
MASTER/SLAVE SPECULATIVE PARALLELIZATION

AND APPROXIMATE CODE

by

Craig B. Zilles

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN - MADISON

2002

i

-

Abstract

This dissertation describesMaster/Slave Speculative Parallelization(MSSP), a novel execution para

xecu-

re then
This
inputs
g the

lue pre-
rrect-
ion to
n of a
stiller
ization;

a chip
m avail-
e slave
anisms
multi-

. Per-
EC2000
which
digm to improve the execution rate of sequential programs by parallelizing them speculatively for e
tion on a multiprocessor. In MSSP, one processor—themaster—executes anapproximatecopy of the
program to compute values the program’s execution is expected to compute. The master’s results a
checked by theslaveprocessors by comparing them to the results computed by the original program.
validation is parallelized by cutting the program’s execution into tasks. Each slave uses its predicted
(as computed by the master) to validate the input predictions of the next task, inductively validatin
whole execution.

Approximate code, because it has no correctness requirements—in essence it is a software va
dictor—can be optimized more effectively than traditionally generated code. It is free to sacrifice co
ness in the uncommon case in order to maximize performance in the common case. In addit
introducing the notion of approximate code, this dissertation describes a prototype implementatio
program distiller that uses profile information to automatically generate approximate code. The di
first applies unsafe transformations to remove uncommon case behaviors that are preventing optim
second, it applies traditional safe optimizations to exploit the newly created opportunities.

The mechanisms necessary for a MSSP execution and an example implementation based on
multiprocessor are also described. These mechanisms buffer the master’s predictions and make the
able to the slaves, capture the input and output values for each slave task, and verify and commit th
tasks to give the appearance of a sequential execution. A hardware implementation of these mech
require only a modest amount of resources (likely less than 5% area) beyond a next-generation chip
processor.

This dissertation includes a simulation-based evaluation of the example MSSP implementation
formance results show that MSSP achieves speedups up to 1.75 (harmonic mean 1.25) for the SP
integer benchmarks. Performance is currently limited by the effectiveness of code approximation,
can likely be significantly improved.

ii

onse
Acknowledgments

Before I selected Guri to be my adviser, I asked him what was involved in doing a Ph.D. His resp

worst

n for
rents
gement

ive to
e has a
y own

man,
f this
d his

nged.
faculty
tudents

e in
from
ers of
s of

an
s. In
ht me
oth

 lift.

k the
much
addi-
infra-
was “you have to go through hell.” Although perhaps a slight exaggeration, there is no doubt that the
times are made bearable and the best times genuinely memorable by the people in our lives.

First and foremost in this regard is family. My deepest thanks go to my wife Julie and my son Bria
being loving and supportive throughout the whole process. You two are my life. I thank also my pa
Stephen and Connie, my brother Karl, and Julie’s parents George and Jan for their constant encoura
and understanding.

I thank Guri for helping me find important and challenging problems to solve and the perspect
develop the solutions. There is no measure to the extent he has shaped my technical thinking; h
unique ability to seek out what is critical. I also appreciate the freedom he has given me to develop m
vision and the self confidence to follow it.

I’d also like to thank the other members of my committees--Ras Bodik, Charlie Fischer, Jim Good
Mark Hill, and Jim Smith--for their contributions to my personal development and the development o
dissertation. In particular, I’d like to thank Ras for his constructive criticism and encouragement an
effort to push me to formalize my thinking.

Much of my development as a researcher is the result of the academic community to which I belo
The architecture group at Wisconsin is at once technically ruthless and personally supportive. The
should be congratulated on the environment they have created. I have benefited from many of the s
of this community, but a few of them deserve special acknowledgment.

I want to thank Eric Rotenberg for jump starting my involvement in architecture by engaging m
full-contact technical discussions in my first term at Wisconsin. I also benefited in these early years
discussions with Andy Glew, Quinn Jacobsen, Timothy Heil, S. Subramanya Sastry, and the memb
the Kestrel project. In addition, I want to thank Andreas Moshovos for advising me on the working
graduate school.

In my later years, it was Adam Butts, Brian Fields, Milo Martin, Ravi Rajwar, Amir Roth, and D
Sorin who were my “go-to guys.” They helped me refine my thinking, writing, and presentation skill
addition, Milo Martin, my office-mate of 5 years, both tolerated my odious personal habits and taug
most everything I know about multiprocessors. I like you, Milo, even if nobody else does. Amir R
deserves my special thanks for helping me to organize my writing and not pushing me off the chair

Lastly, I would like to acknowlege the organizations that made this research possible. I than
National Science Foundation, Intel Corporation, and Cisco Systems for the fellowships that funded
of my graduate studies and addition support from NSF grants CCR-9900584 and EIA-0071924. In
tion, thanks go to the Condor project and the Computer Systems Lab at Wisconsin for providing the
structure for doing my research.

iii

 . . . 1

. . . 2

. 6

. . . 7

. . . . 9

. . 11

 . . 13

 . . 13

. . 14

 . . 15

 . .

. . 16

 . .

 . .

. .

. . 24

. . 25

. . 27
Table of Contents

Abstract. i

Acknowledgments . ii

Table of Contents . iii

List of Figures. vi

List of Tables . viii

Chapter 1 Introduction 1

1.1 Constraints Guiding the Development of the Execution Paradigm

1.2 Overview of Master/Slave Speculative Parallelism .

1.3 Contributions of this Dissertation . 4

1.4 Organization of the Dissertation 5

Chapter 2 The Master/Slave Speculative Parallelization Paradigm 6

2.1 Programs and Parallelization . 6

2.1.1 Programs as Operations and Dependences .

2.1.2 Parallelizing Programs: Partitioning into Tasks .

2.1.3 Handling Inter-Task Dependences .

2.1.4 Verification of Speculatively Satisfied Dependences .

2.2 Master/Slave Speculative Parallelization and Distilled Programs

2.2.1 Checkpoint Speculative Parallelization Paradigms .

2.2.2 Approximating Code and Distilled Programs .

2.2.3 Master/Slave Speculative Parallelization .

2.2.4 MSSP Exception Model . 16

2.2.5 Distilled Program Construction Example .

2.2.6 MSSP Execution Example .19

2.3 Related Work . 22

2.3.1 Speculative Parallelization (SP) . 22

2.3.2 Leader/Follower Architectures . 23

2.3.3 Speculative Program Optimizations/Transformations .

2.3.4 Dynamic Optimization Systems .

2.4 Chapter Summary . 25

Chapter 3 Approximate Code and Constructing Distilled Programs 27

3.1 “Requirements” of the Distilled Program .

iv

 . .

. . . 30

 . . 3

 . . 33

 . 36

. 37

 . 38

. .

. 40

. .

 . 46

 .

 . .

 . . 51

 .

 . . 58

. . 58

 .

 . . 61
3.2 Selecting Task Boundaries . 28

3.2.1 Task Size . 28

3.2.2 Task Boundary Locations . 29

3.2.3 Specifying Task Ends and Task End Suppression .

3.2.4 Task Selection Implementation .0

3.3 Distilled Program Structure . 33

3.3.1 Mapping Between Programs .

3.3.2 Transition Code . 34

3.3.3 Resulting Structure . 35

3.4 Framework for Automatic Program Distillation .

3.4.1 Guiding Root Optimizations with Profile Information .

3.4.2 Implications of Distilled Program Structure on Liveness Analysis

3.5 Implementation . 38

3.5.1 Initialization . 39

3.5.2 Instruction-level Optimizations . 39

3.5.3 Dead Code Elimination and Control-Flow Simplification .

3.5.4 Function-level Optimizations . 41

3.5.5 Code Output . 41

3.5.6 Performance . 42

3.6 Chapter Summary . 42

Chapter 4 Implementing the MSSP Paradigm 43

4.1 Required Functionality . 43

4.2 Analytical Model . 44

4.3 A Guiding Theme: Tolerating Inter-processor Communication Latency

4.4 An MSSP Implementation . 47

4.4.1 Mechanism Overviews . 48

4.4.2 High-level Operation: . 49

4.4.3 Program Data That Validates This Approach .

4.4.4 Power Consumption . 55

4.5 Mechanism Details . 56

4.5.1 Live-in/Live-out Collection .. 56

4.5.2 Register/Memory Word Messaging .

4.5.3 Memory Checkpoint Assembly .

4.5.4 Global Register File . 59

4.5.5 Verification/Commitment . 60

4.5.6 Misspeculation Detection/Recovery Path .

v

 . . 62

 . . 63

. 64

. . 66

. .

. . 7

 . . 7

 . 79

. . 82

. . 83

 . . 84

 .

 84

 . .

 . . 88

. . 88
4.5.7 Mechanisms for Mapping Between Programs .

4.5.8 Tracking Stale Data and Refreshing .

4.5.9 Efficiently Communicating, Reading and Writing Register Files

4.5.10 Early Verification . 64

4.6 Chapter Summary . 65

Chapter 5 Experimental Evaluation of the MSSP Paradigm 66

5.1 Experimental Methodology .. . 66

5.1.1 Program Distiller Implementation .

5.1.2 Simulation Infrastructure . 66

5.1.3 Benchmark Programs . 68

5.2 Results . 68

5.2.1 Distilled Program Optimizations . 0

5.2.2 Task Selection . 73

5.2.3 Hardware Resource Utilization .4

5.2.4 Mapping . 76

5.2.5 Performance . 77

5.2.6 Sensitivity to Interconnect Latency/Bandwidth .

5.2.7 Sensitivity to Task Size . 81

5.2.8 Sensitivity to Task Boundary Selection .

5.2.9 Sensitivity to Optimization Thresholds .

5.2.10 Sensitivity to Number of Processors .

5.2.11 Sensitivity to Refreshing . 84

5.2.12 Sensitivity to a Realistic Mapping Lookaside Buffer (MLB) .

5.3 Chapter Summary . 85

Chapter 6 Conclusions 86

6.1 Lessons Learned . 86

6.2 Requirements for Correct Execution . 87

6.2.1 Mechanisms That Must Be Correct .

6.2.2 Mechanisms That Don’t Need To Be Correct .

6.3 Open Questions . 89

6.4 Chapter Summary . 90

References 91

vi

 7
. 8
 9
. 9
. . . . 10
 . . .
. . . . 12
. . . 13
6
 . . . 17
 .
 . . 18
 .

.
 . . . 24
. . . . 30

 . . . 32
 . . . 32
. . . . 34
ram35
 . . . 36
 . . . 3
. . . 39
. . . .
 .
. .
. . . . 50
 . .
. . . . 53
. . . 57
rks 58

 . . . 59

. . . . 6

 .

 . . . 7
List of Figures

1.1 Master processor distributes checkpoints to slaves . 3
2.1 Examples of register, memory, and control dependences on four classes of instructions
2.2 Example Execution Dependence Graph (EDG).
2.3 Control flow graph with task boundaries (a), and resulting potential tasks (b)..
2.4 The program’s execution can be divided into three regions.
2.5 Example partition of EDG with annotated dependences .
2.6 Three techniques for satisfying dependences. 11
2.7 Alternatives for short dependences in speculative parallel architectures
2.8 A live-in checkpoint is assembled from partial checkpoints .
2.9 Example code fragment from SPEC 2000 benchmarkgcc . 1
2.10 Example task selection and application of root optimizations. .
2.11 Logical steps in constructing a distilled program. .. . 17
2.12 Distilled program fragment after application of root optimizations .
2.13 Distilled version of example code fragment: .. . 19
2.14 Flow chart of MSSP execution. 19
2.15 Detailed example MSSP execution 21
2.16 Traditional vs. MSSP-style speculative optimization .
3.1 Top-level algorithm pseudocode for selecting tasks .
3.2 Task selection algorithm example . 31
3.3 Algorithm pseudocode for creating acyclic regions for task selection
3.4 Algorithm pseudocode for selecting potential task boundaries to promote
3.5 Code hoisted across a fork instruction is replicated in the transition code.
3.6 Code can be percolated down into transition code if used only in one task of the original prog
3.7 The distilled program structure supports checkpointing and misspeculation recovery
3.8 Summary of root and supporting optimizations. .7
3.9 Overview of phases of program distiller implementation .
4.1 Performance predicted by the analytical model . 46
4.2 Critical path through the MSSP execution. .. . 47
4.3 Block diagram of the MSSP hardware. 48
4.4 Life of a single task (steady state operation of MSSP) .
4.5 Characterization of task live-in and live-out set sizes .. 52
4.6 Graphical representation of flow of register and memory data .
4.7 Hardware structures for collecting live-in and live-out values.
4.8 Packet formats for sending memory words and register values through interconnection netwo
4.9 Checkpoint assembly from entries of the checkpoint buffer. .
4.10 Detail of global register file implementation . 60
4.11 A sparse page table implementation for mapping.. 3
5.1 Diagram of machine model . 67
5.2 Root optimizations represented pictorially . 70
5.3 Effectiveness of root optimizations(2) . 71
5.4 Effectiveness of root optimizations(1) . 72
5.5 Relative effect of root and supporting optimizations .3

vii

 . . . 73

. . .

. .
 . . . 76
 77

 .
. . . 80
. . . 80

 . . . 81
. . . . 82
. . . . 83
. . . . 83
. .
. . . . 84
5.6 Task size distributions, with and without task boundary suppression .
5.7 Bandwidth utilized . 75
5.8 Amount of speculative state storage required . . 75
5.9 Processor utilization and task activity distribution: . . 75
5.10 Hit ratio of as a function of indirect branch target map size .
5.11 MSSP Performance across the whole program’s execution. .
5.12 Task misspeculation detection latency . 78
5.13 Performance variation across execution. 79
5.14 Limited sensitivity to inter-processor communication latency.
5.15 Limited sensitivity of inter-processor bandwidth on performance .
5.16 Sensitivity of task size on performance . 81
5.17 Impact of task size on distillation ratio and misspeculation frequency
5.18 Sensitivity of task size on task misspeculation detection latency .
5.19 Sensitivity of task size on bandwidth and storage requirements .
5.20 Sensitivity of performance on task boundary selection .
5.21 Sensitivity of distillation thresholds on performance. 84
5.22 Sensitivity of performance on number of available processors .
5.23 Sensitivity to refreshing . 85
5.24 Sensitivity indirect branch target mapping. 85

viii

List of Tables

3.1 Correctness thresholds for program distiller optimizations. . 38
4.1 Raw data on average number of 64-bit registers, 64B cache lines for refreshes, and 8B memory

words moved for tasks of different sizes, estimated from Figure 4.5. 52
4.2 Estimated bandwidths calculated from raw data in Table 4.1. 53
5.1 Baseline parameters supplied to the program distiller. . 67
5.2 Simulation parameters approximating a CMP of Alpha 21264 cores . 68
5.3 Input sets used for simulation of Spec 2000 integer benchmarks . 69
5.4 Distilled program statistics. 74
5.5 Number of indirect branches per 1000 dynamic (original program) instructions 77

1

Chapter 1
achieve
ndreds

esire to
erfor-

erfor-
a chal-
tion of
ue

lly non-
f new

radigm,

phys-
traints
ctivity,
low-

eases.
upled
so they
depen-
facilitat-

map-
Introduction

The exponential growth of processor performance has enabled single-processor computers to
execution rates in the billions of operations per second and multiprocessor computers capable of hu
of billions or even trillions of operations per second. Despite these achievements, there remains a d
have even faster computers that will enable additional software functionality and achieve these p
mance levels in smaller, cheaper form factors that consume less power.

Advances in semiconductor technology continues to provide the raw materials for continued p
mance growth, providing larger chips capable of holding more and faster transistors. There remains
lenge though, in how to utilize these resources in a manner that improves performance. Extrapola
previously used techniques (e.g., naively increasing superscalar width) does not “scale up” efficiently d
to clock cycle constraints [57] and true dependences—both control and data—in programs, especia
numeric programs. Benefitting fully from larger transistor budgets necessitates the development o
execution paradigms to enhance and exploit parallelism. In this dissertation, I propose one such pa
Master/Slave Speculative Parallelization (MSSP).

1.1 Constraints Guiding the Development of the Execution Paradigm

Before describing the MSSP paradigm in detail, it is illuminating to discuss the constraints, both
ical and social, that I perceived would affect the adoption of a new execution paradigm. These cons
shaped the development of the MSSP paradigm. Five constraints—wire delay, programmer produ
infrastructure transparency, minimal verification complexity, and flexibility—are described in the fol
ing paragraphs.

Wire delay: As clock frequencies increase, the distance a signal can travel in a single cycle decr
With slow global communication, de-centralized microarchitectures consisting of many loosely-co
regions are desirable. Designing such architectures can be difficult because partitioning programs
can be efficiently mapped onto such hardware is a challenging, open problem. Control and data
dences between operations necessitates enforcing some ordering constraints on the operations and
ing communication between them.

Thesis: A new execution paradigm should provide an efficient means of partitioning programs for
ping onto decentralized microarchitectures.

2

so
fit from
ng pro-
ptimize
ains

s their
ility,

nner a
cution

nt
iler ven-
iler or

rable if

to the

o-
es that

ey can
xplicit
rchitec-
caches,
 used.

s these

s para-
rallel-
n
g

ed seg-

he con-
Programmer Productivity: In the early days of computing, computers were so few in number and
expensive that it was appropriate for programmers to hand optimize code to achieve the most bene
a limited resource. Declining component costs have made computers ubiquitous and cheap, maki
grammers the limiting resource. Modern computer designers cannot rely on programmers to hand o
their code—including techniques like manual parallelization—except in performance critical dom
(e.g., database server applications). Most programmers are likely to program in a way that maximize
productivity by using high-level languages and methodologies that favor clarity, verifiability, reusab
and maintainability over performance.

Thesis: A new execution paradigm should handle compiled code well and be tolerant of the ma
computation is expressed. In the limit, the intrinsic complexity of computation should determine exe
time, not the manner in which it is expressed.

Infrastructure Transparency: Widespread adoption of any technology is slowed if its deployme
requires outside entities to change. For processor design teams, such outside entities include comp
dors, operating system vendors, programmers, and library writers. Requiring changes in the comp
that programmers change their methodology can take a long time and can be risky. It is much prefe
technology can be introduced in such a manner that it is transparent to the existing infrastructure.

Thesis: A new execution paradigm should be language agnostic, require few, if any, changes
compiler or operating system, and, therefore, handle legacy code.

Minimal Verification Complexity: Much of the cost/effort/time in the development of a modern micr
processor is dedicated to verification. As such, it is desirable to develop micro-architectural techniqu
reduce verification complexity or at worst increase it minimally.

Thesis: A new execution paradigm should minimize any additional verification complexity.

Flexibility: The above constraints have expounded on the importance of notrequiring changes to com-
piler infrastructure or programmer behavior, but it is desirable that if beneficial changes are made th
be exploited. For example, if code is manually parallelized or hand assembled to expose a lot of e
parallelism, the machine can provide the necessary resources. Thus it is desirable for the micro-a
ture to be largely composed of general purpose execution resources (processors, functional units,
etc.) rather than special-purpose widgets that will be idle when an alternative execution paradigm is

Thesis: A new execution paradigm should require a minimum of special purpose widgets.

In the next subsection, I briefly overview the proposed execution paradigm and how it addresse
perceived constraints.

1.2 Overview of Master/Slave Speculative Parallelism

This dissertation describes the Master/Slave Speculative Parallelization (MSSP) paradigm. Thi
digm enables the automatic parallelization of sequential programs, including legacy binaries. This pa
ization is effected by dedicating one processor to be the “master1,” who orchestrates the parallel executio
by (1) instructing each “slave” processor where (i.e., at what program counter value) to begin executin
and (2) providing each slave processor with the set of live-in values needed to execute the assign
ment (or “task”) of the program.

1. The use of the word “master” comes from the definition “a device or mechanism that controls the operation of another” and not from t
notation of a master copy from which other copies are made (e.g., phonograph records).

3

uting
ntial
d pro-

occa-
with

nce of

ut-
at the
a pre-

“check-
aster
uffered

tes
alue;
using

n
check-
points,
The master processor—to which I will refer simply as the master—performs its duties by exec
what I call a distilled program. The distilled program is an “approximate” version of the original seque
program that has been augmented with directives for managing the slave processors. The distille
gram’s approximate nature allows it to execute more quickly than the original program, but it may
sionally diverge from a correct execution. By coupling the master’s execution of the distilled program
the slaves’ execution of the original program, MSSP can potentially achieve the superior performa
the distilled program with the correctness of the original program.

I briefly overview the MSSP paradigm in Figure 1.1. Four processors are shown; one (P0) is allocated
to be the master processor, and the rest (P1, P2, andP3) are slaves that begin the example idle. By exec
ing the distilled program, the master processor performs many of the register and memory writes th
original program would, but these writes are not committed. Instead, these writes are used to create
dicted checkpoint of program state to be used by the slave processors and are held in a special
point” buffer. At task boundaries in the distilled program there are fork instructions that signal the m
to spawn a new task in the original program on a free processor and to provide it access to the b
checkpoint values. At the annotation1 in the figure, the master processor spawnsTask B onto processor
P2. P2begins executing the task after some latency due to the inter-processor communication (2). P0con-
tinues executing (3) the distilled program segment that corresponds toTask B, which I refer to asTask B´.

As the slaveTask B executes, it will read values that it did not write (live-in values) and perform wri
of its own (live-out values). If a corresponding checkpoint value is available, it is used for the live-in v
otherwise the value is read from current visible (architected) state. As the task is speculative—it is

CHKPT

FORK

FORK

FORK

P1 P2 P3P0

A’

B’

C’

Task A

Task B

Task C

Verify
Commit State

Misspeculation

Restart Task C
C’

Bad Checkpoint

...

1

2
3

4

7

Figure 1.1:Master processor distributes checkpoints to slaves.The master—executing the distilled program o
processor P0—assigns tasks to slave processors, providing them with predicted live-in values in the form of
points. The live-in values are verified when the previous task retires. Misspeculations, due to incorrect check
cause the master to be restarted with the correct architected state.

Fork Task

Execute Task

8

Squashed

T
im

e

Commit State

Architected
State

live-ins, spec. stores

Verify

Detected

live-ins, spec. stores 6

5

4

live-
s com-
ve-in
ted, and

(
n
the
n of

m, the
e used
MSSP

ates
n be

r that
s, it is
gres-

ded to
rofile
le.
he un-
ution.
rified
could

imple-
st. For
ocessor
n 1%

cation
r ven-
arallel

es the
wing

iously
predicted live-in values—its live-out values cannot be immediately committed. Instead its live-in and
out values are recorded in live-in and live-out buffers and associated with the task. When the task i
plete (4), P2sends its live-in and live-out values to the authority on architected state. If the recorded li
values exactly correspond to architected state, then the task has been verified and can be commit
architected state can be updated (5) with the task’s live-out values.

If one of the recorded live-in values differs from the corresponding value in the architect statee.g.,
because the master wrote an incorrect value (3)), this mismatch will be detected during verification. O
detection of the misspeculation (6), the master is squashed, as are all other in-flight tasks. At this time,
master is restarted atC´ (7), using the current architected state. In parallel, non-speculative executio
the corresponding task in the original program (Task C) begins (8).

1.3 Contributions of this Dissertation

In this dissertation, I focus on three topics: the Master/Slave Speculative Parallelization paradig
abstract concept of approximate code, and distilled programs, the specific form of approximate cod
in MSSP. In addition, with regards to the constraints discussed in Section 1.1, I demonstrate that the
paradigm has the following characteristics:

1. By parallelizing the program into tasks and predicting their live-in values, MSSP effectively cre
independent units of work—generally consisting of hundreds of dynamic instructions—that ca
mapped onto a distributed micro-architecture (e.g., a chip multi-processor). If live-in predictions are
accurate, the MSSP paradigm can be very tolerant of communication latency.

2. In approximating a program, the distilled program is free to re-express computation in a manne
facilitates fast execution. Because the distilled program need not be correct in all circumstance
sufficient to find an expression that is correct for the “common case”, potentially enabling more ag
sive optimizations.

3. No compiler modifications are required and legacy binaries can be supported. All information nee
construct the distilled program can be derived from the original program’s static image and p
information. Thus, transparent implementations that perform the distillation at run time are feasib

4. The program distiller, the mechanism that constructs the distilled program, need not be verified. T
modified original program is executed (by the slaves) and remains the authority for correct exec
All results computed by the distilled program are predictions, untrusted by the machine until ve
against architected state. Thus, any bugs in the distiller translate into mispredictions, which
reduce performance but will not affect correctness.

5. The MSSP paradigm can be implemented as an extension to a chip multiprocessor (CMP). By
menting the distiller in software, the required MSSP-specific hardware mechanisms are mode
example, about 4kB of storage is required at each processor (3% of the size of the caches on a pr
with 64kB instruction and data caches) and around 24kB of storage at the L2 (or a little more tha
of a 2MB L2 cache). These modest hardware requirements can also limit the incremental verifi
complexity beyond the CMP designs already present in industry. Furthermore, it allows processo
dors to produce a single chip that efficiently handles sequential programs (using MSSP) and p
programs (using CMP).

In order to justify and explore the implications of the above statements, this dissertation describ
Master/Slave Speculative Parallelization paradigm. Specifically, in this dissertation, I make the follo
contributions:

1. I define and describe the Master/Slave Speculative Parallelization paradigm, comparing it to prev
proposed execution paradigms.

5

n of a

ation.
valu-

topic
me les-

some
2. I demonstrate the opportunity for approximating programs, discussing a prototype implementatio
program distiller.

3. I describe the necessary mechanisms for the MSSP paradigm and outline a possible implement
4. I characterize the distilled programs generated by my prototype program distiller and empirically e

ate the performance of an implementation MSSP.

1.4 Organization of the Dissertation

The organization of this dissertation corresponds directly to the above contributions, where each
is the focus of a separate chapter (Chapters 2 through 5). I conclude in Chapter 6 by describing so
sons learned during this work, the correctness requirements of the implementations, and outline
unanswered questions to guide future work.

6

Chapter 2
m. As
n 2.1)
MSSP

each.
n para-

ns and

parti-
daries;

4 closes
pecula-

ential
plic-

is per-
f that

dences
ge loca-

rrect val-
depen-
The Master/Slave Speculative Parallelization Paradigm

In this chapter, I define and present the Master/Slave Speculative Parallelization (MSSP) paradig
this is a paradigm for automatic parallelization of sequential programs, I begin the chapter (in Sectio
with a description of programs and program parallelization in general. In Section 2.2, I present the
paradigm and introduce the concept of approximate code, including definitions and examples of
Lastly, in Section 2.3, I compare and contrast the MSSP paradigm to previously proposed executio
digms.

2.1 Programs and Parallelization

This section begins with a brief description of the components that make up programs—operatio
inter-operation dependences—and introduces theexecution dependence graph(EDG), a tool for visualiz-
ing the important dependences. In Section 2.1.2, I demonstrate how parallelizing programs involves
tioning EDG’s into tasks. In general, such a partitioning results in dependences that cross task boun
in Section 2.1.3, I describe the three ways that such dependences can be dealt with. Section 2.1.
this section with a discussion of two mechanisms for verification if these dependences are handled s
tively.

2.1.1 Programs as Operations and Dependences

This dissertation is concerned with the automatic parallelization of programs written with a sequ
execution paradigm in mind. These programs consist of operations that name (either explicitly or im
itly) the storage location of their source and destination operands. Inter-operation communication
formed by matching up the producer of the value at a given storage location to the consumer o
location and results in a dependence between the two operations.

In this work, I concern myself with two classes of inter-operation dependences: true data depen
and control dependences. Anti- and output dependences can be easily alleviated by renaming stora
tions and in-order retirement, respectively, so they need not be a concern.

True data dependences ensure that storage locations named by source operand contain the co
ues at the time an operation is executed. For the purposes of describing parallelization paradigms,
dences through registers and memory are effectively equivalent, so I will not make this distinction.

7

depen-
adding
l data
eration
ollow.

ferent
execu-
ndence

ces; an

lism
llelism
scalar/
ue to
rther-
ance

ks by
alar
m fol-

nd the

ks have a
Control dependences determine which operations are executed and, as a result, which data
dences are realized. For simplicity, I will model control dependences as data dependences by
implicit reads and writes to the program counter (PC) for each instruction. This introduces a seria
dependence from each instruction to the next. Note that, in general, this over-constrains the inter-op
dependences, but results in little loss of generality for the discussion of program parallelization to f
Figure 2.1 shows example operations and their dependences.

Different executions (dynamic instances) of the same (static) instruction can potentially have dif
dependences due to different paths through the computation or values computed upon. For a given
tion of a program, I can create a graph of the dependences that were realized. This Execution Depe
Graph (EDG) is an execution trace augmented with arcs indicating the inter-operation dependen
example EDG snippet is shown in Figure 2.2.The EDG contains the set of dependences that need to
have been observed to have correctly performed the program’s execution.The EDG differs from a
control-flow graph (CFG) and a data-flow graph (DFG) in that it is concerned with whatdid happen on a
particular execution, not whatcould happen on across all possible executions.

2.1.2 Parallelizing Programs: Partitioning into Tasks

Although there are many levels at which parallelism can be exploited (e.g., word, instruction, thread),
in this dissertation I focus on thread-level parallelism (TLP). Techniques to exploit word-level paralle
(WLP) and instruction-level parallelism (ILP) have been actively researched and these forms of para
are being effectively exploited in existing processors (by SIMD instruction set extensions and super
VLIW architectures, respectively). TLP, on the other hand, is not being exploited in most programs d
the high cost of manual parallelization, so there is significant untapped performance potential. Fu
more, because TLP exploits parallelism at a larger granularity than WLP or ILP techniques, perform
benefits of exploiting TLP will likely complement performance achieved through those techniques.

To achieve a thread-level parallel execution for a computation, I will partition it intotasksthat can be
performed in parallel by independent processors. In this work, the program is partitioned into tas
specifyingtask boundarieswith static annotations to the program, much like what was done in Multisc
[72, 81]1. The tasks that result from these task boundaries depend on the control flow path the progra
lows. Figure 2.3 shows a control flow graph (CFG) of a computation with a set of task boundaries a
set of possible tasks that could arise from the execution of the computation.

Task Boundary:a point in the static program, generally associated with the static instructions
that it precedes, that terminates a task when it is encountered during execution. (Definition 1)

Task: a continuous sequence of operations in the program’s execution bounded at each end by a
task boundary annotation in the static program, with no task boundary annotations in the task’s
interior. (Definition 2)

1. The difference between this definition and the one used for Multiscalar task selection [72, 81] is that there is no constraint that the tas
single entry.

Figure 2.1:Examples of register, memory, and control dependences on four classes of instructions.(a) arith-
metic, (b) load, (c) store, and (d) control.

r12 + r16→ r27

(PC + 4) r27

(PC) r12 r16

bne r2, target_PC

(target_PC) or (PC + 4)

(PC) r2

load 128(r30)→ r0

(PC + 4) r0

(PC) r30 [128(r30)]

store r20 → 0(r16)

(PC + 4) [0(r16)]

(PC) r20 r16
a) b) c) d)

8

t only
.4,
f com-

fer to
w

lect-

e
fer to
g

the first
Generally, the program’s execution requires the execution of a large number of dynamic tasks, bu
a small number of them arein flight (i.e., actively being executed) at any one time. As shown in Figure 2
a program’s execution can be divided into 3 segments: 1) “the past”: a segment consisting entirely o
pleted tasks starting at the beginning of the execution, 2) “the present”: a segment of in-flight tasks2, and 3)
“the future” a segment consisting of un-initiated tasks and ending at the program’s completion. I’ll re
the second (middle) segment as thetask windowbecause it effectively moves like an instruction windo
down the execution.

In partitioning a program into tasks, I am making horizontal cuts through the EDG, effectively se
ing a set of dependency edges to becomeinter-task dependences. I will refer to the set of inter-task depen-
dences whose consumers belong to a given task as beinglive-in to the task; a task’s live-in values are thos
that it reads before writing. An example that classifies dependences is shown in Figure 2.5. I will re
the state of all variables at a task boundary as acheckpoint; a checkpoint from the immediately proceedin
task boundary is sufficient to satisfy all live-in dependences of a task.

2. Strictly speaking it is possible to have completed and un-initiated tasks in the “present” segment. More exactly this segment spans from
in-flight or un-initiated task to the last in-flight or completed task.

lda sp, -16(sp)

sp

ldq t12, -32528(gp)

gp

ldah a0, -8193(gp)

gp

ldl t1, -26816(gp)

gp

[-32528(gp)]

stq ra, 0(sp)

ra

stq s0, 8(sp)

s0

move a0, s0

a0

[-26816(gp)]

sp

sp

sp

t12

[0(sp)]

[8(sp)]

s0

move, s0, a1

s0

cmple s0, 0x3, v0

s0

move s0, a2

s0lda a0, -3624(a0)

a0

a1

cmple t1, 0x4, t1

t1

a0

bne t1,
0x12001256c

t1

v0

a2

Figure 2.2:Example Execution Dependence Graph (EDG).(a) code snippet frombzip2 , and (b) the associated
EDG (control dependences are not shown for clarity).

a)

0x120012530:
lda sp, -16(sp)
ldq t12, -32528(gp)
stq ra, 0(sp)
stq s0, 8(sp)
move a0, s0
ldah a0, -8193(gp)
move s0, a1
ldl t1, -26816(gp)
lda a0, -3624(a0)
cmple t1, 0x4, t1
bne t1, 0x12001256c

0x12001256c:
cmple s0, 0x3, v0
move s0, a2

b)

register dependence
memory dependence

9

tech-
writes

atisfied.
of a con-
n both

ute of
een
tasks,
ns that
ow—

s
tasks.
While intra-task dependences can be handled by any number of existing micro-architectural
niques, the set of live-in dependences is the responsibility of the parallelization paradigm. The set of
(to registers or memory) that are not overwritten within the task form the set of live-out values.

2.1.3 Handling Inter-Task Dependences

Before an operation with an inter-task dependence can be executed, the dependence must be s
In the case of a true data dependence, this means the operand value must be supplied. In the case
trol dependence, the starting PC for a task must be supplied to identify which operation to perform. I
cases, a value must be provided to the consuming operation.

Before discussing the means of providing these values, it is important to describe one attrib
dependences: length. Thelengthof a dependence is the number of dynamic instructions executed betw
the producing operation and the consuming operation in an in-order execution of the program. Like
dependence length is a purely dynamic phenomenon, a characteristic of a pair of dynamic instructio
communicate. The length of a dependence—specifically its length relative to the size of the task wind
may affect the cost of satisfying the dependence. Therefore, I make the following definitions:

Figure 2.3:Control flow graph with task boundaries (a), and resulting potential tasks (b).

A

B

C

F

D

E

G

J

H

I

C

D

E

C

E

A A

B

F

G

H

I

C

F

D

E

C

F

E

A

B

F

a) b)

C

F

D

E

C

F

E

task boundary

Figure 2.4:The program’s execution can be divided into three regions.(1) a continuous span of completed task
starting at the program’s beginning, (2) a short span of in-flight tasks, and (3) a continuous span of un-initiated

In-flight Tasks}
Task Initiation Wave Front

Task Completion Wave Front

}

} Completed Tasks

Un-initiated Tasks

10

across
s previ-
lect an

ge, (2)
epen-

belongs
ith the
d in the
e archi-
long dependence: a dependence with a length exceeding the task window size. (Definition 3)

shortdependence:adependencewitha length lessthanorequal to thetaskwindowsize. (Definition 4)

Although this characteristic is defined with respect to a dynamic dependence, it is quite stable (
instances of the same static instruction) and predictable; the stability of very short dependences ha
ously been demonstrated [51]. Accurate predictions of dependence length can be exploited to se
appropriate mechanism for satisfying the dependence.

Below, I describe three ways to satisfy dependences: (1) reading the value from architected stora
inter-task communication and (3) value prediction. The first mechanism is appropriate for long d
dences; the other two are for short dependences. Figure 2.6 diagrams these three mechanisms.

As tasks commit instructions, they update user-visible state, also known asarchitected state. For long
dependences we can be assured that the producing operation has been committed—by definition it
to a completed task—and that no in-flight operation is updating the storage location associated w
dependence. As a result, there is a single, unambiguous value for the name and it should be store
architected state. Thus, these dependences can be satisfied trivially by reading the value from th
tected state.

Figure 2.5:Example partition of EDG with annotated dependences.Generally, the live-in set is a small fraction of
the inter-task dependences crossing a task.

lda sp, -16(sp)

sp

ldq t12, -32528(gp)

gp

ldah a0, -8193(gp)

gp

ldl t1, -26816(gp)

gp

[-32528(gp)]

stq ra, 0(sp)

ra

stq s0, 8(sp)

s0

move a0, s0

a0

[-26816(gp)]

sp

sp

sp

t12

[0(sp)]

[8(sp)]

s0

move, s0, a1

s0

cmple s0, 0x3, v0

s0

move s0, a2

s0lda a0, -3624(a0)

a0

a1

cmple t1, 0x4, t1

t1

a0

bne t1,
0x12001256c

t1

v0

a2

Task Boundary

Task Boundary

intra-task dependence
inter-task dependence
live-in dependence

Task Live-in Values

gp
[-26816(gp)]
a0

11

e task
commu-
nism, as
he con-
ducing

n this
dictor.

com-
mple

zation
or com-
edictor.
incre-

mmuni-

tech-
poten-
rally by
cation

correct
ecula-
broader
from the
specula-
oaches

ge
urce.
when

ue does

i-
For short dependences, the task that produces the value will be in flight simultaneously with th
that consumes the value. A natural way to handle such a dependence is to have the producing task
nicate the value to the consuming tasks. Generally this approach requires a synchronization mecha
we cannot assume that an instruction that produces a value will have completed execution before t
suming operation is considered for execution. The synchronization mechanism must identify the pro
instruction and stall the consumer until that instruction has completed.

Alternatively, we can satisfy the dependence by predicting the communicated value [22, 45]. I
case, the value will not be provided from the producing task, but from a separate entity, the value pre

If a value can be predicted effectively, using value prediction can result in better inter-processor
munication patterns than inter-task communication. Figure 2.7 illustrates this point with a simple exa
involving a sequence of tasks with a single communicated value. In a traditional speculative paralleli
paradigm this dependence is communicated from task to task, exposing the latency of inter-process
munication between each task. In MSSP, these live-in values are produced by a centralized value pr
Because it is centralized, no inter-processor communication is required between executions of the
ment operation that generate the communicated value. As a result, the required inter-processor co
cation for multiple tasks can be overlapped.

2.1.4 Verification of Speculatively Satisfied Dependences

Up to this point I have made no distinction between traditional and speculative parallelization
niques. Traditional parallelization techniques ensure correctness by proving that all operations that
tially have inter-task dependences that are shorter than the task window get the correct value, gene
using synchronization. Because correctness is ensured statically by construction, no run-time verifi
is required in these systems.

The requirements necessary to automatically construct parallel programs that could be proven
have effectively prevented traditional parallelization of all but a few specific classes of programs. Sp
tive parallelization, where the process of getting the required values can be speculative, enables a
class of programs to be parallelized. This speculation relaxes the correctness guarantees required
compiler and substitutes run-time checks to ensure correctness. State updates need to be buffered
tively so they can be discarded if run-time checks detect a dependency violation. There are two appr
that can be used for verification: (1) verifying dependences and (2) verifying values.

Verifying dependences requires tracking the source (i.e., the producing operation or architected stora
location) from which a value was retrieved and verifying that this source was in fact the correct so
This verification is generally composed of two parts: 1) selecting what appears to be the right value
the consuming operation executes, and 2) watching all writes to ensure that a more appropriate val

Figure 2.6:Three techniques for satisfying dependences.(a) reading values from architected state, (b) commun
cating values from producing task, (c) predicting value with value predictor.

task N task N+1

use X

Architected
State

task N

def X

task N+1

use X

task N

def X

task N+1

use X

value
pred.

a) b) c)

X: value

Architected
State

X: value

Architected
State

X: value X: val

12

e most
n)
een the
th visi-
y con-
g the
riginal

is the
accom-
val-

tra-
k live-
d before
names

sup-
for the

by each
). With
iction
not become available. More specifically, these requirements are: 1) ensuring this source provided th
up to date (i.e., latest in program order) visible (i.e., earlier in program order than the consuming operatio
value bound to the desired name at the time the consumer was executed, and 2) ensuring that betw
consumer’s execution and retirement no operation modifies the value at the desired name and is bo
ble to the consumer and more up to date than the source. Typically, the first requirement is verified b
struction (i.e., only the most up-to-date visible value can be provided) and the second by snoopin
stream of state updates. Clearly this approach does not work if value prediction is used, as the o
dependence is ignored.

The alternative approach is to verify the value directly, ensuring that the value that was used
same as the one held in the named storage location at retirement time. Such a verification can be
plished in two ways: (1) effectively re-execute all instructions at retirement, and (2) verify task live-in
ues. Re-execution, used in DMT[2], is certainly sufficient for verification, but may be over-kill. If in
task communication and computation can be assumed to be reliable, then it is sufficient to verify tas
in values. This approach involves recording the names and values of the data items a task has use
defining. When the previous task is complete, the current (architected) values associated with those
can be compared to the stored value.

By comparing values directly, any means for generating values (including prediction) can be
ported. In addition, comparing values does not signal a misspeculation if the right value was used

task A

task B

task C

r1++
r1++

r1++

task A

task B

task C r1++

r1++
r1++

...
...

predictor

r1++

r1++

r1++

a) b)

Figure 2.7:Alternatives for short dependences in speculative parallel architectures.This figure shows an illustra-
tive example, where the only inter-task dependence is due to a register-allocated counter that is incremented
task. Live-ins can be supplied from previous in-flight tasks (a), or task live-in values can be value predicted (b
inter-task communication, the inter-processor communication latencies are serialized (c), but with value pred
from a centralized value predictor, the latencies can be overlapped (d).

r1=5

r1=4

r1=6

r1=4

r1=5

r1=6

r1=7

increment latency = 1

transit latency = 4

t=0
t=1

t=5
t=6

t=10
t=11

t=15

task A

task B

task C

increment latency = 1

transit latency = 4

t=0
t=1

t=5
t=6

task A
task B

task C

increment latency = 1

t=2
t=3
t=4

t=6
t=7 t=7

t=8 t=8
t=9

predictor

c)

d)

Inter-task Communication Value Prediction

13

a stor-
ignal a
n pro-

use
ask are
 state.

scribe
ization
form of
alues.
quires.
m exe-

t
nitiated
g of the
If the

boring
umber
cted

e loca-
e pre-

t for a
tate in
lti-ver-

n, have
nly be

ent copy
wrong reason. Research [43, 55, 78] has shown that many writes are “silent,” they write a value into
age location already containing that value. Dependence-based verification mechanisms would s
misprediction if the storage location was read before the execution of a silent write that was earlier i
gram order, while value-based ones recognize that the correct value was read.

In effect, our verification and commitment is “reuse” of a block of instructions in the instruction re
[71] sense. Said another way, the computation is being memoized [8]. The inputs and outputs of a t
packaged up, and if the input values match, then the output values can be committed to architected

2.2 Master/Slave Speculative Parallelization and Distilled Programs

With the background and vocabulary in place, I am prepared to discuss the MSSP paradigm. I de
first (in Section 2.2.1) a broader class of execution paradigms called checkpoint speculative parallel
paradigms. Second (in Section 2.2.2), I describe the concept of approximate code and a specific
approximate code that I call distilled programs that the MSSP paradigm uses to predict checkpoint v
Then, in Section 2.2.3, I present the MSSP paradigm itself and describe the mechanisms that it re
Finally, I present examples of how a program fragment is approximated and how the MSSP paradig
cutes the program fragment, in Sections 2.2.5 and 2.2.6.

2.2.1 Checkpoint Speculative Parallelization Paradigms

I am coining the termcheckpoint speculative parallelizationfor a class of execution paradigms tha
predominantly use value prediction to handle short inter-task dependences. When a new task is i
these techniques logically construct a checkpoint of state as it is predicted to appear at the beginnin
task. The task can then satisfy all its live-in dependences by reading values from the checkpoint.
checkpoint is constructed before the beginning of the task, no synchronization is required.

Though logically each task has an independent checkpoint, in practice checkpoints of neigh
tasks are largely similar, suggesting that such replication is unnecessary. In fact, since only a small n
of tasks is in flight at a given time and each task generally writes only a small fraction of all archite
state, most of a checkpoint is the same as architected state. Hence, only differences (diffs) from architected
state need to be stored. Similarly, since the architected state holds the correct value for most storag
tions, it is only the diffs—the values that could potentially have short dependences—that need to b
dicted.

By storing the differences between each checkpoint and the previous one, the logical checkpoin
task can be created by overlaying the checkpoint diffs of earlier in-flight tasks on the architected s
program order (see Figure 2.8). Thus, the logical checkpoint can be created on demand by using mu
sion memory hardware structures like the ARB [10].

As discussed in Section 2.1.3, checkpoint-based paradigms, because they use value predictio
the potential to be tolerant of inter-processor communication latency, but this latency tolerance can o

architected state
partial checkpoint N-2
partial checkpoint N-1
partial checkpoint N

logical checkpoint N+1

Figure 2.8:A live-in checkpoint is assembled from partial checkpoints.(a) a partial checkpoint is predicted for
values updated by each task, and (b) a checkpoint image for task N+1 is assembled by selecting the most rec
of each value from the partial checkpoints and architected state.

a)

b)

14

tion is
itected
rly with
t hard-
often

se soft-
Previous
, 66, 85].

eed to
riginal
ogether,

cution
ny pro-
of this

vative

lar dis-
practice.
eration
ance

ogram
n to

set of
exact

t. Many
code to

stilled
istilled
e values

MSSP
achieved if most of the live-in predictions are correct. Whenever a prediction is incorrect, the execu
serialized by an inter-processor communication to restart the value predictor with the correct arch
state. In fact, an analytical model described in Section 4.2 predicts speedups increasing super-linea
fraction of correct checkpoints. Thus, it is desirable to have near perfect prediction accuracy. Curren
ware value predictors do not provide satisfactory prediction accuracy or coverage (or both) and
require large dedicated hardware structures [11, 30, 42, 45, 44, 67, 78, 82]. As a result, I instead u
ware, executed on a general purpose processor, to generate the necessary value predictions.
research has demonstrated that software can be used for accurate value prediction [18, 52, 64, 65

2.2.2 Approximating Code and Distilled Programs

The MSSP paradigm predicts checkpoint values by executing adistilled program, generated by
approximating the original static program. The definition of approximate code is as follows:

Approximate code:a distinct executable computation that has a high probability, but no guaran-
tee,ofcomputingadesiredsubsetof thestatecomputedbyagivenpieceof referencecode. (Definition 5)

There are two important features of this definition. First, that the approximate code is not guarant
be functionally equivalent to the reference code. Second, the approximate code is distinct from the o
code and therefore can be composed arbitrarily with respect to the reference. These two features, t
provide significant flexibility in construction of approximate code.

In return for a loss of precision, the approximate code is generally expected to have better exe
characteristics. These better execution characteristics result from the large discrepancy found in ma
grams between what the program could do and what the program commonly does. Some examples
discrepancy have been demonstrated:

Program paths.Even small programs like SpecInt95 benchmarks have more than 232 potential acyclic
paths, but less than a thousand paths account for more than 90% of the execution [6].

Size of points-to sets.Points-to sets measured during an execution were 5 times smaller than conser
sets constructed statically [50].

The discrepancy between the number of potential and common case behaviors results in a simi
crepancy between the set of transformations that can be proven safe and those that are safe in
Since approximate code need not be correct, it can be optimized beyond what traditional code gen
allows by using these additional transformations. Selecting optimizations that both improve perform
and largely compute the desired values correctly is facilitated by knowledge of what behaviors the pr
exhibits in practice. A simple way to collect this information is to monitor the program’s executio
gather profile information.

A somewhat subtle part of the definition is that the approximate code only tries to compute a sub
the values computed by the reference code. In general, we are not concerned with arriving at the
machine state achieved by the reference code but, rather, are focused on particular values of interes
of the values computed by the reference code are intermediate values, and forcing the approximate
compute these values over-constrains it.

The MSSP paradigm uses a specific form of approximate code, called a distilled program. The di
program is used to predict task live-in values. Thus, the “desired subset of state” computed by the d
programs are those variables involved in short inter-task dependences. Long inter-task dependenc
need not be computed by the distilled program because they can be obtained by other means (e.g., read
from the architected state). In addition, the distilled program specifies the task boundaries to that the
implementation. These two characteristics result in the following definition:

15

rams

n par-
predic-
e the

6.

e pro-
of
xecutes
sible
ode as
be the

xecuting
is per-
to facil-

cula-
ugh-
istilled

roces-

slave
ations,

for the
s, the

stilled

for the
gram’s

st exe-
vari-

ected
ctural
Distilled Program:a form of approximate code which conveys a division of the original program
intotasksandcomputesthevaluesassociatedwiththeresultingshortinter-taskdependences. (Definition 6)

After defining the MSSP paradigm in the next section, I present an example of how distilled prog
are constructed in Section 2.2.5.

2.2.3 Master/Slave Speculative Parallelization

The Master/Slave Speculative Parallelization paradigm is a checkpoint speculative parallelizatio
adigm, but rather than using a hardware value predictor it uses a distilled program to generate value
tions. In fact, this feature is the essence of MSSP, resulting in Definition 7. In this section, I describ
MSSP paradigm at a high level. An illustrative example of its execution is presented in Section 2.2.

Master/Slave Speculative Parallelization:A checkpoint speculative parallelization architec-
ture that uses approximate code (in the form of a distilled program) to generate checkpoint value
predictions. (Definition 7)

MSSP (unlike other speculative parallelization (SP) paradigms) consists of two executions of th
gram: themaster, or leading, execution and theslaveexecution. The two executions use different copies
the program as they serve different purposes. The master, which is responsible for performance, e
the highly optimized, but possibly incorrect distilled program. The slave execution, which is respon
for correctness, executes code much like the code generated by existing compilers. I’ll refer to this c
the original program, because in a transparent implementation of the paradigm this program would
original binary generated by an existing compiler.

Both executions use the same architected memory state, but, because the master execution is e
a potentially flawed program, it is not allowed to update architected state. Only the slave execution
mitted to update architected state. Values created by the master are buffered speculatively and used
itate the execution of the slave execution.

The two executions run in close succession—the master’s lead is limited by the availability of spe
tive buffering—so performance will be determined by the slower of the two. To achieve execution thro
put equivalent to the master, additional processors can be allocated to the slave execution. If the d
program is capable of outperforming the original program by a factor of N, then perhaps N slave p
sors will need to be allocated to “match the impedances” of the two executions.

The parallelization of the slave execution is orchestrated by the master execution. To break the
execution into tasks, task boundaries in the original program are selected. At the corresponding loc
FORKinstructions are inserted into the distilled program. Upon encountering one of theseFORKinstruc-
tions, the master execution assigns the next task to an idle slave processor.

The master provides each slave processor with a starting program counter (PC) and predictions
live-in values the slave requires. Because the control flow in the two programs roughly correspond
master predicts the slave task’s starting PC by mapping its own program counter (PC) from the di
program to a task start PC in the original program. Furthermore, speculative state (e.g., register and mem-
ory values) generated by the execution of the distilled program serves as predicted live-in values
tasks. This speculative state, along with the architected state, form a checkpoint of sorts of the pro
state.

As these checkpoint values provided by the master are only predictions, the slave processor mu
cute speculatively until its inputs are verified. To permit this verification, the values read for live-in
ables are recorded and buffered. Likewise, all side-effects of slave task execution (e.g., register writes and
stores) are buffered in a live-out value buffer. At the end of a task, if its live-in values match the archit
state, the task’s live-outs can be committed. Mechanisms are required to buffer all of the non-archite

16

scrip-

ich are
ts on the
rate the
. This

on is

nality
ution is
rscalar
urs, the
execu-
has no

s exe-
strate

h an
is
that the

n of

long;
data (checkpoint, live-in, and live-out values) and to correctly route it between processors. A full de
tion of the required mechanisms, with an example implementation, can be found in Chapter 4.

Because all communication between the master and the slaves is in the form of predictions, wh
verified before the slave updates architected state, there are absolutely no correctness requiremen
distilled program. This lack of correctness requirements means that the mechanism used to gene
distilled program need not be verified perfectly, as bugs can only result in performance degradation
facilitates constructing the distilled program at run-time, when the most accurate profile informati
likely to be available but verification may be costly in terms of computation or memory resources.

2.2.4 MSSP Exception Model

One important feature of MSSP, is that the paradigm’s functionality is a super-set of the functio
of the execution paradigm used by the underlying processor cores. For example, if an MSSP exec
composed of out-of-order superscalar processors, all of the features of traditional out-of-order supe
processors are present. This characteristic is exploited for handling exceptions. If an exception occ
execution can revert back to the committed architected state (by squashing all in-flight speculative
tion) and then re-execute the excepting code using the underlying execution paradigm. Thus, MSSP
exception model of its own, just a means to revert to a traditional execution to exploit that paradigm’
cution model. More detail on how exceptions are handled is covered in Section 4.5.6. Next, I demon
distilled program construction.

2.2.5 Distilled Program Construction Example

An intuitive understanding of the potential of approximate code is most easily achieved throug
example. In Figure 2.9, a hot loop nest fromgcc is shown. The corresponding control-flow graph (CFG)
shown in Figure 2.10a. From the execution frequency annotations on the CFG edges it can be seen
inner loop (blocksB, C, D, andE) is only executed on 0.1% of the interations of the outer loop (blocksA
andF). In approximating this code fragment, the inner loop will be removed to optimize the executio
the outer loop.

for (i = 0; i < regset_size; i++) {
 register REGSET_ELT_TYPE diff = live[i] & ~maxlive[i];

 if (diff) {
 register int regno;
 maxlive[i] |= diff;
 for (regno = 0; diff && regno < REGSET_ELT_BITS; regno++) {
 if (diff & ((REGSET_ELT_TYPE) 1 << regno)) {

regs_sometimes_live[sometimes_max].offset = i;
regs_sometimes_live[sometimes_max].bit = regno;
diff &= ~ ((REGSET_ELT_TYPE) 1 << regno);
sometimes_max++;

 }
 }
 }
}

Figure 2.9:Example code fragment from SPEC 2000 benchmarkgcc . Loop nest extracted from function
propagate_block , lines 1660-1678. Statements annotated with the control flow block to which they be
blocksE andF perform the loop counter increment and test for the inner and outer loops, respectively.

A

B

D

E

F

{
{
{

{
C

17

mple,
resen-
ion is
re too
bound-
ons on

ed to
k, and
lo-
—after
’s state.

of val-
ses in

ry, an
Constructing the distilled program consists of a series of steps, shown in Figure 2.11. For this exa
the only profile information needed are the previously mentioned edge frequencies. The internal rep
tation is constructed by reading the instructions from the program’s memory image. Task select
described in detail in Section 3.2. For this example it is sufficient to say that inner loop iterations a
small (11 dynamic instructions on average), so outer loop iterations are used for tasks, with a task
ary inserted at the loop header. In fact, even outer loop iterations are too small (13 dynamic instructi
average), so the task boundary is annotated to pack 16 iterations into a task.

When tasks are selected the control flow structure of the internal representation is transform
include additional blocks. For each task boundary, three blocks are added: a fork block, a verify bloc
an entry block. The fork block will contain aFORKinstruction that signals to the master processor to al
cate a slave processor to begin executing at the corresponding verify block. The entry block is used
a task misspeculation has occurred—to jump start the master execution using the original program

Next the program distiller performs a liveness analysis on the original code to determine the set
ues that are live across the fork block. This set of values will need to be preserved even if all of their u

from program

A (7 insts)

37534

B (3 insts)

21848

F (6 insts)

20875833

C (5 insts)

21848

E (6 insts)

0

20860147

to program

37534

289384 D (5 insts)

23889

21848

291425

23889

FORK
<every 16th>

VERIFY20897681ENTRY

from program

A (7 insts)

37534

B (3 insts)

21848

F (6 insts)

20875833

C (5 insts)

21848

E (6 insts)

0

20860147

to program

37534

289384 D (5 insts)

23889

21848

291425

23889

from program

FORK
<every 16th>

37534

VERIFY

A (7 insts)
F (6 insts)

20897681 20860147

to program

37534

ENTRY

cold region

a)

b)

c)

Figure 2.10:Example task selection and application of root optimizations.The control flow graph for this code
example is shown for: (a) the original code, (b) the code after it has been transformed to include a task boundad
(c) after the cold code region has been removed.

1. collect profile information
2. build internal representation (IR)
3. select task boundaries
4. perform liveness analysis
5. apply (speculative) root optimizations
6. apply (non-speculative) supporting optimizations
7. layout and generate code

Figure 2.11:Logical steps in constructing a distilled program.

18

gram
top of

would
mmon-
belled

ult in
FG of

hat
been

ro-

entry
k

pro-
the ver-

ask).
n the
s (now
single

dead.
the distilled program are removed, as they may contribute to the live-in set of tasks in the original pro
spawned at this task boundary. The relevant live-in values for this example are shown at the
Figure 2.12.

After liveness analysis, the next step is to apply root optimizations. These are optimizations that
be unsafe to apply to traditionally generated code, but are used in approximate code to remove unco
case behaviors that prevent optimization of common-case paths. In this example, the inner loop (la
the cold region in Figure 2.10b) is removed from the distilled program. Eliminating this path may res
task misspeculations when this path is executed by the original program but greatly simplifies the C
the remaining code (Figure 2.10c). Once the inner loop is removed, outer-loop blocksA andF can be uni-
fied with no further loss of precision.

Application of the root optimizations creates new opportunities for traditional safe optimization (w
I call supporting optimizations in this dissertation). The code that remains after the inner loop has
removed is shown in Figure 2.12. Traditional analysis can detect that both paths from branchA7 lead to
block F and that instructionsA1-A6 are dead; all of these instructions are removed from the distilled p
gram. In addition, instructionF4 is detected to be loop invariant, so it can be hoisted out of the loop.

Moving the instructionF4 to the loop pre-header—blockP is inserted in the CFG as shown in
Figure 2.13—is not without complication. This code motion crosses the incoming edge from the
block to blockAF. To compensate for this code motion, a copy ofF4 is added to the end of the entry bloc
to ensure that the value will be computed when transitioning from the original program to the distilled
gram. There are situations—discussed in Section 3.3.2—that require adding compensation code to
ify block as well.

Block AF is then unrolled by a factor of 16 (a degree equal to number of loop iterations per t
Since the induction variables are dead on exit from the loop, only the final branch instruction i
unrolled loop is required, as it subsumes the others. Each of the three induction variable calculation
each consisting of 16 copies of an add immediate instruction) can be algebraically simplified to a

live before A: t0 (&live[i]), t3 (&maxlive[i]), t12 (i)

A:
ldl t6, 0(t3) #1 load maxlive[i]
ldl t2, 0(t0) #2 load live[i]
zapnot t12, 0x3, t11 #3 truncate i to 16b
bis zero, zero, ra #4 regno = 0
bis zero, zero, t9 #5 regno = 0
bic t2, t6, t2 #6 diff = live[i] & ~maxlive[i]
beq t2, F #7 if (diff)

F:
 addl t12, 0x1, t12 #1 i ++
 lda t0, 4(t0) #2 &live[i]
 lda t3, 4(t3) #3 &maxlive[i]

ldl s3, -10104(gp) #4 load regset_size
 cmplt t12, s3, s3 #5 i < regset_size
 bne s3, A #6 loop back-edge

DEAD

LOOP INVARIANT

DEAD

DEAD
DEAD
DEAD
DEAD

SINGLE TARGET

Figure 2.12:Distilled program fragment after application of root optimizations.Branch A7 is unnecessary as
block A has a single successor block. A3-A5 are instructions hoisted out of the inner loop, which are now
Removal of A7 results in A1, A2, and A6 becoming dead. Instruction F4 is loop invariant.

19

n on

task,
xt sec-

n can
ist the

in an
e slave

entry
instruction with the original constant scaled by 16. The fork instruction is further annotated to spaw
every iteration, although each task should still contain 16 iterations of the original program.

The resulting distilled program (shown in Figure 2.13) executes only 6 dynamic instructions per
where the original program executes over 200 dynamic instructions per task, on average. In the ne
tion, I demonstrate an MSSP execution using this code fragment.

2.2.6 MSSP Execution Example

While the MSSP paradigm consists of a small number of straight-forward activities, an executio
be rather complex because many of these activities are occurring concurrently. In Figure 2.14, I l
activities and show the causal relationships between them in a flow chart. The first action performed
MSSP execution is the restart, which initiates both the master and a non-speculative slave task. Th

from program

P (1 inst)

37534

FORK
<every>
(1 inst)

37534

VERIFY
(i inst)

AF (5 insts)

20897681 20860147

to program

37534

ENTRY
(2 insts)

ENTRY:
ldl s3, -10104(gp) # was F4
br A

P: (inserted loop pre-header block)
ldl s3, -10104(gp) # was F4

FORK:
fork VERIFY

AF:
 addl t12, 0x16, t12 # was F1
 lda t0, 64(t0) # was F2
 lda t3, 64(t3) # was F3
 cmplt t12, s3, s3 # was F5
 bne s3, AF # was F6

VERIFY:
verify A (in orig program)

Figure 2.13: Distilled version of example code fragment:a) the CFG is further transformed to support a loop
header block (H), (b) the instruction contents of each block is shown including the compensation code in the
block resulting from the motion of instructionF4 to the loop header. Note the constants of instructionsF1, F2, and
F3 have been scaled by 16.

a) b)

begin

restart

non-spec. taskmaster task

commit

end

spec. task

verify correctrecovery incorrect

squash

first task

last task

uniproc. modespawn

1. restart
2. task execution

2a. non-speculative execution
2b. master execution
2c. speculative execution

3. task verification
4. task commit
5. task misspeculation recovery

Figure 2.14:Flow chart of MSSP execution.

20

re
mits its

dicated
ecula-
at most
specu-
ed by

will be

awn”
. task to
y dis-
d back

e code
cution

t
has

r non-
ve slave

for the
stilled
ks exe-
state.

e inner

ted with
a fork
at the
previ-
ble
e

, the
both

e

ailable,
0 com-
ro-

s live-in
task can execute non-speculatively (i.e., like a normal uniprocessor) because all of its live-in values a
available from architected state and therefore need not be verified. This non-speculative task com
writes immediately and terminates when it reaches the end of the task.

The master processor, on the other hand, executes task after task in the distilled program (as in
by the arc from the master to itself in Figure 2.14). In addition, at every task boundary it creates a sp
tive slave task. There can be many speculative slave tasks concurrently executing, but there will be
a single non-speculative slave task at any time. If no non-speculative task is running, then the oldest
lative slave task can be verified. If incorrect, a task misspeculation has occurred; recovery is perform
squashing all in-flight tasks and restarting from the most recent architected state. If correct, the task
committed. The execution ends when the last task is committed.

MSSP can revert to a traditional uniprocessor execution by allowing a non-speculative task to “sp
the next non-speculative task when it has completed (as shown by the dashed arc from non-spec
itself). The slave need not wait until the first task has committed before beginning the next; by simpl
abling the task end annotations the slave will execute the program sequentially until they are turne
on.

To more concretely demonstrate the execution, Figure 2.15 shows an illustrative execution of th
fragment distilled in the previous sub-section. The execution begins partway through the loop’s exe
with the variablei equal to 48 andsometimes_max equal to 11. For simplicity, I will ignore the other
variables. The distilled program is constructed such that the variablei is always correctly computed, bu
the variablesometimes_max may be incorrect when the original code executes the inner loop, which
be removed from the distilled program.

The execution commences with the machine quiesced: all processors are idle and all buffers fo
architected data are empty. The restart process initiates two executions of task #0: a non-speculati
one and a master one. While the non-speculative slave is provided with the architected state, the PC
master is first mapped (using a lookup table) to find the PC of the corresponding entry into the di
program. The master executes the entry code before entering the distilled program proper. Both tas
cute simultaneously. The slave task executes like a normal uniprocessor, immediately committing its
In this example, I assume that the 16 iterations executed by the non-speculative slave all avoid th
loop, so its only writes are 16 updates to the variable i, of which only the first and last are shown.

Writes performed by the master, on the other hand, are buffered as checkpoint data and associa
the master’s current task. In task #0 the master performs a single write (i=64) before encountering
instruction. At a fork instruction, the master increments its task number and notifies the system th
speculative slave task #1 is ready for execution. This task is allocated to processor P2, which was
ously idle. Rather than the current architected value, P2 is sent the checkpoint value (64) for variai .
Since no checkpoint value is available forsometimes_max , the architected value (11) is sent. The slav
processor begins execution in the verify block of the distilled program—usingverifyPC, provided by the
master—which ends with a jump into the original program. While executing the original program
speculative slave records its live-in values; I will assume that inner loop iterations are executed in
tasks #1 and #2, so the predictions for both variablesi andsometimes_max are recorded and sent to th
live-in buffer.

During the slave execution of task #1, the master forks task #2. Because no processor is av
slave task #2 cannot be immediately assigned to a processor. When the non-speculative task on P
pletes—after its final write to the variablei —task #2 is assigned to P0. Speculative slave task #2 is p
vided with the most recent checkpoint value (80) fori and the architected value (11) forsometimes_max ,
because no checkpoint value exists. Like slave task #1, both of these values are read and recorded a
values.

21

e
k in the

ors.

the
r loop,

ation is
At the end of slave task #1, the values fori andsometimes_max are 80 and 13, respectively. Thes
values are recorded in the live-out buffer. Because task #0 has completed, task #1 is the oldest tas

P0
idle

non-spec slave
(i=48, SM=11)

(executes as a
normal proc.)

writes i=49
(immediately
committed)

...

(continues
committing

state)

writes i=64
(task completes)

spec. slave
(i=80, SM=11)

... jumps to orig...
reads i=80, SM=11

writes i=96, SM=12
(task completes)

idle

P1
idle

master
(i=48, SM=11)

(executes
entry code)
writes i=64

(stored as chkpt)

fork: task #1,
verifyPC

writes i=80
fork: task #2, vPC

...
(continues

forking
tasks)

idle

P2
idle

spec. slave
(i=64, SM=11)

(executes verify
block, jumps to

original program)
reads i=64, SM=11

writes i=80, SM=13
(task completes)

...

(spawns
new slave)

idle

architected state/verify/commit
arch. state: i=48, SM=11

buffers empty

sends PC, regs, task #0
maps PC to entryPC

sends entryPC, regs, task #0

arch state: i=49, SM=11

chkpt: i=64 (task #0)

assigns slave task #1 to P2

sends verifyPC, chkpt, task #1

chkpt: i=80 (task #1)
waits until processor is available

live-in: i=64, SM=11 (task #1)
arch state: i=64, SM=11
task #0 chkpt cleared

assigns slave task #2 to P0
sends verifyPC, chkpt, task #2

live-in: i=80, SM=11 (task #2)

live-out: i=80, SM=13 (task #1)
task #1 is verified, commits state

arch. state: i=80, SM=13
task #1 chkpt, live-in cleared

live-out: i=96, SM=12 (task #2)
task #2 fails to verify

(live-in SM) 11 != (arch SM) 13
squash procs, purge buffers

(next step: restart)

Restart

Spawn

Spawn

Recover

Verify

Figure 2.15:Detailed example MSSP execution.The code example from Figure 2.9 is executed on 3 process
The values of only two variables are displayedi (the induction variable of the outer loop, which is correctly updated
by the master) andsometimes_max (which is abbreviated SM and is incorrectly predicted by the master when
inner loop is executed by the original program). In this example both speculative slave tasks execute the inne
resulting in a task misspeculation when the second task undergoes verification. In the real execution, this situ
uncommon as only one iteration out of every thousand execute the inner loop.

Commit

Verify

22

hitected
alues

en the
do
d that
-
ulation,
m back

cula-
amic
escrib-

liza-
n at the
ject, a

on a
er by a
wards
atches

f fol-
sors
SM)
form of

ents:
ct mis-

osals.

ng the
n of a
ch-
(
entral-
n the
de by

erefore
inter-

a check-
system and can be verified against architected state. In this case, the live-in values match the arc
state, and the live-out values for task #1 can be committed. At this point the checkpoint and live-in v
for task #1 can be discarded.

When task #2 completes and requests verification, a task misspeculation is discovered. Wh
recorded live-in value forsometimes_max (11) is compared to the architected value (13), the values
not match. The live-in predictions the master processor provided to slave task #2 implicitly assume
task #1 would not modify the variablesometimes_max . Because its live-in values were incorrect, the live
out values for task #2 are assumed to be incorrect and discarded. To recover from the task misspec
all in-flight tasks are squashed and all non-architected state buffers are purged, returning the syste
to the quiesced state.

2.3 Related Work

My development of the MSSP paradigm was heavily influenced by four main bodies of work: spe
tive parallelization (SP), leader/follower architectures, speculative compiler optimizations, and dyn
optimization systems. In the next four sub-sections, I summarize the work in each of these areas, d
ing the relationship to the MSSP paradigm.

2.3.1 Speculative Parallelization (SP)

The insight [39] that speculation could overcome the difficulties of traditional automatic paralle
tion has unleashed a large and active body of research. The Multiscalar paradigm [25, 72] has bee
vanguard of this movement and a major influence on me, due to my involvement in the Kestrel pro
VLSI feasibility study of a Multiscalar architecture.

In the Multiscalar paradigm, a Multiscalar compiler generates a Multiscalar binary to be executed
collection of tightly coupled processing elements. Tasks, annotated in the binary, are spawned in ord
next task predictor. Two mechanisms are used for inter-task communication: 1) the register ring for
register values as directed by annotations in the binary, and 2) the address resolution buffer (ARB) m
load and store requests using the logical ordering of the tasks.

The ideas in the Multiscalar work have been evolved in many directions. One common attribute o
low-on research was toward compatibility with explicit parallelism architectures like chip-multiproces
(CMP) [16, 33, 73], simultaneous multithreading (SMT) [2, 47], and distributed shared memory (D
[15, 74] architectures. Such architectures enable resources to be used flexibly to support whatever
parallelism is available, an attribute shared by MSSP.

All of the proposed speculative parallelism architectures have to handle a small set of requirem
predict the sequence of tasks, handle inter-task communication, buffer speculative state, and dete
speculation. In the paragraphs that follow, I describe the ways in which MSSP differs from other prop

The MSSP paradigm predicts task PCs in a similar manner as it does any live-in value, by usi
approximate program. The approximate code explicitly specifies the task start PC by a combinatio
FORKinstruction and aVERIFY instruction (described in detail in Section 3.3). In some respects, this te
nique is similar to SP paradigms that include explicit fork instructions that specify the next task PCe.g.,
[20, 33, 76]). The difference lies in the fact that in MSSP, it is not the tasks that spawn tasks but the c
ized master. In this respect, MSSP is similar to the centralized “next task predictor” [34, 72] found i
Multiscalar paradigm and others [2, 16]; the clear distinction being that in MSSP the prediction is ma
software rather than a hardware mechanism.

MSSP also differs from most SP paradigms because it is a checkpoint SP architecture and th
has no mechanism for inter-task value communication. Instead, it relies on value prediction for short
task dependences. Prior research includes some partial checkpoint SP architectures that provide

23

a pre-
vitable
ue pre-

stride
tional
others
m dif-
predic-

para-
t gener-

ly and
nooping
ired in
rder and

hanism
values
rs the
dicts
om the
s.

ation
tralized
ces of
archi-
Aside

the two
and (2)
proces-
d.

ctures
te archi-
stored

hitec-
cute a
ecution
ate

es exe-
o exe-
can be
is the
point of register state. DMT [2] uses the register state of the forking task (at the time of the fork) as
diction of the task’s starting register state, relying on cheap incremental recovery to handle the ine
misspeculations. Speculative Multithreaded processors [47] go one step further by using stride val
diction for predictable sequences; synchronization is used for unpredictable register values. The
value prediction is performed by starting with the previous task’s register state and injecting addi
arithmetic operations into the window to add the stride. Speculative Multithreaded processors (and
paradigms that use value prediction [16, 56]) include a hardware value predictor; the MSSP paradig
fers in that it uses software executed on a general purpose processor to compute checkpoint value
tions.

The MSSP paradigm makes little contribution in how speculative state is buffered. Like most SP
digms it extends the cache memory system to support speculative state storage. This enhancemen
ally requires the memory to support multiple versions of a given storage element simultaneous
provide a mechanism to select/construct the storage as it is seen by each task. Centralized [26], s
[32, 33, 73] and directory [15, 74] implementations have been proposed. The mechanism requ
MSSP is somewhat simpler than a general SP paradigm since the checkpoints are constructed in-o
before the (slave) task begins.

MSSP, like any SP paradigm that uses value prediction, uses value-based verification. The mec
described in Section 2.2.3 tracks the live-in values consumed by a task and explicitly checks these
against architected state. This approach has similarities to the ones used in TLDS [75], which buffe
name/value pair of values that are explicitly predicted, and SM processors [47], which explicitly pre
task outputs and verifies them against architected state after the task commits. It differs somewhat fr
system proposed for DMT, which re-executes the instructions at retire time to detect misspeculation

There are many similarities between MSSP and the more limited form of speculative paralleliz
found in the trace processor microarchitecture [61, 63, 80]. Although the trace processor has a cen
fetch mechanism, its instruction window and physical register file are partitioned and distributed. Tra
instructions are distributed to each window segment in control-flow order. The trace processor micro
tecture proposed the use of live-in value prediction to further de-couple the execution of the traces.
from the differences between trace processors and other speculative parallelization techniques,
central difference between MSSP and Trace Processors are that (1) all live-in values are predicted
approximate code is used rather than a hardware value predictor. Architectures similar to the trace
sor that support different partitioning policies [36] and dynamic vectorization [79] have been explore

2.3.2 Leader/Follower Architectures

The master/slave architecture of the MSSP paradigm corresponds to the leader/follower archite
proposed for sequential processors. The first of which I am aware was the decoupled access/execu
tecture [69], which, to tolerate memory latency, broke the program into a stream that loaded and
data values (leader) and a stream that performed non-address computation (follower).

More recently leader/follower architectures have gathered a lot of attention, but with a micro-arc
tural rather than architectural implementation. Pre-execution proposals [18, 52, 64, 65, 66, 85] exe
speculative subset of the program (leader) to prefetch and generate predictions for the complete ex
of the original program (follower). It was my work in this context that lead to the concept of approxim
code [84].

Leader/follower architectures have also been proposed for fault tolerance, where both process
cute the original program, detecting inconsistencies in the executions. AR-SMT [60] performs the tw
cutions as threads on an SMT. Diva [4] performs the second execution on a simpler processor that
verified to detect design faults in the core. In some respects, the use of approximate code in MSSP

24

cre-

para-
MSSP
SSP,
inal pro-
ps to
the pre-

g pro-
rating

ils, con-
forma-
rmed
ecula-
ad.

heck
de, but
ccupy

s, whose
ode to
e check

epen-
isting
nt [13,

above

-
ally be
wide
sepa-
te o
eding a
software analog of Diva; the distilled program and the parallelized correct code work symbiotically to
ate a fast, correct execution.

Of the leader/follower architectures, the closest to MSSP is SlipStream [77]. In the SlipStream
digm, the leader is also a speculatively reduced version of the code executed by the follower. The
paradigm differs from SlipStream in three major ways: (1) the follower execution is parallelized in M
(2) the code executed by the leader is a separate static image rather than a strict subset of the orig
gram—a separate image provides additional optimization opportunities, but it requires explicit ma
correlate the two executions—and (3) SlipStream dynamically selects the program subset based on
dicted path, where MSSP uses a static distilled program.

2.3.3 Speculative Program Optimizations/Transformations

Our leader, the distilled program, derives its advantage over the whole execution through applyin
file-driven speculative transformations. Previous work on speculative transformations involves gene
code for the common case that includes checks to detect uncommon case executions. If a check fa
trol flow is re-directed to fix-up code that can handle the general case. The use of speculative trans
tions in MSSP differs from this previous work, because verification is not performed by the transfo
code but by running the original program in parallel. Said another way, the traditional approach to sp
tive transformations is to put the checks inline, while in MSSP they can be placed in a separate thre

This distinction—shown visually in Figure 2.16—is an important one, because the amount of c
code can be substantial. The check code typically can be scheduled in parallel with the rest of the co
by being inserted inline, it will consume fetch, decode, execute, commit, and cache bandwidth and o
space in the processor’s instruction cache. These requirements often necessitate wider processor
width makes achieving high clock frequencies difficult [57]. In contrast, MSSP relegates the check c
a separate thread. In this way, the program that determines performance is not encumbered with th
code and can efficiently execute on a narrow processor with a high clock frequency.

The transformations can be classified into three main types: control-flow-speculative, data-d
dence-speculative, and value-speculative. Control-flow based optimizations typically involve ho
operations across basic-blocks, introducing them onto paths on which they were not originally prese
17, 19, 24, 46, 70]. Data-dependence based optimizations are employed to hoist load operations

Figure 2.16:Traditional vs. MSSP-style speculative optimization.Previous approaches to speculative optimiza
tion (a) optimize the expected path of the program, inserting checks inline. Although these checks can usu
scheduled off the critical path, they still will require fetch and execution bandwidth, perhaps necessitating a
machine. In contrast, in MSSP (b) no checks are included in the distilled program: all checking is performed by
rate threads by a “check program” (in this case the original program). If the full execution progresses at the raf
the distilled program’s execution, then the benefit of the speculative optimizations can be achieved without ne
wide machine.

O
rig

in
a

l
P

ro
g

ra
m

Check Code

Traditional Speculative Optimization

O
rig

in
a

l
P

ro
g

ra
m

C
h

e
c

k
P

ro
g

ra
mD

ist
ill

e
d

P
ro

g
ra

m

MSSP-style Speculative Optimization

a) b)

25

ically

lly, the
. First
. MSSP
e dis-
dis-

n the
mpen-
riate-

at an
sys-
17, 21,
ifically,
truction
sitates
nular-
sition

copy of
-
ynamic

original
events
re han-
trap, it
d state.
ome of
can be

multi-
ic opti-
oving
neces-

ctions
ds and
ies, so
alues,

them
quires.
store operations that could potentially alias [28, 35, 50]. Value-based optimizations exploit dynam
invariant values, by specializing the code for the dominant value [12, 27].

These speculative optimizations accelerate hot paths at the expense of the cold paths. Typica
optimizations transform the hot path such that it is not safe to directly transfer control to the cold path
some compensation code must be executed that reverse the optimization applied to the hot path
incorporates a form of compensation code that I call transition code to support transitioning from th
tilled program back to the original program, but a key feature of the transition code is that—like the
tilled program—it need not be 100% correct. Like MSSP, the rePLay architecture [23, 58] relies o
original code when the speculatively optimized code is inappropriate (rePLay avoids the need for co
sation code altogether), but it still relies on checks inlined in the optimized code to verify its approp
ness.

2.3.4 Dynamic Optimization Systems

Because the most representative profile information will be available at run-time, I envision th
MSSP implementation will construct the distilled program at run-time, like a dynamic optimization
tem. There has been a lot of recent research in dynamic optimizers and dynamic translators [5, 14,
38, 83]. The structure of the distilled program shares some characteristics with these systems. Spec
both sets of systems create a second copy of parts the program (which need not be in the same ins
set architecture as the original program) that resides at a different location in memory. This neces
functionality to map from one program to the other. In both systems, code is translated at a larger gra
ity than an instruction—traces in dynamic optimizers, tasks in MSSP—and support is required to tran
back to the original executable at boundaries of these translation units.

The main difference between MSSP and these systems is that they intend to use the translated
codeinstead ofthe original code, while MSSP uses itin addition tothe original code. MSSP always exe
cutes the original code so there are no correctness constraints on the optimized copy. In contrast, d
optimization systems are highly constrained.

One of the most severe constraints is that they must produce the precise architected state of the
executable at any instruction boundary in the original executable where a trap could occur. This pr
removal of some instructions and limits the degree instructions can be reordered. In MSSP, traps a
dled much in the same way that they are in existing out-of-order processors; if a slave encounters a
flushes all post trap instructions and retires all pre-trap instructions to recover the precise architecte
Before handling the trap, the slave may need to wait to be verified and become non-speculative, if s
the trap handling actions cannot be performed speculatively. All traps encountered by the master
ignored.

Dynamic optimizers are also constrained by the need to avoid memory ordering violations. In a
processor context (or even in a uniprocessor system that supports coherent I/O), unless the dynam
mizer has somehow been ensured that a variable is thread private, it must be careful when rem
memory operations. Even if reads or writes appear redundant in a uniprocessor context, they may be
sary due to external reads or writes. This problem could be solved by committing groups of instru
atomically (as is done in the Crusoe processor [38] for precise exceptions), allowing redundant loa
stores within a group to be eliminated. In MSSP, the master’s writes are not visible to external part
such precautions are unnecessary, but similar techniques are required for committing live-out v
because no intra-task ordering information is maintained in the live-out buffer.

2.4 Chapter Summary

In this chapter, I described the parallelization of sequential program as the process of breaking
into continuous sequences of instructions (tasks) and supplying each task with the live-in values it re

26

n para-

check-
e task
y con-
I demonstrated this concept with the Execution Dependence Graphs to emphasize that the executio
digm should focus on the set of live-ins actually consumed, not those that could be consumed.

I also introduced the Master/Slave Speculative Parallelization (MSSP) paradigm. MSSP, as a
point speculative parallelization paradigm, supplies these live-in values by predicting them before th
is executed. The MSSP paradigm differs from previous research, primarily in that it uses a speciall
structed piece of software, the distilled program, to accurately predict these values.

27
Chapter 3
m of
of dis-
major
xt two
ework
is on

2) at
s these
erfor-
proach

tion of
ection

any or

y dead

task size

xecut-
ecified
Approximate Code and Constructing Distilled Programs

In this section, I discuss the constraints on and opportunities for distilled programs, the for
approximate code used by the MSSP paradigm. First (in Section 3.1), I discuss the requirements
tilled programs and some design decisions to maximize distilled program performance. The two
issues—dividing programs into tasks and the structure of distilled programs—are described in the ne
sections (Section 3.2 and Section 3.3, respectively). In the final two sections, I present the fram
(Section 3.4) and implementation (Section 3.5) of the prototype distiller I constructed, with emphas
how the structure of the distilled program affects the traditional compiler algorithms used.

3.1 “Requirements” of the Distilled Program

Since the distilled program cannot affect correctness there are no requirements on itper se, but it
should perform two functions to be useful: 1) it should break the program’s execution into tasks and
task boundaries it should provide the program state expected by the original program. What make
“requirements” challenging is that, ideally, they are accomplished in such a way to maximize the p
mance of the distilled program and, as a result, the whole execution. In this section, I describe my ap
to maximizing performance as it relates to these two requirements of the distilled program.

Task Selection.Although, in theory, task boundaries could be selected arbitrarily (e.g., after a fixed num-
ber of instructions executed by the master), performance is improved by making an informed selec
task boundaries and tailoring the distilled program for them. As was shown in Section 2.1.2, the sel
of task boundaries determines the set of live-in values to a task. Two implications result:

• By selecting the task boundaries, the set of live-in values can be selected. Boundaries with m
hard-to-compute live-in values can be avoided.

• Since we can determine which values are live at the task boundary, we are free to remove an
value without a risk of introducing a misspeculation.

Secondarily, it is desirable to have tasks about the same size. This desire is secondary because
imbalance can be tolerated, at the expense of lower resource efficiency.

In addition, a mechanism is required to indicate the end of a task to the slave processor. When e
ing properly, the slave processor should stop executing just before the instruction that the master sp

28

ncat-

es
t can be
gram
d that

ed and
apping

ram

this
ctural
l code
ions in
ality

lecting
rogram
itions to
follow, I
mple-

t for
vergent
sors;
inter-
tasks
both
d Mul-
struc-
e more
ny idle

s of an
tasks
arger
tate.

less
itivity
as the first instruction of the following task. Coordinating task ends with task beginnings allows the co
enated task executions to be equivalent to a sequential execution of the program.

Providing the Expected Program State.Correctly stitching individual task executions together requir
that the state used by a task must match the state at the end of the previous task. This requiremen
accomplished trivially—without correctness guarantees—by taking a strict subset of the original pro
as is done in the SlipStream paradigm [77]. To improve performance of the distilled program beyon
of SlipStream’s A-stream, I relax two constraints:

• The distilled program need not be a strict subset of the original program. Code can be transform
re-scheduled, and new code can be introduced. As a result, there is no longer a one-to-one m
from the distilled program to the original program, so an explicit mapping function for prog
counters will be required.

• The distilled program can store data in different locations than the original program. Removing
constraint allows limited register resources to be used more effectively by changing which archite
register is bound to a particular value and binding memory values to registers. Before the origina
can be executed by the slave, the distilled program’s state will need to be mapped to the locat
which the original program (i.e., the task executed by the slave processor) expects it. This function
will be performed bytransition code.

In the two sections that follow, I explore these two issues in greater detail.

3.2 Selecting Task Boundaries

The location of the task boundaries can affect the performance of the MSSP paradigm. In se
task boundaries, there are three main issues to consider: 1) how big should tasks be, 2) what p
boundaries result in good tasks, and 3) what mechanism should be used to specify task end cond
slave processors. These three issues have tightly-coupled interactions, but, in the sub-sections that
try to consider each in turn. At the end of this section (in Section 3.2.4), I describe my task selector i
mentation.

Before getting into the details, it is useful to briefly contrast task selection for Multiscalar from tha
MSSP, as there are important differences. The Multiscalar task selector tries to encapsulate recon
control flow within a task to facilitate next task prediction by minimizing the number of task succes
for MSSP control independence is not a concern. Both task selectors try to minimize the number of
task data dependences, but for different reasons. Multiscalar is trying to minimize the likelihood that
stall or are squashed due to value communication, while MSSP is trying to facilitate distillation. For
paradigms, tasks must be a minimum size to tolerate the startup overhead, but for the tightly-couple
tiscalar paradigm tasks of 10-20 instructions are sufficient, while for MSSP tasks of hundreds of in
tions are more desirable. Both paradigms desire tasks to be roughly equal in size, but MSSP may b
tolerant in this regard because, without the constraint of the register ring, it can dispatch tasks to a
processor.

3.2.1 Task Size

The size of tasks can have a first-order impact on performance, as many of the characteristic
MSSP execution are indirectly affected by task size. The two main factors that improve with larger
are distillation effectiveness and bandwidth utilization. The two main factors that are worse with l
tasks are misspeculation detection latency and the storage requirements for buffering speculative s

Optimization Effectiveness.Larger tasks means fewer task boundaries, which generally results in
constrained approximate code, improving the effectiveness with which it can be optimized. Sens

29

er of
to 342

lues
, so the
und in

ask
ulation

ata
more
s as is

tervals.
m in
han oth-

ness of
stand
y mini-
ram,

f task

akes it
alues
daries.

tion and
ased
ses or

ng: (1)
) [47,
gener-
n encap-
sult in

ions that
. The
an entry
analysis in Section 5.2.7 shows that my distiller prototype exhibits a 9% reduction in the numb
dynamic instructions executed in the distilled program when average task size increases from 87
instructions (a factor of 4).

Bandwidth Utilization. Interconnect bandwidth is used to move around task, live-in and live-out va
between processors. The amount of bandwidth required per task scales sub-linearly with task size
bandwidth required per original program instruction decreases with larger tasks. This reduction is fo
both the estimates in Section 4.4.3 and the data shown in Section 5.2.7

Misspeculation Detection Latency.Less desirably, larger tasks will increase the time between t
spawning and task retirement. Larger tasks generally results in a longer latency to detect a misspec
as is shown in Section 5.2.7.

Storage Requirements.Hardware structures are required to buffer checkpoint, live-in, and live-out d
for in-flight tasks. Estimates in Section 4.4.3 indicate that larger tasks will have larger checkpoints,
live-in values, and more live-out values, requiring additional hardware buffering at the L2 cache bank
shown empirically in Section 5.2.7.

To achieve tasks with a given size, the task boundary locations must be selected at suitable in
Since the number of instructions along different control-flow paths varies, not all tasks will be unifor
length. In addition, as described in the next sub-section, some task boundaries are more desirable t
ers, leading to additional variability in task size.

3.2.2 Task Boundary Locations

Because task boundary locations determine live-in sets, their selection can impact the effective
distillation. Optimal task selection is still an open problem (and possibly undecidable), but I under
some of the factors that make good task boundaries. Task boundaries should be placed where the
mally constrain optimization. For example, if all uses of a value are removed from the distilled prog
the value becomes dead and its creating instruction can be removed,unlessa task boundary is placed in its
original program live range, forcing the value to be computed for the checkpoint. Thus, one goal o
selection is to minimize the number of otherwise dead values whose live ranges are cut1.

This task selection may seem to be a simple optimization problem, but a circular dependence m
particularly challenging to solve. To choose task boundaries, the algorithms wants to know which v
are dead, but the dead values are the result of optimizations that require knowledge of the task boun
This circular dependence is somewhat analogous to the inter-dependence between register alloca
instruction scheduling [9, 31]. My current implementation of the task selector relies on control-flow-b
heuristics to select task boundary locations. Integrating the task selector with the optimization pas
performing the process iteratively is an area of future work.

The three heuristics I use have been identified in previous research on speculative multithreadi
breaking tasks after function calls (function continuations) [2, 56], (2) in loop headers (loop iterations
33, 76], and (3) after loop exits (loop continuations) [2]. These points in programs are expected to
ally have below average numbers of short dependences crossing them because programmers ofte
sulate tightly coupled operations in functions, loop bodies, and loops. These heuristics generally re

1. In addition to constraining approximation by forcing particular values to be computed, task boundaries constrain code transformat
involve code replication (e.g., in-lining). These constraints result from co-location of entries into the distilled program with task boundaries
proposed hardware implementation maintains a one-to-one mapping from the original code to the distilled program at the entry sites. If
site is replicated, only one copy can be mapped, making the other sites unreachable for misspeculation recovery.

30

s are far

t is not
er con-

er the
tations
ss, and
trivial

any
ncondi-
neral,
und-

tion
ith the
com-

single

times
e
pond-

3.1).
anno-
-order
as two
tential
onstruct
reasonable task selection, but this aspect of distillation deserves further attention as some selection
from optimal.

3.2.3 Specifying Task Ends and Task End Suppression

Tasks executed by slave processors must end at the point the next task will begin. If this invarian
maintained, the tasks cannot be “stitched” together to be equivalent to a uniprocessor execution. Aft
sidering a number of alternative approaches, I settled on something akin to Multiscalar’sstop bits[72] for
my implementation. In this simple approach, each static instructions in the original program is eith
first instruction of a task or not, and task beginning instructions are annotated. These single-bit anno
can be stored in a separate region of memory, fetched with the instruction on an instruction cache mi
buffered along side the associated instruction in the instruction cache. With these annotations it is
for a slave processor to stop executing at the beginning of the next task.

Because one goal of my MSSP implementation was to avoid modifying the original program in
way, this approach to marking task boundaries constrains task selection. As the annotations are u
tional, any path from any calling context through an annotated instruction terminates the task. In ge
this inflexibility is not a large concern, as control-flow profile information can be used to place task bo
aries appropriately along hot paths, and imperfect task selection along cold paths can be tolerated.

There is one common idiom for which this constraint in untenable: tight loops with high itera
counts. If constrained to make either a single iteration a task or the whole loop a task, we are left w
sub-optimal choice of small tasks or very large ones. To handle this problem with minimal additional
plexity, I introduced task end suppression.

Task end suppression enables multiple iterations of these small loops to be encapsulated into a
task. To use suppression, aSUPPRESSinstruction is included in the distilled program. theSUPPRESS
instruction specifies two things: 1) the PC of an annotated instruction to ignore and 2) the number of
it should be ignored. When executed, theSUPPRESSinstruction’s information is communicated to th
appropriate slave processor. For simple loops, the loop in the distilled program is unrolled to a corres
ing degree. In Section 5.2.2, I quantitatively demonstrate the importance of task suppression.

3.2.4 Task Selection Implementation

In this sub-section, I describe some of the details of my task selection algorithm (shown in Figure
All task selection decisions are made using only a call graph and the functions’ control-flow graphs
tated with edge profile information. Task selection is performed one function at a time, using a post
traversal of the call graph to process a function’s callees before itself. The task selection algorithm h
main phases: 1) using the heuristics described in Section 3.2.2, the algorithm identifies a set of po
task boundary sites, and 2) a subset of those sites is selected to balance task sizes while trying to c
tasks of a desired size.

select_tasks (call_graph, cfg[]):
foreach function f in a post-order traversal of call_graph:

regions := []
regions[0] := copy of cfg[f]
insert potential task boundaries after loops and calls
handle_loops (regions) (see Figure 3.3)
promote_task_boundaries (regions) (see Figure 3.4)
transform cfg[f] to include the task boundaries in regions

Figure 3.1:Top-level algorithm pseudocode for selecting tasks.

31

rly, a
ce of a
path

FG).
ks fol-

ter (b)

on-
serted

ered as
ary is
eight

rations

ries is
he dis-

nction
body

al tas
Currently, I use the number of dynamic instructions as the metric for load balancing tasks. Clea
task’s dynamic instruction count is path-sensitive. To evaluate a task’s dynamic length in the presen
potentially unbounded number of cyclic paths, the algorithm considers only acyclic paths; it works on
fragments from most to least frequently executed until each function is covered.

The first step of the algorithm is to make a temporary copy of the function’s control flow graph (C
This copy of the CFG is traversed and potential task boundaries are inserted at the beginning of bloc
lowing function call invocations and loop exits. Figure 3.2 shows an example CFG before (a) and af
this step.

Cyclic control flow is removed by the algorithm shown in Figure 3.3. First, I find all loops and c
sider each (inside-out) for insertion of a task boundary at the top of the loop. Task boundaries are in
if the loop body exceeds a certain dynamic size. If a loop header is inserted, the loop body is consid
a separate acyclic region for the purpose of inserting additional task boundaries. If no task bound
inserted into the loop, the loop is logically collapsed and considered as an acyclic region with a w
equal to the length of the dominant path through the loop body scaled by the average number of ite
executed.

The algorithm for selecting which potential task boundaries to promote as the final task bounda
shown in Figure 3.4. For each acyclic region, a path with the highest execution count is selected. T

9

5

6

6

5

7

200
func2

9

5

6

6

5

7

200
func2

9

55

6

6

5

7

100

100

1000

90

900

100010

1000

90

100

100

1000

90

900

100010

1000

90

100

100 200
func2

1000

1000

90
10

Figure 3.2:Task selection algorithm example.A function with two loops, the second of which is conditional and
calls another function (a). To select tasks the algorithm first inserts potential task boundaries after loops and fu
calls (b), then acyclic regions are formed (c) by either collapsing loops (e.g., loop1) or by separating the loop
into a new region by inserting a task boundary in the loop header (e.g., loop2). Lastly, a subset of the potentik
boundaries are promoted to create the final set of task boundaries (not shown).

a) b) c)

loop1

loop2

potential task
boundary

decided task
boundary

32

is to
uating

tasks
zed
date task
tance between possible task breaks along this path can be trivially calculated. All that is required
determine the best possible subset. I exhaustively quantify the quality of all sets of tasks by eval
Equation 1, whereΠ is the quantity to minimize,T is the target task size, andtn is the dynamic instruction
length of thenth task. This function is agnostic of the number of tasks for a given path, but penalizes
that are not close to the desired size; thetn term in the denominator biases task selection toward oversi
tasks. The selected set of task boundaries are promoted to permanent status and the other candi
boundaries along that path are removed.

(EQ 1)

handle_loops (regions): /* regions initially has a single region */
loops := interval analysis of regions[0] to find loop hierarchy
foreach loop L in post-order traversal of loops:

whole_path_len := loop_weight (L) / exec_freq(loop_preheader(L))
iter_path_len := loop_weight (L) / exec_freq(loop_header(L))
if (whole_path_len < whole_path_threshold):

substitute L in regions[0] with a block of length “whole_path_len”
else:

unroll_factor := loop_path_threshold / iter_path_len
insert task boundary in L’s loop header, with unroll_factor
remove L from regions[0]
remove back edges from L
regions.append(L)

loop_weight (loop):
weight := 0
foreach block B in loop:

weight += block_weight (B)
return weight

block_weight (block):
weight = instruction_count(block) * execution_frequency(block)
foreach function F called by block:

weight += average path length through F
return weight

Figure 3.3:Algorithm pseudocode for creating acyclic regions for task selection.

promote_task_boundaries (regions):
foreach region R in regions:

foreach block B in region R (in order of execution frequency):
select dominant path through B (stopping at promoted task boundaries)
compute path lengths between potential task boundaries
promote task boundaries in path, as suggested by Equation 1
remove un-promoted task boundaries in path

Figure 3.4:Algorithm pseudocode for selecting potential task boundaries to promote.

Π
T tn–()2

T tn⋅

n 1=

N

∑=

33

ound-
ound-
path is
sub-

are on
ost fre-
ove for
d. This

ctions
domi-
to the

ve not
ginning

trans-

this
bility
state
: 1) it
pro-

ations

m’s
e this
d and
s are

s gen-
ically
to an

rol flow
erpreta-
bles to

he first
ages,

stored as

ites its
Because the number of combinations grows exponentially with the number of potential task b
aries, I limit the computation required by divide-and-conquer. When there are many potential task b
aries (greater than 10 in the current implementation) and the path is above the target path length, the
split by promoting the potential task boundary that will come closest to balancing the two resulting
paths.

Once the dominant path has been handled, I select blocks (in order of execution frequency) that
paths that have not yet been evaluated. For each block, I trace backward and forward along the m
quently executed path until a promoted task boundary is reached. This path is then evaluated as ab
new task boundaries, only considering task boundary sites that have not previously been considere
process is repeated until all blocks in the function have been covered by paths.

After processing each function, I collect some summary data about the function for use by fun
that call this function. If the function has no task boundaries on the dominant path, the length of the
nant path is stored. Otherwise I collect the distance along the dominant path from the function entry
first task boundary and from the last task boundary to the return. If a function calls functions that ha
yet been processed because of recursion or mutual recursion, a task boundary is inserted into the be
of the function.

Once the final task selection has been decided, the distilled program’s control flow graph is
formed in a manner described in the next section.

3.3 Distilled Program Structure

Partitioning the program into tasks is only the first step to constructing the distilled program. In
section, I describe the structure of the distilled program. This structure tries to maximize the flexi
available in constructing the distilled program while maintaining its ability to correctly compute the
expected by the original program. Specifically, the distilled program structure has two main features
is a distinct code image from the original program necessitating explicit mapping between the two
grams, and 2) it employs transition code enabling the distilled program to store data in different loc
than the original program.

3.3.1 Mapping Between Programs

Transformations like inlining and constant folding can significantly improve the distilled progra
performance but result in a distilled program that is no longer a subset of the original program. Onc
subset property is lost, there is no longer a one-to-one mapping between instructions in the distille
original programs. Instead, by making the distilled program a distinct program image, explicit map
required to map program counters (PCs) from one image to the other.

This mapping problem can be found in other contexts where an additional copy of the program i
erated. Software binary translators and dynamic optimization systems [5, 14, 21, 38, 83], which typ
construct optimized versions of traces, construct a hash table that maps an original program PC
address in a translation cache where the optimized trace resides. At points in the trace where cont
exits the translated code, the original PC is embedded somehow to enable recommencement of int
tion. Hardware-based dynamic optimizers [49, 58] and trace caches [62] use hardware lookup ta
perform the mapping function.

There are four occasions in MSSP that PCs need to be mapped from one program to the other. T
two cases arise from the fact that although the distilled and original programs are distinct program im
they share the same data image. This sharing causes difficulties when program counters (PCs) are
data in registers or memory, because the stored value has to point to one imageor the other. It is simplest if
all stored PCs point to the original program. To implement this approach, whenever the master wr

34

specula-
pings is
nal

data
luable
stilled
egister
require-
in the

must
by the
hed-

vice-
ram. I

undary
at will

to an
the code
2 with
PC to a register (e.g., the link operation of a call) or jumps to a PC from the data space (e.g., a return,
switch statement, or virtual function), the PC will first have to be mapped.

The other two cases when PCs have to be mapped are when the master is restarted after a mis
tion and when the slave task is forked by the master. To support restarting the master, a set of map
maintained that encode anentryPC in the distilled program for each annotated instruction in the origi
program. The process for forking a slave is discussed in Section 3.3.3.

3.3.2 Transition Code

Some desirable optimizations, including register re-allocation and scheduling, imply that the
image of the distilled program not exactly match that of the original program. Registers are a va
resource, and the register allocation used in the original program may be rather inefficient for the di
program. The ability to re-allocate registers and allocate additional variables to registers enables r
moves, saves and restores to be removed from the distilled program and reduces cache bandwidth
ments. Similarly, re-scheduling the code can be beneficial, but it changes the lifetimes of variables
program.

Although the distilled program may execute faster with a modified data image, the checkpoints
supply the state as expected by the original program. This apparent contradiction can be resolved
use oftransition code. Transition code, which is much like the compensation code required for trace sc
uling [24], is executed during the transition from the original program to the distilled program (and
versa) to map the register and memory state of one program to how it is expected in the other prog
will demonstrate the importance of transition code with two optimizations.

Figure 3.5 shows a loop that contains code that is loop invariant. Task selection inserts a task bo
at the loop header making each loop iteration a task. Associated with the task boundary is an entry th

...
load r11, 768(gp)
load r12, 0(r11)
use r12
....

...
use r12
....

load r11, 768(gp)
load r12, 0(r11)

task boundary

in transition
load r11, 768(gp)
load r12, 0(r11)

Figure 3.5:Code hoisted across a fork instruction is replicated in the transition code.Illustrative example shows
a loop containing a loop invariant computation (a), which was not hoisted in the original code (perhaps due
ambiguous memory dependence). Because a task boundary is inserted at the head of the loop (b), hoisting
out of the loop crosses the task boundary (c). The transition code requires a copy of the hoisted code to fill r1
the expected value.

task boundary

...
load r11, 768(gp)
load r12, 0(r11)
use r12
....

insert task
boundary

in transition

a) b) c)

35

ode is
ated.

ers the
loop

g task
transi-

ill
perco-
is no
xecut-

itical

s are
anch-
on
l, an
ich is

tion of
riginal
rmat
ause all

m.
s by a
es the
d pro-
be used to restart the master if a misspeculation occurs inside the loop. When the loop invariant c
hoisted out of the loop in the distilled program, a discrepancy from the original program’s state is cre
Without the transition code,r12 will possibly contain the wrong value. To assure thatr12 has the right
value, the loop invariant code is copied into transition code that is executed before the master ent
distilled program proper. The transition code will affect the time it takes to restart the master, but the
invariant code has been removed from the steady state distilled program execution.

Figure 3.6 shows a case where a variable is live across task boundaries but only into the followin
of the original program. In this case, the computation of the variable can be completely delegated to
tion code, via partial dead code elimination [40]. The only use ofr13 is a highly biased branch. This
branch is removed from the distilled program, but becauser13 ’s live range crosses a task boundary it st
must be in the checkpoint. Since r13 is not needed in the distilled program, its computation can be
lated downward into the “out transition” code. The result of this transformation is that the master
longer encumbered by this computation, as this transition code will be executed by the slave before e
ing the task in the unmodified original program. While the master’s execution is frequently the cr
path, the slave’s execution is exceedingly tolerant of additional overhead.

3.3.3 Resulting Structure

The resulting structure of the distilled program is shown in Figure 3.7. Two special instruction
used to manage the transition from the distilled program to the original program. The first, using a br
style format, is theFORK instruction, which marks the task boundary in the distilled program. Up
encountering aFORKinstruction, the master processor continues on the fall-through path. In paralle
idle slave processor is instructed to begin fetching at the target specified by the fork instruction, wh
the starting PC of the out transition code.

At the end of the out transition code, the second special instruction (VERIFY) is inserted. TheVERIFY
instruction signals to the hardware that a transition to the original code is to be made and that collec
live-in values should commence. Because the distilled program may not be spatially close to the o
program, the jump distance will likely be larger than the maximum displacement in a branch fo
instruction. Typically indirect branches are used in such circumstances but are problematic here bec

...

...
common path
...

...

...

...

task boundary

Figure 3.6: Code can be percolated down into transition code if used only in one task of the original progra
The illustrative example shows a widely separated definition (def) of r13 and its only use (a). The use i

branch that is sufficiently biased that it will be removed from the distilled program, but a task boundary separat
def and the use and therefore r13 is live in the checkpoint (b). Since the def is dead with respect to the distille
gram it can be percolated down into the transition code (c).

def r13
out transition
r13 live

...

...
remove branch
r13 dead
common path
...

...
def r13
...
...

task boundary

out transition
r13 live

...
def r13
...
...

...

...
bne r13

(only use)

insert task
boundary

>99% biased

common path

a) b) c)

36

get PC
-

tion.
t path

istilled
st rele-
the

ourse,
ntrol
profile

e sys-
. Fur-

ere a
infor-

n, I
ith
eth-

em has
havior,
tem can
proxi-

xecu-
isspec-
registers might need to contain the values expected by the original code. As a result, I specify the tar
using a combination of the target bits in theVERIFY instruction and the 32-bits that follow in the instruc
tion stream.

3.4 Framework for Automatic Program Distillation

In this section, I describe the approximation framework (program distiller) used in this disserta
The structure of this distiller is not intended for a real implementation. Rather, it is intended as a fas
to identifying the important factors in designing a real approximator.

The implementation that I envision for use in real systems is one that transparently constructs d
programs at run time. By doing the construction at run time, the approximator has access to the mo
vant profile information: that from the current run of the program. Accurate profile information allows
program to be aggressively approximated while maintaining a low task misspeculation rate. Of c
run-time construction of the distilled program is not mandatory, but I believe that some run-time co
mechanism is. Otherwise, because profile information is so highly leveraged, an unrepresentative
could lead to the situation where a task misspeculation occurs for every task. Minimally, the run-tim
tem should recognize recurring task misspeculations and shift out of MSSP mode for a period of time
thermore, it is easy to imagine distiller implementations with on-line and off-line components, wh
candidate distilled program is constructed off-line and refined on-line as more representative profile
mation is collected.

To approximate the quality of a run-time approximator without its complexity of implementatio
have built a static approximator, which I provide with profile information from the run of the program w
which the evaluation is to be performed. While this self training is optimistic in some respects, this m
odology can not be considered to achieve a strict upper bound on performance. A real run-time syst
two advantages over my static implementation. First, a run-time system can exploit phase be
deploying different versions of code as usage patterns in the code change. Second, a run-time sys
evaluate how well the constructed distilled program is working and use the feedback to tune the ap
mation.

FORK

fall-through

spawn

transition
codetransition

code

di
st

ill
ed

pr
og

ra
m

di
st

ill
ed

pr
og

ra
m

Entry

restart distilled
program from

state of original

Code executed on
master processor

Figure 3.7:The distilled program structure supports checkpointing and misspeculation recovery.Basic blocks
ending inFORKinstructions continue executing the fall-through path on the master processor and spawn task e
tion on an idle slave processor. Entries, with associated transition code, enable restarting the master after a m
ulation.

or
ig

in
al

pr
og

ra
m

insert task boundary

in
out

or
ig

in
al

pr
og

ra
m

or
ig

in
al

pr
og

ra
m

A
B

A
B

or
ig

in
al

pr
og

ra
m

B

partitioned original program distilled program

jump to
original

code

PC:

PC

jump PC

restart map

PC’:

37

ture
ystem
ads
. The
llel in a

n set,
of the
con-

sum-
stilled
e dis-
been

These
ng lit-

pro-
2.

. As a
a tradi-
table
ations
ion to

e pro-
eater
branch
an be
.

e off, to
, many

w

My implementation of the approximator is a binary-to-binary translator for the Alpha architec
[68], except rather than working on binaries it works on already loaded static program images. The s
is built inside a simulator built using the libraries from the SimpleScalar toolkit [10]. The simulator lo
the static image from the program binary into memory, where it is readable by the approximator
approximator does not modify the original static image but creates a second one that exists in para
different range of memory.

The internal representation (IR) used within the approximator is very close to the Alpha instructio
as was done in the Alto binary translator [54]. This IR makes the process of translating into and out
IR trivial. Though many of the transformations are performed on the IR directly, some higher level
structs (e.g., loops, variable live ranges) are reconstructed from this low level IR.

The program optimizations can be broken into two classes—speculative and non-speculative—
marized in Figure 3.8. The speculative optimizations—enabled by the approximate nature of the di
program—are applied first. Their application is controlled by “correctness thresholds” specified to th
tiller and profile information described in Section 3.4.1. Once these speculative optimizations have
applied, the resulting code generally has new opportunities to apply non-speculative optimizations.
transformations and optimizations (described in Section 3.5 below) are largely drawn from the existi
erature in optimizing compilers, but some of them need to be altered slightly to support the distilled
gram structure. An example of such an interaction for liveness analysis is described in Section 3.4.

3.4.1 Guiding Root Optimizations with Profile Information

The critical advantage of approximate code is that it need only be correct in the common case
result, the approximator can consider a broader range of transformations and optimizations than
tional optimizing compiler. In a traditional compiler, any optimization that is correct and deemed profi
can be applied. In approximation, correctness is not mandatory, it only contributes to which optimiz
are profitable. For the root optimizations, which do not preserve correctness, I use profile informat
estimate an optimization’s impact on correctness.

I assign a required correctness threshold for each optimization. To apply a given optimization, th
file information must indicate that the optimization will preserve correctness a fraction of times gr
than the threshold. For example, a branch removal threshold of 98% may be set that will remove a
with a 98.2% static bias, but not one with a 97.6% static bias. Thresholds for each optimization c
tuned individually; the thresholds available on the current distilled prototype are shown in Table 3.1

By varying these thresholds a whole range of approximate programs can be generated that trad
varying degrees, accuracy for common-case performance. As will be demonstrated in Section 5.2.1

root (speculative) optimizations:
branch elimination
indirect-to-direct call conversion
long dependency store removal
idempotent operation removal
silent store removal

supporting (non-speculative) optimizations:
dead code elimination
inlining
register re-allocation
register move elimination
save/restore removal
loop unrolling
global pointer computation removal
control-flow simplification
stack pointer optimization
constant folding

Figure 3.8:Summary of root and supporting optimizations.Root optimizations are applied first and expose ne
opportunities for the supporting optimizations.

38

ations
that

setting
onfig-

ecu-
that

is not
ions.
evalu-

m the

ener-
gh, to

sition
re
ive-in

been
e paths,

d not
that I
e well
view,

ation,
cribe

t

d a
of the optimizations are largely insensitive to the supplied threshold value because where the optimiz
are applicable they will be correct almost all of the time. It is mainly the branch elimination threshold
has leverage on distillation. Sensitivity analysis in Section 5.2.9 shows that for most benchmarks,
this threshold in the 98 to 99 percent range generally results in performance rivaling that of the best c
uration.

Currently I do not consider the benefit of an optimization, only its cost (in terms of induced missp
lations). If benefit can be predicted, the approximator can potentially avoid applying optimizations
incur misspeculation but do not significantly improve common-case performance. This approach
done currently as it is difficult to predict the impact that a transformation will make on later optimizat
Obvious future work includes developing techniques to predict benefit or support for generating and
ating multiple versions of a piece of code.

3.4.2 Implications of Distilled Program Structure on Liveness Analysis

As discussed in Section 3.3, the distilled program is structured to support transitions to and fro
original program; this structure impacts how liveness analysis is performed. Some operations (e.g., a
branch that is never taken) in the original program will be removed from the distilled program. This g
ally creates new opportunities for dead code elimination in the distilled program. It is important, thou
not consider dead any value that will be needed as a live-in to a task in the original program.

When doing dead code elimination on the distilled code we must consider paths through the tran
code from the insertedFORKinstructions. TheVERIFY instructions at the end of the transition code a
considered as uses of all variables live at that point in the original code. To minimize the number of l
variables, liveness analysis is performed on the original code only considering paths that have
observed to be exercised. By ignoring unobserved paths, the analysis is more precise for the activ
but misspeculations may be introduced if the unobserved paths are executed.

3.5 Implementation

In this section, I present the flow of the approximator implementation. This implementation shoul
be construed astheway an approximator should be built, but rather as documentation of the system
have built for the purpose of interpreting the results in Chapter 3. As most of the transformations ar
understood in the existing literature—generally covered in [53]—I intend this section to be an over
only delving into details when peculiarities of approximation are important.

The approximation implementation can be broken down into a sequence of 5 stages: initializ
instruction-level optimizations, dead code elimination, function-level optimizations, and output. I des

TABLE 3.1 Correctness thresholds for program distiller optimizations.

Parameter Typical Value Explanation

Branch Elimination
Threshold

99% biased The fraction of dynamic instances that must go to the dominan
target for the branch to be removed.

Idempotent Optimi-
zation Threshold

99% correct The fraction of times that an instructions output must match an
input for it to be removed.

Silent Store Thresh-
old

99% correct The fraction of times that a store must have overwritten the value
in memory with the same value for it to be removed.

Long Store Definition 1000 instructions The store to load distance at which a dependence is considere
long dependence.

Long Store Elimina-
tion Threshold

99% long The fraction of store instances that have to be classified as long
for the static store to be eliminated.

39

nce. A

been

the
turn

ructed.
nslator

t of
y per-

ilitate
ills.

tion
to

arely,
e reor-
each of these in the following sub-sections and then briefly discuss the implementation’s performa
flow chart that overviews the distiller’s operation is shown in Figure 3.9.

3.5.1 Initialization

At the end of the initialization phase an un-optimized version of the internal representation has
constructed and partitioned into tasks. This phase consists of the following sub-steps.

Build Internal Representation (IR). Internal representations for each instruction can be created from
static program. Using a control-flow edge profile, IR instructions are assembled into blocks, which in
are assembled into control-flow graphs (CFGs) on a per-function basis, and a call graph is const
Only instructions on paths that were observed to execute are considered. Like the FX!32 binary tra
[14], my distiller identifies candidate targets of indirect branches through profiling.

Liveness Analysis.At this point the IR exactly matches the original program, so I can identify the se
live variables at all points of the original program that are expected to be reached. This set is found b
forming an inter-procedural liveness analysis and is used to provide the live-in sets for eachVERIFY
instruction associated with task boundaries. This means of generating theVERIFY live-in sets is slightly
conservative, in that a value identified as live may be used in the future but not within the task. To fac
the liveness analysis, I first match up register saves and restores to track liveness through stack sp

Task Boundary Selection.Using the heuristics and the algorithm described in Section 3.2.4, the loca
of task boundaries are selected. Then theFORK instructions are inserted and the CFG transformed
include the in and out transition code blocks for entry and verification.

3.5.2 Instruction-level Optimizations

The second phase is local optimizations that typically modify or remove a single instruction, or, r
a small number of clustered instructions. These optimizations are largely independent and could b
dered without impacting their efficacy.

Figure 3.9:Overview of phases of program distiller implementation.

Code Output:
Code Layout
Code Generation

Control Flow SimplificationControl Flow Simplification
(cycles until a fixed point is reached)

Initialization :
Build Internal Representation
Liveness Analysis
Task Boundary Selection

Instruction-level Optimizations:
Long Dependence Store Removal
Global Pointer Optimization
Branch Optimizations
Silent/Idempotent Optimizations

Dead Code Elimination

Function-level Optimizations:
Inlining (followed by Dead Code Elimination)
Stack Pointer Optimization
Register Re-allocation
Save/Restore Elimination

40

d its
, by the
emory
moval.
tion of
rom the

t a
called
tion or
ue for
nstance,

ve-
ch (as
G edge
; oth-
layout
n be

m-
t are
static

r to as
avior
-
ons
predi-

tion can
n be
t opti-

truc-
ove it.

n this
ssor (if

When
-predict
n addi-

con-
ost
Long Dependence Store Removal.As mentioned in Section 2.1.3, if the distance between a store an
first use exceeds the task window, then the distilled program need not perform the store, because
time the use is executed, the original code will have already updated architected memory. Using a m
dependence profile that includes a histogram of store-load distances, I identify candidates for re
Two parameters are specified to control this optimization: 1) a specified distance, and 2) the frac
store-load distances that must exceed this distance. If a store satisfies these criteria, it is removed f
distilled program.

Global Pointer Optimization. In the standard Alpha calling convention, the global pointer (GP) is no
callee saved register. This means that, unless the compiler verifies that the GP is unmodified in a
function, it must recompute it after a return before it uses it again. Perhaps due to separate compila
from the use of libraries, the code studied is rife with GP re-computations, even though only one val
the GP is ever used. The approximator assures itself that the same GP value is computed at every i
then removes the GP computations and ensures that the GP is never modified.

Branch Optimizations. Removing and simplifying branches is a major source of performance impro
ment as many branches are heavily biased to a single target. If the bias of a direct or indirect bran
recorded in the edge profile) exceeds a specified threshold, the branch is removed along with the CF
to the non-dominant path. If this is the only path to the target block then the two blocks can be unified
erwise, nothing is done at this time, and, if necessary, an unconditional branch is inserted at code
time. If an indirect call calls a single function more than a specified fraction of the time, a direct call ca
substituted.

Silent/Idempotent Optimizations.As was noted in [43], some stores frequently write a value to a me
ory location that is already holding that value. By profiling for this behavior, we can identify stores tha
silent more than a specified fraction of the time. These stores can be removed. In addition, some
instructions consistently produce as output one of their input values. These instructions, which I refe
idempotent operations, have not been previously studied to my knowledge. These sources of this beh
fall into three classes: 1) truncating a value to a smaller bit-width (e.g., from 64b to 32b because the pro
gram casted along long to an int) but the upper 32b bits were already zeroes, 2) logical operati
where one operand is generally a superset of the other, and 3) conditional moves with highly biased
cates. If the important input operand uses the same architectural register as the output, the instruc
simply be removed. Otherwise it is replaced by a register move instruction, which generally ca
removed by register re-allocation. Silent register writes that are not idempotent operations are no
mized because they interact poorly with register re-allocation (described below in Section 3.5.4).

3.5.3 Dead Code Elimination and Control-Flow Simplification

The removal of instructions by the above instruction-level optimizations often renders other ins
tions dead. By doing an inter-procedural liveness analysis, we can identify the dead code and rem
The removal of dead code occasionally removes all instructions from a given basic block. Whe
occurs, the block is removed and all input arcs in the CFG are redirected to the block’s single succe
a block has multiple successors it must be terminated by a branch and therefore be non-empty).

Occasionally, the removal of blocks will cause all paths from a branch to lead to the same block.
this occurs, the branch is no longer necessary and can be removed. In this way, un-biased, hard-to
branches can be removed. Removing the branch will generally render new code dead, resulting i
tional benefit from re-running dead code elimination. As the dead code elimination may result in new
trol-flow simplification opportunities, I alternate these optimizations until a fixed point is reached. M
benchmarks benefit from as many as 4 iterations of this process.

41

sep-

-leaf
r (SP)
, non-
lls or
ed by
if any
tes

ake
he reg-
ions

pro-
re
gisters.
func-
struc-
f the

aph,
ry. Typ-
avoided.
spilling

the
it can
direct
e dis-
time
en a
into
are a

etimes
on.

rocess

the
layout
entify
3.5.4 Function-level Optimizations

In this stage, I apply optimizations that have effects that span a function. I optimize each function
arately, in a post-order traversal of the call graph (i.e., leaf functions first).

Stack Pointer Optimization. Most functions use the stack to store locals and saved registers. Non
functions (i.e., ones that call other functions) allocate space on the stack by adjusting the stack pointe
on entry and exit, so that called functions use a different region of the stack. During approximation
leaf functions are frequently converted into leaf functions, either by removing paths containing ca
through inlining (see below). In most of these cases, the pair of SP manipulations can be remov
adjusting the offset of loads and stores that are relative to the SP. This optimization is not applied
unrecognized manipulations of the SP are present (e.g., copying the SP to another register or other upda
to the SP).

Register Re-allocation.After dead code elimination and inlining, there are often opportunities to m
better use of the registers and remove register move instructions. To accomplish this, I first extract t
ister def-use webs [53] (i.e., symbolic registers) using data-flow analysis to match the reaching definit
with the uses. This is greatly affected by the distilled program’s structure, as entries to the distilled
gram must be considered as definitions andVERIFY instructions as uses of all live registers. The webs a
used to build an interference graph, which encodes which webs cannot be allocated to the same re
Then webs that are live-in or live-out to the function or are arguments or the return value of a called
tion are pre-colored to the architectural register they were assigned in the original program. Move in
tions are identified. Iterated register coalescing [29] is then performed, which removes most o
unnecessary register moves.

Remove Saves/Restores.During register re-allocation, when assigning registers to the interference gr
I attempt to use the minimum number of registers and only use the callee-saved registers if necessa
ically, because register pressure is lower in the approximate code, many saves and restores can be
Because none of the currently implemented optimizations potentially increase register pressure, no
is necessary beyond what was performed in the original code.

Inlining. After processing a function, I consider inlining it into its callers. This is always applicable if
function is called from a single call site. Otherwise, because inlining would require code replication,
only be considered for leaf functions that do not contain any task boundaries or non-return in
branches (in the approximate version) due to limitations of mapping from the original program to th
tilled program. I also limit the static size of functions to prevent code explosion and limit optimization
(for many of the optimization implementations time scales super-linearly with instruction count). Wh
function is inlined, it is copied into the CFG of the calling function. Return blocks are converted
unconditional jumps to the return target. The call instruction is removed and inserted in its place
sequence of instructions (LDAH and LDA) that compute the expected return address, which is som
a live-in to the original code; when unneeded this computation is eliminated by dead code eliminati

3.5.5 Code Output

Once optimization is complete, the IR needs to be converted back to a new static image. This p
involves code layout, recomputing branch target offsets, and generating code.

Code Layout.With the available profile information, it is natural to perform a profile guided layout of
code. I use simplified version of the Pettis and Hanson algorithm [59] that performs intra-procedural
to minimize taken branches along the dominant control-flow paths. In the layout process, I can id

42

e map
corre-
n to

mory
ranch

erting

nd typ-
mator

ple-
r non-
uffi-

xecu-
t task

respect
g can-

enta-
s and
m and
riginal
dis-
some
ructure
where unconditional branches will be needed and allocate space for them. At this time I construct th
that maps restart entries, indirect branch targets and return targets in the original program to their
sponding location in the distilled program. Transition code for the function is laid-out after the functio
minimize fragmentation in the master’s instruction cache.

Code Generation.Having computed the new program counters (PC) (in a separate region of me
from the original code segment) for each instruction of the IR, the next step is to compute the new b
offsets for control instructions. With these determined, the relatively straight-forward process of conv
the IR back to Alpha instructions is performed.

3.5.6 Performance

Because the approximator can ignore the significant fraction of the program that is never used a
ically reduce the remaining portion of the program to less than half its original static size, the approxi
can be very efficient. Despite almost completely ignoring the performance of the approximator’s im
mentation, it typically can generate a distilled program in a small number of seconds (< 5), even fo
trivial programs likegcc . I am optimistic that a real implementation can be constructed to have a s
ciently small overhead to be viable.

3.6 Chapter Summary

In this chapter, I presented the two main requirements of the distilled program: 1) to break its e
tion into tasks, and 2) to efficiently and largely accurately compute the program state expected a
boundaries. I discussed how placement of task boundaries can be critical to performance both with
to impact on optimization and on task size. I described my control-flow based heuristics for selectin
didate task boundaries and my algorithm for balancing task sizes.

In addition, this chapter describes the structure of the distilled program and my prototype implem
tion of a program distiller. The distilled program structure includes features—program counter map
transition code—that enable the distilled program to be started from the state of the original progra
vice-versa. These features allow the state of the distilled program to be decoupled from that of the o
program, increasing the flexibility with which the distilled program can be optimized. The prototype
tiller is a binary-to-binary translator that is largely based on existing compiler techniques, except that
of the optimizations need not preserve correctness and the idiosyncrasies of the distilled program st
must be maintained.

43
Chapter 4
P para-
com-
posed

oces-

n (in
execu-
llows.
ome of
, where

para-
lection
these

l exe-
to their
sk exe-

gis-
d to be
can be
Implementing the MSSP Paradigm

In this chapter, I present the required mechanisms and one possible implementation of the MSS
digm. This implementation of the execution paradigm is by no means the best possible one, but it is
plete and demonstrates all of the necessary functionality. Beyond completeness, the pro
implementation focuses on maximizing performance and effectively tolerating the latency of inter-pr
sor communication.

First (in Section 4.1), I discuss the mechanisms the paradigm requires at a high level. The
Section 4.2), I present an analytical model of the execution paradigm to allow reasoning about the
tion paradigm. Section 4.3 covers the themes that guided the design of the implementation that fo
Then (in Section 4.4), I describe the high-level architecture and some program data that validates s
the design decisions. Finally (in Section 4.5), I present some details on the mechanisms themselves
they differ from prior work, and conclude with a chapter summary.

4.1 Required Functionality

Besides the construction of the distilled program—described in the previous chapter—the MSSP
digm requires a number of mechanisms to function properly. The requirements listed reflect my se
of a “block reuse”-style mechanism for verification and commit; for alternative mechanisms some of
requirements may be different. These mechanisms are:

Timestamps.The relative logical ordering of tasks is vital to providing the appearance of a sequentia
cution. Tasks are assigned sequence numbers, which I call timestamps, by the master according
order in a sequential execution. Slave tasks will have the same timestamp as the corresponding ta
cuted by the master.

Checkpoint buffering. In executing the distilled program, the master processor performs writes to re
ters and stores to memory. These writes are not intended to be externally visible. Instead, they nee
buffered and associated with the timestamp of the task that performed the write. These checkpoints
deallocated when the corresponding task in the original program is committed.

44

have
t pro-
stores
ne in

nning

it did
d to be

echa-

ct the
quest-

urned.

e tasks

ck
the

mically,
e-in

ative
e live-

t task

stilled
he dis-

valent
of the
toler-

es the
Live-out Buffering. Unlike the master, slave tasks update the architected state, but not until they
been verified. Because tasks may be significantly larger than the internal buffering available in mos
cessor cores, I expect slave processors will “speculatively retire” instructions and buffer the resulting
in a live-out value buffer. If task misspeculations always recover to the beginning of a task (as is do
my implementation), then speculative retirement can be allowed to retire registers normally (i.e., irrevoca-
bly updating the local register file), by keeping a checkpoint of the state of register file as of the begi
of the task.

Live-in Buffering. As a slave task executes, it must keep track of the values that the task used that
not create, so that these values can be verified. Not only do the names of these live-in values nee
buffered, but the values themselves as well.

Register Communication.Because checkpoint and live-out state includes register state, I need a m
nism to read register values from a processor and to load register values from a checkpoint.

Checkpoint Assembly.When a slave task performs a memory access, the returned value should refle
most recent checkpoint value from a task with a timestamp that precedes or is equal to that of the re
ing processor. If no checkpointed value is available, the value from the architected state is ret
Because most architectures support memory operations at multiple granularities (e.g.bytes, 32-bit words,
etc.) this process can require assembling multiple, potentially overlapping, small writes from separat
along with architected data to satisfy a large read operation.

Live-in Verification. To see if a task can be committed (i.e., its results reused), the hardware has to che
to see if all of the live-in values are correct. I do this checking by comparing all of the live-in values to
architected value at the same storage location. This comparison has to appear as if it were done ato
and the task is verified only if all live-in values match. After live-in comparison is complete, the liv
buffers can be cleared.

Live-out Commit. To avoid memory ordering violations in most consistency models, a task’s specul
state has to be committed atomically (or have the appearance of being committed atomically) with th
in verification.

Task End Condition. Each slave processor must know where its current task ends and the nex
begins.

Maps. PC’s of entries and indirect branches need to be mapped from the original program to the di
program; PC’s of transitions to the original program and link addresses need to be mapped from t
tilled program to the original program.

Although all of these mechanisms are required for correct execution, they do not have equi
impact on performance. As I show in the next section, only mechanisms that affect the throughput
master processor and verification/commitment must perform well. The slave executions of tasks are
ant of additional latency.

4.2 Analytical Model

I now present a simple analytical model to allow us to reason about performance. Our model mak
following simplifying assumptions:

1. All tasks are equivalent and have execution timeE.

45

stilled

and
e tran-
misses

e

ncy
eck the

ncy
to exe-

tasks

check-

e

acies

put of
to be
lized

e con-
erfor-
2. Distilling the program results in a speedup ofα; distilled program segments execute inE/α time.
3. Verification of live-in values and commitment of speculative data can be done in less time than di

task execution, so that verification/commit is never a bottleneck. In practice, there is anα beyond which
no further speedup can be achieved because the execution is verification/commitment limited.

4. There is an initiation latencyI between when a fork instruction is executed by the distilled program
when the task begins. This latency accounts for inter-core communication latency, time to execut
sition code, and any additional execution latency incurred due to branch mispredictions or cache
not observed by a sequential execution.

5. There is a binomial distribution with some probabilityP that a checkpoint received by a task will b

correctly verified.1

6. Misspeculations are detected with a latencyD after the previous task has been completed. This late
accounts for the time to update architected state and the inter-core communication required to ch
misspeculated task’s live-ins.

7. Restarting the distilled program takes a latencyR after a misspeculation has been detected. This late
accounts for any inter-core communication to transfer architected state and for the time required
cute transition code.

8. Additional slave processors are always available. Thus, verification is on the critical path only for
that correspond to distilled program segments that produce incorrect checkpoints.

The original execution time for a program composed ofN tasks isNE. The execution time of each task
in the MSSP execution depends on whether its segment in the distilled program produced a correct
point. If so, the task’s execution time is that of the distilled program’s segment,E/α. If not, the task’s exe-
cution time is its latency,E, plus the initiation, detection, and restart latencies,I+D+R. (For algebraic
simplicity, I group these terms into a single normalized overhead term,O = (I+D+R)/E). These events
occur at a frequency ofP and (1 - P), respectively. Thus, the total execution time isN(PE/α + (1-
P)E(1+O)), and speedup is given by:

The resulting equation has three free variables:α, P, andO. Figure 4.1(a) shows that if I assume th
normalized overhead,O, is 1 (i.e.,equal to the task execution time), thenspeedup is super-linear with pre-
diction accuracy. As is expected, at low prediction accuracies slow-downs are incurred. At high accur
(i.e., P > 0.98),performance closely tracks the performance of the distilled program. Sensitivity to nor-
malized overhead is shown in Figure 4.1(b). This plot demonstrates thatthe architecture is largely insen-
sitive to inter-core latency when prediction accuracy is high.

To summarize, the accuracy of the distilled program is paramount, as it decouples the through
the execution from the latency of the individual tasks. In turn, this decoupling allows the paradigm
tolerant of communication latency if checkpoint construction and verification/commitment are centra
(explored in the next section). With an accurate distilled program, the rate that checkpoints can b
structed by the master and the verification and commitment throughput become the main limiters of p
mance.

1. The correctness of checkpoints is assumed to be independent and identically distributed (IID).

speedup
time sequential()
time parallel()

--=
NE

N
PE
α

------- 1 P–()E 1 O+()+

1
P
α
--- 1 P–() 1 O+()+
--= =

46

e per-
e that I
ce the
here is

e

die is
loser,
s to be

sub-
n para-
s can

hich
o

on a
che, the
ould.

is done
ed in
of the

cted such
ependence

n
=1).

check-
4.3 A Guiding Theme: Tolerating Inter-processor Communication Latency

Having described the implementation’s requirements (in Section 4.1) and abstractly explored th
formance characteristics of the paradigm (in Section 4.2), I am prepared to discuss the guiding them
used to make implementation decisions: the ability to tolerate inter-processor communication. Sin
MSSP paradigm breaks an inherently sequential program to execute it on multiple processors, t
invariably going to be some communication. With this fact in mind, I quote David Clark:

“Bandwidth problems can be cured with money. Latency problems are harder because th
speed of light is fixed—you can’t bribe God.”

With clock frequencies increasing, communication latency between processors on the same
likely to be in the tens of cycles [48]. Short of designing smaller cores, to allow them to be placed c
there is little that can be done about this latency. Hence, one major goal of this execution paradigm i
very tolerant of this inter-processor communication latency.

Latency can be effectively tolerated when it is not on the critical path. As we saw in the previous
section, assuming the distilled program is accurate, there are two main critical paths in the executio
digm (Figure 4.2a): (1) the master’s execution of the distilled program, and (2) the rate at which task
be verified and committed.All other latencies only slow down the execution of individual tasks on
slave processors(Figure 4.2b). This slowdown will increase the occupancy of the slave processors, w
is solvable by making more slave processors available2. The task misspeculation detection time is als
increased, but this latency is not a major concern with low task misspeculation rates.

The impact of communication latency on the master’s execution is minimized by performing it all
single processor. By caching the speculative memory image in the master processor’s local data ca
master generally stalls for off-core communication only when a traditional uniprocessor execution w
In addition, the MSSP related tasks are performed in the background. For instance, check-pointing
completely in hardware without additional instruction overhead. Only the special fork instruction is us
the distilled program to indicate where in the execution the checkpoint should be taken. Collection

2. There is a subtle interaction between task commit latency and task misspeculation accuracy. When the distilled program is constru
that it does not produce the value for a long dependence (Section 2.1.3), misspeculations can occur if the commit latency exceeds the d
length.

0.0 0.2 0.4 0.6 0.8 1.0

Probability of correct checkpoint (P)

0

1

2

3

4

Sp
ee

du
p

0.0 0.5 1.0 1.5 2.0

Normalized Overhead (O)

0

1

2

3

4

Sp
ee

du
p

α = 4

α = 3

α = 2

P = 1.0
P = .99
P = .98

P = .95

P = .90

P = .85

Figure 4.1:Performance predicted by the analytical model.(a) Speedup is super-linear with checkpoint predictio
accuracy, and, at high prediction accuracy, performance tracks that of the distilled program (results shown for O
(b) The architecture is insensitive to inter-processor communication latency (captured by parameter O) when
point prediction accuracy is high (results shown forα = 4).

a) b)

P = .80

47

xecu-
be

itical
rocess.
the L2
in and

e ver-

ation
/com-

ed chip
iously
roces-
fficient
regis-

ve) in

ate; I
nced to
a task’s
ulta-

n:
the rate
ritical

cted.
checkpoint information should be done in a manner that minimally interferes with distilled program e
tion; when data is read from storage arrays (e.g., the register file), reads of checkpoint values should
done in the background to avoid stalling the execution of the distilled program.

Similarly, inter-processor communication should be kept out of the verification and commit cr
path. I accomplish this act—in the same manner as for the master’s execution—by centralizing the p
I propose a centralized verification and commit unit at the first shared level of the cache hierarchy (
cache in the proposed implementation). The slave processors will have to communicate their live-
live-out values to this central commit unit, butthe communication from multiple slave processors can
be performed in parallel, overlapping the latencies. Once the data is present at the L2 cache, it can b
ified and committed without crossing the interconnect.

To summarize, a major goal of my implementation is to tolerate inter-processor communic
latency in the two critical paths of the execution paradigm: the master execution and the verification
mitment unit. In the next section, I describe the architecture that resulted from this approach.

4.4 An MSSP Implementation

As mentioned earlier in this dissertation, the MSSP paradigm can be implemented on an enhanc
multiprocessor. So it should not be a surprise that the proposed implementation looks much like prev
proposed chip multiprocessor architectures [7]. As seen in Figure 4.3(a), it consists of a number of p
sors, each with local first-level instruction and data caches, a unified L2 cache (banked to provide su
bandwidth), and an interconnection network to connect them all. Except for the addition of a global
ter file (GRF), it appears to be a standard CMP, at least at this level of detail.

In this implementation, I made the following design decisions:

• All processors are physically equivalent; a mode bit distinguishes their role (either master or sla
the execution. This decision avoids the complexity of designing a second core.

• Checkpoint, live-in, and live-out data must be stored in a central place with the architected st
selected the L2 cache as it already contains much of the active architected data. The L2 is enha
include the hardware necessary to assemble checkpoints and verify and commit task data. Since
live-ins may be physically distributed across multiple L2 cache banks and must be verified sim
neously, a distributed commit process is required.

c
rit

ic
a

l p
a

th
 #

2

increased latency →

va
lu

e
 p

re
d

ic
to

r

c
e

nt
ra

l v
e

rifi
e

r

va
lu

e
 p

re
d

ic
to

r

c
e

nt
ra

l v
e

rifi
e

r

predictions

live-ins and live-outs

❶
❶

❷
❷❸

❸

Figure 4.2:Critical path through the MSSP execution.a) there are two critical paths through an MSSP executio
1) the rate the master can execute the distilled program to compute the necessary value predictions, and 2)
that tasks can be verified and committed. b) If an implementation can avoid serializing latency on these two c
paths, increasing the communication latency should not affect task throughput, if live-ins are accurately predi

a) b)

c
rit

ic
a

l p
a

th
 #

1

same throughput

48

cache
e-in and
cache

ly rele-

nter-
ent.

ncing
tation

g the

r,
solution
). (2)

at have

te
re has

private
es an

d pro-
ive-ou
• There is no direct inter-processor communication. The master sends checkpoint data to the L2
banks where it can be used to satisfy requests by slave processors. Slave processors send all liv
live-out values to the L2 cache banks where the data is verified and committed. Processors can
speculative data in their local (L1 data) caches. In this way, a slave need only cache data current
vant to itself.

• Task live-outs and checkpoint differences are “written through” to the L2. To more efficiently use i
connect bandwidth, multiple values are accumulated for a particular bank before a message is s

In the following sub-sections, I overview the MSSP-specific mechanisms (Section 4.4.1), refere
the detailed descriptions at the end of this chapter, describe the operation of the implemen
(Section 4.4.2), and provide some application data to justify these design decisions (Section 4.4.3).

4.4.1 Mechanism Overviews

Figure 4.3.b-e shows an exploded view of the elements of the MSSP implementation, highlightin
differences in each element. I overview these differences here.

Processor Core.Besides support for theFORKandVERIFY instructions and for tracking the task numbe
the processor core has been enhanced in three major ways: (1) MSSP adds support in the branch re
path for mapping indirect branches from the original program to the distilled program (Section 4.5.7
At the retirement stage, MSSP adds structures for tracking the registers and memory locations th

(S
ec

.4
.5

.4
)

L2
 C

ac
he

in
co

m
in

g
m

es
sa

ge
s

(n
ot

 to
 s

ca
le

)

chkpt buffer
chkpt assembly
Sec. 4.5.3

live-in buffer
live-out buffer
verifier
Sec. 4.5.5

GRF L2 L2 L2 L2 L2 L2 L2 L2

P

L2 Cache Bank

Global Register File

Figure 4.3:Block diagram of the MSSP hardware.(a) chip multiprocessor consisting of processors with priva
instruction and data caches, a shared banked L2 cache, and a global register file (GRF), (b) the processor co
been enhanced to map program counters, collect live-in and live-out values, and track speculative data in the
caches, (c) the interconnection network supports new kinds of messages for efficiently moving register valud
parts of cache lines, (d) the GRF stores retired and speculative versions of registers for the original and distille
gram, and (e) the L2 cache banks include MSSP specific hardware for managing checkpoint data, live-in and lt
values.

a) b)

$
P
$

P
$

P
$

P
$

P
$

P
$

P
$

Interconnection Network

GRF L2

P
$

P
$

Interc

Visible Chkpt.
Arch RF

Map &
Physical
Register

Arch RF

Map &
Physical
Register

Reg. & Mem.
Word Messages
(Sec. 4.5.2)

c)

Processor Pipeline

map PCs
Sec. 4.5.7

collect
live-ins/outs
Sec. 4.5.1

track stale data
in L1 caches
Sec. 4.5.8 $

Processor Core

d)

e) ou
tg

oi
ng

 m
es

sa
ge

s

49

t across
MSSP
end of

blocks
aster)

check-
distinct
archi-

register
ucture
rifier
r live-

due
hitected
t data,
eeds to
at per-

task
value

t atomi-
chip,

a task
tired
en the
par-
along
l-
tagged
ived, it
should

ated. In
gister
ck not
cache
and the
uesting
s indi-
e cache.
been read or written, to capture task live-in and live-out values (Section 4.5.1); these values are sen
the interconnection network using special register and memory word messages (Section 4.5.2). (3)
requires a mechanism to load register file contents at the beginning of a task and to read them at the
a task (Section 4.5.9). In addition, the private caches track which lines contain speculative data;
holding speculative data are purged between tasks (for slaves) or periodically “refreshed” (for the m
to ensure that the processors see recent updates to architected state (Section 4.5.8).

Global Register File.The global register file (Section 4.5.4) keeps two distinct register files:actual and
checkpoint. The actual registers are the true architected state, which is programmer visable. The
point registers are those computed by the execution of the distilled program. These register files are
because register re-allocation may have been performed by the distilled program. In addition to an
tected register file that holds the view of these registers as of the end of the last retired task, each
file speculatively buffers the writes by in-flight tasks. These speculative updates are held in a str
much like the register map/physical register file found in most out-of-order processor cores. A ve
included in the global register file, compares the two files for each task to validate the task’s registe
ins (Section 4.5.5).

L2 Cache Banks.The L2 cache banks are similar in function to the GRF, but are organized differently
to the differences between the register and memory name-spaces. In addition to the storage for arc
memory state found in normal caches, the L2 cache banks include buffers for holding checkpoin
live-in values, and live-out values. Each type of data is stored in a separate buffer because the data n
be accessed in different ways. The checkpoint data is merged with architected data by hardware th
forms checkpoint assembly, the process of constructing the view of memory expected by a slave
(Section 4.5.3). The verifier hardware gathers the architected value for each buffered live-in memory
and ensures that the necessary coherence permissions are available to perform the verify/commi
cally (Section 4.5.5). The GRF and the L2 cache banks, which are physically distributed across the
use a two-phase commit algorithm to simultaneously agree that the task is verified.

4.4.2 High-level Operation:

The steady state operation of the implementation is shown in Figure 4.4. As the master executes
of the distilled program, it notes which registers were written by retired instructions and collects re
stores into message buffers. As buffers fill up they are sent to the appropriate L2 cache bank. Wh
master processor retires aFORKinstruction, the contents of the remaining message buffers are sent. In
allel, the final values of the written registers are read out of the register file and shipped to the GRF,
with the program counter (PC) specified by theFORKinstruction. This check-pointing generally takes mu
tiple cycles, during which the master continues executing subsequent tasks, and all of the data is
with the current checkpoint timestamp. When it can be assumed that all of the data has been rece
notifies the centralized task logic (located at the GRF) that the checkpoint is available and the task
be allocated to a processor when one is available.

The task logic then selects an idle processor and sends it the timestamp of the task to be alloc
addition, it sends a register checkpoint (including a PC) constructed by overlaying all of the partial re
file checkpoints over the architectural checkpoint register file. When the slave requires a cache blo
currently in the L2—recall that all stale blocks have been invalidated—it sends a request to the L2
that includes its timestamp. The data returned is assembled from the architectural memory state
check-pointed memory state. For each byte, the most recent value that is not newer than the req
timestamp is selected. If the returned cache block includes any checkpoint data, this information i
cated in the message from the L2 cache bank, and the stale bit is set when the data is loaded into th

50

m. The
ram into
dis-
val-
writes.
nsition
e

ces-
kpoint
-ins is
t been
t been
track

s store
ad was

eaches
ctions.
ers are
rement
e invali-

truction
is allo-
g the

in reg-
The slave executes two pieces of code: the transition code and the task from the original progra
slave first executes the transition code that rearranges the state data provided by the master prog
the locations that the slave task (i.e., the original program) expects it. Because this code is part of the
tilled program (i.e., not part of the task from the original program) the processor need not track live-in
ues, but it does track writes. Register writes are sent to the GRF, tagged as transition register
Transition stores are treated as checkpoint stores. The program distiller marks the end of the tra
code by making its last instruction aVERIFY instruction. TheVERIFY also encodes the starting PC of th
task in the original program; this PC is also sent as a transition register to the GRF.

The retirement of theVERIFY instruction marks the true beginning of the task, where the slave pro
sor must begin tracking live-in and live-out values. Task live-outs are tracked the same way that chec
writes are tracked, by recording stores into message buffers and noting register writes. Tracking live
similar to tracking live-outs, except that values read are recorded, but only those that have not ye
written. So, on the register side, I only set bits in the read register bitmask if the register has not ye
written by this task (as indicated by the written register bitmask). For loads, it means I need to keep
of the task’s memory writes at the processor. This tracking can be done with a structure that track
addresses and which bytes were written. This structure is searched to determine if part or all of a lo
satisfied by a store from within the task.

Generally, tasks are allowed to complete before they are fully verified. When a slave processor r
an instruction that is tagged as being the beginning of another task, it stops fetching additional instru
When this last instruction retires, the live-in register bitmask is sent to the GRF and the message buff
purged to their respective L2 cache banks. The registers written by the task are read out of the reti
register file into a register message buffer to the GRF. When all data has been sent, stale blocks ar
dated and the processor is free to be allocated to another task.

LImm mm r r f I I C C CT T MM M R R

Master Slave

Time fork retire
d

task begins

task completed

Global Register File and L2 cache banks

m memory checkpoint

register checkpoint

fork task

initial register checkpoint cache block

transition registers

tra
nsitio

n to

orig. program

Lr

f

I C

T

M Rmemory live-in/live-out values

live-in bitmask

register writes

Figure 4.4:Life of a single task (steady state operation of MSSP).The distilled version of a task is first executed
by the master processor; the master periodically sends messages when its message buffers fill, until a fork ins
is retired, at which point it sends any partially complete messages before sending a fork message. The task
cated to a slave, which first receives its initial register file then begins executing the transition code. Upon retirin
VERIFY instruction, it sends the written transition registers. When the task is complete, the slave sends a live-
ister mask and any remaining partially complete live-in/live-out memory messages.

M

51

ation
lid and
values,
t is not
dware
es not
tion of

ission
ignals

diffi-
ute the
pres-

ing later
ffered
copied
oint reg-
am and
he GRF

limited

e slave
n, it
e. Once
in non-

ng the

hap-
tion, I
tuition
arious
le 4.1
nts. It
ents bro-

f 1.5 on
0.7 to
that
-
execu-

tional
pite of

alysis.
When all previous tasks have completed, verification of a task can begin in earnest. Verific
requires that all L2 cache banks and the GRF to simultaneously agree that all live-in values are va
coherence permission to write the live-outs has been attained. For each of the task’s memory live-in
the L2 cache bank ensures that it has read permission to the cache line (requesting the block if i
present) and reads the corresponding architectural value into the live-in buffer. The live-in buffer har
compares the value against the recorded live-in value, signalling a misspeculation if the value do
match. Issues derived from maintaining these buffer entries coherent and overlapping the verifica
multiple tasks are discussed in Section 4.5.5.

Once an L2 cache bank has successfully verified all of its live-in values and acquired write perm
to all of the cache blocks with live-out values, it can signal that it is ready to commit the task. These s
are used in a two-phase commit algorithm (described in Section 4.5.5). If, for whatever reason, it is
cult to acquire the necessary blocks simultaneously, it is correct to signal a misspeculation and exec
task non-speculatively (as a traditional processor would). Policies for maximizing performance in the
ence of multiprocessor coherence are beyond the scope of this dissertation.

When a task misspeculation is detected, the master processor and all slave processors execut
tasks are reset (including an invalidation of all stale cache lines). Furthermore, all speculatively bu
(un-committed) data for later tasks is cleared. To restart the execution, first, the actual register file is
to the checkpoint register file. Then, a processor is selected to be the master and is sent the checkp
ister file. The master processor maps the architected PC to the PC of an entry into the distilled progr
begins execution. Then a processor is selected for the non-speculative execution of the task, and t
sends that processor the architected register file.

Task sizes vary and generally some tasks are (dynamically) longer than can be buffered in the
resources of the L2 cache banks. In these cases, I perform what is called anearlyverification. In effect, the
slave processor pretends that it has finished the task. Logically, at an arbitrary point in the task, th
flushes all in-flight instructions and sends all live-out values for verification. In parallel with verificatio
purges all stale blocks from its cache and requests the GRF to send it the new architected register fil
this new register file is received and the task has been verified, the slave processor can now execute
speculative mode. In Section 4.5.10, I describe how this early verification can be done without stoppi
execution of the task.

4.4.3 Program Data That Validates This Approach

Although this implementation is justified somewhat by the performance results in the following c
ter, I find that more intuition can be gained from doing back-of-the-envelope calculations. In this sec
present estimates of storage and bandwidth requirements for this implementation to give some in
about its feasibility. I have collected some empirical data about the register and memory usage of v
size fragments of program’s execution (shown in Figure 4.5). Approximate values are shown in Tab
for tasks of 100, 200, and 800 instructions, for which I calculate storage and bandwidth requireme
should be noted that these are not tasks selected by any task selection algorithms, but merely segm
ken at fixed length intervals, so these estimates are intended to taken with a grain of salt.

I assume the cores to be comparable to modern processors and would achieve an average IPC o
these workloads if executed in normal uniprocessor mode (my baseline 4-wide machine ranges from
2.0 IPC for SpecInt2000). I would like the implementation to be able to support distilled programs
execute three times faster than the original program (i.e., an equivalent IPC of 4.5). Thus the master com
pletes 100, 200, and 800 instruction tasks in 22, 44, and 178 cycles, respectively. It is expected that
tion of the tasks by the slave processors will take longer than they would if they were part of a tradi
uniprocessor execution (due to inter-processor communication and incomplete branch history). In s
this fact, in the bandwidth calculations that follow, I assume no elongation to do a worst case an
Thus, the slave completes the 100, 200, and 800 instruction tasks in 66, 133, and 533 cycles.

52

onstant,
0 200 400 600 800

Task Size (in dynamic instructions)

6

8

10

12

14

#

o
f

l
i
v
e
-
i
n

r
e
g
i
s
t
e
r
s

Registers (Live-in)

0 200 400 600 800

Task Size (in dynamic instructions)

10

20

30

40

50

#

o
f

l
i
v
e
-
o
u
t

r
e
g
i
s
t
e
r
s

Registers (Live-out)

bzip2
crafty
eon
gap
gcc
gzip
mcf
parser
perl
twolf
vortex
vpr

0 200 400 600 800

Task Size (in dynamic instructions)

0

50

100

150

#

o
f

l
i
v
e
-
i
n

8
B

w
o
r
d
s

Memory (Live-in)

0 200 400 600 800

Task Size (in dynamic instructions)

0

50

100

#

o
f

l
i
v
e
-
o
u
t

8
B

w
o
r
d
s

Memory (Live-out)

bzip2
crafty
eon
gap
gcc
gzip
mcf
parser
perl
twolf
vortex
vpr

Figure 4.5:Characterization of task live-in and live-out set sizes.Register and memory live-in and live-out set
sizes are shown for tasks of 50, 100, 200, 400 and 800 dynamic instructions. Register set sizes are almost c
while memory set sizes are slightly sub-linear with task size.

TABLE 4.1 Raw data on average number of 64-bit registers, 64B cache lines for refreshes, and 8B memory
words moved for tasks of different sizes, estimated from Figure 4.5.

Task
Size

Registers Refreshes (blocks) Memory Words

M-out S-in Trans. S-out M-in S-in M-out S-LI S-LO

100 32 63 14 32 3 7 10 15 10

200 32 63 14 32 5 15 20 30 20

800 32 63 14 32 13 40 50 80 50

53

ata
4 dif-

task; I
truction
ushed
original
stale

stimate
he task;
ritten
by the

imiza-
ing the
tasks
Bandwidths. I walk through the calculation of the 200 instruction tasks in detail, but initial and final d
for 100, 200, and 800 instruction tasks is provided in Table 4.2. I consider the bandwidth required at
ferent endpoints: the master, the slave, the GRF, and the L2 cache bank.

Master. In steady state, the master has to communicate any register changes since the last forked
assume that the master writes the same number of registers as the original program (32 for 200 ins
task), which I believe to be conservative. In addition, any stores performed by the task need to be fl
down to the L2 cache banks; again, I conservatively assume that the master does no more than the
program (~20 memory words for 200 instruction tasks). Lastly, I periodically refresh the master’s
cache blocks to remove old checkpoint stores and get committed stores by the original program. I e
that perhaps one-fourth as many blocks should be refreshed as memory words were stored to by t
the factor of four accounts for the fact that multiple words of the same cache block might have been w
and there is likely some overlap between the blocks written by sequential tasks (as is suggested
memory live-out data in Figure 4.5). I assume 5 blocks are refreshed per 200 instruction task.

Master Bandwidth:

32 registers (at 7 regs/block) = 5 blocks
20 memory words (at 4 words/block) = 5 blocks
memory refresh = 5 blocks
Total = 15 blocks

Over a 44 cycle task, that rate is a little more than 1 block every 3 cycles.

Slave.Slaves are first sent an initial copy of the register file (62 registers plus PC, assuming no opt
tion to avoid sending unchanged registers, 9 blocks). Then the slave processor can begin refresh
invalidated stale blocks in its cache; I assume that 15 blocks will be refreshed for 200 instruction

Figure 4.6:Graphical representation of flow of register and memory data.For use as a key for data in Table 4.1

Master

Slave

L2 GRF

M-out (checkpoints)

S-in (initial registers)

Trans. (transition registers)

S-out (live-out regs)

M-in (refresh master)

M-out (checkpoints)

S-in (refresh slaves)

S-LI (live-in values)

S-LO (live-out values)

TABLE 4.2 Estimated bandwidths calculated from raw data in Table 4.1.

Task
Size

Data Transferred per Task Cycles per Task Bandwidth messages (bytes) per cycle

M S L2 R M S M S L2 R

100 11 30 30 / 8 21 22 66 .50 (32) .45 (29) .17 (11) .95 (61)

200 15 44 43 / 8 21 44 133 .34 (22) .33 (21) .12 (8) .47 (30)

800 31 89 99 / 8 21 178 533 .17 (11) .17 (11) .07 (4) .12 (8)

54

isters)
pdates
r 200
, or 5

lated
 above:

dwidth
expect
d all of
es the
d in

of the
be 13
(estimated as half the number of memory live-ins). When the slave retires theVERIFY instruction, the writ-
ten transition registers are sent to the GRF (slightly less than half of the integer register file (14 reg
can be re-mapped with 2 blocks). By the end of the task, the slave will have sent the final register u
(32 registers, or 5 blocks for 200 instruction tasks), memory live-ins (about 30 memory words fo
instruction tasks, or 8 blocks), and the stores (about 20 memory words for 200 instruction tasks
blocks).

Slave Bandwidth:

63 initial registers (at 7 regs/block) = 9 blocks
memory refresh = 15 blocks
14 transition registers (at 7 regs/block) = 2 blocks
32 written registers (at 7 regs/block) = 5 blocks
30 live-in memory words (at 4 words/block) = 8 blocks
20 written memory words (at 4 words/block) = 5 blocks
Total = 44 blocks

Over a 133 cycle slave task, that rate is a little above 1 block every 3 cycles.

GRF/L2 Cache Bank.The GRF and L2 cache banks have to absorb and produce all of the register-re
and memory-related (respectively) traffic required by the master and slave processors. So from the

GRF Bandwidth:

32 checkpoint registers (at 7 regs/block) = 5 blocks
62 initial registers (at 7 regs/block) = 9 blocks
14 transition registers (at 7 regs/block) = 2 blocks
32 written registers (at 7 regs/block) = 5 blocks
Total: = 21 blocks/task

Because the task throughput is one task every 44 cycles, this communication rate requires ban
of just less than one block every other cycle. This rate is perhaps an over-estimate because I don’t
the master to write as many registers as the slave, nor that so many transition registers will be neede
the time (right now the distiller uses at most one for the stack pointer). Nevertheless, this unit requir
most bandwidth, suggesting the optimizations to avoid sending a full initial register file (describe
Section 4.5.9) will be beneficial.

L2 Cache Bank Bandwidth:

20 memory words (at 4 words/block) = 5 blocks
memory refresh (Master) = 5 blocks
memory refresh (Slave) = 15 blocks
30 live-in memory words (at 4 words/block) = 8 blocks
20 written memory words (at 4 words/block) = 5 blocks
Total: = 43 blocks

Because this traffic is spread across multiple banks, it is not a major bottle neck. Even if a third
traffic was directed at one bank (a rather severe hot spot for a system with 8 banks), that would only
blocks every 44 cycles, or less than one block every three cycles.

55

check-
I con-
e-out

ors,

over-
such a
struc-

data, at
l 4 bits
b data
ificant
igning
ss the
about

cuses
s sec-
n and

are:
of com-
rn.

ve to be
ance is
eed the
er bur-
shorter
unique
at was
e with
 Storage.With the same data I estimate the amount of storage space that will be needed to hold the
point, live-in, and speculative store data. My default implementation includes eight processors, so
sider storage for eight tasks. For 800 instruction tasks (80 double-word live-ins, 50 double-word liv
stores/checkpoint stores):

Live-ins:

80 live-ins/task * 8 tasks = 640 live-ins
640 live-ins * 16B storage/live-in = 10240B = 10KB storage

Checkpoints/Live-outs:

50 live-ins/task * 8 tasks = 400 live-ins
400 live-ins * 16B storage/live-in = 6400B = 6.25KB storage each

10KB + 2 * 6.25KB = 23KB storage

For a 2MB L2, which is available on existing processors and will likely be small for future process
this amount of storage is only about 1% of the L2 storage resources.

Although it is one of our goals to minimize the amount of MSSP specific hardware, in this case,
loading existing storage arrays appears to be inefficient. For example, the speculative data takes
small amount of storage relative to the size of the L2, I do not think it makes sense to use a unified
ture, as is demonstrated by a quick thought experiment. If L2 cache blocks stored non-architectural
minimum the current array would have to be augmented to store the timestamp, at least an additiona
of state. Assuming that these bits were added to every block uniformly, a cache with 64B blocks (512
+ 40b tag = 552b) would have 0.7% overhead (not counting the higher utilization of the cache) a sign
fraction of the whole amount of storage necessary for all of the speculative data. Furthermore, des
specialized arrays for this data allows it to be searched and manipulated more efficiently. I discu
design of these structures and other implementation details in Section 4.5, after a brief interlude
power consumption.

4.4.4 Power Consumption

Although power consumption is a serious implementation constraint, it is not one of the main fo
of this dissertation. As a result, the proposed implementation is not particularly power efficient. In thi
tion, I intend to demonstrate that this inefficiency is a characteristic of the proposed implementatio
not a characteristic of the execution paradigm and that power efficient implementations are likely.

The two major features of the MSSP paradigm that would likely be the root of power inefficiency
(1) the use of multiple processors to execute a sequential program and (2) the increased frequency
munication required between processors and the L2 cache. I will discuss each of these issues in tu

Using N processors need not use N times as much power, especially if the processors do not ha
equivalent. Because the architecture is tolerant of the slave processor’s execution rate— perform
largely determined by the execution rate of the master processor—the slave processors do not n
microarchitectural complexity used to maximize the performance of modern processors or the pow
den that goes along with it. The slave processors can be designed to be simpler, narrower, and with
pipelines, and they can be clocked at lower frequencies to enable lower voltages. Furthermore, the
role of the master processor as a value predictor leads to other power optimizations. Similar to wh
proposed with the DIVA checker [4], the master processor can potentially be executed at a voltag

56

heck-

e dif-
ower
n P =

ption.
ain the

is an
rchitec-
d

cycle
to be

are not
cretely
tation

nd the
ters and
y live-
held in a
gisters
hen an
r iden-
gister.

o

ar to
written.
loads,
with a
termine
s for

 v
 for this
minimal noise margins, if it can be engineered so that all noise-induced faults will manifest as bad c
point writes that will be detected during task verification.

Although I find reasoning about the impact of the additional communication bandwidth to be mor
ficult, I am reassured by the fact that this communication is rather latency tolerant. If the dynamic p
consumption of the interconnection network can be modelled with the traditional logic power equatio
aCV2F (whereP is power,a is an activity factor,C is capacitance,V is voltage, andF is frequency) and
voltage scaling can be applied, then increases in latency yield a cubed reduction in power consum
Realistically, the power benefits will not be quite this high as some measure must be taken to maint
required bandwidth, either by increasing the width of the interconnect or its degree of pipelining.

Finally, consider that the MSSP paradigm can only be considered power inefficient where there
alternative means of achieving the same level of performance that uses less power. The traditional a
tural approaches to improving sequential program performance (e.g., deeper or wider pipelines, more an
larger predictors) have their own power costs and, as the distance signals can travel in a single
decreases, monolithic processor designs will become even less efficient requiring more information
replicated and cached.

4.5 Mechanism Details

In this section, I describe a number of MSSP specific mechanisms in detail. These descriptions
fundamental to the MSSP paradigm, but are meant to serve two purposes. First, they explain con
one way that the required functionality could be implemented. Second, they document the implemen
that was used to collect the results presented in Chapter 5.

4.5.1 Live-in/Live-out Collection

Master and slave processors both must track the registers and memory locations they write, a
same mechanisms are used for both processor roles, although the different characteristics of regis
memory led me to develop separate mechanisms for tracking register and memory writes. Memor
outs are captured at retire time, by recording a store’s address, size, and value. These values are
structure organized like a store buffer until they are sent to the appropriate L2 cache bank. Since re
are frequently over-written, no register values are sent to the GRF until the end of the task. Thus, w
instruction that writes a register is retired, the hardware only needs to record the architectural registe
tifier. The set of written registers is tracked using a bitmask that has one bit for each architected re
When the task ends, the final values of these registers are read3 from the physical register file and sent t
the GRF.

In addition, slave processors need to track their live-in values. Tracking live-in values is simil
tracking live-out values, except that values read are recorded, but only those that have not yet been
So, for register reads, I filter updates to a read register bitmask with the written register bitmask. For
it means I need to keep track of the task’s memory writes at the processor. This tracking can be done
structure that tracks store addresses and which bytes were written. This structure is searched to de
if part or all of a load was satisfied by a store from within the task. Figure 4.7 shows the structure
tracking live-in and live-out values and their storage requirements.

3. In the case of the master, it is important to be able to read out these registers without stalling execution; reading thesealues
can be accomplished by exploiting unused register read bandwidth or by creating a retirement register file specifically
purpose.

57

be sent
Proces-
acked

s were
e (part
n first

k—via
nt.

lues
s and
proces-
itected
a given

atomi-
ware.
in filter

hitected
ntially
etires a
rite-
serious
observ-
s been
e local
ank to
a.

t retire
d bytes
Since the live-in and live-out values are stored at the L2 cache banks and the GRF, they must
over the interconnection network using special message types (described in the next sub-section).
sors periodically send memory live-in and live-out values as they accumulate. Register live-outs are p
into messages as they are read out of the register file. Only the bitmask indicating which register
live-ins need to be sent; register live-in values are available in the architected checkpoint register fil
of the GRF, described in Section 4.5.4). Live-in memory values are captured at the processor whe
used; the possibility that architected memory values can be modified during the execution of a tas
task commitment or coherent writes—makes other value tracking schemes challenging to impleme

Two subtleties of the implementation deserve mention: 1) the opportunity for different live-in va
for the same memory location, and 2) the window of vulnerability between capture of live-out value
when they are received by the L2 cache banks. Whenever cache lines are displaced from a slave
sor’s cache, the contents of the cache line could be different if it is brought back in, because the arch
state may have been updated in the mean time. For this reason, two loads to the same address from
task could receive different values without an intervening store in the task. Since tasks are retired
cally one of the values must be incorrect. I delegate the detection of this situation to the verifier hard
When a cache block is replaced in a slave processor’s cache, any corresponding entries in the live-
are cleared, ensuring that the slave will send all copies of the value observed to the verifier.

Because non-architected state is created by the processors, but buffered and merged with arc
data remotely at the L2 cache banks, there is a window of vulnerability when cache data could pote
get lost. It occurs when a data block is in transit to a processor’s L1 data cache when the processor r
store to the block. This vulnerability is largely a result of the combination of my selections of w
through and no-write-allocate policies. It is both a correctness issue for non-speculative tasks and a
performance issue for the master. Because this window results from data in transmission being un
able, the implementation keeps a copy of all non-architectural data retired by the processor until it ha
acknowledged by the L2 cache bank. This data is merged with cache lines received from the L2; th
data will always be more recent than the received data. This buffering also allows the L2 cache b
send negative acknowledgements (“nacks”) when no storage is available, without risking losing dat

Retirement Stage

written registers

live-in registers

Address bytemask

. .
 .

memory live-in filter

message buffers(1 per L2 bank, 1 for reg bank)

Processor Pipeline

Figure 4.7:Hardware structures for collecting live-in and live-out values.Register writes and reads are recorded
in bitmasks; the final values of these registers are read at the end of the task. Memory values are recorded a
time into message buffers, to be sent to the L2 bank. As a load or a store is recorded, the location of the recorde
are tracked in the memory live-in filter, which is used to filter future memory live-ins.

58

twork
ssages.
registers
s, 64b
same
uld be
In addi-

e L2
rder, as
nt data
ligned

data in
ps)

can be
check-
entries
ust be
n the
ntries.

tectural
atching
a
from

t byte.

ks.
ta. Reg-
4.5.2 Register/Memory Word Messaging

To efficiently communicate register file and memory image differences, the interconnection ne
interfaces support two additional types of messages: register messages and memory word me
Figure 4.8 shows a pair of packet formats assuming 64B messages: register messages can hold 7
(64b value and 8b identifier) and memory messages hold 4 memory words (48b physical addres
value, 8 valid bits (one per byte), and 8 bits of flags). Live-in and live-out values can be sent in the
message by flagging each with its type. For example, transition registers and live-out registers co
packed in the same message using four bits to specify that the first N values are transition registers.
tion, all messages are tagged with the processor’s current timestamp.

4.5.3 Memory Checkpoint Assembly

Memory checkpoints—the view of memory required by a particular task—are constructed by th
cache banks by layering the difference data over the architected data in increasing timestamp o
described in Section 2.2.1. As mentioned in Section 4.4.3, this implementation stores the checkpoi
in a special structure and not in the L2 cache arrays. Each entry of the checkpoint buffer holds an a
64-bit value, eight valid bits (one per byte), a timestamp, and an address. Storing the checkpoint
this way allows it to be deallocated trivially (with a flash invalidate of entries with matching timestam
when the corresponding task commits.

My implementation requests checkpoint data at the granularity of cache blocks, so that the data
cached in the slave processor’s L1 data cache. To construct a cache block’s worth of the memory
point, the differences that match the cache block have to be merged with the architected data. All
that match the cache block, which is larger than the granularity at which checkpoints are stores, m
considered. As there may be contributions from multiple timestamps, potentially many entries i
checkpoint buffer may need to be read. In practice, 85% of the time there are two or less matching e
As a result, the hardware can be designed to read them out serially and merge them with the archi
data as shown in Figure 4.9. First, the tags are probed to find all matching entries. Second, the m
entries are read out one by one and merged in themerging block. Each byte is merged independently, and
byte is only kept if it has the most recent timestamp in that location. Third, the architectural data read
the L2 cache array is merged; architectural data is only kept if no checkpoint value was found for tha

64b40b

Physical Address DataType

2b

Bytemask

8b

Timestamp

5b

Type = Chkpt, Live-in, or Live-out Value

119 bits: 4 fit in a 64B (512b) packet

ID0 ID1 ID2 ID3 ID4 ID5 ID6

register value 2

register value 0
register value 1

register value 3
register value 4
register value 5
register value 6

Memory Word Packet

Register Packet

7 register identifiers (8b)
7 register values (64b)
fit in a 64B (512b) packet

type

type = Chkpt, Transition, or Original

Figure 4.8: Packet formats for sending memory words and register values through interconnection networ
Memory packets send 4 64b double words with address and bytemasks indicating which bytes contain da

ister packets send 7 64b register values and their identifiers.

59

ctural
ckpoint

d task
rchitec-

name
) than

nd tran-
e com-
by the
e slave

registers,
isters
aming

st (in
wn in
gis-
has a

egister,
to the

mmit-
ntry is

ommit-

s vali
out o
When few checkpoint entries match, they can be read out in parallel with the reading of the archite
data. In these cases, the L2 hit time is only increased by the time to merge the architectural and che
data.

4.5.4 Global Register File

The global register file holds the architected register values and the checkpoint, transition, an
live-out registers. Register file checkpoints are simpler to manage because—at least in the Alpha a
ture—there are no partial register writes so no merging is required and the architectural register
space is small. These characteristics lead to a different organization for the global register file (GRF
for the L2 cache banks.

There are three independent name spaces tracked by the GRF: visible state, checkpoint state, a
sition state. Visible state is the register state associated with the original program’s execution, and th
mitted version of visible state is the architected register state. The checkpoint state is that produced
master processor’s execution. The transition state is produced by the transition code executed by th
processors. As described in Section 3.3, the transition code is necessary because state, especially
may be mapped differently in the distilled program than the original program. Thus, the transition reg
hold the state of the distilled program after it has been mapped back to the original program’s n
scheme.

Functionally, the GRF is like an ARB [26] for registers: when queried, the GRF returns the newe
program order) value that is older than the requesting task. The organization of the GRF (sho
Figure 4.10), which differs from the ARB for efficiency reasons, is similar to the organization of the re
ter file in some out-of-order processors, like the HP-8000 family [41]. For each namespace, the GRF
committed register file, a set of register maps, and a set of physical registers. For each architectural r
the GRF has one map entry for each active task. If the task wrote a register, the map entry points
physical register that holds the value, otherwise the map entry is invalid. When a register for an unco
ted task is requested, the register’s map entries are read (in parallel) and the most recent valid e
selected. If no uncommitted value older than the requesting task exists, the value is read from the c
ted register file.

Figure 4.9:Checkpoint assembly from entries of the checkpoint buffer.(a) Matching entries of the checkpoint
buffer are identified, (b) the matching entries are read out serially and merged in a merging structure that keepd
bits and timestamps on a per byte basis, and (c) the checkpoint data is merged with the architectural data readf
the L2 cache array (checkpoint data always takes precedence over architectural data).

a) b)
c)

ad
dr

es
s

ta
gs

probe

mask timestampaddr value

byte tsbyte ts

}merging block

checkpoint buffer architected data
(from L2 cache)

merging block

final assembled
cache block

60

icate the
rifica-
task.
cause
ith the
sk, the
st pro-
r values

gran-
es the
ve-ins,
h log-
nd L2
unica-
will

ion is
egis-
com-
, read
ue in a
, so is
r archi-
write
ntries,
old-

l.

isi-
) Each
inte
.

Because the complete register images are maintained in the GRF, the slave tasks can commun
set of live-in registers read by sending a bitmask, with one bit per architectural register. Register ve
tion is performed by comparing the transition registers to the original program registers for a given
Only the registers indicated by the live-in register bitmask must match for the task to be validated. Be
transition registers are the mapping of a given task’s state, only transition registers associated w
requesting task are considered. If no matching transition register was written for the requesting ta
register must have been mapped similarly in both the distilled and original program and the reque
ceeds as a request for a checkpoint register for the same task. When a task is committed, its registe
are copied to the committed register file.

4.5.5 Verification/Commitment

As previously mentioned, verification and commitment is like performing instruction reuse at the
ularity of a task and must appear atomic to ensure no consistency model violations. MSSP provid
appearance of atomicity by acquiring the necessary coherence permissions (read for lines with li
write for lines with live-outs) and delaying coherence requests while live-outs are committed. Thoug
ically centralized, the verification and commitment process is physically distributed across the GRF a
cache banks requiring a two-phase commit protocol. Also, to avoid putting the inter-processor comm
tion latency on the critical path, it is important to be able to verify tasks in parallel; initially, though, I
describe a sequential commit process.

The GRF and each L2 cache bank independently verify their portion of live-ins. Register verificat
straightforward; the original program register file is compared to the transition register file, and if all r
ters indicated by the live-in mask match, the GRF raises a verify signal. Memory verification is more
plicated, in part due to coherence. When a memory live-in value is received by the L2 cache bank
access to the corresponding block is acquired and the architected value is stored with the live-in val
live-in buffer. If the block in the cache is invalidated (either due to a cast-out or coherence request)
the architected value. When all live-ins for the oldest timestamp have been received and match thei
tected value, the L2 raises its read verify signal. When the L2 receives live-outs, it tries to acquire
permission to the necessary cache blocks and tracks this permission with a bit in the live-out buffer e
which are kept coherent with the cache. A write verify signal, raised when all live-out values with the
est timestamp have permission, is ANDed with the read verify signal to form the bank’s verify signa

G
lo

ba
l R

eg
is

te
r

F
ile

m
ap

re
gs

committed

original prog

m
ap

re
gs

committed

checkpoint

m
ap

transition

verifier

Figure 4.10:Detail of global register file implementation.a) The GRF tracks three independent namespaces (v
ble state, checkpoint state, and transition state). Checkpoint and transition state share a physical register file. b
register has a map table entry for each in-flight task, which can be invalid (indicated by an ‘X’) or contain a por
to a physical register. The GRF supplies the youngest register write from a task older than the requesting task

r12: X X P51 P17 X P98 X

oldest task

gets P17

gets committed values

younger tasks

a) b)

61

these
r if a

rify sig-
dcasts
it stops
r more
essful.
oth at
heck-

asks
each

tected
amp (if
value.
cted
ceding
e live-

e cen-
essary
ulation;
cov-
sms to

y out-
buff-
age is

he proces-

e GRF
evious
a small
task. As
ning

any
other-

new tasks
ing a
fails to

for a
f input
To verify a task, all of the verification signals have to be set simultaneously, which is hindered by
signals coming from distant parts of the chip and the fact that they can transition from set to clea
coherence transaction steals away a necessary block. In our two-phase commit protocol, these ve
nals are routed to a central “arbiter” on the chip. This arbiter ANDs these signals together and broa
the result back to the register and L2 cache banks. When a bank sees this resulting signal go high,
processing coherence requests to avoid having to lower its own signal. If the signal remains high fo
than the round trip latency of the longest path, then all parties know that verification has been succ
Committing a task involves copying live-out data with the oldest timestamp into architected state, b
the L2 cache banks and in the global register file. In addition, buffered live-in values and memory c
point values can be invalidated.

To avoid sequential communication latency in the verification process, verification of multiple t
can be overlapped. Overlapping the verification requires that the live-in and live-out buffers search
other when new entries are written (much like load/store queues) to keep the live-in value’s archi
value up-to-date. In addition, each byte of the architected value needs to be tagged with the timest
any) of its current source, because live-outs can come out of order and write a subset of a live-in
Lastly, I need the ability to source data from the live-out buffer while it is lazily copied to the archite
state. A task can begin verification as soon as all of its live-ins have been received and all of the pre
tasks’ live-outs have been received. Tasks must commit in order, but, if data can be sourced from th
out buffer, commitment can be as simple as setting acommittedbit for the task’s entries in the live-out
buffer; movement of committed data to the L2 cache array can be done in the background.

If a live-in does not match architected state, a misspeculation is signalled. This signal is sent to th
tral arbiter and forwarded to all processors and all banks. Also, if, for some reason, all of the nec
coherence permissions cannot be acquired simultaneously, the L2 cache bank signals a misspec
policies for decidingwhento signal a misspeculation are beyond the scope of this dissertation. After re
ery, the task will execute non-speculatively, enabling forward progress, using the existing mechani
ensure forward progress in multiprocessors.

The peak bandwidth at which live-in and live-out data can be received by an L2 cache bank ma
strip the rate at which it can be written into the buffer structures. If this outstripping can occur, some
ering may be necessary to smooth out bursts of traffic. If these buffers are full and another mess
received, it can be dropped and a re-send requested, because copies of the messages are kept at t
sor until acknowledged.

4.5.6 Misspeculation Detection/Recovery Path

As mentioned in the previous section, misspeculations are detected in the L2 cache banks or th
and signalled to the other storage entities through the central arbiter. Because the live-outs of all pr
tasks must have been received for the misspeculation to have been detected, there is usually only
number of cycles between when a misspeculation is detected and when its task becomes the oldest
a result, for simplicity, this MSSP implementation waits for all previous tasks to commit before begin
recovery.

Failed verification is not the only means of instigating a recovery. For MSSP to be resilient to
faults in distilled program construction, a watch dog timer is necessary to handle cases that would
wise cause deadlock. One such case occurs when the master enters a state where it ceases to fork
(e.g., it enters an infinite loop that includes no fork instructions); this situation is remedied by signall
recovery when no slave tasks are in flight. Another case occurs when a slave task is forked, but it
transition to the original program; this case is handled by restarting if the head task fails to transition
given amount of time. The case where the master provides a speculative slave task with a set o

62

y

state
copied
ry (see
old mas-
xecu-

distilled
es will

ronous
that it
ccur
cessor

by the
non-

map-
hniques
l pro-
e other

ically
les, the
s after
diates
ck.

ple-
are 1)

ne that
e used

n in
pping.

esults
o mini-
rcent of
ation,
e of L2
them-
4-byte
guess
parameters that prevent it from ever reaching a task boundary (e.g., an infinite loop) is detected by the earl
verification mechanism (described in Section 4.5.10).

A recovery entails squashing all processor executions and invalidating all non-architected
(including any stale data in processor caches). Then, within the GRF, the architected register file is
to the committed checkpoint register file. For the checkpoint, the PC is mapped to the PC of an ent
Section 4.5.7 below). Processors are selected to be the new master—typically the same one as the
ter for cache affinity—and a new slave. Each is sent a copy of its register file and directed to begin e
tion. The master processor executes the entry transition code before executing the next task in the
program proper. The slave processor executes its task non-speculatively since all of its live-in valu
come from architected state.

Failed verification can also be used to provide a simple mechanism for handling traps and synch
interrupts. If a slave task encounters a trap or synchronous interrupt, it can signal to the L2/GRF
should fail verification. After recovery, the task will be executed non-speculatively. The fault should o
again when the faulting instruction is re-executed, and can be handled using the conventional unipro
mechanisms. Asynchronous interrupts can be handled similarly: when the interrupt is received
CMP, all speculative tasks are forced to fail verification. After recovery or if the head task was already
speculative, the interrupt is delivered to using conventional techniques.

4.5.7 Mechanisms for Mapping Between Programs

As described in Section 3.3.1, the distinctness of the distilled and original program necessitate
ping PCs between programs under certain circumstances. The implementation uses different tec
depending on the direction of the mapping. When mapping from the distilled program to the origina
gram, the statically mapped PC can be embedded in the distilled program text. When mapping th
way, table lookup is employed.

Distilled program PCs to be mapped, be they link PCs in call instructions or task start PCs inVERIFY
instructions, are fixed for a given instruction in the distilled program. As a result, they can be stat
translated during the construction of the distilled program. To avoid any unnecessary hardware tab
mapped PCs are encoded directly into the distilled program. To encode the full PC instruction slot
the mapping instruction can be used to provide a large enough immediate. These inlined imme
require a change in the way return addresses are computed for insertion into the return address sta

Mapping from the original program to the distilled program is performed by table lookup so the im
mentation can leave the original program text unmodified. The two cases that need to be supported
indirect branches and 2) entries into the distilled program.

Mapping indirect branch targets is one of the most intrusive changes to the processor core, but o
is latency tolerant. Since it performs a similar duty, the hardware is organized much like the hardwar
to accelerate virtual memory. Most mapping requests can be satisfied by a small (e.g., 64 entry) mapping
lookaside buffer (MLB) that holds pairs of PCs <original program, distilled program>. As is show
Section 5.2.12, most programs are insensitive to the addition of a few cycle delay to perform this ma

When an MLB lookup results in a miss, a page table structure in memory is accessed. As my r
show that performance is insensitive to the time to access this page table, my implementation tries t
mize the size of this page table. A sparse page table is used because only about one-half to two pe
instructions are active indirect branch targets and they are not evenly distributed. My implement
shown in Figure 4.11, uses two tables created by the program distiller: the L1 table encodes the rang
entries associated with a page of original program text, and the L2 table encodes the map entries
selves. The benchmarks have an average of 2 to 10 entries per thousand static instructions (16
entries fit on a 64-byte cache line). By ordering the entries sequentially, the mechanism could often

63

could
anks—

s the
ts, the

with
ted to a
data in

tains
ince it
dered
need to

lida-
ta was
culative
mmit-
erence
proto-

y MSSP

own in
t the
urrent
ate and

i-
oking
oncat-
. The
which block holds the correct entry on the first try. Because of its latency tolerance the state machine
be implemented either at the processor—buffering the tables in private cache—or at the L2 cache b
buffering the tables in the L2 cache arrays.

Entry PCs can be mapped with a similar mechanism, but the entry MLB is located at the GRF. A
set of entry PCs is smaller and exhibits better locality than the set of active indirect branch targe
same hardware structure has a smaller miss rate (generally by a factor of two).

4.5.8 Tracking Stale Data and Refreshing

Unlike at the L2, (speculative) checkpoint data and speculatively written data is intermingled
architected data in the L1 data caches. Since the checkpoints are complete before the task is alloca
slave processor—unlike other speculative multithreading paradigms—it is unnecessary to annotate
the L1 with the timestamp of the task that created it4. Instead, a singlestalebit is kept per block that indi-
cates when the block is out-of-sync with current architected state. A block is marked stale if (1) it con
checkpoint data, (2) a speculative task stores to it, or (3) a write has been committed to this block s
was loaded by this processor. Even this single bit is just a performance optimization, which is ren
unnecessary if the data cache is flushed after every task. With the stale bits, only the tagged blocks
be invalidated.

Setting the stale bit is trivial in the first two cases; the third is accomplished by extending an inva
tion coherence protocol. When a cache block is fetched, the L2 cache bank knows if checkpoint da
used and communicates this information using a bit in the message. When a retired store by a spe
task is written into the cache, the block’s stale bit is set. The most difficult case is when a store is co
ted at the L2 cache bank, but this case is very similar to need to invalidate a block in a traditional coh
protocol. Thus, as previous research has done [15, 32, 33, 73, 74], I extend the existing invalidation
col to send “invalidate” messages when a store is committed. These messages are interpreted b
processors as an indication to set their stale bits.

Although not necessary for correctness, it helps performance—by 20 percent on average, as sh
Section 5.2.11—if the master periodically “refreshes” stale blocks in its cache. A refresh is jus
retrieval from the L2 of a block that the processor already has in its cache. The refresh brings the c
view of the block (from the most recent timestamp) and enables the master to shed old checkpoint st

4. This statement assumes that each processor is executing a single task at a time.

Figure 4.11:A sparse page table implementation for mapping.The L1 table has one entry per (8kB) page of orig
nal program text. These entries hold a (16-bit) pointer to the first L2 entry associated with the page. Thus, by lo
at two consecutive L1 entries, a state machine can identify the range in the L2 table to search. Each L2 entry c
enates the (11-bit) original program page offset and a (21-bit) offset from the beginning of the distilled program
index in the first table is found by subtracting off a base pointer and dividing by the page size.

base

extent

original PC page size

valid

L1 table base

L1 index

L2 table base

- /

<

L2 index

L1

L2 table

x 4

distilled base

distilled PCoriginal PC & 0x1fff +=
hit

page offset

64

o balance
hile less
ism: a
re are

ssitating
acting
band-
gister
I briefly

task,
nd of a
t regis-
ter pro-

from
re is no
regis-
of the

roces-
th. On

an be
oller)
file is
accom-

retire-

ther
rifica-
g any
suc-
int the

uffer-
tion

check-
main
isting
live-in
values,
see architected state updates by slave processors. The frequency of refreshes has to be selected t
conflicting desires; frequent refreshes ensure that the master has the most recent data available, w
frequent refreshing uses less bandwidth. Currently my simulations use a relatively naive mechan
simple queue that is filled on “invalidation” requests and drained by one entry periodically when the
few cache misses outstanding.

4.5.9 Efficiently Communicating, Reading and Writing Register Files

The MSSP paradigm requires us to communicate register values between processors, nece
mechanisms to read values out of and write values into the processors register files. To avoid imp
cycle time, I try to avoid adding additional special ports to the register file, by harnessing unused
width on the existing ports. Also, to minimize the interconnect bandwidth used to communicate re
file contents between the GRF and the processor I keep a reference register file at the processor.
detail these notions in this sub-section.

The processor core’s register file is written under three circumstances—beginning of a slave
restart of the master, and an early verification—and read under three—checkpoint registers at the e
master’s task, transition registers at the end of the transition code executed by the slave, and live-ou
ters at the end of the slave’s task. Of these tasks, reading of the checkpoint registers from the mas
cessor is the only performance critical one.

Filling the processor’s register file can be done by using the existing write ports, by adding a path
the interconnection network to the register file. In two of the cases, task start and master restart, the
competition for these resources, in the third, early verification, execution can be stalled. Reading the
ter file can be done similarly by using the existing read ports. Live-outs are generally read at the end
task when there is no competition for the read ports. It would be preferable not to have to stall the p
sor to read transition registers, but it would be tolerable as slave execution is rarely on the critical pa
the contrary, master execution is frequently on the critical path.

Initializing the processor’s register file at the beginning of a task or after a restart of the master c
done using the existing write ports (by adding a path from the core’s interconnection network contr
because no instructions will be executing while the register file is being filled. Reading the register
more common and needs to be done with little impact on the execution; these reads can either be
plished by adding additional read ports, harvesting unused read bandwidth, or creating a separate
ment register file solely for the use by the MSSP logic.

4.5.10 Early Verification

If a task is particularly long, then some finite buffer may become full, which would prevent fur
execution. In such a situation, the MSSP implementation performs an early verification. An early ve
tion can be implemented by squashing all in-flight instructions, temporarily stopping fetch, sendin
remaining live-ins and live-outs to the appropriate banks, and requesting verification. If verification
ceeds, the architected register file is sent to the slave and all of its stale data is invalidated. At this po
task can execute non-speculatively and can continue without the need for further buffering.

The processor need not halt execution if it can begin the early verification process while some b
ing is still available. The challenge of performing verification concurrently with execution is that execu
can produce new live-in values that need to be verified. To avoid this situation, the slave purges all
point data from its cache and register file; only architectural data and speculatively written data will re
in the cache and register file. At this point, no new task misspeculations can be introduced: only ex
misspeculations can be propagated, but these will be detected by verification of the existing set of
values. Once all checkpoint data has been purged, the slave no longer needs to capture new live-in
just live-out values. When the task has been verified all live-outs can be immediately committed.

65

specu-
ently,

rtainly
required
sition
live-ins
g non-

para-
f task
point
and

enable
tencies
The early verification mechanism also gets overloaded to support task synchronization, where a
lative slave task waits until it becomes non-speculative before executing. Although not required frequ
support for synchronization enables the distiller to substitute a stall for cases that would almost ce
otherwise cause a task misspeculation. One such case is described at the end of Section 6.1. The
support is an additional special instruction that I can SYNC, which is inserted in the task’s out-tran
code. When the SYNC is encountered, an early verify is requested before the task begins; as no
have been recorded, the verification should never fail. The result is that the task can begin executin
speculatively, as soon as it becomes head and has retrieved the necessary architected state.

4.6 Chapter Summary

In designing an implementation of the MSSP paradigm, I focused on two key bottlenecks of the
digm: (1) the master’s execution of the distilled program, and (2) the verification and commitment o
data. To minimize overhead on the execution of the distilled program, I elected to perform all check
construction and communication in hardware. To avoid communication latency on the verification
commitment of tasks, I perform this process centrally at the L2 cache banks. These design decisions
an implementation that is remarkably tolerant of communication latency, because many of these la
can be incurred in parallel, off the critical paths.

66
Chapter 5
igm. I
perfor-
xperi-

e pro-
a tim-

ions that

static
dis-

hich
ge and
e iden-
ointer
s, inlines

ults to
shown

model.
con-
lls are
Experimental Evaluation of the MSSP Paradigm

In this chapter, I present a simulation-based evaluation of the performance of the MSSP parad
first describe the three components of my evaluation methodology (in Section 5.1) and then present
mance results, supporting data, and sensitivity analysis (in Section 5.2). The major findings of this e
mental analysis are summarized at the end of the chapter in the chapter summary.

5.1 Experimental Methodology

In this section, I describe the experimental infrastructure I used to evaluate the performance of th
posed paradigm. This infrastructure consists of three elements: 1) the prototype program distiller, 2)
ing simulator, and 3) the SPEC2000 integer benchmarks. These are the topics of the three sub-sect
follow.

5.1.1 Program Distiller Implementation

As described in Section 3.4, the preliminary evaluation in this dissertation is performed using a
off-line implementation of the program distiller. This implementation simplifies the construction of the
tiller, because all of the profile information is available at the beginning of its execution.

All distilled programs are created automatically. The distiller is a binary-to-binary translator, w
takes the original program and extensive profile information and generates the distilled program ima
the necessary maps. This distiller prototype only implements a subset of the optimizations that I hav
tified as profitable. Currently, the distiller eliminates highly-biased branches, dead code, stack p
updates, and branches whose taken and un-taken paths are the same. It also re-allocates register
functions, and performs code layout to minimize the frequency of taken branches. I expect res
improve as additional optimizations are implemented. Some parameters specified to the distiller are
in Table 5.1.

5.1.2 Simulation Infrastructure

The performance results presented below were generated by a detailed cycle-level simulation
The simulator I used was derived from the SimpleScalar toolkit [3], but the timing model has been
structed from scratch. Like SimpleScalar, only the user-level instructions are simulated; all system ca
emulated by calls to the machine running the simulation. .

67

, when
pecula-
riven
rallel

he
I run a
ional
through
el gen-

nsis-
drawn
l.

. The
MB L2

nd in
those

chine
t—but

illed

or

-

d a

tic
Unlike the traditional SimpleScalar timing simulators, functional simulation isnot decoupled from
timing simulation. Instead, the simulator tries to perform operations as the simulated machine would
the simulated machine would. For example, registers are renamed to hold speculative state and miss
tion recovery is performed by rewinding to a pre-misspeculation register map. This truly execution-d
methodology is vital in simulating speculative parallelism architectures, because, like a traditional pa
processor, the timing of an operation (e.g., a load) can alter its result.

Since the simulator is organized in this manner (i.e., not decoupled), I have some confidence that t
results presented are correct for the system as modelled. Concurrently with the timing simulation,
verification simulator, which has its own distinct copy of registers and memory, that verifies the funct
correctness of instructions as they are retired. The second simulator ensures that the correct path
the program is taken and that the correct program values are computed. Because it is the timing mod
erating the functional results, it is difficult to accidentally construct an incorrect timing model that co
tently generates correct functional results. Despite this validation of the timing model, conclusions
from these results are subject to the implicit assumptions made when constructing the timing mode

The simulator models a chip multiprocessor (CMP) that supports the Alpha AXP instruction set
baseline model reflects the implementation described in Chapter 4, with 8 processors and a shared 2
cache with 8 banks, as shown in Figure 5.1.

Each processor core is configured to look similar to the HP Alpha 21264; details can be fou
Table 5.2. The superscalar width, pipe depth, and functional unit latencies simulated are similar to
published for the 21264 [37]. In addition, the line predictor-based front-end is modelled—the ma
fetches aligned groups of four instructions so the compiler-inserted nops for padding are importan
larger, more advanced branch predictors are used. Many engineering details of the 21264 (e.g., functional
unit clusters, troll traps, etc.) are not modelled, but it is my belief that the flexibility inherent in the dist
program would allow it to better avoid their negative impacts than traditional code can.

TABLE 5.1 Baseline parameters supplied to the program distiller.

Parameter Value Explanation

Target Task Size 250 instructions The task size the task selection algorithm considers optimal.

Branch Threshold 99% biased The fraction of instances that must go to the dominant target f
the branch to be removed.

Idempotent Opt.
Threshold

99% correct The fraction of times that an instructions output must match an
input for it to be removed.

Silent Store Thresh-
old

not applied The fraction of times that a store must have overwritten an iden
tical value in memory for it to be removed.

Long Store Definition 1000 instructions The store to load distance at which a dependence is considere
long dependence.

Long Store Threshold 99% long The fraction of store instances that have to be long for the sta
store to be considered long.

GRF L2 L2 L2 L2 L2 L2 L2 L2

P
$

P
$

P
$

P
$

P
$

P
$

P
$

P
$

Interconnection Network

Figure 5.1:Diagram of machine model.

configured like Alpha 21264 (4-wide out-of-order superscalar)

64kB L1 I-cache, 64kB L1 D-cache, 2-way assoc., 64B blocks

10 cycle uncontended latency, 1 message per entity/cycle

2MB L2 cache divided into 8 banks, 4-way assoc., 64B blocks

68

execu-
urce”
ill be

inequal-
y. By
,

to this

These
grams.
cult to

with
mpiled
piler
ilitate
similar
ulator
s. The

) that is

tion,
these
ce their
ta work-
main-
d this
cases
t of

ized as

ct
c-

-
l
-

4B
e
er-
My experiments compare the performance of the MSSP paradigm to a traditional uniprocessor
tion of the program on a single processor of the same CMP. Although clearly not an “equivalent reso
comparison, this comparison is valid. As we move into the billion transistor era, processor cores w
less resource constrained and more communication latency constrained [1, 48]. Thus, the resource
ity is less important than whether communication latencies are modelled sufficiently accuratel
default, the one-way communication latency across the interconnection network (i.e., between processors
and between processors and L2 cache banks) is 10 cycles; in Section 5.2.6, I explore the sensitivity
parameter.

5.1.3 Benchmark Programs

I performed this evaluation using the integer benchmarks from the SPEC2000 benchmark suite.
programs exhibit the control-flow and memory access behaviors representative of non-numeric pro
Generally, these behaviors make these programs harder to analyze with a compiler and more diffi
efficiently execute than numeric programs.

The benchmarks were compiled for the Alpha architecture using the Digital Unix V6.21 compiler
optimization levels and flags specified for producing PEAK executables. The executables were co
for the 21264 (EV6) implementation and include implementation specific optimizations. The com
inserts nops primarily to avoid more than one branch per group of four aligned instructions (to fac
line prediction) and to align branch targets. Because our simulator models a fetch architecture very
to that of the 21264, these nops are useful in the simulated architecture. Like the 21264, our sim
drops nops at decode time, so they do not consume scheduling, window or retirement resource
results include nops, but they are unimportant as it is the relative performance (MSSP vs. sequential
important.

Because my detailed timing simulator incurs a slowdown of a factor of 10,000 from native execu
simulating the full reference inputs to completion is impractical. In an attempt to make simulation of
programs practical, I have modified the input parameters or data sets of the reference inputs to redu
run time. I chose this approach, rather than using the training inputs, because in some cases the da
ing sets of the reference inputs are significantly larger. In all cases, I tried to modify the input sets to
tain the size of the working set. Some benchmarks perform similar operations multiple times, an
reduction can be performed trivially by specifying that fewer operations be performed. In a few
(twolf , vortex , andvpr), the operations performed were simplified to reduce the run time. The se
input parameters used are shown in Table 5.3.

5.2 Results

In this section, I present the experimental results. The most important results can be summar
follows:

TABLE 5.2 Simulation parameters approximating a CMP of Alpha 21264 cores

Front
End

A 64kB 2-way set associative instruction cache, a 64kb YAGS branch predictor, a 32kb cascading indire
branch predictor, and a 64-entry return address stack. The front end fetches aligned blocks of 4 instru
tions. A line-predictor à la the 21264 is implemented.

Execution
Core

4-wide (fetch, decode, execute, retire) machine with a 128-entry instruction window and a 13 cycle pipe
line, includes a full complement of simple integer units, 2 load/store ports, and 1 complex integer unit, al
fully pipelined. The first-level data cache is a 2-way set-associative 64kB cache with 64B lines and a 3
cycle access latency, including address generation.

System The system on a chip includes 8 processor and 8 L2 cache banks (each 4-way set-associative with 6
lines, 2MB total), and one GRF. An interconnection network is modelled that can move one 64B messag
per cycle to or from each processor and cache. One-way network latency is 10 cycles, unless stated oth
wise. Minimum memory latency (after an L2 miss) is 100 cycles.

69

he two

de that
inant

k mis-

nica-
eedup

st. For
e-out

eter-
r one-

f the
never-

.2.1),
target
• Speedups up to 1.75 (1.25 harmonic mean) can be achieved on full runs of the reduced inputs. T
largest speedups are achieved forgcc and vortex . Gcc has a number of loops with low iteration
counts where (in the common case) the iterations are independent from each other and the co
follows. In vortex , many functions have error checking code that is removed and a single dom
path that allows a significant degree of distillation.

• Distilled programs can accurately predict task live-in values with the necessary coverage. Tas
speculations typically occur only once every 10,000 instructions or more.

• These accurate predictions limit the execution paradigm’s sensitivity to inter-processor commu
tion: raising the communication latency from 5 cycles to 20 cycles only reduces the MSSP sp
10%.

• The MSSP-specific hardware storage requirements (beyond a chip multiprocessor) are mode
example, only 24kB of storage resources are required at the L2 to hold checkpoint, live-in, and liv
values.

• The root optimizations only account for about one-third of the effectiveness of distillation (as d
mined by speedup); dead code elimination and the other supporting optimization each account fo
third of the speedup in our current distiller.

• The program distiller is largely insensitive to root optimization thresholds. Most of the benefit o
root optimizations is achieved at the lowest threshold settings because it comes from removing
observed behaviors.

I first present some supporting numbers exploring the effectiveness of optimization (Section 5
task selection (Section 5.2.2), hardware resource utilization (Section 5.2.3), and indirect branch

TABLE 5.3 Input sets used for simulation of Spec 2000 integer benchmarks

Benchmark Input Parameters Notes

bzip2 input.source 10 reference input, first 10 MB

crafty crafty.in reference input truncated to only play two
games

eon chair.control.kajiya chair.camera chair.surfaces
chair.kajiya.ppm ppm pixels_out.kajiya

reference input

gap -l ./input -q -m 64M < train.in train input

gcc integrate.i -o integrate.s reference input

gzip input.source 10 reference input

mcf train.in train input

parser 2.1.dict -batch < train.in train input

perl diffmail.pl 2 350 15 24 23 150 train input

twolf ref reference input without “slow 10” directive

vortex lendian2.raw reference input, with number of tasks
reduced: LOOKUPS 1000, DELETES
2000, STUFF_PARTS 2000

vpr net.in arch.in place.in route.out -nodisp -
route_only -route_chan_width 15 -
pres_fac_mult 2 -acc_fac 1 -first_iter_pres_fac
100 -initial_pres_fac 1000 -
max_router_iterations 1

reference input for routing phase, modified
to increase the overuse penalty and limited
to a single iteration

70

rawn to
re the
num-

e sup-
truc-
arks

miza-
epre-
e root

ed on
zation,
the the

namic
rcent
9.9%

e a
with

he sec-
inant

ays

num-
rtly an
some
tantial
timiza-
create

n
elim-
ith dis-
as its

cation,
mapping (Section 5.2.4). Performance results are presented in Section 5.2.5 and correlations are d
distillation effectiveness. In Sections 5.2.6 through 5.2.12, sensitivity analysis is performed to explo
implementation’s sensitivity to variables including communication latency, bandwidth, task size, and
ber of processors.

The performance results in Section 5.2.5 are derived from complete runs of the benchmarks. Th
porting results—where multiple MSSP simulations are compared—are simulations of a 5 billion ins
tion sample started after 5 billion instructions. This sample is representative for all of the benchm
exceptgcc , which performs particularly well in this sample.

5.2.1 Distilled Program Optimizations

Distilled program optimizations can be divided into two categories: 1) the speculative base opti
tions, and 2) the non-speculative supporting optimizations. The root optimizations are pictorially r
sented in Figure 5.2. The results shown in Figure 5.4 and Figure 5.3, demonstrate the effect of th
optimizations. For each optimization, I vary the correctness threshold provided to the distiller (plott
the X axis); as the threshold is decreased there are more opportunities for application of an optimi
because the distiller is less demanding that an optimization preserve correctness. I have plotted both
number of times each optimization was applied to the static program and the resulting number of dy
instructions removed for a range of different input threshold parameters (allowing from 0.01 to 2.0 pe
incorrect results). For example, the point in the first graph at (99.9%, 350) indicates that with a 9
threshold, 350 static branches were removed fromgcc .

The first thing to notice is that biased control-flow elimination—the first two optimizations—hav
qualitatively different shape than the four other optimizations; they have increasing opportunity
higher threshold values. This shape is due to a distribution of branch biases. The effectiveness of t
ond optimization is not monotonically increasing because the two optimizations interact and non-dom
entries are eliminated after non-dominant branch targets. For the most partthe other four optimizations
are independent of threshold, indicating that most exploitable instructions are always or almost alw
safe to remove.

From the dynamic instruction counts in Figure 5.4 and Figure 5.3, one can see that a non-trivial
ber of instructions are removed. The larger number of static idempotent operations removed is pa
artifact; if an instruction always writes the value zero into a register it is counted in these results. For
optimizations and benchmarks, the numbers range into the billions of dynamic instructions: a subs
number for these executions that range from 9 to 40 billion instructions. Nevertheless, the base op
tions by themselves are seldom sufficient to get sizable performance gains. However, they also
opportunities for the non-speculative supporting optimizations.

Figure 5.2:Root optimizations represented pictorially.Optimizations involve removing or transforming instructio
and are shown with their pre-condition. (a) branch elimination removes non-dominant branch targets, (b) entry
ination removes non-dominant control-flow sources, (c) long dependence store elimination removes stores w
tant first uses, (d) idempotent operation elimination removes instructions that mostly produce one of its inputs
output, (e) silent store elimination removes stores that mostly write the value already present in a memory lo
and (f) indirect-to-direct call conversion is applied when an indirect call has a single dominant target.

manyfew manyfew store X, A

no load A

sextb r4, r4

r4 usually
positive

store X, A

A contains X

jsr ra, (r12)

r12 usually
same PC

bsr ra, PC

a) b) c) d) e) f)

71

t the
orig-
ons for
CE),

n

In Figure 5.5, I compare the relative effectiveness of the root and supporting optimizations. I plo
distillation ratio the number of dynamic instructions executed by the distilled program relative to the
inal program, and the average distance (in original program instructions) between task misspeculati
three configurations: 1) only root optimizations, 2) root optimizations and dead code elimination (D
and 3) all root and supporting optimizations.In general, DCE and the set of other supporting optimiza-

99.99% 99.9% 99%
0

5000

10000

nu
ll

op
s

(s
ta

tic
)

99.99% 99.9% 99%
0

1E+09

2E+09

3E+09

nu
ll

op
s

(d
yn

am
ic

)

bzip2
crafty
eon
gap
gcc
gzip
mcf
parser
perl
twolf
vortex
vpr_route

99.99% 99.9% 99%
0

200

400

600

800

si
le

nt
 s

to
re

s
(s

ta
tic

)

99.99% 99.9% 99%
0

2E+08

4E+08

6E+08

si
le

nt
 s

to
re

s
(d

yn
am

ic
)

bzip2
crafty
eon
gap
gcc
gzip
mcf
parser
perl
twolf
vortex
vpr_route

99.99% 99.9% 99%
threshold

0

50

100

150

200

in
di

re
ct

-t
o-

di
re

ct
 (

st
at

ic
)

99.99% 99.9% 99%
threshold

0

5E+06

1E+07

1.5E+07

2E+07

in
di

re
ct

-t
o-

di
re

ct
 (

dy
na

m
ic

) bzip2
crafty
eon
gap
gcc
gzip
mcf
parser
perl
twolf
vortex
vpr_route

Figure 5.3:Effectiveness of root optimizations(2).Idempotent operation elimination (a), silent store eliminatio
(b) and indirect-to-direct call conversion (c) are all largely independent of threshold.

a)

b)

c)

72

slaves

re
epen-
tions each reduce the distillation ratio about as much as the root optimizations.For the most part this
reduction in distillation ratio comes with little impact on misspeculation frequency. Onlyperl observes
significant impact: the cause appears to be due to the master thread getting too far ahead of the
(causing what were long dependences to become short dependences).

99.99% 99.9% 99%
0

500

1000

bi
as

ed
 b

ra
nc

he
s

(s
ta

tic
)

99.99% 99.9% 99%
0

2E+08

4E+08

6E+08

8E+08

bi
as

ed
 b

ra
nc

he
s

(d
yn

am
ic

) bzip2
crafty
eon
gap
gcc
gzip
mcf
parser
perl
twolf
vortex
vpr_route

99.99% 99.9% 99%
0

10

20

30

40

bi
as

ed
 e

nt
ri

es
 (

st
at

ic
)

99.99% 99.9% 99%
0

2E+07

4E+07

6E+07

bi
as

ed
 e

nt
ri

es
 (

dy
na

m
ic

)

bzip2
crafty
eon
gap
gcc
gzip
mcf
parser
perl
twolf
vortex
vpr_route

99.99% 99.9% 99%
threshold

0

2000

4000

6000

lo
ng

 s
to

re
s

(s
ta

tic
)

99.99% 99.9% 99%
threshold

0

5E+08

1E+09

1.5E+09

2E+09

lo
ng

 s
to

re
s

(d
yn

am
ic

)

bzip2
crafty
eon
gap
gcc
gzip
mcf
parser
perl
twolf
vortex
vpr_route

Figure 5.4:Effectiveness of root optimizations(1).Biased branch (a) and biased entry (b) elimination have mo
opportunities for optimization with higher thresholds, while long dependence store elimination (c) is largely ind
dent of threshold.

a)

b)

c)

73

There
best it
most

bound-
bench-
k
sor exe-

s. Data
rting
5.2.2 Task Selection

By default, the program distiller is requested to create tasks of approximately 250 instructions.
are not always suitable task boundaries at this interval, so the distiller satisfies this task size goal as
can. The resulting distribution of task sizes is shown in Figure 5.6a, as a cumulative distribution. For
benchmarks the average task size (shown in Table 5.4) is just under 200 instructions. Without task
ary suppression (Section 3.2.3), the average task size is smaller, as shown in Figure 5.6b. Five
marks—bzip2 , gcc , gzip , mcf andparser —suffer from a large number of small tasks; without tas
boundary suppression these benchmarks experience significant slow-downs relative to a uniproces
cution.

Additional data about the constructed distilled programs is shown in Table 5.4.For most bench-
marks, the static distilled program is substantially smaller than the original program; vortex is a

Figure 5.5:Relative effect of root and supporting optimizations.a) distillation ratio (relative number of dynamic
instructions executed in distilled and original programs, and b) average distance between task misspeculation
shown for (R) only Root optimizations, (D) root optimizations and Dead code elimination, (A) All root and suppo
optimizations.

0.0

0.2

0.4

0.6

0.8

1.0
di

st
ill

at
io

n
ra

tio

R D A

bzip2

R D A

crafty

R D A

eon

R D A

gcc

R D A

gzip

R D A

mcf

R D A

parser

R D A

perl

R D A

twolf

R D A

vortex

R D A

vpr

100

1000

10000

100000

m
is

sp
ec

ul
at

io
n

di
st

an
ce

R D A

bzip2

R D A

crafty

R D A

eon

R D A

gcc

R D A

gzip

R D A

mcf

R D A

parser

R D A

perl

R D A

twolf

R D A

vortex

R D A

vpr

a)

b)

0 100 200 300 400 500

number of instructions per task

0

20

40

60

80

100

cu
m

ul
at

iv
e

fr
ac

tio
n

of
 ta

sk
s

(%
)

Figure 5.6:Task size distributions, with and without task boundary suppression.a) Most benchmarks have most
of their tasks in the range of 100 to 300 instructions. b) Without task boundary suppression benchmarksbzip2 ,
gcc , gzip , mcf andparser are dominated by small tasks (less than 50 instructions).

0 100 200 300

number of instructions per task

0

20

40

60

80

100

cu
m

ul
at

iv
e

fr
ac

tio
n

of
 ta

sk
s

(%
) bzip2

crafty
eon
gap
gcc
gzip
mcf
parser
perl
twolf
vortex
vpr

a) b)

74

The
h task
ne
ic

n.
t map
io for
quired
led and

ection

.4.3.
or type
simistic
ible for
g too
dent

ata.
quire-
ycles;
notable exception because it performs a lot of function in-lining, which involves code replication.
number of static task boundaries correlates strongly to the size of the static distilled program; for eac
boundary there is one staticCHKPTinstruction, one in-transition entry into the distilled program, and o
out-transition block with aVERIFY instruction. The average size of a task in (original program) dynam
instructions indicates how often theCHKPTand VERIFY instructions are encountered during executio
The number of indirect branch targets used by the distilled program, which need to be in the indirec
table, is also correlated to the size of the static distilled program. I also present the distillation rat
loads and stores demonstrating that my optimizations can be effective at reducing the number of re
cache accesses. Lastly, I show the number of discontinuous fetches (taken branches) for the distil
original program. This metric is improved by the profile-driven code layout. The benefits ofvortex ’s
aggressive inlining can be seen by itsfactor of 10 reduction in this metric.

5.2.3 Hardware Resource Utilization

Next, I present the hardware resources required to make the paradigm work, namely interconn
network bandwidth, non-architectural data storage, and processor utilization.

Communication Bandwidth. Measured bandwidth utilization corroborates our estimates in Section 4
Figure 5.7, shows the average number of bytes of data communicated per instruction for each maj
of entity: master processor, slave processor, L2 cache bank, and GRF. This data may be slightly pes
due to a naive cache refreshing policy. Cache refreshing (discussed in Section 4.5.8) is respons
many of the fills requested by the master. Currently, my refresh policy errs on the side of refreshin
often, naively requesting a refresh for a block at the end of a task in which it was written. I am confi
that a more intelligent technique could achieve the same results with less bandwidth.

Non-architectural State Storage.A moderately small amount of storage is required for speculative d
In our current model, the amount of such data is currently not limited, allowing us to measure the re
ments of each workload. Figure 5.8 shows the amount of storage that is sufficient for 98% of the c

TABLE 5.4 Distilled program statistics

Bench
mark

original
program
size (insts)

distilled
program
size (insts)

number
of static
task
bound’s

avg.
dyn.
task
size

indirect
map size
(kB)

loads /
1k inst
orig/dist

stores /
1k inst
orig/dist

discont.
fetch
/ 1k inst
orig/dist

bzip2 39,000 9,000 188 140 1 216/267 46/82 62/110

crafty 93,000 41,000 364 182 4 242/296 45/55 35/84

eon 161,000 51,000 952 129 9 210/266 157/215 32/83

gap 215,000 35,000 844 213 8 194/236 61/89 57/134

gcc 452,000 133,000 2968 195 30 109/280 89/135 46/112

gzip 43,000 6,000 113 280 1 155/190 34/69 33/74

mcf 34,000 4,000 99 190 1 266/321 33/62 79/153

parser 67,000 27,000 459 196 4 167/242 53/112 59/115

perl 187,000 47,000 894 112 14 214/279 108/167 54/109

twolf 99,000 27,000 732 188 4 192/233 60/74 48/78

vortex 166,000 109,000 2161 186 14 108/272 56/173 11/106

vpr 75,000 25,000 488 344 4 247/313 78/107 31/58

75

sepa-
hown
rces to

bit.
L2

f
stor-

mmit-
storage for each type of data (memory checkpoints, live-in values, and live-out values) is plotted
rately. When a lot of storage is required, it is to keep many tasks in flight simultaneously (as will be s
next, in Figure 5.9). Since this behavior is desired, the implementation should have sufficient resou

0

2

4

6

B
an

dw
id

th
 (

B
/in

st
)

reg-out
reg-in
fills
wr-thru

MSCR
bzip2

MSCR
crafty

MSCR
eon

MSCR
gap

MSCR
gcc

MSCR
gzip

MSCR
mcf

MSCR
parser

MSCR
perl

MSCR
twolf

MSCR
vortex

MSCR
vpr

Figure 5.7:Bandwidth utilized.Although “bandwidth can be bought”, our MSSP implementation uses quite a
Utilization is shown in bytes per original program instruction for each type of entity (M = Master, S = Slave, C =
Cache bank, R = global Register file). So far little has been done to optimize bandwidth utilization.

Figure 5.8:Amount of speculative state storage required.Little speculative storage is necessary. The number o
8B memory words sufficient to buffer state in 98% of cycles is shown (b). Rarely are more than 128 words of
age required of any type (C = checkpoint, L = live-in, S = live-out stores).

0

50

100

150

200

R
eq

ui
re

d
St

or
ag

e(
8B

 w
or

ds
)

CL S
bzip2

CL S
crafty

CL S
eon

CL S
gap

CL S
gcc

CL S
gzip

CL S
mcf

CL S
parser

CL S
perl

CL S
twolf

CL S
vortex

CL S
vpr

0 2 4 6 8

number of allocated processors

0

20

40

60

80

100

cu
m

ul
at

iv
e

fr
ac

ti
on

 o
f

ti
m

e
(%

)

0 5 10 15

number of active tasks

0

20

40

60

80

100

cu
m

ul
at

iv
e

fr
ac

ti
on

 o
f

ti
m

e
(%

) bzip2
crafty
eon
gap
gcc
gzip
mcf
parser
perl
twolf
vortex
vpr

Figure 5.9:Processor utilization and task activity distribution:(a) distribution of number of processors allocated
at any given time, and (b) distribution of number of tasks active (i.e., executing or completed and waiting for co
ment).

a) b)

76

hould
f stor-

being
essors
totype
llocated

for-

d dis-
ets in
least
a 64-
ast an
3,000
aps can

original
target,
urce of
reduc-

s

support it. Taking the load imbalance into account, providing each bank with 64 entries of each type s
be sufficient for these workloads. Since checkpoint, live-in, and live-out entries require about 16B o
age each,a structure of this size would require about 24KB of storage, or a little more than 1% of a
2MB L2 cache.

Processor Utilization.Although the simulated machine has 8 processors available, they are rarely
used simultaneously. Figure 5.9a shows a cumulative distribution of cycles of the number of proc
(either master or slave) that were allocated. Because distillation ratios from the current distiller pro
are reasonably low and the implementation uses processors efficiently—processors can be rea
when a task is completed, not when it commits—for most of the benchmarks4 or fewer processors were
necessary 90% of the time. Only gcc can regularly keep more than 4 tasks active simultaneously. Per
mance sensitivity to number of processors is measured in Section 5.2.10.

5.2.4 Mapping

As I described in Section 4.5.7, a mechanism is required for mapping between the original an
tilled programs. In this sub-section, I demonstrate that there is a working set of indirect branch targ
the distilled program. Figure 5.10 shows the hit ratios for a range of fully associative tables with
recently used (LRU) replacement, up to 256 entries. For the most part, the working sets would fit in
entry fully associative cache with a least-recently-used policy. All benchmarks except gcc have at le
85% hit ratio; indirect branches are rare enough in gcc’s distilled program that it only misses every
instructions with a 64-entry cache. I believe these results demonstrate that indirect branch target m
be effectively cached.

One reason that the working sets are small is that some indirect branches that are present in the
program have been removed from the distilled program. If an indirect branch has a single dominant
it can either be converted to a direct branch or removed altogether. Furthermore, returns are a big so
indirect branches and they are frequently removed by function inlining. Table 5.5 shows the average
tion of dynamic instances of indirect branches, which ranges from 35 to 100 percent.

Figure 5.10:Hit ratio of as a function of indirect branch target map size.The lines that end before 256 entrie
have no capacity misses, only compulsory misses. Benchmarksbzip2 , gzip , mcf , twolf , andvpr are not shown
as they have a negligible number of misses.

0 50 100 150 200 250

size of indirect branch target map table

50

60

70

80

90

100

cu
m

ul
at

iv
e

fr
ac

tio
n

of
 h

its
 (

%
)

parser
eon
crafty
vortex
gap
perl
gcc

77

r of the
ecution
truc-
ted—in

ulation
lly. In
). This
can be
distri-
a task.

y the
lation

;
ctions,
er o
alle
, which
5.2.5 Performance

The MSSP performance simulations are compared to a base case in which a single processo
CMP is used to execute the program as a traditional uniprocessor. Speedups are computed from ex
times (in cycles). All references to retired instructions per cycle (IPC) relate to original program ins
tions; such comparisons are meaningful because the same original program instructions are commit
the same order even—by both execution paradigms.

I first present data from the whole program’s execution; Figure 5.11 shows data on task misspec
frequency, distillation effectiveness, and speedup together to allow correlations to be drawn visua
Figure 5.11a, I show the average distance between task misspeculations (in dynamic instructions
distance ranges from 10,000 to over 100,000 instructions, demonstrating that task misspeculations
made rather infrequent. Figure 5.12 plots the misspeculation detection latency. While there is wide
bution of detection latencies, most misspeculations are detected in less than 300 cycles of starting

The misspeculation frequency data is meaningless in isolation, in Figure 5.11b I try to quantif
effectiveness of the distillation that corresponds to this misspeculation frequency. Quantifying distil

TABLE 5.5 Number of indirect branches per 1000 dynamic (original program) instructions

Benchmark bzi cra eon gap gcc gzi mcf par per two vor vpr

original 15 19 35 37 6 6 34 26 36 13 28 10

distilled 0 5 10 26 2 1 1 9 24 1 4 0

1.0

1.2

1.4

1.6

sp
ee

du
p

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr

1000

10000

100000

av
g.

 m
is

p.
 d

is
ta

nc
e

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr

0.0

0.2

0.4

0.6

0.8

1.0

di
st

ill
at

io
n

ra
tio

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr

Figure 5.11:MSSP Performance across the whole program’s execution.Task misspeculations (a) are infrequent
the smallest average distance (in dynamic instructions) between misspeculations is just under 10,000 instru
and for some benchmarks it is more than 100,000 instructions. The distillation ratio (b), the ratio of the numbf
non-nop instructions in the distilled program vs. the number of non-nop instructions in the original program (smr
is better), estimates the effectiveness of distillation. This figure correlates well to the speedups (c) achieved
range from 1.0 (no speedup) to 1.75.

78

n-nop
f IPC
for

tills
ruc-

com-
the dis-
n be
is that

ot of
econd,
. This
times

t path
for

illion
ut sets
ing in
le varia-
r initi-

at 10

o

independent of an implementation model is difficult; as an attempt I have defined thedistillation ratio to be
the number of non-nop instructions “retired” by the master processor relative to the number of no
original program instructions retired by the slaves. Although this metric cannot quantify the benefit o
improving optimizations (e.g., pre-fetching, if-conversion, global scheduling, etc.), it is a decent metric
my current distiller implementation as few IPC improving optimizations are implemented.

The distillation ratio varies greatly between benchmarks. My current distiller only effectively dis
two of the benchmarksgcc andvortex . In these two benchmarks the master executes 70% fewer inst
tions than the original program; the rest of the benchmarks only observe a 20% to 35% reduction.Gcc has
a number of loops with small loop bodies whose iterations are independent from each other (in the
mon case), like the one shown in Section 2.2.5. Most of the code in these loops can be removed by
tiller leaving only the updates of the induction variable. Then the loop in the distilled program ca
unrolled by just scaling the values added to (or subtracted from) the induction variables. The result
the master executes about 5 instructions for each task of 200-250 instructions.

Vortex has a number of factors contributing to the effectiveness of its distillation. First, it has a l
error checking code, much of which is removed by biased branch and dead code elimination. S
many small functions have a single dominant path, allowing all branches to be removed from them
action both leads to a significant reduction in the computation performed by the function and some
transforms non-leaf functions into leaf functions. Third,vortex is very call intensive; the function call
overhead is greatly reduced by inlining leaf functions (some of which were created by non-dominan
elimination). If all of a function’s calls are inlined, it too becomes a leaf function, and is considered
inlining. In vortex , such inlining is often carried three or four levels up the call graph.

In Figure 5.13, I show the same metrics as in Figure 5.11, but break the simulations in five b
instruction segments to explore the variations between segments of the execution. My reduced inp
for the benchmarks have runs that range from just under 10 to almost 45 billion instructions, result
between 2 and 9 segments, inclusive, per benchmark. As can be seen, most benchmarks have litt
tion over their execution at this granularity, although some benchmarks demonstrate variation in thei
ation and/or termination segments from the rest of the segments. The main exception isgcc , which
performs significantly better in its second segment (the segment starting after five billion and ending

Figure 5.12:Task misspeculation detection latency.Most task misspeculations are detected within 300 cyclesf
starting the slave task. Longer detection times are due to long tasks preceding the misspeculation.

200 400 600 800 1000 1200

misspeculation detection latency (in cycles)

0

20

40

60

80

100

cu
m

ul
at

iv
e

fr
ac

tio
n

of
 r

es
ta

rt
s

(%
) bzip2

crafty
eon
gap
gcc
gzip
mcf
parser
perl
twolf
vortex
vpr_route

79

port-

nd, for
for on-
ns are
oder-

e

n
for is

e is little
ensitivity
billion instructions). I point this fact out because it is this second segment that I plot for all of the sup
ing and sensitivity analysis.

5.2.6 Sensitivity to Interconnect Latency/Bandwidth

One of the goals of the MSSP paradigm is to tolerate inter-processor communication latency, a
the most part, this goal is achieved. Figure 5.14 compares the baseline and MSSP implementation
chip one-way communication latencies of 5, 10, and 20 cycles. Both base and MSSP executio
affected as the L2 hit time has increased from 12 to 22 to 42 cycles. For the most part there is only m
ate impact on the MSSP speedups. Onlygcc and vortex observe a significant relative performanc

0
1
2
3
4
5

IP
C

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr

1.0

1.5

2.0

sp
ee

du
p

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr

1000

10000

100000

av
g.

 m
is

p.
 d

is
ta

nc
e

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr

0.0

0.2

0.4

0.6

0.8

1.0

di
st

il
la

ti
on

 r
at

io

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr

Figure 5.13:Performance variation across execution.Each benchmark’s execution is broken into five billio
instruction segments. IPC (a), speedup (b), distillation ratio (c), and average misprediction distance (d) data
shown for each segment. Shorter running benchmarks execute fewer instructions. For many benchmarks ther
variability between segments. Gcc is a noteworthy exception, where the second segment (the one I used for s
analysis) achieves a significantly higher speedup.

a)

b)

c)

d)

base case MSSP

80

-

d this
dwidth

) to 20
n mos
n

reduction. The MSSP execution for the benchmarkeon is actually more tolerant of inter-processor com
munication latency than the baseline uniprocessor execution.

The implementation is even less sensitive to the amount of bandwidth available, at least aroun
operating point. Figure 5.15 shows the performance sensitivity as I reduce the inter-processor ban
from 1 message per cycle, to 1 message every 2 and 3 cycles.

0

2

4

6

IP
C

S ML
bzip2

S ML
crafty

S ML
eon

S ML
gap

S ML
gcc

S ML
gzip

S ML
mcf

S ML
parser

S ML
perl

S ML
twolf

S ML
vortex

S ML
vpr

1

2

Sp
ee

du
p

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr

Figure 5.14:Limited sensitivity to inter-processor communication latency.As the network communication
latency between processors and the L2 cache is scaled from 5 cycles (S = short) to 10 cycles (M = medium
cycles (L = long)—causing the minimum L1 miss penalty to go from 12 to 42 cycles—relative performance ot
benchmarks diminishes slightly, and performance relative to the base case improves with increased latency oeon .

base case MSSPa)

b)

0

2

4

6

IP
C

1 2 3
bzip2

1 2 3
crafty

1 2 3
eon

1 2 3
gap

1 2 3
gcc

1 2 3
gzip

1 2 3
mcf

1 2 3
parser

1 2 3
perl

1 2 3
twolf

1 2 3
vortex

1 2 3
vpr

0.5

1.0

1.5

2.0

Sp
ee

du
p

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr

Figure 5.15:Limited sensitivity of inter-processor bandwidth on performance.IPC (a) and speedup (b) are shown
for configurations that can communicate a message every1, 2, and3 cycles.

base case MSSP

81

es. In
sks of
ecause
n most
larger
vity of
te that
rally

00
ille
e (b).

be mis-
5.2.7 Sensitivity to Task Size

With task boundary suppression in place, the execution is somewhat insensitive to task siz
Figure 5.16a, I show the resulting average task sizes when the distiller is charged with creating ta
100, 250, and 500 instructions. As can be seen, the distiller usually undershoots its mark, largely b
of frequently executed loops below the target task size. Figure 5.16b shows that performance o
benchmarks is mostly insensitive to task size—with performance slightly increasing on average with
tasks—but gcc and vortex have distinctly better performance with 250 instruction tasks. The sensiti
performance on task size is a complex interaction of a number of forces. In Figure 5.17, I demonstra
distillation improves slightly with task size (recall that a smaller distillation ratio is better), and gene

0

100

200

300

400

av
g.

 ta
sk

 s
iz

e

SML
bzip2

SML
crafty

SML
eon

SML
gap

SML
gcc

SML
gzip

SML
mcf

SML
parser

SML
perl

SML
twolf

SML
vortex

SML
vpr

0

1

2

sp
ee

du
p

SML
bzip2

SML
crafty

SML
eon

SML
gap

SML
gcc

SML
gzip

SML
mcf

SML
parser

SML
perl

SML
twolf

SML
vortex

SML
vpr

Figure 5.16:Sensitivity of task size on performance.When directed to construct tasks of three different sizes—1
instruction (S=short), 250 instruction (M=medium), and 500 instruction (L=long) tasks—the program distr
obliges but generally constructs undersized tasks (a). For the most part performance is insensitive to task siz

a)

b)

1000

10000

100000

av
g.

 m
is

p.
 d

is
ta

nc
e

SML
bzip2

SML
crafty

SML
eon

SML
gap

SML
gcc

SML
gzip

SML
mcf

SML
parser

SML
perl

SML
twolf

SML
vortex

SML
vpr

0.0

0.2

0.4

0.6

0.8

1.0

di
st

ill
at

io
n

ra
tio

SML
bzip2

SML
crafty

SML
eon

SML
gap

SML
gcc

SML
gzip

SML
mcf

SML
parser

SML
perl

SML
twolf

SML
vortex

SML
vpr

a)

b)

Figure 5.17:Impact of task size on distillation ratio and misspeculation frequency.As task size increases, distil-
lation is slightly more effective (a) and misspeculations are less frequent (b), because there are fewer tasks to
speculated.

82

g from
sk mis-

to 500
les, on

trade-
basis),

ts. The
andom
euris-
block.
lways

k was

hm in
orithm

for 100
the distance between task misspeculations is increased, although this is mostly an artifact resultin
there being fewer tasks to be misspeculated. The factor that has the largest negative impact is the ta
speculation detection latency (shown in Figure 5.18). As the desired task size is scaled from 100
instructions, the median latency to detect a misspeculation increases from 150 cycles to 300 cyc
average.

Much larger than its effect on performance, variations in task size impact the bandwidth/storage
off. As is shown in Figure 5.19, larger tasks use less inter-processor bandwidth (on a per instruction
but require more buffering for non-architectural data, as the larger tasks have more state per task.

5.2.8 Sensitivity to Task Boundary Selection

To explore the sensitivity to the heuristics used to select task boundaries, I ran three experimen
first experiment, rather than always putting loop task boundaries before the loop header, picked a r
block on the dominant path of the loop. The second experiment ignored the after loop and after call h
tics for placing task boundaries; instead potential task boundaries were placed before every basic
The third experiment varied the location within a basic block task boundaries were place; instead of a
inserting the task boundary before the first instruction of the block, a random instruction in the bloc
selected.

The performance of these experiments is compared to the baseline task selection algorit
Figure 5.20. For the most part, these alternate task selections perform within 5% of the baseline alg

Figure 5.18:Sensitivity of task size on task misspeculation detection latency.Longer tasks generally have longer
lifetimes (i.e., time between allocation to a slave processor and commitment) than short tasks. Data shown
(a), 250 (b), and 500 (c) instruction tasks.

200 400 600 800 1000 1200
0

20

40

60

80

100

200 400 600 800 1000 1200
0

20

40

60

80

100

cu
m

ul
at

iv
e

fr
ac

tio
n

of
 r

es
ta

rt
s

(%
) bzip2

crafty
eon
gap
gcc
gzip
mcf
parser
perl
twolf
vortex
vpr_route

200 400 600 800 1000 1200

misspeculation detection latency (in cycles)

0

20

40

60

80

100

a)

b)

c)

83

root
iller is
lative
ct
s,

ong for

pproach
tions is

. Data
truc-
and in a few instances give 1% speedups. In two benchmarksgap andgcc the experiments that affect loop
task selection (L andP) causes the unrolling optimization to fail on a few important loops.

5.2.9 Sensitivity to Optimization Thresholds

My prototype distiller requires (as an input) threshold parameters to guide the application of the
optimizations. In experimenting with these parameters, I have found that, for the most part, the dist
not very sensitive to their settings. In Figure 5.21, I show the speedup of a variety of configurations re
to baseline MSSP configuration. With the exception ofgcc , these changes to the threshold values affe
performance less than 5%.Gcc’s performance is significantly impacted by the first four configuration
because they specify a higher (99.9% vs. 99%) threshold for the number of instances that must be l
a store to be characterized as a long store, a critical parameter forgcc . No one configuration is best for all
of the benchmarks, suggesting that these thresholds should not be specified directly. Rather, an a
that evaluates the benefit of the enabled optimizations against the cost of the induced misspecula
likely to provide both good and robust performance.

Figure 5.19:Sensitivity of task size on bandwidth and storage requirements.a) aggregate inter-processor band-
width consumed per instruction, and b) aggregate non-architectural data storage sufficient for 98% of cycles
shown for three task size configurations: 100 instruction (S=short), 250 instruction (M=medium), and 500 ins
tion (L=long) tasks.

0

20

40

60

80

B
an

dw
id

th
 (

B
/in

st
)

SML
bzip2

SML
crafty

SML
eon

SML
gap

SML
gcc

SML
gzip

SML
mcf

SML
parser

SML
perl

SML
twolf

SML
vortex

SML
vpr

0

200

400

600

T
ot

al
 S

to
ra

ge
(8

B
 w

or
ds

)

SML
bzip2

SML
crafty

SML
eon

SML
gap

SML
gcc

SML
gzip

SML
mcf

SML
parser

SML
perl

SML
twolf

SML
vortex

SML
vpr

a)

b)

Figure 5.20:Sensitivity of performance on task boundary selection.The performance of three alternate task
selection heuristics are compared to the baseline task selection algorithm.L: insert boundary before random block
for Loop tasks,S: make all basic blocks equally likely inStraight-line code, andP: Perturb task selection within a
basic block by picking a random instruction to be the task boundary.

0.4

0.6

0.8

1.0

Sp
ee

du
p

L S P
bzip2

L S P
crafty

L S P
eon

L S P
gap

L S P
gcc

L S P
gzip

L S P
mcf

L S P
parser

L S P
perl

L S P
twolf

L S P
vortex

L S P
vpr

84

the
eight.
s occur

ithout

ideal
cycle
0-cycle
.

g-

-

5.2.10 Sensitivity to Number of Processors

Earlier, I showed data (in Figure 5.9) indicating that rarely are all eight processors utilized in
default MSSP configuration. In Figure 5.22, I vary the number of available processors from three to
The benchmarks with little or no speedup can be satisfied with four processors, but some slowdown
with three. The rest of the benchmarks benefit from up to six processors andgcc , which demonstrated a
high utilization in Figure 5.9, benefits from all eight.

5.2.11 Sensitivity to Refreshing

Periodically refreshing the master’s cache (as described in Section 4.5.8) is important. W
refreshing, performance can drop as much as 20 percent, as shown in Figure 5.23.

5.2.12 Sensitivity to a Realistic Mapping Lookaside Buffer (MLB)

There is a tiny performance difference between a realistic implementation of an MLB and an
MLB. Figure 5.23b shows the performance of an implementation with a 64-entry MLB that has a 2-
access time (misses fetch page table entries from the L2 cache banks) relative to one with a perfect
MLB. In eight cases the performance difference is negligible; the other four lose a half of a percent

Figure 5.21:Sensitivity of distillation thresholds on performance.Speedups are relative to the base MSSP confi
uration. The simulations are provided with the following input parameters:

Configuration

Threshold base 1 2 3 4 5

branch threshold 99% 99.5% 99% 98.5% 98% 98%

long store threshold 99% 99.9% 99.9% 99.9% 99.9% 99%

idempotent threshold 99% 99.5% 99.9% 99.9% 99.9% 99%

0.6

0.8

1.0

sp
ee

du
p

12345
bzip2

12345
crafty

12345
eon

12345
gap

12345
gcc

12345
gzip

12345
mcf

12345
parser

12345
perl

12345
twolf

12345
vortex

12345
vpr

0.5

1.0

1.5

2.0

S
pe

ed
up

3468
bzip2

3468
crafty

3468
eon

3468
gap

3468
gcc

3468
gzip

3468
mcf

3468
parser

3468
perl

3468
twolf

3468
vortex

3468
vpr

Figure 5.22:Sensitivity of performance on number of available processors.Speedup is compared among configu
rations with three, four, six and eight processors. Many benchmarks benefit from up to six processors, onlygcc really
benefits from more than six processors.

85

mple-

ulat-

some
f the

ation.
of 1.25.
erved

(both
lead to

rage at

of my

. Still,
re are
eserv-
ollow-

an

arks are
5.3 Chapter Summary

In this chapter I described the infrastructure I used for the experimental evaluation of the MSSP i
mentation and the resulting data. I briefly summarize the results as follows:

• My distiller prototype yields distilled programs that can accurately predict task live-ins (misspec
ing less than once every 10,000 original program instructions retired).

• The performance of the distilled programs varies significantly between benchmarks. Although
programs may be fundamentally harder to distill, this result is in part due to the applicability o
optimizations that I have implemented to these programs.

• The performance of the MSSP implementation largely correlates to the effectiveness of distill
Speedups ranging from 1.0 (no speedup) to 1.75 were achieved with a harmonic mean speedup

• The architecture is tolerant of inter-processor communication latency: only 10% slowdown is obs
when the communication latency is scaled from five cycles to 20 cycles.

• The distiller is largely insensitive to both the specified optimization thresholds and task selection
task size and task boundary locations), but the data suggests that further research could
improvements on both these fronts.

• The hardware requirements can be modest; for example, on the order of 24kB of speculative sto
the L2 appears to be sufficient.

Although the MSSP paradigm has some desirable characteristics, I find the overall performance
current implementation to be disappointing. Some benchmarks—notablygcc andvortex —hint at what
can be achieved, but most of the benchmarks are not effectively distilled by my current infrastructure
I remain optimistic; performance appears to be limited by the effectiveness of optimization and the
many optimizations that I have not yet implemented. In short, I believe that the MSSP paradigm is d
ing of continued research. In the next chapter, I describe some of the avenues I have identified for f
on research.

0.7

0.8

0.9

1.0

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr

Figure 5.23:Sensitivity to refreshing.Refreshing the master’s cache periodically is important; failing to do so c
drop performance by as much as 20%.

Figure 5.24:Sensitivity indirect branch target mapping.A 64-entry indirect branch target map lookaside buffer
with a 2-cycle access time gives most of the benefit of a perfect mapping mechanism; four of the 12 benchm
slowed by about a half of a percent with the realistic scheme.

0.990

0.995

1.000

bzip2 crafty eon gap gcc gzip parser perl twolf vortex vpr

86
Chapter 6
erfor-
ts of the
ned dur-
quire-

which
ch or I
ection,

par-

ro-
would
herent
ation
d low
distil-

n part

ittle

error
Conclusions

In this conclusion chapter, rather than merely summarize the definition, implementation, and p
mance of the Master/Slave Speculative Parallelization, I pause to reflect on some unexpected resul
research and some directions that future research should take. Specifically, I describe lessons lear
ing the implementation (in Section 6.1), classify mechanisms with regards to their correctness re
ments (in Section 6.2), and present some open questions (Section 6.3).

6.1 Lessons Learned

I have learned many lessons in the process of studying this execution paradigm, not the least of
is that it is perhaps a reasonable way to organize computers in the future. Of course, I had that hun
never would have embarked on this journey. Not all of the lessons I learned were expected. In this s
I briefly summarize some factors that were not obvious to me when I initially envisioned the execution
adigm.

Program Information Content. I had expected that distillation would be more successful on some p
grams than others, but I did not know what the important characteristics of a program would be that
determine the effectiveness of distillation. The result of this study leads me to believe there is an in
information content to a program and the process of distillation is akin to compression. The inform
content of a program is high if it performs a diverse set of computations in an unpredictable order an
if it repeatedly performs a set of operations in the same manner every time. Much like compression,
lation is most effective when its input has low information content.

The information content of programs varies in part due to the computation being performed and i
due to the way the program is written. The compression programs (bzip2 andgzip) unsurprisingly con-
sist of computation with high information content (loops with highly variant iteration counts and l
redundancy), which to date my distiller cannot effectively optimize. In contrast, the benchmarkvortex is
written in a very low information content style that is call intensive and has significant amounts of
checking code. As a result,vortex can be effectively distilled. Perhaps the style in whichvortex is writ-
ten is more indicative of large software projects than hand-tuned programs likebzip2 andgzip .

87

e
mon-
ctable
ation
were

and that
h to be

high
size—
rhaps

to use
insuffi-
ons
to be
imple-

um-
isters.
it can
nts are
s calls by
of all

ed and
t for the
al live-
ld have
es the
ult our
func-
the

ntil it
diately
loaded
than a

ion of
sed for

or-
orrect
Optimization Effectiveness.Although I have forgotten exactly which optimizations I thought would b
most effective, I am sure that my predictions were not entirely correct. The Slipstream work [77] de
strated that a significant fraction of instructions can be removed as a result of the elimination of predi
branches. Also, significant are the mutually beneficial optimizations of inlining and register re-alloc
that can remove much of the overhead in call intensive programs. Two particularly surprising results
the number of store instructions that could be removed because they result in long dependences
distillation can make both paths of an unbiased branch point to the same target allowing the branc
trivially removed.

Tight Loops. I did not anticipate the impact on task construction of loops with small loop bodies and
iteration counts. The implementation is designed to efficiently execute when tasks are a moderate
large enough to amortize communication costs, but small enough to buffer speculatively—pe
between a few hundred and a thousand dynamic instructions. For simplicity, I originally proposed
static annotations of the original program to specify the boundaries of tasks. These annotations are
cient for loops with small loop bodies (i.e., less than 20 instructions) that are executed for many iterati
(i.e., more than a thousand). The static annotation allow either a single iteration or the whole loop
selected as a task. Many tiny tasks or a single enormous task are both sub-optimal. As a result, I
mented task boundary suppressors (described in Section 3.2.3).

Synchronization.Another unexpected wrinkle was the impact of non-leaf functions with a variable n
ber of arguments. In the Alpha architecture, the first six arguments to a function are passed in reg
When a function calls another function, it must save its arguments (generally on the stack) so that
pass arguments to the called function. Even if the second function has fewer arguments, all argume
saved to the stack because the contents of these registers are not guaranteed to remain intact acros
the calling convention. In a function with variable arguments, this process can result in the contents
argument registers being saved before it is determined which actually contain valid arguments.

These saves are a minor problem in a normal execution, where some garbage value is sav
restored. In an MSSP execution, these garbage values become live-in values and must be correc
task to be verified. Ensuring that these values are correct is possible—by performing inter-procedur
ness analysis on registers and avoiding re-allocating those registers—but difficult, because they cou
been written long before in many possible locations. However this approach is inefficient, as it reduc
amount of dead code that can be removed and limits how registers can be reallocated. As a res
implementation takes a different approach: synchronization. Identifying the rare variable argument
tions is trivial. When one is found the distiller automatically inserts a “synchronize” instruction before
VERIFY instruction in the distilled program. This synchronize instruction causes the slave to stall u
becomes the head task and to perform an early verification (as discussed in Section 4.5.10) imme
before any instructions are executed. This early verification causes the architected registers to be
and the task to be executed non-speculatively. The stall is a performance penalty, but a smaller one
guaranteed misspeculation.

6.2 Requirements for Correct Execution

One of the interesting aspects of the MSSP paradigm is that, by construction, a non-trivial fract
the mechanisms involved need not be verified. Results generated by these mechanism are only u
prediction, so if they are faulty, they will only result in mispredictions that will potentially hurt perf
mance, but not correctness. In this section, I briefly outline the portions of the design that must be c
or can be flawed.

88

cute
. Tech-

e-
a live-

the
plished
all

s,
a mis-

ive
mory

ter
. This
rther
match

k has
g vio-

from
e a non-
, a non-
t can

tant
ster can

rvious
so the
ues
6.2.1 Mechanisms That Must Be Correct

Instruction Fetch, Execute, and Commit.The reuse test used to validate task live-ins does not re-exe
instructions at commit time, so MSSP relies on correct execution of the task by the slave processor
niques like Diva [4] can be used to ensure this correctness.

Collection of Live-ins and Live-outs.The execution of the task is abstracted down to its live-in and liv
out sets. An error in a live-in set could allow a misspeculated task to be committed and an error in
out set would incorrectly update the architected state.

Transport of Live-ins and Live-outs.The live-in and live-out sets must be transported correctly from
slave processor to the L2 cache banks and the global register file. This data movement can be accom
using the techniques from cache coherence (e.g., ECC). In addition, a slave processor must ensure that
live-ins and live-outs have been sent before a task is committed.

Capture and Transport of Transition registers.Transition registers, much like memory live-in value
must be correctly captured and transported to the global register file. Failure to do so could result in
speculated task being committed.

Transport of Non-speculative Data.Like a traditional architecture, tasks executing in non-speculat
mode (e.g., after a recovery) rely on (architected) memory data being correctly moved through the me
hierarchy.

Coherently Matching to Architected State.Live-ins buffered at L2 cache banks and the global regis
file must be correctly verified against the most recent value previous to the task being verified
requirement is made difficult because live-outs from tasks can arrive out of program order. It is fu
complicated on the memory side by coherence requests from other processors. Failure to correctly
state could allow misspeculated tasks to commit.

Two-Phase Commit.The physically distinct L2 cache banks must all agree simultaneously that a tas
been verified and can be committed. Failure to maintain this simultaneity can cause memory orderin
lations in some memory models.

Tagging and Evicting Stale Data.Private L1 caches are used to hold non-architected data (e.g., data
predicted checkpoints). MSSP tags the non-architected data as such, so that it can be evicted befor
speculative task executes on the processor. If non-architected data is incorrectly tagged or evicted
speculative task, which will not have its live-ins verified, can potentially read an incorrect value tha
result in the architected state being updated incorrectly.

Checkpointing Hardware. Although it is not necessary that the checkpoints be correct, it is impor
that the master processor is not allowed to update architected state in any way. Updates by the ma
only modify its local cache and write entries of the checkpoint buffers.

6.2.2 Mechanisms That Don’t Need To Be Correct

Program Distillation. If the above mechanisms are correct, the MSSP paradigm can be made impe
to faults in the distilled program. The master is prevented from directly affecting architected state,
only faults it can induce are indirectly through faulty checkpoint values. By verifying all live-in val

89

dog tim-

n of
ormed
by the

only
on reg-

s are

in the
xecuting
r and

lty, the
urrent
cted

igm.

nroll-
stant

can

-
ptimi-

ion
hard-

tent to
adigm

ditional
ll
against architected state, such faults can be detected. The MSSP paradigm includes a set of watch
ers to detect if the master enters an infinite loop and force a recovery to ensure forward progress.

Mapping. Mapping is only performed in four situations, none of which are during the slave’s executio
the task in the original program. They are: 1) starting the master at an entry, 2) link operations perf
by the master, 3) indirect branches performed by the master, and 4) the verify instruction executed
slave to compute the PC of the first instruction of the task in the original program. All of these will
result in the master processor getting off track or bad values being part of checkpoints (as a transiti
ister in the case of #4) that will be verified as live-ins if used.

Checkpoint Assembly.Checkpoint assembly need not be verified because the faults it introduce
equivalent to the distilled program computing bad checkpoint values in the first place.

Refresh.MSSP periodically evicts or re-fetches cache blocks that contain non-architectural data
caches of the master and speculative slaves. Refreshes are purely a performance optimization; e
with stale data will only result in generation or consumption of incorrect checkpoints by the maste
slaves, respectively.

Stop Bits.If the indications the slave processors use to decide where to stop executing a task are fau
task may end at an unexpected location. Bad stop annotations should not affect the ability of the c
task to commit. If the following task was not specified to start where this task ended it will be dete
when verifying the live-in PC or other live-in values.

6.3 Open Questions

In this section, I outline some of the open questions that remain in the study of the MSSP parad

To what extent can programs be distilled?I have seen opportunities for if-conversion1, additional regis-
ter allocation, pre-fetch insertion, scheduling (both local and global), phase-based optimization, full u
ing of loops with few iterations (predicating the final iterations if necessary), more general con
folding, constant propagation, redundancy elimination, tail duplication, and others. How effective
these additional optimizations be?

What does the continuum of distilled programs look like?What is the relationship between perfor
mance when the code is correct and its accuracy? Which optimizations are most important? Which o
zations enable other optimizations?

How should distillation be performed? Can the run-time implementation proposed in this dissertat
be implemented efficiently? Are some optimizations not worth the time they take to perform? What
ware support should the implementation include for profiling and distillation?

How can the original program be constructed to facilitate distillation and the MSSP paradigm?In
this work, I focused on a binary-compatible approach. Can altering the original code improve the ex
which it can be distilled? Can such alterations simplify the hardware? In addition, an alternative par

1. If support for predication is not available, conditional moves (CMOV) can be used. Stores in the distilled program can also be made con
by using a CMOV to conditionally set the store’s address to some garbage location (e.g., the address 0) where the value will not be read. Like a
stores performed by the master, the store will be deallocated when the slave task is committed and not affect architected state in any way.

90

eces-

r
execu-

their

e
n tech-
n rate.
ge pro-

adigm
hapter
es some
erved
These
tion, I
m has a
umber
tential
proxi-
to effi-
where the following execution is not the original program, but the minimal subset of the program n
sary to check the original program may be possible.

What improvements can be made to the MSSP implementation?In our evaluation the same processo
core was used for the master and the slaves. How could the master processor be tailored to facilitate
tion of distilled programs. Can slave processors be simplified (or dynamically reconfigured) to fulfill
role while using less power?

Can the architecture scale to larger (16-64) processor counts?Can a hierarchy of distilled programs b
constructed that provide perhaps less accurate, but more distant predictions about execution. Ca
niques like pre-execution be incorporated into the paradigm to further increase the master’s executio
Does non-architectural state need to be organized and communicated differently to support such lar
cessor counts?

6.4 Chapter Summary

In this dissertation, I have described Master-Slave Speculative Parallelization, an execution par
that parallelizes a sequential program’s execution using an approximate copy of the program. This c
describes the lessons learned, describes the correctness requirement of the paradigm, and outlin
questions left open by this work. To summarize, in studying this execution paradigm, I have obs
many opportunities to effectively approximate programs. Of these, I’ve perhaps implemented half.
optimizations are an encouraging start, but to this point, during the implementation of each optimiza
discover another one or two possible optimizations. This dissertation demonstrates that this paradig
number of nice characteristics—not the least of which is the relaxed constraints on correctness of a n
of mechanisms—but only begins the characterization of distilled programs and the performance po
of MSSP. There is much potential future work to explore the extent to which programs can be ap
mated, how the approximation should be performed, and how architectures should be organized
ciently execute programs with the assistance of approximate code.

91

of the
m-

1999-

anuary

Sano,
ltipro-

hedul-
ing

1997-

-

chi-
l

valli,

lleliza-
ter

ami-

with
References

[1] Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckler, and Doug Burger. Clock Rate versus IPC: The End
Road for Conventional Microarchitectures. InProceedings of the 27th Annual International Symposium on Co
puter Architecture, pages 248–259, June 2000.

[2] Haitham Akkary and Michael A. Driscoll. A Dynamic Multithreading Processor. InProceedings of the 31st
Annual IEEE/ACM International Symposium on Microarchitecture, pages 226–236, November 1998.

[3] Todd Austin, Eric Larson, and Dan Ernst. SimpleScalar: An Infrastructure for Computer System Modeling.IEEE
Computer, 35(2):59–67, February 2002.

[4] Todd M. Austin. DIVA: A Reliable Substrate for Deep Submicron Microarchitecture Design. InProceedings of
the 32nd Annual IEEE/ACM International Symposium on Microarchitecture, pages 196–207, November 1999.

[5] V. Bala, Evelyn Duesterwald, and S. Banerjia. Transparent Dynamic Optimization. Technical Report HPL-
77, Hewlett Packard Labs, June 1999.

[6] Thomas Ball and James R. Larus. Programs Follow Paths. Technical Report MSR-TR-99-01, Microsoft, J
1999.

[7] Luiz Andre Barroso, Kourosh Gharachorloo, Robert McNamara, Andreas Nowatzyk, Shaz Qadeer, Barton
Scott Smith, Robert Stets, and Ben Verghese. Piranha: A Scalable Architecture Based on Single-Chip Mu
cessing. InProceedings of the 27th Annual International Symposium on Computer Architecture, pages 282–293,
June 2000.

[8] J. L. Bentley.Writing Efficient Programs. Prentice Hall, Englewood Cliffs, 1982.

[9] David G. Bradlee, Susan J. Eggers, and Robert R. Henry. Integrating Register Allocation and Instruction Sc
ing for RISCs. InProceedings of the Fourth International Conference on Architectural Support for Programm
Languages and Operating Systems, pages 122–131, April 1991.

[10] Douglas C. Burger and Todd M. Austin. The SimpleScalar Tool Set, Version 2.0. Technical Report CS-TR-
1342, Computer Sciences Department, University of Wisconsin–Madison, 1997.

[11] B. Calder, G. Reinman, and D.M. Tullsen. Selective Value Prediction. InProceedings of the 26th Annual Inter
national Symposium on Computer Architecture, pages 64–74, May 1999.

[12] Brad Calder, Peter Feller, and Alan Eustace. Value Profiling and Optimization.Journal of Instruction Level Par-
allelism, March 1999.

[13] Pohua P. Chang, Scott A. Mahlke, William Y. Chen, Nancy J. Water, and Wen mei W. Hwu. IMPACT: An Ar
tectural Framework for Multiple-Instruction-Issue Processors. InProceedings of the 18th Annual Internationa
Symposium on Computer Architecture, pages 266–275, May 1991.

[14] Anton Chernoff, Mark Herdeg, Ray Hookway, Chris Reeve, Norman Rubin, Tony Tye, S. Bharadwaj Yada
and John Yates. FX!32: a Profile-Directed Binary Translator.IEEE Micro, 18(2):56–64, Mar 1998.

[15] Marcelo Cintra, Jose Martinez, and Josep Torrellas. Architectural Support for Scalable Speculative Para
tion in Shared-Memory Systems. InProceedings of the 27th Annual International Symposium on Compu
Architecture, pages 13–24, June 2000.

[16] Lucian Codrescu, D. Scott Wills, and James Meindl. Architecture of the Atlas Chip-Multiprocessor: Dyn
cally Parallelizing Irregular Applications.IEEE Transactions on Computers, 50(1):67–82, 2001.

[17] Robert Cohn, David Goodwin, and P. Geoffrey Lowney. Optimizing Alpha Executables on Windows NT
Spike.Digital Technical Journal, 9(4):3–20, 1997.

92

Long-
ter

ace
Pro-

itec-
l-

In

Charac-

aral-

Ref-

oces-
Lan-

gua-
up-

s

cks. In

n

r. In
s and

iscalar
[18] J. Collins, H. Wang, D. Tullsen, C. Hughes, Y. Lee, D. Lavery, and J. Shen. Speculative precomputation:
range prefetching of delinquent loads. InProceedings of the 28th Annual International Symposium on Compu
Architecture, pages 14–25, July 2001.

[19] R. P. Colwell, R. P. Nix, J. J. O’ Donnell, D. B. Papworth, and P. K. Rodman. A VLIW architecture for a tr
scheduling compiler. InProceedings of the Second International Conference on Architectural Support for
gramming Languages and Operating Systems, pages 180–192, October 1987.

[20] P. Dubey, K. O’Brien, K. O’Brien, and C. Barton. Single-Program Speculative Multithreading (SPSM) Arch
ture: Compiler-Assisted Fine-Grained Multithreading. InProceedings of the International Conference on Para
lel Architectures and Compilation Techniques, June 1995.

[21] Kemal Ebcioglu and Erik R. Altman. DAISY: Dynamic Compilation for 100% Architectural Compatibility.
Proceedings of the 24th Annual International Symposium on Computer Architecture, pages 26–37, June 1997.

[22] Richard Eickemeyer and Stamatis Vassiliadis. A Load-Instruction Unit for Pipelined Processors.IBM Journal of
Research and Development, 37(4):547–564, July 1993.

[23] B. Fahs, S. Bose, M. Crum, B. Slechta, F. Spadini, T. Tung, S. J. Patel, and S. S. Lumetta. Performance
terization of a Hardware Framework for Dynamic Optimization. InProceedings of the 34rd Annual IEEE/ACM
International Symposium on Microarchitecture, December 2001.

[24] Joseph A. Fisher. Trace scheduling: a technique for global microcode compaction.IEEE Transactions on Com-
puters, 30(7):478–490, 1981.

[25] Manoj Franklin and Gurindar S. Sohi. The Expandable Split Window Paradigm for Exploiting Fine-Grain P
lelism. In Proceedings of the 19th Annual International Symposium on Computer Architecture, pages 58–67,
May 1992.

[26] Manoj Franklin and Gurindar S. Sohi. ARB: A Hardware Mechanism for Dynamic Reordering of Memory
erences.IEEE Transactions on Computers, 45(5):552–571, May 1996.

[27] C. Fu, M. D. Jennings, S. Y. Larin, and T. M. Conte. Value speculation scheduling for high performance pr
sors. InProceedings of the Eighth International Conference on Architectural Support for Programming
guages and Operating Systems, pages 262–271, October 1998.

[28] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, and W. W. Hwu. Dynamic memory disambi
tion using the memory conflict buffer. InProceedings of the Sixth International Conference on Architectural S
port for Programming Languages and Operating Systems, pages 183–193, October 1994.

[29] Lal George and Andrew W. Appel. Iterated Register Coalescing.ACM Transactions on Programming Language
and Systems, 18(3):300–324, May 1996.

[30] J. González and A. González. The Potential of Data Value Speculation to Boost ILP. InProceedings of the 1998
International Conference on Supercomputing, pages 21–27, July 1998.

[31] James R. Goodman and Wei-Chung Hsu. Code Scheduling and Register Allocation in Large Basic Blo
Proceedings of the 1988 International Conference on Supercomputing, pages 442–452, July 1988.

[32] Sridhar Gopal, T.N. Vijaykumar, James E. Smith, and Gurindar S. Sohi. Speculative Versioning Cache. IPro-
ceedings of the Fourth IEEE Symposium on High-Performance Computer Architecture, pages 195–205, February
1998.

[33] Lance Hammond, Mark Willey, and Kunle Olukotun. Data Speculation Support for a Chip Multiprocesso
Proceedings of the Eighth International Conference on Architectural Support for Programming Language
Operating Systems, pages 58–69, October 1998.

[34] Quinn Jacobson, Steve Bennett, Nikhil Sharma, and James E. Smith. Control Flow Speculation in Mult
Processors. InProceedings of the Third IEEE Symposium on High-Performance Computer Architecture, Febru-
ary 1997.

93

chni-

P

ence.

n. In
es and

tinel
s

are
-

arison

Syn-
ter

tation

,

r the
[35] V. Kathail, Micheal Schlansker, and Bob R. Rau. HPL PlayDoh Architecture Specification: Version 1.0. Te
cal Report HPL-93-80, HP Laboratories, February 1994.

[36] Gregory A. Kemp and Manoj Franklin. PEWs: A Decentralized Dynamic Scheduler for ILP Processing. InPro-
ceedings of the International Conference on Parallel Processing, pages 239–246, August 1996.

[37] R. E. Kessler. The Alpha 21264 Microprocessor.IEEE Micro, 19(2):24–36, March/April 1999.

[38] Alexander Klaiber. The technology behind crusoe processors. Transmeta Whitepaper, January 2000.

[39] Tom Knight. An Architecture for Mostly Functional Languages. InProceedings of the ACM Conference on LIS
and Functional Programming, pages 105–112, 1986.

[40] Jens Knoop, Oliver Ruthing, and Bernhard Steffen. Partial Dead Code Elimination. InProceedings of the SIG-
PLAN 1994 Conference on Programming Language Design and Implementation, pages 147–158, June 1994.

[41] Ashok Kumar. The HP PA-8000 RISC CPU.IEEE Micro, 17(2):27–32, March/April 1997.

[42] Eric Larson and Todd Austin. Compiler Controlled Value Prediction using Branch Predictor Based Confid
In Proceedings of the 33rd Annual IEEE/ACM International Symposium on Microarchitecture, December 2000.

[43] Kevin M. Lepak and Mikko H. Lipasti. On the Value Locality of Store Instructions. InProceedings of the 27th
Annual International Symposium on Computer Architecture, pages 182–191, June 2000.

[44] Mikko H. Lipasti and John Paul Shen. Exceeding the Dataflow Limit via Value Prediction. InProceedings of the
29th Annual IEEE/ACM International Symposium on Microarchitecture, pages 226–237, December 1996.

[45] Mikko H. Lipasti, Christopher B. Wilkerson, and John P. Shen. Value Locality and Load Value Predictio
Proceedings of the Seventh International Conference on Architectural Support for Programming Languag
Operating Systems, pages 138–147, October 1996.

[46] S. A. Mahlke, W. Y. Chen, R. A. Bringmann, R. E. Hank, W. W. Hwu, B. R. Rau, and M. S. Schlansker. Sen
scheduling: A model for compiler-controlled speculative execution.ACM Transactions on Computer System,
11(4), November 1993.

[47] Pedro Marcuello, Antonio Gonzalez, and Jordi Tubella. Speculative Multithreaded Processors. InProceedings of
the 1998 International Conference on Supercomputing, July 1998.

[48] Doug Matzke. Will physical scalability sabotage performance gains.IEEE Computer, 30(9):37–39, September
1997.

[49] Matthew C. Merten, Andrew R. Trick, Erik M. Nystrom, Ronald D. Barnes, and Wen mei W. Hwu. A hardw
mechanism for dynamic extraction and relayout of program hot spots. InProceedings of the 27th Annual Inter
national Symposium on Computer Architecture, pages 59–70, June 2000.

[50] Markus Mock, Manuvir Das, Craig Chambers, and Susan J. Eggers. Dynamic Points-To Sets: A Comp
with Static Analyses and Potential Applications in Program Understanding and Optimization. InWorkshop on
Program Analysis for Software Tools and Engineering (PASTE), June 2001.

[51] Andreas Moshovos, Scott E. Breach, T.N. Vijaykumar, and Gurindar S. Sohi. Dynamic Speculation and
chronization of Data Dependences. InProceedings of the 24th Annual International Symposium on Compu
Architecture, pages 181–193, June 1997.

[52] Andreas Moshovos, Dionisios N. Pnevmatikatos, and Amirali Baniasadi. Slice Processors: An Implemen
of Operation-Based Prediction. InProceedings of the 2001 International Conference on Supercomputing, June
2001.

[53] Steven S. Muchnick.Advanced Compiler Design and Implementation. Morgan Kaufman, San Francisco, CA
1997.

[54] Robert Muth, Saumya Debray, and Scott Watterson Koen De Bosschere. alto : A Link-Time Optimizer fo
Compaq Alpha .IEEE Transactions on Computers, 31(1):67–101, 2001.

94

suing.

on

s

dwidth
tec-

S-TR-

t-

/

-

or. In
.

-

-

Data

read-
[55] Soner Onder and Rajiv Gupta. Dynamic Memory Disambiguation in the Presence of Out-of-order Store Is
In Proceedings of the 32nd Annual IEEE/ACM International Symposium on Microarchitecture, pages 170–176,
November 1999.

[56] J. Oplinger, D. Heine, and M. S. Lam. In Search of Speculative Thread-Level Parallelism. InProceedings of the
International Conference on Parallel Architectures and Compilation Techniques, October 1999.

[57] Subbarao Palacharla and James E. Smith. Complexity-Effective Superscalar Processors. InProceedings of the
24th Annual International Symposium on Computer Architecture, pages 206–218, June 1997.

[58] Sanjay J. Patel and Steven S. Lumetta. rePLay: A Hardware Framework for Dynamic Optimization.IEEE Trans-
actions on Computers, 50(6):590–608, 2001.

[59] K. Pettis and D. Hansen. Profile guided code positioning. InProceedings of the SIGPLAN 1990 Conference
Programming Language Design and Implementation, June 1990.

[60] Eric Rotenberg. AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors. InProceed-
ings of the 29th International Symposium on Fault-Tolerant Computing Systems, pages 84–91, June 1999.

[61] Eric Rotenberg.Trace Processors: Exploiting Hierarchy and Speculation. PhD thesis, Computer Science
Department, University of Wisconsin–Madison, August 1999.

[62] Eric Rotenberg, Steve Bennett, and James E. Smith. Trace Cache: A Low Latency Approach to High Ban
Instruction Fetching. InProceedings of the 29th Annual IEEE/ACM International Symposium on Microarchi
ture, pages 24–35, December 1996.

[63] Eric Rotenberg, Quinn Jacobson, Y. Sazeides, and James E. Smith. Trace Processors. InProceedings of the 30th
Annual IEEE/ACM International Symposium on Microarchitecture, pages 138–148, December 1997.

[64] A. Roth and G.S. Sohi. Speculative Data Driven Sequencing for Imperative Programs. Technical Report C
2000-1411, University of Wisconsin, Madison, February 2000.

[65] Amir Roth.Pre-Execution via Speculative Data-Driven Multithreading. PhD thesis, Computer Sciences Depar
ment, University of Wisconsin–Madison, August 2001.

[66] Amir Roth and Gurindar Sohi. Speculative Data-Driven Multi-Threading. InProceedings of the Seventh IEEE
Symposium on High-Performance Computer Architecture, pages 37–48, January 2001.

[67] Y. Sazeides and James E. Smith. The Predictability of Data Values. InProceedings of the 30th Annual IEEE
ACM International Symposium on Microarchitecture, pages 248–258, December 1997.

[68] Richard L. Sites, editor.Alpha Architecture Reference Manual. Digital Press, 1992.

[69] James E. Smith. Decoupled Access/Execute Computer Architecture. InProceedings of the 9th Annual Sympo
sium on Computer Architecture, pages 112–119, April 1982.

[70] M. D. Smith, M. S. Lam, and M. A. Horowitz. Boosting beyond static scheduling in a superscalar process
Proceedings of the 17th Annual International Symposium on Computer Architecture, pages 344–354, May 1990

[71] Avinash Sodani and Gurindar S. Sohi. Dynamic Instruction Reuse. InProceedings of the 24th Annual Interna
tional Symposium on Computer Architecture, June 1997.

[72] G.S. Sohi, S. Breach, and T.N. Vijaykumar. Multiscalar Processors. InProceedings of the 22nd Annual Interna
tional Symposium on Computer Architecture, pages 414–425, June 1995.

[73] J. Gregory Steffan, Christopher B. Colohan, and Todd C. Mowry. Architectural Support for Thread-Level
Speculation. Technical Report CMU-CS-97-188, Carnegie Mellon University, June 1997.

[74] J. Gregory Steffan, Christopher B. Colohan, Antonia Zhai, and Todd C. Mowry. A Scalable Approach to Th
Level Speculation. InProceedings of the 27th Annual International Symposium on Computer Architecture, June
2000.

95

nica-
om-

ilitate
uter

nd Fault
an-

ro-

iting
itec-

.

Sup-

struc-
[75] J. Gregory Steffan, Christopher B. Colohan, Antonia Zhai, and Todd C. Mowry. Improving Value Commu
tion for Thread-Level Speculation. InProceedings of the Sixth IEEE Symposium on High-Performance C
puter Architecture, January 2000.

[76] J. Gregory Steffan and Todd C. Mowry. The Potential for Using Thread-Level Data Speculation to Fac
Automatic Parallelization. InProceedings of the Fourth IEEE Symposium on High-Performance Comp
Architecture, pages 2–13, February 1998.

[77] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream Processors: Improving both Performance a
Tolerance. InProceedings of the Ninth International Conference on Architectural Support for Programming L
guages and Operating Systems, pages 257–268, November 2000.

[78] D.M. Tullsen and J.S. Seng. Storageless Value Prediction Using Prior Register Values. InProceedings of the
26th Annual International Symposium on Computer Architecture, pages 270–281, May 1999.

[79] S. Vajapeyam and T. Mitra. Dynamic Vectorization: A Mechanism for Exploiting Far-flung ILP in Ordinary P
grams. InProceedings of the 26th Annual International Symposium on Computer Architecture, pages 12–27,
May 1999.

[80] Sriram Vajapeyam and Tulika Mitra. Improving Superscalar Instruction Dispatch and Issue by Explo
Dynamic Code Sequences. InProceedings of the 24th Annual International Symposium on Computer Arch
ture, pages 1–12, June 1997.

[81] T. N. Vijaykumar and Gurindar S. Sohi. Task Selection for a Multiscalar Processor. InProceedings of the 31st
Annual IEEE/ACM International Symposium on Microarchitecture, pages 81–92, November 1998.

[82] Kai Wang and Manoj Franklin. Highly Accurate Data Value Prediction using Hybrid Predictors. InProceedings
of the 30th Annual IEEE/ACM International Symposium on Microarchitecture, pages 281–290, December 1997

[83] Catherine Xiaolan Zhang, Zheng Wang, Nicholas C. Gloy, J. Bradley Chen, and Michael D. Smith. System
port for Automated Profiling and Optimization. InProc. 16th Symposium on Operating System Principles, pages
15–26, October 1997.

[84] Craig B. Zilles and Gurindar S. Sohi. Understanding the Backwards Slices of Performance Degrading In
tions. InProceedings of the 27th Annual International Symposium on Computer Architecture, pages 172–181,
June 2000.

[85] Craig B. Zilles and Gurindar S. Sohi. Execution-based Prediction Using Speculative Slices. InProceedings of
the 28th Annual International Symposium on Computer Architecture, pages 2–13, July 2001.

	Abstract
	Acknowledgments
	Table of Contents
	Chapter 1 Introduction 1
	Chapter 2 The Master/Slave Speculative Parallelization Paradigm 6
	Chapter 3 Approximate Code and Constructing Distilled Programs 27
	Chapter 4 Implementing the MSSP Paradigm 43
	Chapter 5 Experimental Evaluation of the MSSP Paradigm 66
	Chapter 6 Conclusions 86
	R eferences 91

	List of Figures
	List of Tables

	Chapter 1
	Introduction
	1.1 Constraints Guiding the Development of the Execution Paradigm
	Wire delay:
	Programmer Productivity:
	Infrastructure Transparency:
	Minimal Verification Complexity:
	Flexibility:

	1.2 Overview of Master/Slave Speculative Parallelism
	Figure 1.1: Master processor distributes checkpoints to slaves

	1.3 Contributions of this Dissertation
	1. By parallelizing the program into tasks and predicting their live-in values, MSSP effectively ...
	2. In approximating a program, the distilled program is free to re-express computation in a manne...
	3. No compiler modifications are required and legacy binaries can be supported. All information n...
	4. The program distiller, the mechanism that constructs the distilled program, need not be verifi...
	5. The MSSP paradigm can be implemented as an extension to a chip multiprocessor (CMP). By implem...
	1. I define and describe the Master/Slave Speculative Parallelization paradigm, comparing it to p...
	2. I demonstrate the opportunity for approximating programs, discussing a prototype implementatio...
	3. I describe the necessary mechanisms for the MSSP paradigm and outline a possible implementation.
	4. I characterize the distilled programs generated by my prototype program distiller and empirica...

	1.4 Organization of the Dissertation

	Chapter 2
	The Master/Slave Speculative Parallelization Paradigm
	2.1 Programs and Parallelization
	2.1.1 Programs as Operations and Dependences
	Figure 2.1: Examples of register, memory, and control dependences on four classes of instructions

	2.1.2 Parallelizing Programs: Partitioning into Tasks
	Task Boundary: a point in the static program, generally associated with the static instructions t...
	Task: a continuous sequence of operations in the program’s execution bounded at each end by a tas...
	Figure 2.2: Example Execution Dependence Graph (EDG)
	Figure 2.3: Control flow graph with task boundaries (a), and resulting potential tasks (b).
	Figure 2.4: The program’s execution can be divided into three regions

	2.1.3 Handling Inter-Task Dependences
	long dependence: a dependence with a length exceeding the task window size. (Definition 3)
	short dependence: a dependence with a length less than or equal to the task window size. (Definit...
	Figure 2.5: Example partition of EDG with annotated dependences
	Figure 2.6: Three techniques for satisfying dependences

	2.1.4 Verification of Speculatively Satisfied Dependences
	Figure 2.7: Alternatives for short dependences in speculative parallel architectures

	2.2 Master/Slave Speculative Parallelization and Distilled Programs
	2.2.1 Checkpoint Speculative Parallelization Paradigms
	Figure 2.8: A live-in checkpoint is assembled from partial checkpoints

	2.2.2 Approximating Code and Distilled Programs
	Approximate code: a distinct executable computation that has a high probability, but no guarantee...
	Program paths
	Size of points-to sets
	Distilled Program: a form of approximate code which conveys a division of the original program in...

	2.2.3 Master/Slave Speculative Parallelization
	Master/Slave Speculative Parallelization: A checkpoint speculative parallelization architecture t...

	2.2.4 MSSP Exception Model
	2.2.5 Distilled Program Construction Example
	Figure 2.9: Example code fragment from SPEC 2000 benchmark gcc
	Figure 2.10: Example task selection and application of root optimizations
	Figure 2.11: Logical steps in constructing a distilled program
	Figure 2.12: Distilled program fragment after application of root optimizations

	2.2.6 MSSP Execution Example
	Figure 2.13: Distilled version of example code fragment:
	Figure 2.14: Flow chart of MSSP execution
	Figure 2.15: Detailed example MSSP execution

	2.3 Related Work
	2.3.1 Speculative Parallelization (SP)
	2.3.2 Leader/Follower Architectures
	2.3.3 Speculative Program Optimizations/Transformations
	Figure 2.16: Traditional vs. MSSP-style speculative optimization

	2.3.4 Dynamic Optimization Systems

	2.4 Chapter Summary

	Chapter 3
	Approximate Code and Constructing Distilled Programs
	3.1 “Requirements” of the Distilled Program
	Task Selection
	Providing the Expected Program State

	3.2 Selecting Task Boundaries
	3.2.1 Task Size
	Optimization Effectiveness
	Bandwidth Utilization
	Misspeculation Detection Latency
	Storage Requirements

	3.2.2 Task Boundary Locations
	3.2.3 Specifying Task Ends and Task End Suppression
	3.2.4 Task Selection Implementation
	Figure 3.1: Top-level algorithm pseudocode for selecting tasks
	Figure 3.2: Task selection algorithm example
	Figure 3.3: Algorithm pseudocode for creating acyclic regions for task selection
	Figure 3.4: Algorithm pseudocode for selecting potential task boundaries to promote
	(EQ 1)

	3.3 Distilled Program Structure
	3.3.1 Mapping Between Programs
	3.3.2 Transition Code
	Figure 3.5: Code hoisted across a fork instruction is replicated in the transition code.
	Figure 3.6: Code can be percolated down into transition code if used only in one task of the orig...

	3.3.3 Resulting Structure
	Figure 3.7: The distilled program structure supports checkpointing and misspeculation recovery

	3.4 Framework for Automatic Program Distillation
	Figure 3.8: Summary of root and supporting optimizations.
	3.4.1 Guiding Root Optimizations with Profile Information
	TABLE 3.1 Correctness thresholds for program distiller optimizations.

	3.4.2 Implications of Distilled Program Structure on Liveness Analysis

	3.5 Implementation
	3.5.1 Initialization
	Build Internal Representation (IR)
	Figure 3.9: Overview of phases of program distiller implementation

	Liveness Analysis
	Task Boundary Selection

	3.5.2 Instruction-level Optimizations
	Long Dependence Store Removal
	Global Pointer Optimization
	Branch Optimizations
	Silent/Idempotent Optimizations

	3.5.3 Dead Code Elimination and Control-Flow Simplification
	3.5.4 Function-level Optimizations
	Stack Pointer Optimization
	Register Re-allocation
	Remove Saves/Restores
	Inlining

	3.5.5 Code Output
	Code Layout
	Code Generation

	3.5.6 Performance

	3.6 Chapter Summary

	Chapter 4
	Implementing the MSSP Paradigm
	4.1 Required Functionality
	Timestamps
	Checkpoint buffering
	Live-out Buffering
	Live-in Buffering
	Register Communication
	Checkpoint Assembly
	Live-in Verification
	Live-out Commit
	Task End Condition
	Maps

	4.2 Analytical Model
	1. All tasks are equivalent and have execution time E.
	2. Distilling the program results in a speedup of a; distilled program segments execute in E/a time.
	3. Verification of live-in values and commitment of speculative data can be done in less time tha...
	4. There is an initiation latency I between when a fork instruction is executed by the distilled ...
	5. There is a binomial distribution with some probability P that a checkpoint received by a task ...
	6. Misspeculations are detected with a latency D after the previous task has been completed. This...
	7. Restarting the distilled program takes a latency R after a misspeculation has been detected. T...
	8. Additional slave processors are always available. Thus, verification is on the critical path o...
	Figure 4.1: Performance predicted by the analytical model

	4.3 A Guiding Theme: Tolerating Inter-processor Communication Latency
	Figure 4.2: Critical path through the MSSP execution

	4.4 An MSSP Implementation
	Figure 4.3: Block diagram of the MSSP hardware
	4.4.1 Mechanism Overviews
	Processor Core
	Global Register File
	L2 Cache Banks

	4.4.2 High-level Operation:
	Figure 4.4: Life of a single task (steady state operation of MSSP)

	4.4.3 Program Data That Validates This Approach
	Figure 4.5: Characterization of task live-in and live-out set sizes
	TABLE 4.1 Raw data on average number of 64-bit registers, 64B cache lines for refreshes, and 8B m...
	Bandwidths
	Figure 4.6: Graphical representation of flow of register and memory data
	TABLE 4.2 Estimated bandwidths calculated from raw data in Table�4.1.

	Master
	Master Bandwidth:
	Slave
	Slave Bandwidth:
	GRF/L2 Cache Bank
	GRF Bandwidth:
	L2 Cache Bank Bandwidth:
	Storage
	Live-ins:
	Checkpoints/Live-outs:

	4.4.4 Power Consumption

	4.5 Mechanism Details
	4.5.1 Live-in/Live-out Collection
	Figure 4.7: Hardware structures for collecting live-in and live-out values

	4.5.2 Register/Memory Word Messaging
	Figure 4.8: Packet formats for sending memory words and register values through interconnection n...

	4.5.3 Memory Checkpoint Assembly
	Figure 4.9: Checkpoint assembly from entries of the checkpoint buffer.

	4.5.4 Global Register File
	Figure 4.10: Detail of global register file implementation

	4.5.5 Verification/Commitment
	4.5.6 Misspeculation Detection/Recovery Path
	4.5.7 Mechanisms for Mapping Between Programs
	Figure 4.11: A sparse page table implementation for mapping.

	4.5.8 Tracking Stale Data and Refreshing
	4.5.9 Efficiently Communicating, Reading and Writing Register Files
	4.5.10 Early Verification

	4.6 Chapter Summary

	Chapter 5
	Experimental Evaluation of the MSSP Paradigm
	5.1 Experimental Methodology
	5.1.1 Program Distiller Implementation
	5.1.2 Simulation Infrastructure
	TABLE 5.1 Baseline parameters supplied to the program distiller.
	Figure 5.1: Diagram of machine model

	TABLE 5.2 Simulation parameters approximating a CMP of Alpha 21264 cores

	5.1.3 Benchmark Programs

	5.2 Results
	TABLE 5.3 Input sets used for simulation of Spec 2000 integer benchmarks
	5.2.1 Distilled Program Optimizations
	Figure 5.2: Root optimizations represented pictorially
	Figure 5.3: Effectiveness of root optimizations(2)
	Figure 5.4: Effectiveness of root optimizations(1)

	5.2.2 Task Selection
	Figure 5.5: Relative effect of root and supporting optimizations
	Figure 5.6: Task size distributions, with and without task boundary suppression
	TABLE 5.4 Distilled program statistics

	5.2.3 Hardware Resource Utilization
	Communication Bandwidth
	Non-architectural State Storage
	Figure 5.7: Bandwidth utilized
	Figure 5.8: Amount of speculative state storage required
	Figure 5.9: Processor utilization and task activity distribution:

	Processor Utilization

	5.2.4 Mapping
	Figure 5.10: Hit ratio of as a function of indirect branch target map size

	5.2.5 Performance
	TABLE 5.5 Number of indirect branches per 1000 dynamic (original program) instructions
	Figure 5.11: MSSP Performance across the whole program’s execution
	Figure 5.12: Task misspeculation detection latency
	Figure 5.13: Performance variation across execution

	5.2.6 Sensitivity to Interconnect Latency/Bandwidth
	Figure 5.14: Limited sensitivity to inter-processor communication latency.
	Figure 5.15: Limited sensitivity of inter-processor bandwidth on performance

	5.2.7 Sensitivity to Task Size
	Figure 5.16: Sensitivity of task size on performance
	Figure 5.17: Impact of task size on distillation ratio and misspeculation frequency
	Figure 5.18: Sensitivity of task size on task misspeculation detection latency

	5.2.8 Sensitivity to Task Boundary Selection
	Figure 5.19: Sensitivity of task size on bandwidth and storage requirements

	5.2.9 Sensitivity to Optimization Thresholds
	Figure 5.20: Sensitivity of performance on task boundary selection

	5.2.10 Sensitivity to Number of Processors
	Figure 5.21: Sensitivity of distillation thresholds on performance
	Figure 5.22: Sensitivity of performance on number of available processors

	5.2.11 Sensitivity to Refreshing
	5.2.12 Sensitivity to a Realistic Mapping Lookaside Buffer (MLB)

	5.3 Chapter Summary
	Figure 5.23: Sensitivity to refreshing
	Figure 5.24: Sensitivity indirect branch target mapping

	Chapter 6
	Conclusions
	6.1 Lessons Learned
	Program Information Content
	Optimization Effectiveness
	Tight Loops
	Synchronization

	6.2 Requirements for Correct Execution
	6.2.1 Mechanisms That Must Be Correct
	Instruction Fetch, Execute, and Commit
	Collection of Live-ins and Live-outs
	Transport of Live-ins and Live-outs
	Capture and Transport of Transition registers
	Transport of Non-speculative Data
	Coherently Matching to Architected State
	Two-Phase Commit
	Tagging and Evicting Stale Data
	Checkpointing Hardware

	6.2.2 Mechanisms That Don’t Need To Be Correct
	Program Distillation
	Mapping
	Checkpoint Assembly
	Refresh
	Stop Bits

	6.3 Open Questions
	To what extent can programs be distilled?
	What does the continuum of distilled programs look like?
	How should distillation be performed?
	How can the original program be constructed to facilitate distillation and the MSSP paradigm?
	What improvements can be made to the MSSP implementation?
	Can the architecture scale to larger (16-64) processor counts?

	6.4 Chapter Summary

	References

