
Reducing FPGA Reconfiguration Time Overhead using Virtual Configurations

Ming Liu‡†, Zhonghai Lu†, Wolfgang Kuehn‡, Axel Jantsch†

‡ II. Physics Institute † Dept. of Electronic Systems
Justus-Liebig-University Giessen (JLU), Germany Royal Institute of Technology (KTH), Sweden

{ming.liu, wolfgang.kuehn}@physik.uni-giessen.de {mingliu, zhonghai, axel}@kth.se

Abstract—Reconfiguration time overhead is a critical factor
in determining the system performance of FPGA dynamically
reconfigurable designs. To reduce the reconfiguration overhead,
the most straightforward way is to increase the reconfiguration
throughput, as many previous contributions did. In addition
to shortening FPGA reconfiguration time, we introduce a new
concept of Virtual ConFigurations (VCF) in this paper, hiding
dynamic reconfiguration time in the background to reduce
the overhead. Experimental results demonstrate up to 29.9%
throughput enhancement by adopting two VCFs in a consumer-
reconfigurable design. The packet latency performance is also
largely improved by extending the channel saturation to a
higher packet injection rate.

I. INTRODUCTION

Partial Reconfiguration (PR) enables the process of dy-
namically reconfiguring a particular section of an FPGA de-
sign while the remaining part is still operating. This vendor-
dependent technology provides common benefits in adapting
hardware modules during system run-time, sharing hardware
resources to reduce device count and power consumption,
shortening reconfiguration time, etc. [1] [2] [3]. Typically
partial reconfiguration is achieved by loading the partial bit-
stream of a new design into the FPGA configuration memory
and overwriting the current one. Thus the reconfigurable
portion will change its behavior according to the newly
loaded configuration. Despite the flexibility of changing
part of the design at system run-time, overhead exists in
the reconfiguration process since the reconfigurable portion
cannot work at that time due to the incompleteness of the
configuration data. It has to wait to resume working until the
complete configuration data have been successfully loaded in
the FPGA configuration memory. Therefore in performance-
critical applications which require fast or frequent switching
of IP cores, the reconfiguration time is significant and should
be minimized to reduce the overhead.

To reduce the dynamic reconfiguration overhead, the most
straightforward way is to increase the data write-in through-
put of the configuration interface on FPGAs, specifically
the Internal Configuration Access Port (ICAP) on Xilinx
FPGAs [4]. As an additional approach, we address the
challenge of reducing the reconfiguration overhead by em-
ploying the concept of virtualization on FPGA configuration
contexts. The remainder of the paper will be organized as
follows: In Section II, related work of reducing dynamic
reconfiguration overhead will be discussed. In Section III,

we introduce the concept of Virtual ConFigurations (VCF),
with which the dynamic reconfiguration time may be fully
or partly hidden in the background. Experimental results
will demonstrate the performance benefits of using VCFs in
Section IV, in terms of data delivery throughput and latency.
Finally we conclude the paper and propose our future work
in Section V.

II. RELATED WORK

FPGA dynamic reconfiguration overhead refers to the
time spent on the module reconfiguration process. At that
time, the reconfigurable region on the FPGA cannot effec-
tively work due to the lack of a complete bitstream, and
consequently it has negative effects on the system perfor-
mance. Reconfiguration overhead may be minimized either
with a reasonable scheduling policy which decreases the
context switching times of hardware modules, or by reducing
the required time span for each configuration. There is
related discussion on the former approach in our previous
publication of [5]. We observe from the experimental results
that only less than 0.3% time is spent on the configuration
switching with a throughput-aware scheduling policy, not
exacerbating much the overall processing throughput of the
under-test system; With regard to the latter approach, design
optimization approaches have been previously adopted to
increase the configuration throughput. For instance in [6],
[7] and [8], authors explore the design space of various ICAP
designs and enhance the reconfiguration throughput to the
order of magnitude of Megabytes per second. Unfortunately
the reconfiguration time is still constrained by the physical
bandwidth of the reconfiguration port on FPGAs. Other ap-
proaches of compressing the partial bitstreams are discussed
in [8] and [9] for shrinking the reconfiguration time under
the precondition of a fixed configuration throughput. In ad-
dition to all the above described contributions, in this paper
we will address the challenge of reducing the reconfiguration
overhead, employing the concept of virtualization on FPGA
configuration contexts.

III. VIRTUAL CONFIGURATION

In canonical PR designs, one Partially Reconfigurable
Region (PRR) has to stop from working, when a new module
is to be loaded to replace the existing one by run-time recon-
figuration. This is the overhead of switching hardware pro-
cesses, which restricts the overall system performance. As a

solution, we propose the concept of Virtual ConFiguration
(VCF) to hide the configuration overhead of a PR design.
As shown in Figure 1, two copies of configuration contexts,
each of which represents a VCF, are altogether dedicated to
a single PRR on a multi-context FPGA [10] [11] [12]. The
active VCF may still keep working in the foreground when
module switching is expected. The run-time reconfiguration
only happens invisibly in the background, and the new
partial bitstream is loaded into configuration context 2. After
the reconfiguration is finished, the newly loaded module
can start working by being swapped with the foreground
context, migrating from the background to the foreground.
The previously active configuration will be deactivated into
the background and wait for the next time reconfiguration.
The configuration context swapping between the background
and the foreground is logically realized by changing the
control on the PRR among different VCFs. It does not
need to really swap the configuration data in the FPGA
configuration memory, but instead switches control outputs
taking effect on the PRR using multiplexer (MUX) devices.
Hence the configuration context swapping takes only very
short time (normally some clock cycles), and is tiny enough
to be negligible compared to the processing time of the
system design.

Figure 1. Virtual reconfigurations on multi-context FPGAs

With the approach of adopting VCFs, the reconfiguration
overhead can be fully or partly removed with the duplicated
configuration contexts. The timing advantage is illustrated
in Figure 2, comparing to the canonical PR designs without
VCFs. We see in Figure 2a, the effective work time and the
reconfiguration overhead have to be arranged in sequence on
the time axis, in the canonical PR design without VCFs. By
contrast in Figure 2b, the reconfiguration process only hap-
pens in the background and the time overhead is therefore
hidden by the working VCF in the foreground.

In normal FPGAs with only single-context configuration
memories, VCFs may be implemented by reserving du-
plicated PRRs of the same size (see Figure 3). At each
time, only one PRR is allowed to be activated in the
foreground and selected to communicate with the rest static
design by MUXes. The other PRR waits in the background
for reconfiguration and will be swapped to the foreground
to work after the module is successfully loaded. Taking
into account the resource utilization overhead of reserving
duplicated PRRs, usually we do not adopt more than 2
VCFs.

Figure 2. Timing diagrams of PR designs without or with VCFs

Figure 3. Virtual reconfigurations on single-context FPGAs

IV. EXPERIMENTS

A. Experimental Setup

To investigate the impact of VCFs on performance, we
set up a producer-consumer design with run-time recon-
figuration capability. As illustrated in Figure 4, the pro-
ducer periodically generates randomly-destined packets to
4 consumers and buffers them in 4 FIFOs. Each FIFO is
dedicated to a corresponding consumer algorithm, which
can be dynamically loaded into the reserved consumer PRR.
The scheduler program monitors the “almost_full” signals
from all FIFOs and arbitrate the to-be-loaded consumer
module using a Round-Robin policy. Afterwards, the loaded
consumer will consume its buffered data in a burst mode,
until it has to be replaced by the winner of the next-
round reconfiguration arbitration. The baseline canonical PR
design has only one configuration context and must stop the
working module before the reconfiguration starts. In the PR
design with VCFs, we adopt only two configuration contexts
since the on-chip area overhead of multiple configuration
contexts should be minimized. Experimental measurements
have been carried out in cycle-accurate simulation using
synthesizable VHDL codes. Simulation provides much con-
venience for observing all the signals in the waveform and
debugging the design. It will have the same results when
implementing the design on any dynamically reconfigurable
FPGA. Both the baseline and the VCF designs run at a
system clock of 100 MHz. The overall on-chip buffering
capability is parameterized in the order of KiloBytes. For
the reconfiguration time of each module, we select 10

µs which is a reasonable value when using the practical
Xilinx ICAP controller for partial reconfiguration [7]. The
generated packets are 256-bit wide. The FIFO width is 32
bits. Before packets go into the FIFO, they are fragmented
into flits.

Figure 4. Experimental setup of the consumer-reconfigurable design

B. Results

We did measurements on the received packet throughput
in the unit of packets per cycle per consumer node, with the
FIFO depth of 512, 1K and 2K respectively. Measurement
results are demonstrated in Figure 5. We observe from the
figure that:

1) As the packet injection rate increases, the on-chip
communication becomes saturated progressively due
to the limitation of the packet consuming capability;

2) For both types of PR designs (red or light curves for
with 2 VCFs and blue or dark curves for without),
larger FIFO depths lead to higher saturated throughput,
since the data read-out burst size can be increased
by larger buffering capability, and the reconfiguration
time overhead is comparatively reduced;

3) Introducing VCFs can further reduce the reconfigura-
tion overhead by hiding the reconfiguration time in
the background. In the most obvious case of 1K FIFO
depth, two VCFs increase the throughput from 0.0127
packets/cycle/node to 0.0165, achieving a performance
enhancement of 29.9%. Other two cases of 512 and
2K FIFO depth have a performance enhancement of
26.4% and 17.9% respectively.

We enlarged the time span of each configuration from 10
µs to 50 µs and did further throughput measurements with
a middle-size FIFO depth of 1K. Results are demonstrated
in Figure 6, comparing the PR design using 2 VCFs with
the one without VCF. We observe that the overall system
throughput is worsened by the increased reconfiguration
time overhead, specifically from a saturated value of 0.0127
(see Figure 5) into 0.00492 packets/cycle/node for the non-
VCF design. The increased reconfiguration time also easily
results in the channel saturation at an even lower packet
injection rate of about 1 packet per 50 cycles. In this test,
we can still see the performance improvement of 27.6%

30 28 26 24 22 20 18 16 14 12 10
0.007

0.008

0.009

0.010

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

0.0184

0.0165

0.0156

0.0127

0.0116

Th
ro

ug
hp

ut
 [p

ac
ke

ts
/c

yc
le

/n
od

e]

1/(Packet Injection Rate) [cycles/packet]

 FIFO_depth = 512, without VCFs
 FIFO_depth = 512, with 2 VCFs
 FIFO_depth = 1K, without VCFs
 FIFO_depth = 1K, with 2 VCFs
 FIFO_depth = 2K, without VCFs
 FIFO_depth = 2K, with 2 VCFs

0.00918

Figure 5. Throughput measurement results (reconfiguration time = 10 µs)

(0.00628 vs. 0.00492 packets/cycle/node), using 2 VCFs to
partly counteract the reconfiguration overhead. The channel
saturation point is extended to about 1 packet per 35 cycles
by duplicated VCFs

90 80 70 60 50 40 30 20 10
0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

0.0055

0.0060

0.0065

0.00628

0.00492

Th
ro

ug
hp

ut
 [p

ac
ke

ts
/c

yc
le

/n
od

e]

1/(Packet Injection Rate) [cycles/packet]

 FIFO_depth = 1K, without VCFs
 FIFO_depth = 1K, with 2 VCFs

Figure 6. Throughput measurement results (reconfiguration time = 50 µs)

Except for the throughput comparison, we collected also
statistics on packet latency performance to demonstrate the
effect of using VCFs. We discuss the average latency of a
certain amount of packets, and exclude the system warm-up
and cool-down cycles out of measurements, only taking into
account steady communications. The latency is calculated
from the instant when the packet is injected into the source
queue to that when the packet is received by the destination
node. It consists of two components: the queuing time in the
source queue and the network delivery time in flit FIFOs.
Measurements were conducted in the experimental setup
with the smaller reconfiguration time of 10 µs and the
middle-size FIFO depth of 1K. Results are illustrated in
Figure 7. We observe that 2 VCFs have a slight reduction
effect on the packet latency before the channel saturation. In
this curve segment, packets do not stay in the source queue
for too long time, but they must wait in flit FIFOs until

their specific destination node is configured to read them
out in a burst mode. Therefore we see two comparatively flat
curve segments before the channel saturation, because of the
steady switching frequency of consumer nodes. Nevertheless
after the channel’s packet delivery capability is saturated,
packets have to spend much time waiting in the source
queue to enter the flit FIFOs. Thus the average latency of
packets deteriorates significantly and generates rising curve
segments in the figure. By contrast, using 2 VCFs may
reduce the reconfiguration overhead and extends the channel
saturation to a higher packet injection rate. It reduces the
packet wait time in the source queue and introduce them
into the flit FIFOs at an early time, leading to a large
improvement on the packet latency performance.

30 28 26 24 22 20 18 16 14 12 10

10000

20000

30000

40000

50000

60000

70000

80000

A
ve

ra
ge

 L
at

en
cy

 [c
yc

le
s]

1/(Packet Injection Rate) [cycles/packet]

 FIFO_depth = 1K, without VCFs
 FIFO_depth = 1K, with 2 VCFs

Figure 7. Latency measurement results (reconfiguration time = 10 µs)

V. CONCLUSION AND FUTURE WORK

In this paper, we introduce the concept of virtual con-
figurations to hide the FPGA dynamic reconfiguration time
in the background and reduce the reconfiguration overhead.
Experimental results on a consumer-reconfigurable design
demonstrate up to 29.9% throughput improvement of re-
ceived packets by each consumer node. The packet latency
performance is largely improved as well, by extending the
channel saturation to a higher packet injection rate. This
approach is well suited for PR designs on multi-context FP-
GAs. For single-context FPGAs, performance improvement
is accompanied by resource utilization overhead of reserving
duplicated PR regions.

In the future work, we will take advantage of VCFs
in practical PR designs for specific applications. Research
and engineering work on multi-context FPGAs will also
be useful to popularize this technology in dynamically
reconfigurable designs with high performance requirements.

ACKNOWLEDGMENT

This work was supported in part by BMBF under contract
Nos. 06GI9107I and 06GI9108I, FZ-Juelich under contract

No. COSY-099 41821475, HIC for FAIR, and WTZ: CHN
06/20.

REFERENCES

[1] C. Kao, “Benefits of Partial Reconfiguration”, Xcell Journal,
Fourth Quarter 2005, pp. 65 - 67.

[2] E. J. Mcdonald, “Runtime FPGA Partial Reconfiguration”, In
Proc. of 2008 IEEE Aerospace Conference, pp. 1 - 7, Mar.
2008.

[3] C. Choi and H. Lee, “An Reconfigurable FIR Filter Design
on a Partial Reconfiguration Platform”, In Proc. of First
International Conference on Communications and Electronics,
pp. 352 - 355, Oct. 2006.

[4] Xilinx Inc., “Virtex-4 FPGA Configuration User Guide”,
UG071, Jun. 2009.

[5] M. Liu, Z. Lu, W. Kuehn, and A. Jantsch, “FPGA-based Adap-
tive Computing for Correlated Multi-stream Processing”, In
Proc. of the Design, Automation & Test in Europe conference,
Mar. 2010.

[6] J. Delorme, A. Nafkha, P. Leray and C. Moy, “New OPBHW-
ICAP Interface for Realtime Partial Reconfiguration of FPGA”,
In Proc. of the International Conference on Reconfigurable
Computing and FPGAs, Dec. 2009.

[7] M. Liu, W. Kuehn, Z. Lu, and A. Jantsch, “Run-time Partial
Reconfiguration Speed Investigation and Architectural Design
Space Exploration”, In Proc. of the International Conference
on Field Programmable Logic and Applications, Aug. 2009.

[8] S. Liu, R. N. Pittman, and A. Forin, “Minimizing Partial
Reconfiguration Overhead with Fully Streaming DMA Engines
and Intelligent ICAP Controller”, In Proc. of the International
Symposium on Field-Programmable Gate Arrays, Feb. 2010.

[9] J. H. Pan, T. Mitra, and W. Wong, “Configuration Bitstream
Compression for Dynamically Reconfigurable FPGAs”, In
Proc. of the International Conference on Computer-Aided
Design, Nov. 2004.

[10] Y. Birk and E. Fiksman, “Dynamic Reconfiguration Archi-
tectures for Multi-context FPGAs”, International Journal of
Computers and Electrical Engineering, Volume 35, Issue 6,
Nov. 2009.

[11] M. Hariyama, S. Ishihara, N. Idobata and M. Kameyama,
“Non-volatile Multi-Context FPGAs using Hybrid Multiple-
Valued/Binary Context Switching Signals”, In Proc. of Inter-
national Conference Reconfigurable systems and Algorithms,
Aug. 2008.

[12] K. Nambaand H. Ito, “Proposal of Testable Multi-Context
FPGA Architecture”, IEICE Transactions on Information and
Systems, Volume E89-D, Issue 5, May. 2006.

