.L ⊕ c

where x.L =
∑k

i=1 xili (modulo 2) and c = m.G is a random codeword.
The code C is constructed in advance by selecting its parity matrix H as the

generator matrix of an [n, k, μ + 1] binary linear code and L can be computed
later. The k linearly independent n-bit vectors l1, ..., lk can be fixed for each
target component. For example for smart cards, the set L = (l1, ..., lk) can be
separately computed for each card during the personalization step.

Remark 1. In the following, we will consider k = 8, i.e. that the wire-tap masking
is applied at the byte level (fitting to input’s size for AES S-boxes). When
transforming the encryption algorithm to operate on masked data, the main
overhead comes from the definition of new S-boxes compatible with such wire-
tap representation. As for classical additive masking, for efficiency reasons we
may prefer to use the same mask for all bytes (and all rounds). We consider
this option in the following description of the masked algorithm. Nevertheless,
if memory size is not a concern we can easily use different codewords for each
byte and each round.

Pre-Configuration. In the context of the wire-tap code masking, we first define
new operations AddRoundKey′, ShiftRows′ and MixColumns′ from the original
linear operations AddRoundKey, ShiftRows and MixColumns such that they are
compatible with the wire-tap representation x.L⊕c. AddRoundKey′ has to expand
the key by wire-tap encoding before the exclusive-OR operation. ShiftRows′ and
MixColumns′ are modified such that they operate linearly on a larger state. They
are defin-ed in the following way:
-AddRoundKey′(Ki)(x.L) =

(
AddRoundKey(Ki)(x)

)
.L = (x ⊕ Ki).L, for all x ∈

{0, 1}8, for all i ∈ {0, . . . , 10};
-ShiftRows′(x4.L4) = ShiftRows(x4).L4 for all x4 = (x(1), x(2), x(3), x(4)) ∈
{0, 1}4×8;

114

-MixColumns′(x4.L4) = MixColumns(x4).L4, for all x4 ∈ {0, 1}4×8.
where AddRoundKey′(Ki) is basically the XOR between its input and Ki.L
and ShiftRows′, MixColumns′ are defined to be linear operations over 4 bytes
(ShiftRows operates row per row of the AES state and MixColumns column
per column of the AES state, the state being a 4 × 4 bytes array). Above,
L4 = (L(1), L(2), L(3), L(4)) corresponds to the concatenation of four vectors of
k = 8 linearly independent n-bit vectors (either four different or four times the
same L) and x4.L4 is x(1).L(1) + x(2).L(2) + x(3).L(3) + x(4).L(4).

These calculations are easy to perform because the operations are linear
and done only once after the generation of L (that is set for once or renewed
after some number of uses; and thus inexpensive in performance with respect to
execution of an encryption). They can be done by both software and hardware
implementations.

Preliminary Step. The preliminary step below is computed before encryption.
Let c, c′ be two random codewords from the code C, then we define a new S-box
SubBytes′ as: SubBytes′(x.L ⊕ c) = SubBytes(x).L ⊕ c′

The look-up table associated to SubBytes′ is then defined over {0, 1}n. This
leads in general to a size of 2n×n bits. Here, as only 2k entries are possible, we can
manage to store it on 2k×n×2 by representing it as a list of 2k couples of n-bits
input/output vectors; the factor of expansion becomes 2n/k. For instance, with
n = 12 (respectively n = 16), the required memory for one transformed S-box is
768 bytes (resp. 1024 bytes); this corresponds to an expansion factor of 3 (resp.
4). For efficiency reasons, we use the same codewords, i.e. the same SubBytes′, for
all rounds of the algorithm. Nevertheless, independent choices could be envisaged
if the memory size is sufficient. This requires at most 2k × n × 320 bits.

By default, new codewords are drawn before each encryption. Note however
that due to the secrecy property of the wire-tap codes, you could use several
times the same codewords if you can ensure that the overall number of leaked
bits remains lower than the security bound μ.

Transformation of the Encryption Algorithm. We explain below the new
version of the algorithm when protected by wire-tap encoding. This corresponds
to the operations that are executed at each encryption. Let x the input message
to be encrypted. We have the following steps (to simplify the description of the
masking we consider only one byte for x, whereas of course the whole state is to
be masked):

– Take c and c′ at random and define SubBytes′ as above.
– Draw another random codeword c1 and let c2 ← c ⊕ c1.
– Compute z ← x.L ⊕ c1

– Compute z ← AddRoundKey′(K0)(z) ⊕ c2

(i.e. z = AddRoundKey′(K0)(x.L ⊕ c1) ⊕ c2 = (K0 ⊕ x).L ⊕ c)
– for i from 1 to 9

• z ← SubBytes′(z)
(this gives z = SubBytes(K0 ⊕ x).L ⊕ c’)

115

• z ← ShiftRows′(z)
(it leads to z = ShiftRows ◦ SubBytes(K0 ⊕ x).L ⊕ ShiftRows′(c′))

• z ← MixColumns′(z)
(z = MixColumns ◦ ShiftRows ◦ SubBytes(K0 ⊕ x).L ⊕ MixColumns′ ◦
ShiftRows′(c′))

• z ← AddRoundKey′(Ki)(z) ⊕ c2 = z ⊕ Ki.L ⊕ c2

• z ← z ⊕ c1 ⊕ MixColumns′ ◦ ShiftRows′(c′)
i.e. z = (Ki⊕
MixColumns ◦ ShiftRows ◦ SubBytes(K0 ⊕ x)).L ⊕ c

– SubBytes′

– ShiftRows′

– AddRoundKey′(K10) ⊕ c3 ⊕ ShiftRows′(c′) with some random codeword c3

(this leads to y.L ⊕ c3 where y is the output value of the encryption via a
non-masked AES implementation)

– Apply the parity matrix H and invert H(y.L)T to obtain the final result y

Note that, above, the input message, the intermediate messages and the
round keys as well are always masked by some codewords when manipulated.

4 Properties and Extensions

4.1 Simple Power Analysis.

The consumption of the new S-boxes SubBytes′ now depends on inputs/outputs
encoded via the wire-tap codes. Thus by definition, if an adversary recovers less
than μ bits through one or several observations of the encryption through the
same choices of codewords c and c′, then by Lemma 1 he cannot gain informa-
tion on the original inputs/outputs of SubBytes. Moreover, as the length n (and
consequently μ) can be chosen large at the time of the set-up of the implemen-
tation, it is theoretically possible – assuming that the number of bits that can
be read out by an adversary is bounded by a constant independent of n – to
thwart side-channel analysis with large number of leaked bits.

4.2 First Order DPA.

Similarly to classical additive masking, the resistance against Differential Power
Analysis at the first order is achieved thanks to the masking of the values x.L.
The mask is (or derived from) a random codeword which is not a random vector
from {0, 1}n. But as illustrated by our experiments, this difference affects the
security only when the size n − k of the code C (thus the number of possible
codewords) is too small. When n − k increases, the difficulty increases as well
and this enables to obtain parameters which achieve resistance against first order
DPA that is almost the same as the resistance obtained with classical additive
masking technique.

116

4.3 Higher Order DPA.

In our construction, the length of the encoded bytes can be increased. This is an
important difference with classical masking technique and this is an interesting
feature when studying second-order DPA. The results of our experiment confirm
that the efficiency of the second-order side-channel attack decreases when the
size n increases.

Moreover, an additional way to achieve implementations that are resistant to
second order DPA in practice is to keep the vector L unknown. This is somehow
close to affine masking techniques from [3, 14]: the specific structure of wiretap
codes – while enabling new properties that are discussed further below – still
enables us to achieve in practice second-order resistance.

4.4 Unmasking without Masks.

An additional feature that comes with our technique is the possibility to unmask
without the knowledge of the final codeword used. This is due to the parity
matrix H that cancels out all codewords. It avoids to manipulate the mask at
the last step of the algorithm that is usually a phase where an adversary could
try to capture the mask when retrieved from the memory.

A usual scenario for a DPA attack is when the adversary knows the ci-
phertexts and wants to attack the last rounds. For instance, one can imagine
a classical masking scheme. In this case, [13] considers two relevant points in
time which occur during a small period of time and which are dependent on the
masked value and its mask:
– The adversary measures the effect of the masked operations during the last

rounds of the encryption.
– At the end of the AES encryption, the adversary measures the consumption

when the random mask is retrieved to unmask the result.

To mount its HO-DPA attack, the adversary has to combine the elements coming
from these two points in time.

In this context, the possibility to unmask without the use of the mask is
clearly an asset.

To increase the difficulty, we can moreover choose to pre-compute the mask-
ing version of the final round key (K10.L⊕ c3⊕ShiftRows′(c′)) at some random
place during the encryption.

For specific choices of C and L, this possibility can be generalized to all
unmasking steps by using the parity matrix H1 (respectively H2) of the code
obtained as MixColumns′(ShiftRows′(C)) (resp. ShiftRows′(C)), and choosing
L not in these codes either.

4.5 Fault Detection.

Finally we can use the wire-tap encoding of a message to add a kind of fault
detection step by exploiting the fact that an encoded message x has a special
format (z = x.L ⊕ c): Apply H to zT to obtain H(x.L)T , invert the result to
recover x, compute z′ = x.L ⊕ c and check whether z = z′.

117

References

1. Akkar, M.L., Giraud, C.: An implementation of DES and AES, secure against some
attacks. In: Çetin Kaya Koç, Naccache, D., Paar, C. (eds.) CHES. Lecture Notes
in Computer Science, vol. 2162, pp. 309–318. Springer (2001)

2. Blömer, J., Guajardo, J., Krummel, V.: Provably secure masking of aes. In: Hand-
schuh, H., Hasan, M.A. (eds.) Selected Areas in Cryptography. Lecture Notes in
Computer Science, vol. 3357, pp. 69–83. Springer (2004)

3. Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine masking against higher-
order side channel analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) Se-
lected Areas in Cryptography. Lecture Notes in Computer Science, vol. 6544, pp.
262–280. Springer (2010)

4. Li, Y., Sakiyama, K., ichi Kawamura, S., Komano, Y., Ohta, K.: Security evaluation
of a dpa-resistant s-box based on the fourier transform. In: Qing, S., Mitchell, C.J.,
Wang, G. (eds.) ICICS. Lecture Notes in Computer Science, vol. 5927, pp. 3–16.
Springer (2009)

5. MacWilliams, F.J., Sloane, N.J.A.: The theory of error correcting codes. North-
Holland (1977)

6. National Institute of Standards and Technology: Advanced Encryption Standard
(FIPS PUB 197) (November 2001), http://www.csrc.nist.gov/publications/
fips/fips197/fips-197.pdf

7. Oswald, E., Mangard, S., Pramstaller, N.: Secure and efficient masking of aes - a
mission impossible? Cryptology ePrint Archive, Report 2004/134 (2004)

8. Ozarow, L.H., Wyner, A.D.: Wire–tap channel II. Bell Systems Technical Journal
63(10), 2135–2157 (1984)

9. Ozarow, L.H., Wyner, A.D.: Wire-tap channel ii. In: EUROCRYPT. pp. 33–50
(1984)

10. Prouff, E., Giraud, C., Aumônier, S.: Provably secure s-box implementation based
on fourier transform. In: Goubin, L., Matsui, M. (eds.) CHES. Lecture Notes in
Computer Science, vol. 4249, pp. 216–230. Springer (2006)

11. Schramm, K., Paar, C.: Higher order masking of the AES. In: Pointcheval, D. (ed.)
CT-RSA. Lecture Notes in Computer Science, vol. 3860, pp. 208–225. Springer
(2006)

12. Thangaraj, A., Dihidar, S., Calderbank, A.R., McLaughlin, S.W., Merolla, J.M.:
Capacity achieving codes for the wire tap channel with applications to quantum
key distribution. CoRR cs.IT/0411003 (2004)

13. Tillich, S., Herbst, C.: Attacking state-of-the-art software countermeasures-a case
study for aes. In: Oswald, E., Rohatgi, P. (eds.) CHES. Lecture Notes in Computer
Science, vol. 5154, pp. 228–243. Springer (2008)

14. von Willich, M.: A technique with an information-theoretic basis for protecting
secret data from differential power attacks. In: Honary, B. (ed.) IMA Int. Conf.
Lecture Notes in Computer Science, vol. 2260, pp. 44–62. Springer (2001)

15. Wyner, A.D.: The Wire-tap Channel. Bell Systems Technical Journal 54(8), 1355–
1387 (January 1975)

118

Author Index

Arnault, Francois 69
Bernstein, Daniel 51
Bringer, Julien 111
Chabanne, Hervé 111
Gavin, Gérald 69
Hu, Yin 93
Lange, Tanja 51
Le, Thanh Ha 111
Lou, Xin 10
Ma, Yu Tak 10, 34
Martin, William 93
Rao, Nageswara S. V. 10, 34
Schwabe, Peter 51
Sion, Radu 19
Sunar, Berk 93
Tillich, Stefan 1
Wang, Chuang 43
Williams, Peter 19
Wojcik, Marcin 1
Yau, David K. Y. 10, 34
Yip, Nung Kwan 34
Zhang, Wensheng 43

119

	Cover
	Table of Contents
	Security Analysis of an Open Car ImmobilizerProtocol Stack
	Extended Abstract: Markov Game Analysis forAttack-Defense of Power Networks
	SR-ORAM: Single Round-trip Oblivious RAM
	Extended Abstract: Cipher Techniques toProtect Anonymized Mobility Traces fromPrivacy Attacks
	An Ad Hoc Group Signature Scheme for Accountableand Anonymous Access to Outsourced Data
	The security impactof a new cryptographic library
	RSA modulus generation in the two-party case
	Enhanced Flexibility for HomomorphicEncryption Schemes via CRT
	Invited Paper: A New Masking Scheme forSide-Channel Protection of the AES
	Author Index

