
Security as a New Dimension in Embedded System Design

Paul Kocher†, Ruby Lee‡, Gary McGraw¶, Anand Raghunathan§ and Srivaths Ravi§
† Cryptography Research, San Francisco, CA

‡ EE Department, Princeton University, Princeton, NJ
¶ Cigital, Dulles, VA

§ NEC Laboratories America, Princeton, NJ

Abstract
The growing number of instances of breaches in information se-
curity in the last few years has created a compelling case for ef-
forts towards secure electronic systems. Embedded systems, which
will be ubiquitously used to capture, store, manipulate, and access
data of a sensitive nature, pose several unique and interesting se-
curity challenges. Security has been the subject of intensive re-
search in the areas of cryptography, computing, and networking.
However, despite these efforts,security is often mis-construed by
designers as the hardware or software implementation of specific
cryptographic algorithms and security protocols. In reality, it is an
entirely new metric that designers should consider throughout the
design process, along with other metrics such as cost, performance,
and power.

This paper is intended to introduce embedded system designers
and design tool developers to the challenges involved in design-
ing secure embedded systems. We attempt to provide a unified
and holistic view of embedded system security by first analyzing
the typical functional security requirements for embedded systems
from an end-user perspective. We then identify the implied chal-
lenges for embedded system architects, as well as hardware and
software designers (e.g., tamper-resistant embedded system design,
processing requirements for security, impact of security on battery
life for battery-powered systems,etc.). We also survey solution
techniques to address these challenges, drawing from both current
practice and emerging research, and identify open research prob-
lems that will require innovations in embedded system architecture
and design methodologies.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General- System archi-
tectures, Instruction set design; C.1.0 [Computer Systems Or-
ganization]: Processor architectures- General; C.2.0 [Computer
Systems Organization]: Computer-Communication Networks-
General, Security and protection; C.5.3 [Computer Systems Or-
ganization]: Computer System Implementation- Microcomput-
ers, Portable devices; D.0 [Software]: General; E.3 [Data]: Data
encryption- DES, Public key cryptosystems

General Terms
Security, Performance, Design, Reliability, Algorithms, Verification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2004, June 7–11, 2004, San Diego, California, USA.
Copyright 2004 ACM 1-58113-828-8/04/0006 ...$5.00.

Keywords
Embedded Systems, PDAs, Sensors, Security, Cryptography, Security Pro-
tocols, Security Processing, Design, Design Methodologies, Architectures,
Tamper Resistance, Software Attacks, Viruses, Trusted Computing, Digital
Rights Management, Performance, Battery Life

1. INTRODUCTION
Today, security in one form or another is a requirement for

an increasing number of embedded systems, ranging from low-
end systems such as PDAs, wireless handsets, networked sensors,
and smart cards to mid- and high-end network equipment such as
routers, gateways, firewalls, storage and web servers. Technologi-
cal advances that have spurred the development of these electronic
systems have also ushered in seemingly parallel trends in the so-
phistication of security attacks. It has been observed that the cost of
insecurity in electronic systems can be very high. Counterpane In-
ternet Security, for example, estimated that the “I Love You” virus
caused nearly one billion dollars in lost revenue worldwide [1].
With an increasing proliferation of such attacks, it is not surprising
that a large number of users in the mobile commerce world (nearly
52% of cell phone users and 47% of PDA users, according to a sur-
vey by Forrester Research [2]) feel that security is the single largest
concern preventing the successful deployment of next-generation
mobile services.

With the evolution of the Internet, information and communica-
tions security has gained significant attention. For example, var-
ious security protocols and standards such as IPSec, SSL, WEP,
and WTLS, are used for secure communications in embedded sys-
tems. While security protocols and the cryptographic algorithms
they contain address security considerations from a functional per-
spective, many embedded systems are constrained by the environ-
ments they operate in, and by the resources they possess. For such
systems, there are several factors that are moving security consid-
erations from a function-centric perspective into a system architec-
ture (hardware/software) design issue. For example,

� An ever increasing range of attack techniques for breaking
security such as software, physical and side-channel attacks
require that the embedded system be secure even when it can
be logically or physically accessed by malicious entities. Re-
sistance to such attacks can be ensured only if built into the
system architecture.

� The processing capabilities of many embedded systems are
easily overwhelmed by the computational demands of secu-
rity processing, leading to undesirable tradeoffs between se-
curity and cost, or security and performance.

� Battery-driven systems and small form-factor devices such
as PDAs, cell phones and neworked sensors often operate
under stringent resource constraints (limited battery capac-

ities, limited storage,etc.). These constraints only worsen
when the device is subject to the demands of security.

� Embedded system architectures need to be flexible enough
to support the rapid evolution of security functionalities and
standards.

� New functional security objectives, such as denial of service
and digital content protection, require a higher degree of co-
operation between security experts and embedded system ar-
chitects / designers.

This paper will introduce the embedded system designer to the
importance of embedded system security, review evolving trends
and standards, and illustrate how the security requirements translate
into system design challenges. Emerging solutions to address these
challenges through a combination of advanced embedded system
architectures and design methodologies will be presented.

2. EMBEDDED SYSTEM SECURITY RE-
QUIREMENTS

Embedded systems often provide critical functions that could be
sabotaged by malicious parties. When they send or receive sen-
sitive or critical information using public networks or communi-
cations channels accessible to potential attackers, they should ide-
ally provide basic security functions such asdata confidentiality,
data integrity, anduser authentication. Data confidentiality pro-
tects sensitive information from undesired eavesdroppers. Data in-
tegrity ensures that the information has not been changed illegiti-
mately. User authentication verifies that the information is sent and
received by appropriate parties rather than masqueraders. These are
basic security functions are often collectively termedsecure com-
munications and are required of many embedded systems used in
medical, sensing, automotive, financial, military and many other
applications.

Secure
Storage

AvailabilityUser
Identification

Secure
Communications

Secure
Content

Secure
Network
Access

Tamper
Resistance

Secure
Storage

AvailabilityUser
Identification

Secure
Communications

Secure
Content

Secure
Network
Access

Tamper
Resistance

Figure 1: Common security requirements of embedded systems from
an end-user perspective

In addition to secure communications, other security require-
ments have also been mentioned in the context of several embed-
ded systems. Fig 1 shows some of these requirements from the
perspective of an end-user. Very often, access to the embedded sys-
tem should be restricted to a selected set of authorized users (user
identification), while access to a network or a service has to be pro-
vided only if the device is authorized (secure network access). In
several scenarios, one can expect malicious entities preventing an
embedded system from performing the functions it is supposed to,
resulting in a degradation of performance, quality of service,etc..
Embedded systemavailability then becomes a critical factor.

Since the mandate of embedded system security often requires
protecting sensitive information (code or data) throughout its life-
time, secure storage andcontent security become crucial.Secure
storage involves securing code or data in all system storage devices,
external or internal to the system in question.Content security pro-
tects the rights of the digital content used in the system, and this
issue is actively pursued by several content providers.

Finally, an undercurrent behind many of these embedded system
security requirements is that we would like the requirements to be
met even when the device is physically or logically probed by mali-
cious entities. We refer to the property of the device being “secure”
in the face of these threats astamper resistance.

3. FUNCTIONAL SECURITY MEASURES
Several functional security primitives have been proposed in the

context of network security. These include various cryptographic
algorithms used for encrypting and decrypting data, and for check-
ing the integrity of data. Most cryptographic algorithms fall into
one of three classes – symmetric ciphers, asymmetric ciphers and
hashing algorithms. (For a basic introduction to cryptography, we
refer the reader to [3, 4]).

� Symmetric ciphers require the sender to use a secret key to
encrypt data (the data being encrypted is often referred to as
plaintext) and transmit the encrypted data (usually called the
ciphertext) to the receiver. On receiving the ciphertext, the
receiver then uses the same secret key to decrypt it and regen-
erate the plaintext. The ciphertext should have the property
that it is very hard for a third party to deduce the plaintext,
without having access to the secret key. Thus, confidentiality
or privacy of data is ensured during transmission. Examples
of symmetric ciphers include DES, 3DES, AES, and RC4.
Most symmetric ciphers are constructed from computation-
ally light-weight operations such as permutations, substitu-
tions,etc. Thus, they are well suited for securing bulk data
transfers.

� Hashing algorithms such as MD5 and SHA convert arbitrary
messages into unique fixed-length values, thereby providing
unique “thumbprints” for messages. Hash functions are often
used to construct Message Authentication Codes (MACs),
such as HMAC-SHA, which additionally incorporate a key
to prevent adversaries who tamper with data from avoiding
detection by recomputing hashes.

� Asymmetric algorithms (also called public key algorithms),
on the other hand, typically use a private (secret) key for de-
cryption, and a related public (non-secret) key for encryp-
tion. Encryption requires only the public key, which is not
sufficient for decryption. Digital signatures are also con-
structed using public key cryptography and hashes. Asym-
metric algorithms (e.g., RSA, Diffie-Hellman, etc.) rely
on the use of more computationally intensive mathematical
functions such as modular exponentiation for encryption and
decryption. Therefore, they are often used for security func-
tions complementary to secure bulk data transfers such as
exchanging symmetric cipher keys.

Security solutions to meet the various security requirements out-
lined in the previous section typically rely on security mechanisms
that use a combination of the aforementioned cryptographic prim-
itives in a specific manner (i.e., security protocols). Various secu-
rity technologies and mechanisms have been designed around these
cryptographic algorithms in order to provide specific security ser-
vices. For example,

� Secure communication protocols (popularly called security
protocols) provide ways of ensuring secure communication

channels to and from the embedded system. IPSec [5] and
SSL [6] are popular examples of security protocols, widely
used for Virtual Private Networks (VPNs) and secure web
transactions, respectively.

� Digital certificates provide ways of associating identity with
an entity, while biometric technologies [7] such as fingerprint
recognition and voice recognition aid in end-user authenti-
cation. Digital signatures, which function as the electronic
equivalent of handwritten signatures, can be used to authen-
ticate the source of data as well as verify its identity.

� Digital Rights Management (DRM) protocols such as
OpenIPMP [8], MPEG [9], ISMA [10] and MOSES [11],
provide secure frameworks intended to protect application
content against unauthorized use.

� Secure storage and secure execution require that the archi-
tecture of the system be tailored for security considerations.
Simple examples include the use of bus monitor logic to
block illegal accesses to protected areas in the memory [12],
authentication of firmware that executes on the system, appli-
cation isolation to preserve the privacy and integrity of code
and data assoicated with a given application or a process [13],
HW/SW techniques to preserve the privacy and integrity of
data throughout the memory hierarchy [14], execution of en-
crypted code in processors to prevent bus probing [15, 16]
etc.

4. DESIGNING SECURE EMBEDDED SYS-
TEM IMPLEMENTATIONS

Various attacks on electronic and computing systems have shown
that hackers rarely take on the theoretical strength of well-designed
functional security measures or cryptographic algorithms. Instead,
they rely on exploiting security vulnerabilities in the SW or HW
components of the implementation. In this section, we will see that
unless security is considered throughout the design cycle, embed-
ded system implementation weaknesses can easily be exploited to
bypass or weaken functional security measures.

4.1 Embedded Software Attacks and Coun-
termeasures

Why is software so difficult to control? Three factors, which
we call theTrinity of Trouble — complexity, extensibility and con-
nectivity — conspire to make managing risks in software a major
challenge.

� Complexity: Software is complicated, and will become even
more complicated in the near future. The equation is simple:
more lines of code equals more bugs. As embedded systems
converge with the Internet and more code is added, they are
clearly becoming more complex. The complexity problem
is exacerbated by the use of unsafe programming languages
(e.g., C or C++) that do not protect against simple kinds of
attacks, such as buffer overflows. In theory, we could analyze
and prove that a small program was free of problems, but
this task is impossible for even the simplest desktop systems
today. For reasons of efficiency, C and C++ are very popular
languages for embedded systems.

� Extensibility: Modern software systems, such as Java and
.NET, are built to be extended. An extensible host accepts
updates or extensions (mobile code) to incrementally evolve
system functionality. Today’s operating systems support ex-
tensibility through dynamically loadable device drivers and
modules. Advanced embedded systems are designed to be
extensible (e.g., J2ME, Java Card, and so on). Unfortunately,

the very nature of extensible systems makes it hard to prevent
software vulnerabilities from slipping in as an unwanted ex-
tension.

� Connectivity: More and more embedded systems are being
connected to the Internet. The high degree of connectivity
makes it possible for small failures to propagate and cause
massive security breaches. Embedded systems with Internet
connectivity will only make this problem grow. An attacker
no longer needs physical access to a system to launch auto-
mated attacks to exploit vulnerable software. The ubiquity of
networking means that there are more attacks, more embed-
ded software systems to attack and greater risks from poor
software security practice.

4.1.1 An Example SW Attack: The Hardware Virus
Software attacks against the kernel, such as those carried out by

rootkits, demonstrate the kinds of attack that embedded systems
are exposed to [17]. A kernel has full access to the system and
can communicate with any part of the address space. This means,
among other things, that an attacker can read/write to the BIOS
memory on the motherboard or in peripheral hardware.

In the “old days”, BIOS memory was stored in ROM or in
EPROM chips which could not be updated from software. These
older systems require the chips to be replaced or manually erased
and rewritten. Of course this is not very cost effective, so new
systems employ EEPROM chips, otherwise known as flash ROM.
Flash ROM can be re-written from software. Modern embedded
systems often include Flash ROM.

A given computer can have several megabytes of flash ROM
floating around on various controller cards and the motherboard.
These flash-ROM chips are almost never fully utilized and this
leaves us tremendous amounts of room to store backdoor informa-
tion and viruses. The compelling thing about using these memory
spaces is that they are hard to audit and almost never visible to soft-
ware running on a system. To access the hardware memory requires
driver level access. Furthermore, this memory is immune against
reboots and system re-installation.

One key advantage of a hardware virus is that it will survive a
reboot and a system re-installation. If someone suspects a viral
infection, restoring the system from tape or backup will not help.
The hardware virus has always been and will remain one of the best
kept secrets of the “black magic” hackers.

A simple hardware virus may be designed to impart false data to
a system, or to cause the system to ignore certain events. Imagine
an anti-aircraft radar that uses the VX-Works OS. Within the sys-
tem are several flash RAM chips. A virus is installed into one of
these chips and it has trusted access to the entire bus. The virus has
only one purpose — to cause the radar to ignore certain types of
radar signatures.

Viruses have long since been detected in the wild that write them-
selves into the motherboard BIOS memory. In the late 90s, the so-
called F00F bug was able to crash a laptop completely. Although
the CIH (of Chernobyl) virus was widely popularized in the me-
dia, virus code that used the BIOS was published long before the
release of CIH.

EEPROM memory is fairly common on many systems. Ether-
net cards, video cards, and multimedia peripherals may all con-
tain EEPROM memory. The hardware memory may contain flash
firmware or the firmware may just be used for data storage. Non-
volatile memory chips are found in a variety of hardware devices:
TV tuners and remote controls, CD Players, cordless and cellular
phones, fax machines, cameras, radios, automotive airbags, anti-
lock brakes, odometers, keyless entry systems, printers and copiers,
modems, pagers, satellite receivers, barcode readers, point of sale
terminals, smart cards, lock boxes, garage door openers, and test
and measurement equipment. EEPROM chips remain a prime area

for storing subversive code. As more embedded devices become
available, the EEPROM based virus will be more applicable and
dangerous.

4.1.2 Securing against SW attacks
A central and critical aspect of the computer security problem is

a software problem. Software defects with security ramifications
— including implementation bugs such as buffer overflows and
design flaws such as inconsistent error handling — promise to be
with us for years. All too often, malicious intruders can hack into
systems by exploiting software defects [17]. Moreover, Internet-
enabled software applications present the most common security
risk encountered today, with software’s ever-expanding complexity
and extensibility adding further fuel to the fire.

Software security’s best practices leverage good software engi-
neering practice and involve thinking about security early in the
software life cycle, knowing and understanding common threats
(including language-based flaws and pitfalls), designing for secu-
rity, and subjecting all software artifacts to thorough objective risk
analyses and testing.

Security is an emergent property of a software system. This is a
subtle point often lost on development people who tend to focus on
functionality. Obviously, there are security functions in the world,
and most modern software includes security features, but adding
features such as SSL (for cryptographically protecting communica-
tions) does not present a complete solution to the security problem.
A security problem is more likely to arise because of a problem in a
standard-issue part of the system (say, the API to the server) than in
some given security feature. This is an important reason why soft-
ware security must be part of a full lifecycle approach. Just as you
can not test quality into a piece of software, you can not spray paint
security features onto a design and expect it to become secure.

Software security in the SDLC Software security in the SDLC

Requirements
and use cases

Design Test plans Code Test
results

Field
feedback

Abuse
cases

Security
requirements

External
review

Risk
analysis

Risk-based
security tests

Security
breaks

Static
analysis
(tools)

Risk
analysis

Penetration
testing

Software security in the SDLC Software security in the SDLC

Requirements
and use cases

Design Test plans Code Test
results

Field
feedback

Abuse
cases

Security
requirements

External
review

Risk
analysis

Risk-based
security tests

Security
breaks

Static
analysis
(tools)

Risk
analysis

Penetration
testing

Figure 2: Software security best practices applied to various software
artifacts

As practitioners become aware of software security’s impor-
tance, they are increasingly adopting and evolving a set of best
practices to address the problem [18, 19]. There’s no substitute for
working software security as deeply into the development process
as possible and taking advantage of the engineering lessons soft-
ware practitioners have learned over the years. Figure 2 specifies
one set of best practices and shows how software practitioners can
apply them to the various software artifacts produced during soft-
ware development. Although the artifacts are laid out according
to a traditional waterfall model in this picture, most organizations
follow an iterative approach today, which means that best practices
will be cycled through more than once as the software evolves.

Software security best practices apply at various levels:

� The requirements level: Security requirements must cover
both overt functional security (say, the use of applied cryp-
tography) and emergent characteristics.

� The design and architecture level: A system must be co-
herent and present a unified security architecture that takes
into account security principles (such as the principle of least
privilege) [18].

� The code level: Static analysis tools — tools that scan source
code for common vulnerabilities — can discover implemen-
tation bugs at the code level.

Note that risks crop up during all stages of the software life cycle,
so a constant risk analysis thread, with recurring risk tracking and
monitoring activities, is highly recommended.

Security testing must encompass two strategies: testing security
functionality with standard functional testing techniques, and risk-
based security testing based on attack patterns and threat models.
Penetration testing is also useful, especially if an architectural risk
analysis is specifically driving the tests.

Operations people should carefully monitor fielded systems dur-
ing use for security breaks. Simply put, attacks will happen, regard-
less of the strength of design and implementation, so monitoring
software behavior is an excellent defensive technique.

4.2 Tamper-resistant Hardware
There are a wide range of attacks (different from software at-

tacks) that exploit the system implementation and/or identifying
properties of the implementation to break the security of an embed-
ded system. These are calledphysical andside-channel attacks [20,
21, 22, 23, 24, 25, 26, 27]. Historically, many of these attacks
have been used to break the security of embedded systems such as
smart cards. Physical and side-channel attacks are generally classi-
fied intoinvasive andnon-invasive attacks. Invasive attacks involve
getting access to the appliance to observe, manipulate and interfere
with the system internals. Since invasive attacks against integrated
circuits typically require expensive equipment, they are relatively
hard to mount and repeat. Examples of invasive attacks include
micro-probing and reverse engineering. Non-invasive attacks, as
the name indicates, do not require the device to be opened. While
these attacks may require an initial investment of time or creativ-
ity, they tend to be cheap and scalable (compared to invasive at-
tacks). There are many forms of non-invasive attacks such as tim-
ing attacks, fault induction techniques, power and electromagnetic
analysis based attacks,etc. In the sections that follow, we will be
examining some of these attacks in more detail.

4.2.1 Physical attacks
For an embedded system on a circuit board, physical attacks can

be launched by using probes to eavesdrop on inter-component com-
munications. However, for a system-on-chip, sophisticated micro-
probing techniques become necessary [22, 23]. The first step in
such attacks is de-packaging. De-packaging typically involves re-
moval of the chip package by dissolving the resin covering the sil-
icon using fuming acid. The next step involves layout reconstruc-
tion using a systematic combination of microscopy and invasive
removal of covering layers. During layout reconstruction, the in-
ternals of the chip can be inferred at various granularities. While
higher-level architectural structures within the chip such as data
and address buses, memory and processor boundaries,etc., can
be extracted with little effort, detailed views of lower-level struc-
tures such as the instruction decoder and ALU in a processor, ROM
cells,etc., can also be obtained. Finally, techniques such as manual
microprobing or e-beam microscopy are typically used to observe
the values on the buses and interfaces of the components in a de-
packaged chip.

Physical attacks at the chip level are relatively hard to use be-
cause of their expensive infrastructure requirements (relative to
other attacks). However, they can be performed once and then used
as precursors to the design of successful non-invasive attacks. For

example, layout reconstruction is useful when performing electro-
magnetic radiation monitoring around selected chip areas. Like-
wise, the knowledge of ROM contents, such as cryptographic rou-
tines and control data, can provide an attacker with information that
can assist in the design of a suitable non-invasive attack.

4.2.2 Timing analysis
For many devices, even computing the correct result does not

ensure security. In 1996, one of us (Paul Kocher) showed how
keys could be determined by analyzing small variations in the time
required to perform cryptographic computations. The attack in-
volves making predictions about secret values (such as individual
key bits), then using statistical techniques to test the prediction by
determining whether the target device’s behavior is correlated to
the behavior expected by the prediction.

To understand the attack, consider a computation that begins
with a known input and includes a sequence of steps, where each
step mixes in one key bit and takes a non-constant amount of time.
For example, for a given input, two operations are possible for the
first step, depending on whether the key bit is zero or one.

For the attack, the adversary observes a set of inputs and notes
the approximate total time required for a target device to process
each. Next, the adversary measures the correlation between the
measured times and the estimated time for the first step assuming
the first step mixes in a zero bit. A second correlation is computed
using estimates with a bit value of one. The estimates using the bit
value actually used by the target device should show the strongest
correlation to the observed times. The attack can then be repeated
for subsequent bits.

What makes the attack interesting is that “obvious” countermea-
sures often don’t work. For example, quantizing the total time (e.g.,
delaying to make the total computation take an exact multiple of
10ms) or adding random delays increases the number of measure-
ments required, but does not prevent the attack. Obviously, mak-
ing all computations take exactly the same amount of time would
eliminate the attack, but few modern microprocessors operate in
exactly constant time. Writing constant-time code (particularly in
high-level languages) can be tricky.

Fortunately, there are techniques that can reliably prevent tim-
ing attacks in many systems. For example, message blinding can
be used with RSA and other public key cryptosystems to prevent
adversaries from correlating input/output values with timing mea-
surements. For further information about timing attacks, see [28].

4.2.3 Power analysis
Timing channels are not the only way that devices leak infor-

mation. For example, the operating current drawn by a hardware
device is correlated to computations it is performing. In most inte-
grated circuits, the major contributors to power consumption are the
gates themselves and losses due to the parasitic capacitance of the
internal wiring. Power consumption increases if more state transi-
tions occur and if transitions are occurring predominately at gates
with greater size or capacitive load. There are two main categories
of power analysis attacks, namely, simple power analysis (SPA) and
differential power analysis (DPA).

SPA attacks rely on the observation that in some systems, the
power profile of cryptographic computations can be directly used
to interpret the cryptographic key used. For example, SPA analysis
can be used to break RSA implementations by revealing differences
between the multiplication and squaring operations performed dur-
ing modular exponentiation. In many cases, SPA attacks have also
been used to augment or simplify brute-force attacks. For example,
it has been shown in [29] that the brute-force search space for one
SW DES implementation on an 8-bit processor with 7 bytes of key
data can be reduced to 240 keys from 256 keys with the help of SPA.

DPA attacks use statistical techniques to determine secret keys

Incorrect Key

Incorrect Key

Correct Key

D
ifference traces

Incorrect Key

Incorrect Key

Correct Key

D
ifference traces

Figure 3: Power consumption traces generated during a DPA attack
on a DES implementation

from complex, noisy power consumption measurements. For
a typical attack, an adversary repeatedly samples the target de-
vice’s power consumption through each of several thousand crypto-
graphic computations. Typically, these power traces are collected
using high-speed A/D converters, such as those found in digital
storage oscilloscopes.

After the data collection, the adversary makes a hypothesis about
the key. For example, if the target algorithm is the Data Encryption
Standard (DES) (see [3] for a detailed description of DES), a typ-
ical prediction might be that the 6 key bits entering S box 4 are
equal to ‘011010’. If correct, an assertion of this form allows the
adversary to compute four bits entering the second round of the
DES computation. If the assertion is incorrect, however, an effort
to predict any of these bits will be wrong roughly half the time.

For any of the four predicted bits, the power traces are divided
into two subsets: one where the predicted bit value is 0, and one
set where the predicted value is 1. Next, an average trace is com-
puted for each subset, where the nth sample in each average trace
is the average of the nth samples in all traces in the subset. Finally,
the adversary computes the difference of the average traces (called
difference traces).

If the original hypothesis is incorrect, the criteria used to create
the subsets will be approximately random. Any randomly-chosen
subset of a sufficiently-large data set will have the same average as
the main set. As a result, the difference will be effectively zero at
all points, and the adversary repeats the process with a new guess.

If the hypothesis is correct, however, choice of the subsets will
be correlated to the actual computation. In particular, the second-
round bit will have been ‘0’ in all traces in one subset and ‘1’ in the
other. When this bit is actually being manipulated, its value will
have a small effect on the power consumption, which will appear
as a statistically-significant deviation from zero in the difference
trace. Figure 3 shows an actual power consumption profile and the
difference traces when both correct and incorrect keys are guessed.

DPA allows adversaries to pull extremely small “signals” from
extremely noisy data, often without even knowing the design of the
target system. These attacks are of particular concern for devices
such as smart cards that must protect secret keys while operating in
hostile environments. Countermeasures that reduce the quality of
the measurements (such as running other circuits simultaneously)
only increase the number of samples the adversary needs to collect,
and do not prevent the attack. For further information about DPA,
see [30].

Attacks such as DPA that involve many aspects of system de-
sign (hardware, software, cryptography,etc.) pose additional chal-
lenges for embedded system engineering projects because security

risks may be concealed by layers of abstraction. Countermeasures
used to mitigate these attacks are also frequently mathematically
rigorous, non-intuitive, and require patent licensing [31]. As a
result, projects requiring effective tamper resistance, particularly
when used for securing payments, audiovisual content, and other
high-risk data, remain expensive and challenging.

4.2.4 Fault induction
Hardware security devices depend on more than correct soft-

ware. If the hardware ever fails to make correct computations, se-
curity can be jeopardized.

For example, almost any computation error can compromise
RSA implementations using the Chinese Remainder Theorem
(CRT). The computation involves two major subcomputations, one
that computes the result modulop and the other moduloq, wherep
andq are the factors of the RSA public modulusn. If, for example,
the modp computation result is incorrect, the final answer will be
incorrect modulop, but correct moduloq. Thus, the difference be-
tween the correct answer and the computed answer will be an exact
multiple of q, allowing the adversary to findq by computing the
greatest common denominator (GCD) of this difference andn.

To deter this specific attack, RSA implementations can check
their answers by performing a public key operation on the result
and verifying that it regenerates the original message. Unfortu-
nately, error detection techniques for symmetric algorithms are not
nearly as elegant, and there are many other kinds of error attacks.
As a result, many cryptographic devices include an assortment
of glitch sensors and other features designed to detect conditions
likely to cause computation errors. For further discussion of this
topic, see [32].

4.2.5 Electromagnetic Analysis
Electromagnetic analysis attacks (EMA) have been well docu-

mented since the eighties, when it was shown in [33] that elec-
tromagnetic radiation from a video display unit can be used to re-
construct its screen contents. Since then, these attacks have only
grown in sophistication [34]. The basic premise of many of these
attacks is that they attempt to measure the electromagnetic radia-
tion emitted by a device to reveal sensitive information. Successful
deployment of these attacks against a single chip would require
intimate knowledge of its layout, so as to isolate the region around
which electromagnetic radiation measurements must be performed.
Like power analysis attacks, two classes of EMA attacks, namely,
simple EMA (SEMA) and differential EMA (DEMA) attacks have
been proposed [35, 36].

5. EMBEDDED PROCESSING ARCHI-
TECTURES FOR SECURITY

In the past, embedded systems tended to perform one or a few
fixed functions. The trend is for embedded systems to perform mul-
tiple functions and also to provide the ability to download new soft-
ware to implement new or updated applications in the field, rather
than only in the more controlled environment in the factory. While
this certainly increases the flexibility and useful lifetime of an em-
bedded system, it poses new challenges in terms of the increased
likelihood of attacks by malicious parties. An embedded system
should ideally provide basic security functions, implement them
efficiently and also defend against attacks by malicious parties. We
discuss these below, especially in the context of the additional chal-
lenges faced by resource-constrained embedded systems in an en-
vironment of ubiquitous networking and pervasive computing.

5.1 Security-Aware Processing Architectures
Most functional security measures are designed using appropri-

ate cryptographic algorithms like symmetric ciphers, asymmetric
ciphers and hasing schemes. However, several studies have re-

vealed that such ciphers can be rather compute-intensive and power
hungry, which is a challenge for resource constrained embedded
systems.

The computational requirements of standard security protocols
such as SSL tend to be significantly higher than the processor ca-
pabilities available in embedded systems such as wireless hand-
held devices [37, 38]. Data presented in [37] reveal that the total
processing requirements for software implementations of SSL ex-
ecuting on an iPAQ handheld (235 MIPS StrongARM processor)
is around 651.3 MIPS, when the protocol uses 3DES for encryp-
tion/decryption and SHA for message authentication, at 10 Mbps
(current and emerging data rates for wireless LAN technologies are
in the range of 2-60 Mbps).

The energy consumption characteristics of security processing
on battery-powered wireless handhelds have also been studied re-
cently [39, 40]. When a device such as Symbol PPT2800 PocketPC
is securely transmitting data, data from [39]) shows that a consid-
erable part (nearly 21%) of the overall energy consumption is spent
on security processing.

Overall architecture

EP EP with
HWaccel

EP with
GPxEP with

SPx

Architectural parameters

pipeline
stages

cache
architecture

register
file size

datapath
bit-width

#way
superscalar

Choice of
custom

instructions

Choice of
HW accelerators

Micro-
architectural
parameters

Base
processor
parameters

Domain-specific
customizations
for security
processing

Attack
resistance
features

Secure memory
space?

Concurrent fault
detection?

EP with
COP

Secure
EP

EP:

embedded
processors

SPx:

special purpose
extensions

GPx:

general purpose
extensions

HWaccel

hardware
accelerators

COP:

co-processor

Overall architecture

EP EP with
HWaccel

EP with
GPxEP with

SPx

Architectural parameters

pipeline
stages

cache
architecture

register
file size

datapath
bit-width

#way
superscalar

Choice of
custom

instructions

Choice of
HW accelerators

Micro-
architectural
parameters

Base
processor
parameters

Domain-specific
customizations
for security
processing

Attack
resistance
features

Secure memory
space?

Concurrent fault
detection?

EP with
COP

Secure
EP

Overall architecture

EP EP with
HWaccel

EP with
GPxEP with

SPx

Architectural parameters

pipeline
stages

cache
architecture

register
file size

datapath
bit-width

#way
superscalar

Choice of
custom

instructions

Choice of
custom

instructions

Choice of
HW accelerators

Choice of
HW accelerators

Micro-
architectural
parameters

Base
processor
parameters

Domain-specific
customizations
for security
processing

Attack
resistance
features

Secure memory
space?

Secure memory
space?

Concurrent fault
detection?

Concurrent fault
detection?

EP with
COP

Secure
EP

EP:

embedded
processors

SPx:

special purpose
extensions

GPx:

general purpose
extensions

HWaccel

hardware
accelerators

COP:

co-processor
EP:

embedded
processors

SPx:

special purpose
extensions

GPx:

general purpose
extensions

HWaccel

hardware
accelerators

COP:

co-processor

Figure 4: Architectural design space for security-aware pro-
cessing

While efficiency in performance and energy consumption must
be reflected in a security processing architecture, the architecture
must also be capable of detecting and responding to various kinds
of attacks that are possible due to different architectural (HW or
SW) vulnerabilities. Keeping these considerations in mind, we
evolved the architectural design space forsecurity-aware process-
ing as illustrated in Figure 4. The design decisions to be taken
include:

� The macro-architectural style (embedded general-purpose
processor (EP)vs. application-specific instruction set pro-
cessor (ASIP)vs. EP with custom hardware accelerators con-
nected to the processor bus,etc.)

� Tuning the architecture of the base processor by optimizing
parameters such as data path bit-width, number of pipeline
stages, register file size,etc.

� Choosing the functionality to be implemented as custom in-
structions or hardware accelerators.

� Selecting the attack-resistance features (from the range of
available mechanisms) to be included in the architecture,
e.g., additional redundant circuitry for power attack resis-
tance, an enhanced memory management unit to manage a
secure memory space, fault detection circuitry,etc.

The following sections will detail the evolution of various tech-
nologies for both efficient security processing and attack-resistant
architectures.

5.1.1 Security Processing Architectures
Past embedded architecture approaches have hardwired algo-

rithms in ASICs (Application Specific Integrated Circuits). While
fixed function ASIC approaches are suitable when one or only a
few ciphers are needed, they are less desirable when a variety of
ciphers are desired to support multiple security protocols, emerg-
ing standards and interoperability with many devices. The use of
FPGAs (Field Programmable Gate Arrays) allows some reconfigu-
ration of ciphers, but often does not meet cost, energy consumption
and performance goals simultaneously. Another approach has been
to use a general-purpose processor core with accelerator chips for
the most performance critical steps. For example, since most of the
time consumed in executing a public key algorithm such as RSA is
in performing modular exponentiation, accelerator chips typically
provide hardware speedup for modular multiplication.

Another approach is to tightly integrate such acceleration hard-
ware with the processor core itself and invoke it with custom in-
structions. For example, embedded processors such as Xtensa [41]
are equipped with tools that allow a designer to extend the basic
instruction set of a processor with a set of application-specific or
custom instructions. A typical example is to implement one round
of a symmetric cipher such as DES (Data Encryption Standard)
in hardware and invoke this with a custom instruction. This can
provide very significant acceleration to DES with excellent energy
consumption, but no performance or energy improvement at all for
other ciphers. For certain embedded systems, this is not only ad-
equate, but often the most cost-effective solution. For example,
MOSES [42] is a proposal for a custom, low-overhead instruction
set for a set of symmetric, asymmetric and hashing algorithms.

In the general-purpose processor arena, new instructions have
also been proposed to accelerate the class of existing symmetric ci-
phers [43, 44]. These new instructions typically perform a smaller
function rather than an entire round of a block cipher. However,
they are still fairly specific to the block ciphers considered. An
alternative approach has been to consider the design of future as
well as existing ciphers, leading to the addition of only versa-
tile, “general-purpose” instruction primitives to a processor. These
should accelerate not only existing ciphers but also enable the de-
sign of future ciphers that can achieve the same levels of security,
with shorter computation time while consuming less energy. For
example, bit permutation instructions are identified [45, 46] as the
only o perations in many block ciphers that are very slow on exist-
ing processors. Therefore, novel bit permutation instructions have
recently been proposed [47] that allow any arbitrary permutation of
the n bits in a register (or block to be enciphered) to be achieved in
at most log(n) instructions, much faster than the O(n) instructions
or cycles needed with the instructions available in existing proces-
sors. Such bit-level permutation operations can quickly achieve
diffusion in block ciphers, a technique identified by Shannon [48]
as fundamental to the design of block ciphers.

Public key algorithms require operations very different from
those used in symmetric ciphers. Widely used algorithms like RSA,
Diffie-Helman and El-Gamal require huge numbers of modular
muliplication operations on large operands,e.g., 1024 bit numbers,
in order to implement their main underlying operation – modular
exponentiation. Here, the trend is not only to design large fast mul-
tipliers but also to find newer mathematical basis for public key al-
gorithms that are easier to compute and use smaller operands, such
as Elliptic Curve Cryptography (ECC) [49]. ECC on binary fields
perform polynomial multiplication rather than integer multiplicia-
tion, using much shorter operands to achieve equivalent levels of
security. For example, 163 bit ECC keys are thought to provide

security equivalent to 1024 bit RSA keys. On the implementation
side, the trend has been to implement dual-field multipliers [50]
that can efficiently perform both integer and binary multiplications
on the same multipler circuit.

Very recently, work on tiny processors that accelerate both sym-
metric ciphers and public key algorithms, as well as secure hashes,
have been proposed. For example, PAX [51] is a minimalist RISC
(Reduced Instruction Set Computer) processor with a few addi-
tional (but simple to implement) instructions that accelerate both
ECC public key operations and block ciphers, and can achieve the
link speeds of current and proposed wireless networks at low MHz
rates. These are quite promising as embedded processors in smart
cards, sensors and hand-held devices that require flexibility with
small form factors and low energy cinsumption.

Moving beyond cryptography acceleration, work is in progress
to accelerate secure communications protocols, such as IPSEC and
SSL, as well. While network processors have been designed to ac-
celerate the processing of the traditional network protocol stack,
“security protocol engines” have been proposed to accelerate the
security protocol processing,e.g., the IPSEC (Internet Protocol SE-
Curity) portion of the IP network protocol processing.

5.1.2 Secure or Attack-Resistant Architectures
The security processing architectures discussed in the previous

section are by no meanssecure since they do not provide any pro-
tection from attacks by malicious entities. Several attempts have
been made to provide such protection from attacks, but because
of the scope of this problem, comprehensive solutions are still an
area of research. Rather, solutions have been proposed for specific
applications,e.g., Digital Rights Management (DRM) to try to mit-
igate software, music or movie piracy, or for specific attacks,e.g.,
password theft. Application-specific solutions,e.g., DRM for DVD
players, may be the most widely deployed ones for embedded sys-
tems in the near future.

In DRM, the ability to distribute essentially perfect copies of a
piece of valuable software or multimedia file through the Internet
or wireless networks poses a daunting challenge to large, estab-
lished content owners and distributors. Here, the attacker may ac-
tually be in possession of the embedded system. For example, the
owner or user of an entertainment device may try to extract and
redistribute copies of music, movies or software. Some commer-
cial initiatives, such as Palladium by Microsoft and TCPA (Trusted
Computing Platform Alliance), may have initially been motivated
by the DRM interests of large content providers. These initiatives
have now grown to encompass broader security requirements and
have also been renamed Next Generation Secure Computing Base
(NGSCB) [52, 53] and Trusted Computing Group (TCG) [54], re-
spectively.

These two initiatives are based on the assumption that compati-
bility with existing non-secure operating systems (e.g., Windows)
and legacy applications software must be preserved. This basic
assumption led to the architectural model of a separate, parallel se-
cure domain that co-exists and is protected from both non-secure
applications programs and operating systems. The idea is to put
a “brick wall” inside the processor, isolating both secure compu-
tations and memory, and protecting them from corruption, or even
observation, by non-secure entities. This is like a mini firewall in-
ternal to the processor and is achieved with a variety of new features
in both software and hardware.

Key security objectives in NGSCB include strong process isola-
tion, sealed memory, platform attestation, and a secure path to the
user. Strong process isolation provides protected execution, imple-
mented with mechanisms that include a new privilege domain as
indicated by a new mode bit or privilege level (distinct from ex-
isting supervisor and user privilege levels). New instructions are
used to enter and exit this secure mode or domain, with secure sav-

ing and restoring of contexts. Sealed memory involves tying some
sensitive information to a given platform and software context, us-
ing encryption and hashing techniques. Such sealed memory can
only be unsealed with the correct key in the correct software and
hardware environment. Platform attestation is a method for a given
computing device to try to assure a remote server that it is run-
ning appropriate software on acceptable hardware, with respect to
certain security safeguards,e.g., a corporate file server might only
allow connections from computers that are in approved configura-
tions. A secure path to the user allows a user to invoke a secure
program in the trusted domain, without intervention of the exist-
ing non-secure operating system. This includes a secure path from
the keyboard and a secure path to the display,i.e., secure paths to
certain input-output devices. LaGrande [55] is Intel’s codename
for new hardware features (in the microprocessor, chip-set, buses,
memory system and input-output devices) that implement these and
similar concepts.

ARM has also recently proposed a smaller set of features for se-
cure processor cores (called TrustZone technology [56]) targeted
at the embedded processor and System-On-Chip (SOC) markets.
These protect against a set of attacks including password theft on
login. MIPS has also proposed the security architecture Smart-
MIPS [57] for smartcards, which not only includes a set of In-
struction Set Architecture (ISA) extensions for accelerating crypto-
graphic functions but also the memory management functions nec-
essary to support secure programming and secure operating sys-
tems. None of these proposed security features for commercial
microprocessors or cores are available for widespread deployment
yet.

In academic research, architectural features for computer secu-
rity were proposed about thirty years ago. However, in the last
decade or two, possibly coincident with the wide approval for RISC
processors as the architecture for high-performance processors,
very little research or education in computer architecture has been
devoted to security issues. Recently, this has changed. Some recent
papers propose techniques to provide memory integrity through en-
cryption and hashing [13, 14], and processor techniques to prevent
machine hijacking and hostile code insertion by detecting return
address corruption during buffer overflow attacks [58].

6. DESIGN METHODOLOGY AND TOOL
REQUIREMENTS

As security emerges as a mainstream design issue, addressing
some of the challenges outlined previously will require the support
of appropriate design tools and methodologies. In this section, we
briefly describe our vision for developments in this area.

Compared to an embedded system’s functionality and other de-
sign metrics (e.g., area, performance, power), security is currently
specified by system architects in a vague and imprecise manner.
Security experts are often the only people in a design team who
have a complete understanding of the security requirements. This
is a problem, since different aspects of the embedded system design
process can impact security. Hence, design methodologies for se-
cure embedded systems will have to start with techniques to specify
security requirements in a way that can be easily communicated to
the design team, and evaluated throughout the design cycle. Any at-
tempt to specify security requirements needs to address the ”level”
of security desired,e.g., what level of tamper resistance should be
incorporated in the system. Security standards, such as the FIPS se-
curity requirements for cryptographic modules [59], and the Com-
mon Criteria for information technology security evaluation [60]
could provide some initial guidelines in this direction, although
they tend to be quite cumbersome and difficult to understand for
the average designer.

Techniques for formal or semi-formal specifications of security
requirements can enable the development of tools that validate and

verify these whether requirements are met, at various stages in the
design process. For example, formal verification techniques have
been used to detect bugs in security protocol implementations [61,
62].

Time-to-market pressures in the semiconductor and embedded
system industries lead to design processes that are increasingly
based on the re-use of components from various sources. It will
be particularly challenging to maintain security requirements in the
face of these trends. It is very difficult if not impossible to guaran-
tee the security of a system when the underlying components are
untrusted. Furthermore, even the composition of individually se-
cure components can expose unexpected security bugs due to their
interaction.

During embedded system architecture design, techniques to map
security requirements to alternative solutions, and to explore the
attendant tradeoffs in terms of cost, performance, and power con-
sumption, would be invaluable in helping embedded system archi-
tects understanding and making better design choices. For exam-
ple, system architects would like to understand the performance
and power impact of the the processing architecture used to per-
form security processing, and the tamper-resistance schemes used.

During the hardware and software implementation processes,
opportunities abound to improve the tamper resistance of the em-
bedded system, as well as mitigate the performance and power con-
sumption impact of security features. For example, hardware syn-
thesis (and software compilation) techniques to automatically en-
sure that minimize the dependence of power and execution time
on sensitive data could help ensure design embedded systems that
are highly tamper-resistant to side channel attacks by construction.
Some initial efforts along these directions are described in [42, 63,
64, 65].

In summary, as security becomes a requirement for a wide range
of embedded systems, design tools and methodologies will play
a critical role in empowering designers (who are not necessarily
security experts) to address the design challenges described in this
paper.

7. CONCLUSIONS
Today, secure embedded system design remains a field in its in-

fancy in terms of pervasive deployment and research. Although
historically, various security issues have been investigated in the
context of network security and cryptography, the challenges im-
posed by the process of securing emerging environments or net-
works of embedded systems compel us to take a fresh look at the
problem. The good news is that unlike the problem of providing
security in cyberspace (where the scope is very large), securing the
application-limited world of embedded systems is more likely to
succeed in the near term. However, the constrained resources of
embedded devices pose significant new challenges to achieving de-
sired levels of security.

We believe that a combination of advances in architectures and
design methodologies would enable us to scale the next frontier
of embedded system design, wherein, embedded systems will be
“secure” in every sense of the word. To realize this goal, we should
look beyond the basic security functions of an embedded system
and provide defenses against broad classes of attacks — all without
compromising performance, area, energy consumption, cost and
usability.
Acknowledgments: We acknowledge all brand or product names
that are trademarks or registered trademarks of their respective
owners.

8. REFERENCES
[1] Counterpane Internet Security, Inc. http://www.counterpane.com.
[2] ePaynews - Mobile Commerce Statistics.

http://www.epaynews.com/statistics/mcommstats.html.
[3] W. Stallings,Cryptography and Network Security: Principles and Practice.

Prentice Hall, 1998.

[4] B. Schneier,Applied Cryptography: Protocols, Algorithms and Source Code in
C. John Wiley and Sons, 1996.

[5] IPSec Working Group.
http://www.ietf.org/html.charters/ipsec-charter.html.

[6] SSL 3.0 Specification. http://wp.netscape.com/eng/ssl3/.
[7] Biometrics and Network Security. Prentice Hall PTR, 2003.
[8] OpenIPMP. http://www.openipmp.org.
[9] Moving Picture Experts Group.

http://mpeg.telecomitalialab.com.
[10] Internet Streaming Media Alliance. http:/www.isma.tv/home.
[11] MPEG Open Security for Embedded Systems (MOSES).

http://www.crl.co.uk/projects/moses/.
[12] Discretix Technologies Ltd. (http://www.discretix.com).
[13] D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. C. Mitchell, and

M. Horowitz, “Architectural support for copy and tamper resistant software,” in
Proc. ACM Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pp. 168–177, 2000.

[14] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, “AEGIS:
Architecture for Tamper-Evident and Tamper-Resistant Processing,” inProc.
Intl Conf. Supercomputing (ICS ’03), pp. 160–171, June 2003.

[15] R. M. Best,Crypto Microprocessor for Executing Enciphered Programs. U.S.
patent 4,278,837, July 1981.

[16] M. Kuhn, The TrustNo 1 Cryptoprocessor Concept. CS555 Report, Purdue
University (http://www.cl.cam.ac.uk/˜mgk25/), Apr. 1997.

[17] G. Hoglund and G. McGraw,Exploiting Software: How to Break Code
(http://www.exploitingsoftware.com). Addison-Wesley, 2004.

[18] J. Viega and G. McGraw,Building Secure Software
(http://www.buildingsecuresoftware.com). Addison-Wesley,
2001.

[19] G. McGraw, “Software Security,”IEEE Security & Privacy, vol. 2, pp. 80–83,
March–April 2004.

[20] R. Anderson and M. Kuhn, “Tamper resistance - a cautionary note,” 1996.
[21] R. Anderson and M. Kuhn, “Low cost attacks on tamper resistant devices,” in

IWSP: Intl. Wkshp. on Security Protocols, Lecture Notes on Computer Science,
pp. 125–136, 1997.

[22] O. Kommerling and M. G. Kuhn, “Design principles for tamper-resistant
smartcard processors,” inProc. USENIX Wkshp. on Smartcard Technology
(Smartcard ’99), pp. 9–20, May 1999.

[23] Smart Card Handbook. John Wiley and Sons.
[24] E. Hess, N. Janssen, B. Meyer, and T. Schutze, “Information Leakage Attacks

Against Smart Card Implementations of Cryptographic Algorithms and
Countermeasures,” inProc. EUROSMART Security Conference, pp. 55–64,
June 2000.

[25] J. J. Quisquater and D. Samyde, “Side channel cryptanalysis,” inProc. of the
SECI, pp. 179–184, 2002.

[26] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Side Channel Cryptanalysis of
Product Ciphers,” inProc. ESORICS’98, pp. 97–110, Sept. 1998.

[27] S. Ravi, A. Raghunathan, and S. Chakradhar, “Tamper Resistance Mechanisms
for Secure Embedded Systems,” inProc. Int. Conf. VLSI Design, Jan. 2004.

[28] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems,”Advances in Cryptology – CRYPTO’96,
Springer-Verlag Lecture Notes in Computer Science, vol. 1109, pp. 104–113,
1996.

[29] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Examining Smart-Card
Security under the Threat of Power Analysis Attacks,”IEEE Trans. Comput.,
vol. 51, pp. 541–552, May 2002.

[30] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,”Advances in
Cryptology – CRYPTO’99, Springer-Verlag Lecture Notes in Computer Science,
vol. 1666, pp. 388–397, 1999.

[31] U.S. Patents Nos. 6,278,783; 6,289,455; 6,298,442; 6,304,658; 6,327,661;
6,381,699; 6,510,518; 6,539,092; 6,640,305; and 6,654,884. http://www.
cryptography.com/technology/dpa/licensing.html.

[32] D. Boneh, R. DeMillo, and R. Lipton, “On the importance of eliminating errors
in cryptographic computations,”Cryptology, vol. 14, no. 2, pp. 101–119, 2001.

[33] W. van Eck, “Electromagnetic radiation from video display units: an
eavesdropping risk?,”Computers and Security, vol. 4, no. 4, pp. 269–286, 1985.

[34] M. G. Kuhn and R. Anderson, “Soft Tempest: Hidden Data Transmission Using
Electromagnetic Emanations,” inProc. Int. Wkshp. on Information Hiding (IH
’98), pp. 124–142, Apr. 1998.

[35] J. J. Quisquater and D. Samyde, “ElectroMagnetic Analysis (EMA): Measures
and Counter-Measures for Smart Cards,”Lecture Notes in Computer Science
(Smartcard Programming and Security), vol. 2140, pp. 200–210, 2001.

[36] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic analysis: Concrete
results,”Cryptographic Hardware and Embedded Systems, pp. 251–261, 2001.

[37] S. Ravi, A. Raghunathan, and N. Potlapally, “Securing wireless data: System
architecture challenges,” inProc. Intl. Symp. System Synthesis, pp. 195–200,
October 2002.

[38] D. Boneh and N. Daswani, “Experimenting with electronic commerce on the

PalmPilot,” inProc. Financial Cryptography, pp. 1–16, Feb. 1999.
[39] R. Karri and P. Mishra, “Minimizing Energy Consumption of Secure Wireless

Session with QOS constraints,” inProc. Int. Conf. Communications,
pp. 2053–2057, 2002.

[40] N. Potlapally, S. Ravi, A. Raghunathan, and N. K. Jha, “Analyzing the energy
consumption of security protocols,” inProc. Int. Symp. Low Power Electronics
& Design, pp. 30–35, Aug. 2003.

[41] Xtensa application specific microprocessor solutions - Overview handbook.
Tensilica Inc. (http://www.tensilica.com), 2001.

[42] S. Ravi, A. Raghunathan, N. Potlapally, and M. Sankaradass, “System design
methodologies for a wireless security processing platform,” inProc. ACM/IEEE
Design Automation Conf., pp. 777–782, June 2002.

[43] J. Burke, J. McDonald, and T. Austin, “Architectural support for fast
symmetric-key cryptography,” inProc. Intl. Conf. ASPLOS, pp. 178–189, Nov.
2000.

[44] L. Wu, C. Weaver, and T. Austin, “Cryptomaniac: A Fast Flexible Architecture
for Secure Communication,” inProc. Int. Symp. Computer Architecture,
pp. 110–119, June 2001.

[45] R. B. Lee, Z. Shi, and X. Yang, “Efficient permutations for fast software
cryptography,”IEEE Micro, vol. 21, pp. 56–69, Dec. 2001.

[46] Z. Shi, X. Yang, and R. B. Lee, “Arbitrary bit permutations in one or two
cycles,” inProc. Int. Conf on Application-Specific Systems, Architectures and
Processors, pp. 237–247, June 2003.

[47] Z. Shi and R. Lee, “Bit Permutation Instructions for Accelerating Software
Cryptography,” inProc. IEEE Intl. Conf. Application-specific Systems,
Architectures and Processors, pp. 138–148, 2000.

[48] C. E. Shannon, “Communication theory of secrecy systems,”Bell System Tech.
Journal, vol. 28, pp. 656–715, October 1949.

[49] K. Araki, T. Satoh, and S. Miura, “Overview of Elliptic Curve Cryptography,”
Springer-Verlag Lecture Notes in Computer Science, vol. 1431, pp. 29–48,
1998.

[50] E. Savas, A. F. Tenca, and C. K. Koc, “A Scalable and Unified Multiplier
Architecture for Finite Fields GF(p) and GF(2n),”Springer-Verlag Lecture
Notes in Computer Science, vol. 1965, pp. 277–292, 2000.

[51] A. M. Fiskiran and R. B. Lee,PAX: A Datapath-Scalable Minimalist
Cryptographic Processor for Mobile Environments (in Embedded
Cryptographic Hardware: Design and Security). Nova Science Publishers (to
be published), 2004.

[52] Next-Generation Secure Computing Base (NGSCB). Microsoft Inc. (http://
www.microsoft.com/resources/ngscb/productinfo.mspx).

[53] P. N. Glaskowsky,Microsoft Details Secure PC Plans. Microprocessor Report,
In-stat/MDR, June 2003.

[54] Trusted Computing Group.
(https://www.trustedcomputinggroup.org/home).

[55] LaGrande Technology for Safer Computing. Intel Inc.
(http://www.intel.com/technology/security).

[56] R. York,A New Foundation for CPU Systems Security. ARM Limited
(http://www.arm.com/armtech/TrustZone?OpenDocument),
2003.

[57] SmartMIPS. http://www.mips.com.
[58] J. P. McGregor, D. K. Karig, Z. Shi, and R. B. Lee, “A Processor Architecture

Defense against Buffer Overflow Attacks,” inProc. Int. Conf. on Information
Technology: Research and Education (ITRE), pp. 243–250, Aug. 2003.

[59] Security Requirements for Cryptographic Modules (FIPS PUB 140-2).
http://csrc.nist.gov/publications/fips/fips140-2/
fips1402.pdf.

[60] Common Criteria for Information Technology Security.
http://csrc.nist.gov/cc.

[61] E. M. Clarke, S. Jha, and W. Marrero, “Using state space exploration and a
natural deduction style message derivation engine to verify security protocols,”
in Proc. IFIP Working Conf. on Programming Concepts and Methods, 1998.

[62] G. Lowe, “Towards a completeness result for model checking of security
protocols,” inProc. 11th Computer Security Foundations Wkshp., 1998.

[63] N. Potlapally, S. Ravi, A. Raghunathan, and G. Lakshminarayana, “Algorithm
exploration for efficient public-key security processing on wireless handsets,” in
Proc. Design, Automation, and Test in Europe (DATE) Designers Forum,
pp. 42–46, Mar. 2002.

[64] L. Benini, A. Macii, E. Macii, E. Omerbegovic, F. Pro, and M. Poncino,
“Energy-aware design techniques for differential power analysis protection,” in
Proc. Design Automation Conf., pp. 36–41, June 2003.

[65] H. Saputra, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, R. Brooks, S. Kim,
and W. Zhang, “Masking the Energy Behavior of DES Encryption,” pp. 84–89,
Mar. 2003.

