Wavelet Analysis:

Theory and Applications

Wavelet analysis has attracted attention for its ability to analyze rapidly
changing transient signals. Any application using the Fourier transform
can be formulated using wavelets to provide more accurately localized
temporal and frequency information. This paper gives an overview of
wavelet analysis and describes a software toolbox created by HP
Laboratories Japan to aid in the development of wavelet applications.

by Daniel T.L. Lee and Akio Yamamoto

Wavelet analysis (also called wavelet theory, or just wave-
lets) has attracted much attention recently in signal process-
ing. It has been successfully applied in many applications
such as transient signal analysis, image analysis, communica-
tions systems, and other signal processing applications. It is
not a new theory in the sense that many of the ideas and
techniques involved in wavelets (subband coding, quadra-
ture mirror filters, etc.) were developed independently in
various signal processing applications and have been known
for some time. What is new is the development of recent
results on the mathematical foundations of wavelets that
provide a unified framework for the subject.

Within this framework a common link is established be-
tween the many diversified problems that are of interest to
different fields, including electrical engineering (signal pro-
cessing, data compression), mathematical analysis (harmonic
analysis, operator theory), and physics (fractals, quantum
field theory). Wavelet theory has become an active area of
research in these fields. There are opportunities for further
development of both the mathematical understanding of
wavelets and a wide range of applications in science and
engineering.

Like Fourier analysis, wavelet analysis deals with expansion
of functions in terms of a set of basis functions. Unlike
Fourier analysis, wavelet analysis expands functions not in
terms of trigonometric polynomials but in terms of wavelets,
which are generated in the form of translations and dilations
of a fixed function called the mother wavelet. The wavelets
obtained in this way have special scaling properties. They
are localized in time and frequency, permitting a closer con-
nection between the function being represented and their
coefficients. Greater numerical stability in reconstruction and
manipulation is ensured.

The objective of wavelet analysis is to define these powerful
wavelet basis functions and find efficient methods for their
computation. It can be shown that every application using the
fast Fourier transform (FFT) can be formulated using wave-
lets to provide more localized temporal (or spatial) and fre-
quency information. Thus, instead of a frequency spectrum,
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for example, one gets a wavelet spectrum. In signal process-
ing, wavelets are very useful for processing nonstationary
signals.

Wavelets have created much excitement in the mathematics
community (perhaps more so than in engineering) because
the mathematical development has followed a very interest-
ing path. The recent developments can be viewed as resolv-
ing some of the difficulties inherent in Fourier analysis. For
example, a typical question is how to relate the Fourier co-
efficients to the global or local behavior of a function. The
development of wavelet analysis can be considered an out-
growth of the Littlewood-Paley theory! (first published in
1931), which sought a new approach to answer some of
these difficulties. Again, it is the unifying framework made
possible by recent results in wavelet theory related to prob-
lems of harmonic analysis (also to similar problems in opera-
tor theory called the Calderén-Zygmund theoryl) that has
generated much of the excitement.

In electrical engineering, there have been independent devel-
opments in the analysis of nonstationary signals, specifically
in the form of the short-term Fourier transform, a variation of
which called the Gabor transform was first published in
1946.2 A major advance in wavelet theory was the discovery
of smooth mother wavelets whose set of discrete translations
and dilations forms an orthonormal basis for L2(R), where R
is the real numbers and 12 is the set of all functions, f, that
have bounded energy, that is, functions for which

J If©2dt < .

This is a main difference from the Gabor transform. In the
Gabor case, no orthonormal basis can be generated from
smooth wavelets. Thus the unifying framework brought
about a better understanding and a new approach that over-
comes the difficulties in the short-term Fourier transform
methods.

In the next section we give an overview of the main features
of wavelet analysis and then turn to a software toolbox that
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HP Laboratories Japan has developed to help in the develop-
ment of wavelet applications.

For an excellent tutorial introduction to the subject, see Rioul
and VetterliZ and the references therein (it lists 106 refer-
ences). Daubechies’ book! is a standard reference on the
subject.

Fundamentals of Wavelet Theory

This section gives a quick overview of the main formulas.

The Analyzing Wavelet
Consider a complex-valued function  satisfying the follow-
ing conditions:

f [9(0) | *dt < oo M

® 2
Cy = an J%‘—dm < o @)

where W is the Fourier transform of y. The first condition
implies finite energy of the function 1, and the second con-
dition, the admissibility condition, implies that if W(w) is
smooth then ¥ (0) = 0.

The function  is the mother wavelet.

Continuous Wavelet Transform

If v satisfies the conditions described above, then the wave-
let transform of a real signal s(t) with respect to the wavelet
function Y(t) is defined as:

S,8) = = J (SR 3

where ¢’ denotes the complex conjugate of P, and this is
defined on the open (b,a) half-plane (b € R, a > 0). The
parameter b corresponds to the time shift and the parameter
a corresponds to the scale of the analyzing wavelet.

If we define Y, p(t) as

W0 = a2y (H5R) 4

which means rescaling by a and shifting by b, then equation
3 can be written as a scalar or inner product of the real signal
s(t) with the function Y, 1,(0):

oo

S(b,a) = J V', pOsOdL ®)

When function y(t) satisfies the admissibility condition,
equation 2, the original signal s(t) can be obtained from the
wavelet transform S(b,a) by the following inverse formula:

s@:c—lJ [ (b, a0 LGP, ©

Discrete Wavelet Transform

In the discrete domain, the scale and shift parameters are
discretized as a = ag’ and b = nby, and the analyzing wave-
lets are also discretized as follows:
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where m and n are integer values. The discrete wavelet
transform and its inverse transform are defined as follows:

Smn = J Y mn(sdt, ©)

S® = ki > > Smalma(®, ©)

where ky is a constant value for normalization.

The function Y n(t) provides sampling points on the scale-
time plane: linear sampling in the time (b-axis) direction but
logarithmic in the scale (a-axis) direction.

The most common situation is that ag is chosen as:

ag = 217,

10)

where v is an integer value, and that v pieces of Y (1) are
processed as one group, which is called a voice. The integer v
is the number of voices per octave; it defines a well-tempered
scale in the sense of music. This is analogous to the use of a
set of narrowband filters in conventional Fourier analysis.

Wavelet analysis is not limited to dyadic scale analysis. By

using an appropriate number of voices per octave, wavelet
analysis can effectively perform the 1/3-octave, 1/6-octave,
or 1/12-octave analyses that are used in acoustics.

The main focus of current research is on finding optimal
wavelet basis functions and efficient algorithms for comput-
ing the corresponding wavelet transforms. The wavelet basis
function can be implemented as an FIR (finite impulse re-
sponse) filter or an IIR (infinite impulse response) filter
depending on the particular properties needed.

Graphical Representation

This section describes how to display complex-valued
functions such as equations 3 and 8 so that useful informa-
tion about the signal s(t) can be highlighted. There are two
aspects to consider.

The open (b,a) half-plane on which the wavelet transform is
defined can be mapped onto the full plane (b,-log(a)). This
representation is indispensable if we want to display, in a
single picture, information with a wide range of scale parame-
ters. For example, for sound signals in the audible range, a
spread of ten octaves is common. A disadvantage of this
representation, on the other hand, is that straight lines on
the open (b,a) half-plane become exponential curves in the
logarithmic representation.

Expressions 3 and 8 depend on the choice of the analyzing
wavelet . To obtain full quantitative information about the
signal s(t) from its transform S(b,a), we need to know the
analyzing wavelet . There are, however, many features of
the signal that are independent of the choice of ¢. Such fea-
tures involve the phase of the complex-valued functions.
Therefore, it is useful to represent separately the modulus
and the phase of the complex-valued function S(b,a) to be
described.

Shown in Figs. 1 and 2 is an example of the wavelet trans-
form of a localized pulse that approximates a delta function.
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Fig. 1. Magnitude of the wavelet transform of a delta function.

The horizontal axis is time in both the magnitude picture,
Fig. 1, and the phase picture, Fig. 2, and the vertical axis is
scale, with small scale at the top.

In Fig. 1, the magnitude increases toward the top of the pic-
ture. The modulus or magnitude, |S(b,a)|, is converted to
grayscale and is normalized to its maximum, that is, the plot
shows x, where:

x=-181 <1 (11)

| Smax |

The phase of S(b,a) is given by a grayscale picture in which
a phase of 0 corresponds to white and a phase of 2w to
black. This convention is quite useful in interpreting the re-
sulting picture. When the phase reaches 2m, it is wrapped
around to the value 0. The lines where the density drops
abruptly to zero are clearly visible on the picture and play
an important role in the interpretation as a visible line of
constant phase. In Fig. 2, one can see the lines of constant
phase pointing to the location of the delta function.

Examples of Wavelet Functions

Haar Wavelet. The Haar wavelet is the simplest kind of wave-
let function. Suppose that ¢(t) is a box function satisfying
the following:

Time Shift b

Fig. 2. Phase of the wavelet transform of a delta function.
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if0 =t=<1

1
o = [0 otherwise.

If we define the function Y(t) as P() = ¢p2t) - ¢(2t-1), we
can obtain the following function:

1 ifo<t=1/2
Yo =< -1 if1/2<t=1
0 otherwise.

The function ¢(t) is the Haar scaling function, and () is the
Haar wavelet. This function is orthogonal to its own transla-
tions and dilations, that is, the family

Ym,n(® = 2-m/2 Y™t - n),

where Z is the real integers, constitutes an orthonormal
basis for L2(R). Historically the Haar function was the origi-
nal wavelet. This wavelet is not continuous, and its Fourier
transform W (w) decays only like |® |-, corresponding to
bad frequency localization.

mn € Z, (14)

Meyer Wavelet. Yves Meyer constructed a smooth orthonormal
wavelet basis as follows. First of all, define the Fourier trans-
form ®(w) of a scaling function ¢(t) as:

1 if o] < 2a
— w3 2 4
D) = cos[iv(ﬁ |o| — 1)] if S =< |o| < 3 (15)
0 otherwise,

where v is a smooth function satisfying the following
conditions:

0 ift=<0
VO =11 ifc =1 (16)

with the additional property
v(®) + v(1-t) = 1. a7y
This function @ is plotted in Fig. 3.

In this case, the wavelet function 1 can be found easily from
®. First, we find the Fourier transform of 1:

W) = 2 b + 212l + 1)P(0/2) (18)
1€Z
— eiw/Z[q)(w + 23'5) + (I)((D — 23‘[)](1)((,0/2) (19)

The function W is plotted in Fig. 4.

Now since W is compactly supported (its duration is finite
and nonzero) and W € Cy where k is arbitrary and may be
o (i.e., ¥ has at least k derivatives), y can be obtained by
taking the inverse Fourier transform. Fig. 5 shows a graph of
the Meyer wavelet Y(t) € C4.

Morlet Wavelet. This particular function was most often used
by R. Kronland-Martinet and J. Morlet. Its Fourier transform
is a shifted Gaussian, adjusted slightly so that W(0) = 0:
2 2 2
Y(w) = e—(m—mo) /2 _ e~ /2e—m0/2 (20)

Yo = (e 70 — em0Y/2)e 2, @1
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Fig. 3. Fourier transform of the scaling function for the Meyer basis.

Often wg is chosen so that the ratio of the highest maximum
of ¢ to the second highest maximum is approximately 1/2,
that is,

wo = (2/In 2)1/2 = 53364... 22)

In practice one often takes wg = 5. For this value of w, the
second term in equation 20 is so small that it can be ne-
glected in practice. Consequently, the Morlet wavelet can
be considered as a modulated Gaussian waveform. Its real
and imaginary parts for wg = 5 are shown in Figs. 6 and 7,
respectively.

The Morlet wavelet is complex, even though most applica-
tions in which it is used involve only real signals. The wave-
let transform of a real signal with this complex wavelet is
plotted in modulus-phase form, that is, one plots | (s, Ymn) |
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Fig. 4. Fourier transform of the Meyer wavelet.
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Fig. 5. The Meyer wavelet.

and tan~Im(s, Ym n)/Re(s, Ym n)], where the brackets indi-
cate the scalar or inner product of the signal waveform s
with the basis function P, 5, that is,

(s, Wmn) = J SOY ma(®dt.

The phase plot is particularly suited for the detection of
singularities.

Daubechies Wavelet. Except for the Haar basis, all of the ex-
amples of orthonormal wavelet bases consist of infinitely
supported functions. Ingrid Daubechies constructed an or-
thonormal wavelet in which { is compactly supported. The
way to ensure compact support for the wavelet  is to
choose a scaling function ¢ with compact support.
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Fig. 6. Real part of the Morlet wavelet for wg = 5.
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Fig. 7. Imaginary part of the Morlet wavelet for wg = 5.

First of all, find a progression {oy;k € Z} satisfying the
following four conditions for all integer N = 2:

k=0 ifk <Oork > 2N (23)

z OOk +2m = Oom  for all integer m (24)
k=— o

> ae=12 (25)
k=— o

> Bkkm=0, 0 =m < N-1, (26)
k=— o

where Bk = (-DKot_j41.
If N = 1, then ag = a1 = 1, corresponding to the Haar basis.

We can find a compactly supported scaling function ¢(t)
from the above progression {ay}. The function ¢(t) is one
solution of a functional equation:

©

OO = > 29t — k). Q7

k=— o
It is continuous and compactly supported and satisfies
I ¢®dt = 1 for integer N and the corresponding progression
{ay}. The support of ¢(t) is [0,2N-1].

Furthermore, if By is defined as the condition 26, the function
Y(t) satisfying a functional equation

VO = D P20 - K (28)
k=— o
is compactly supported and fulfills the following:

. Jw(t)tmdt =0 for all integers 0 =< m < N-1.

< d@), Y(©) € C*N for Holder spaces CMN), where A(N) is an
integer parameter and the elements of CMN) are functions
that have MN) derivatives.
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Fig. 8. The Daubechies scaling function for N = 2.

Figs. 8 and 9 show graphs of the Daubechies scaling function
¢ and the corresponding wavelet 1 for the value of N = 2.

Software Tools: Khoros System

The wavelet analysis software developed by HP Laboratories
Japan is implemented as a toolbox in the Khoros system.
The Khoros system is an integrated software development
environment for information processing and visualization,
based on the X Window System. It is distributed in the pub-
lic domain and has been ported to the HP-UX* operating
system.3

Khoros components include a visual programming language,
code generators for extending the visual language and adding
new application packages to the system, an interactive user
interface editor, an interactive image display package, an
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Fig. 9. The Daubechies wavelet for N = 2.
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extensive library of image processing, numerical analysis,
and signal processing routines, and 2D/3D plotting packages.

The Khoros system also supports the toolbox update method
for new routines created by another person or developed on
another machine. A toolbox contributed by HP Laboratories
Japan, the HP1J Toolbox, contains wavelet application devel-
opment tools, image data compression utilities, and other
utilities.

Wavelet Analysis Examples

The following examples illustrate the advantages of the time-
scale resolution properties of the wavelet transform and a
related concept, the chirplet transform, for the analysis of
various input signals, including a delta function, a step or
box function, a differentially discontinuous function, a ramp
function, sinusoidal functions, a chirp signal, and a sum of
gliding tones.

Wavelet Analysis

This section gives several application examples of wavelet-
based signal analysis, including both stationary and nonsta-
tionary signal analysis. These results were obtained with a
Morlet wavelet, that is, a complex sinusoid windowed with a
Gaussian envelope, expressed as follows:

1

Yo = e exp( - Etz), (29)

where c is a constant value of 5 so that the function Y(t)
satisfies the admissibility condition.

Scale a

Fig. 10. Sinusoid with constant
frequency.

As for the number of voices discussed earlier, we use v = 6
in the following three examples of synthesized data analysis.

Example 1. The first example gives the analysis of two sinu-
soids. Fig. 10 shows a sinusoid with a single constant fre-
quency, and Figs. 11 and 12 represent its wavelet transform.
The horizontal axis is in time in both the magnitude picture,
Fig. 11, and the phase picture, Fig. 12. The vertical axis is
scale, small scale at the top. Certain features of the signal are
evident: horizontal strips of constant magnitude, and vertical
lines in step with the phase of the signal.

Fig. 13 shows a sinusoid with linearly increasing frequency.
The wavelet transform analysis results for this signal are
shown in Figs. 14 and 15. Clearly visible is the upward slope
corresponding to the increase of frequency.

Example 2. The second example is the analysis of the super-
position of two delta functions and two sinusoids, as shown
in Fig. 16. One delta function is larger than the sinusoidal
signals and is visible in Fig. 16, but the other is much smaller
and does not appear.

Figs. 17 and 18 show the wavelet transform representations.
We can easily see the two peaks at smaller scale that corre-
spond to the discontinuities contained in the input signal.

Example 3. This example shows the analysis of a sum of three
sinusoids with different starting times. The input signal shown
in Fig. 19 is not discontinuous, but its first derivative is.

Fig. 11. Magnitude of the wavelet
transform of a constant-frequency

Time Shift b
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sinusoid.
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Time Shiftb

Fig. 12. Phase of the wavelet
transform of a constant-frequency
sinusoid.

Fig. 13. Sinusoid with linearly
increasing frequency.

Fig. 14. Magnitude of the wavelet
transform of a sinusoid with
linearly increasing frequency.

Fig. 15. Phase of the wavelet
transform of a sinusoid with
linearly increasing frequency.
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} } } { Fig. 16. Two delta functions and
t two sinusoids.

Scale a

Fig. 17. Magnitude of the wavelet
transform of the sum of two delta
0 Time Shift b functions and two sinusoids.

Scale a

Fig. 18. Phase of the wavelet
- d : transform of the sum of two delta
0 Time Shift b functions and two sinusoids.

t t t { Fig. 19. Three sinusoids with
t different starting times.
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Scale a

Fig. 20. Magnitude of the wavelet
transform of three sinusoids with

Time Shiftb

Scalea

Time Shift b

Both the frequencies and the beginnings of the components
are very clearly visible in the wavelet transform pictures,

Figs. 20 and 21. A low-frequency sinusoid starts first, followed
by a medium-frequency and a high-frequency sinusoid.

Real Data Analysis. This section shows the results of real data
analysis. This data, provided by the Lake Stevens Instrument
Division, is the transmitter turn-on data of a dual-band trans-
ceiver that was taken at a center frequency of 146.52 MHz
with the measurement span set to 39.0625 kHz. In other
words, the data is filtered to approximately a 40-kHz band-
width. The time interval between points is 20 ys.

The input signal is plotted in Fig. 22. In this case, the trans-
form was performed for the value of v = 12, and the magni-
tude and phase of the wavelet transform are shown in Figs.
23 and 24, respectively.

52 December 1994 Hewlett-Packard Journal

U A

different starting times.

Fig. 21. Phase of the wavelet
transform of three sinusoids with
different starting times.

Chirplet Analysis

The wavelet transform has the effect of dissecting the time-
scale plane into time-invariant cells with an aspect ratio de-
pendent on the scale parameter. This property is important
in spectral processing of signals but does not affect dynamic
spectrum displays where time t is advanced by small incre-
ments relative to the cell width.

The representation of signals may benefit if the cell shape is
not held time-invariant throughout. This time-dependent
adjustment can be performed adaptively. Such a technique,
called the chirplet transform, has been proposed. It uses
oblique cells adapted to the local structure, permitting
separation of the signal components.

Fig. 22. Transmitter turn-on data.
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