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Abstract

The bootstrap is a method for estimating the distribution of an estimator or test
statistic by resampling one's data or a model estimated from the data Under conditions
that hold in a wide variety of econometric applications, the bootstrap provides
approximations to distributions of statistics, coverage probabilities of confidence
intervals, and rejection probabilities of hypothesis tests that are more accurate than
the approximations of first-order asymptotic distribution theory The reductions in
the differences between true and nominal coverage or rejection probabilities can be
very large The bootstrap is a practical technique that is ready for use in applications.
This chapter explains and illustrates the usefulness and limitations of the bootstrap in
contexts of interest in econometrics The chapter outlines the theory of the bootstrap,
provides numerical illustrations of its performance, and gives simple instructions on
how to implement the bootstrap in applications The presentation is informal and
expository Its aim is to provide an intuitive understanding of how the bootstrap works
and a feeling for its practical value in econometrics.
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Ch 52: The Bootstrap

1 Introduction

The bootstrap is a method for estimating the distribution of an estimator or test
statistic by resampling one's data It amounts to treating the data as if they were
the population for the purpose of evaluating the distribution of interest Under mild
regularity conditions, the bootstrap yields an approximation to the distribution of an
estimator or test statistic that is at least as accurate as the approximation obtained
from first-order asymptotic theory Thus, the bootstrap provides a way to substitute
computation for mathematical analysis if calculating the asymptotic distribution of an
estimator or statistic is difficult The statistic developed by Hirdle et al ( 1991) for
testing positive-definiteness of income-effect matrices, the conditional Kolmogorov test
of Andrews ( 1997), Stute's ( 1997) specification test for parametric regression models,
and certain functions of time-series data lBlanchard and Quah ( 1989), Runkle ( 1987),
West ( 1990)l are examples in which evaluating the asymptotic distribution is difficult
and bootstrapping has been used as an alternative.

In fact, the bootstrap is often more accurate in finite samples than first-order
asymptotic approximations but does not entail the algebraic complexity of higher-
order expansions Thus, it can provide a practical method for improving upon first-
order approximations Such improvements are called asymptotic refinements One use
of the bootstrap's ability to provide asymptotic refinements is bias reduction It is not
unusual for an asymptotically unbiased estimator to have a large finite-sample bias.
This bias may cause the estimator's finite-sample mean square error to greatly exceed
the mean-square error implied by its asymptotic distribution The bootstrap can be used
to reduce the estimator's finite-sample bias and, thereby, its finite-sample mean-square
error.

The bootstrap's ability to provide asymptotic refinements is also important in
hypothesis testing First-order asymptotic theory often gives poor approximations to
the distributions of test statistics with the sample sizes 'available in applications As a
result, the nominal probability that a test based on an asymptotic critical value rejects
a true null hypothesis can be very different from the true rejection probability (RP) 
The information matrix test of White ( 1982) is a well-known example of a test in which
large finite-sample errors in the RP can occur when asymptotic critical values are used

1 There is not general agreement on the name that should be given to the probability that a test rejects
a true null hypothesis (that is, the probability of a Type I error) The source of the problem is that if
the null hypothesis is composite, then the rejection probability can be different for different probability
distributions in the null Hall ( 1992 a, p 148) uses the word level to denote the rejection probability
at the distribution that was, in fact, sampled Beran ( 1988, p 696) defines level to be the supremum
of rejection probabilities over all distributions in the null hypothesis Other authors lLehmann ( 1959,
p 61); Rao ( 1973, p 456)l use the word size for the supremum Lehmann defines level as a number
that exceeds the rejection probability at all distributions in the null hypothesis In this chapter, the term
rejection probability or RP will be used to mean the probability that a test rejects a true null hypothesis
with whatever distribution generated the data The RP of a test is the same as Hall's definition of level.
The RP is different from the size of a test and from Beran's and Lehmann's definitions of level.
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lHorowitz ( 1994), Kennan and Neumann ( 1988), Orme ( 1990), Taylor ( 1987)l Other
illustrations are given later in this chapter The bootstrap often provides a tractable way
to reduce or eliminate finite-sample errors in the RP's of statistical tests.

The problem of obtaining critical values for test statistics is closely related to that
of obtaining confidence intervals Accordingly, the bootstrap can also be used to
obtain confidence intervals with reduced errors in coverage probabilities That is, the
difference between the true and nominal coverage probabilities is often lower when the
bootstrap is used than when first-order asymptotic approximations are used to obtain
a confidence interval.

The bootstrap has been the object of much research in statistics since its introduction
by Efron ( 1979) The results of this research are synthesized in the books by Beran
and Ducharme ( 1991), Davison and Hinkley ( 1997), Efron and Tibshirani ( 1993), Hall
( 1992 a), Mammen ( 1992), and Shao and Tu ( 1995) Hall ( 1994), Horowitz ( 1997),
Jeong and Maddala ( 1993) and Vinod ( 1993) provide reviews with an econometric
orientation This chapter covers a broader range of topics than do these reviews.
Topics that are treated here but only briefly or not at all in the reviews include
bootstrap consistency, subsampling, bias reduction, time-series models with unit roots,
semiparametric and nonparametric models, and certain types of non-smooth models.
Some of these topics are not treated in existing books on the bootstrap.

The purpose of this chapter is to explain and illustrate the usefulness and limitations
of the bootstrap in contexts of interest in econometrics Particular emphasis is given
to the bootstrap's ability to improve upon first-order asymptotic approximations The
presentation is informal and expository Its aim is to provide an intuitive understanding
of how the bootstrap works and a feeling for its practical value in econometrics.
The discussion in this chapter does not provide a mathematically detailed or rigorous
treatment of the theory of the bootstrap Such treatments are available in the books by
Beran and Ducharme ( 1991) and Hall ( 1992 a) as well as in journal articles that are
cited later in this chapter.

It should be borne in mind throughout this chapter that although the bootstrap
often provides smaller biases, smaller errors in the RP's of tests, and smaller errors
in the coverage probabilities of confidence intervals than does first-order asymptotic
theory, bootstrap bias estimates, RP's, and confidence intervals are, nonetheless,
approximations and not exact Although the accuracy of bootstrap approximations is
often very high, this is not always the case Even when theory indicates that it provides
asymptotic refinements, the bootstrap's numerical performance may be poor In some
cases, the numerical accuracy of bootstrap approximations may be even worse than
the accuracy of first-order asymptotic approximations This is particularly likely to
happen with estimators whose asymptotic covariance matrices are "nearly singular," as
in instrumental-variables estimation with poorly correlated instruments and regressors.
Thus, the bootstrap should not be used blindly or uncritically.

However, in the many cases where the bootstrap works well, it essentially removes
getting the RP or coverage probability right as a factor in selecting a test statistic or
method for constructing a confidence interval In addition, the bootstrap can provide
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Ch 52: The Bootstrap

dramatic reductions in the finite-sample biases and mean-square errors of certain
estimators.

The remainder of this chapter is divided into five sections Section 2 explains
the bootstrap sampling procedure and gives conditions under which the bootstrap
distribution of a statistic is a consistent estimator of the statistic's asymptotic
distribution Section 3 explains when and why the bootstrap provides asymptotic
refinements This section concentrates on data that are simple random samples from a
distribution and statistics that are either smooth functions of sample moments or can
be approximated with asymptotically negligible error by such functions (the smooth
function model) Section 4 extends the results of Section 3 to dependent data and
statistics that do not satisfy the assumptions of the smooth function model Section 5
presents Monte Carlo evidence on the numerical performance of the bootstrap in a
variety of settings that are relevant to econometrics, and Section 6 presents concluding
comments.

For applications-oriented readers who are in a hurry, the following list of bootstrap
dos and don'ts summarizes the main practical conclusions of this chapter.

Bootstrap Dos and Don'ts
( 1) Do use the bootstrap to estimate the probability distribution of an asymptotically

pivotal statistic or the critical value of a test based on an asymptotically pivotal
statistic whenever such a statistic is available (Asymptotically pivotal statistics are
defined in Section 2 Sections 3 2-3 5 explain why the bootstrap should be applied
to asymptotically pivotal statistics )

( 2) Don't use the bootstrap to estimate the probability distribution of a non-
asymptotically-pivotal statistic such as a regression slope coefficient or standard
error if an asymptotically pivotal statistic is available.

( 3) Do recenter the residuals of an overidentified model before applying the bootstrap
to the model (Section 3 7 explains why recentering is important and how to do it )

( 4) Don't apply the bootstrap to models for dependent data, semi or nonparametric
estimators, or non-smooth estimators without first reading Section 4 of this
chapter.

2 The bootstrap sampling procedure and its consistency

The bootstrap is a method for estimating the distribution of a statistic or a feature of the
distribution, such as a moment or a quantile This section explains how the bootstrap
is implemented in simple settings and gives conditions under which it provides a
consistent estimator of a statistic's asymptotic distribution This section also gives
examples in which the consistency conditions are not satisfied and the bootstrap is
inconsistent.

The estimation problem to be solved may be stated as follows Let the data be a
random sample of size N from a probability distribution whose cumulative distribution
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function (CDF) is Fo Denote the data by {Xi: i= 1, ,n} Let Fo belong to a
finite or infinite-dimensional family of distribution functions, Let F denote a
general member of 3 If 3 is a finite-dimensional family indexed by the parameter O
whose population value is o 00, write Fo(x, 00) for P(X < x) and F(x, 0) for a general
member of the parametric family Let Tn =T,(Xi, ,X,) be a statistic (that is, a
function of the data) Let Gn(r, Fo) P(T, < r) denote the exact, finite-sample CDF
of T, Let G,( ,F) denote the exact CDF of Tn when the data are sampled from the
distribution whose CDF is E Usually, Gn(T, F) is a different function of r for different
distributions F An exception occurs if Gn( ,F) does not depend on F in which case
Tn is said to be pivotal For example, the t statistic for testing a hypothesis about
the mean of a normal population is independent of unknown population parameters
and, therefore, is pivotal The same is true of the t statistic for testing a hypothesis
about a slope coefficient in a normal linear regression model Pivotal statistics are
not available in most econometric applications, however, especially without making
strong distributional assumptions (e g , the assumption that the random component of
a linear regression model is normally distributed) Therefore, Gn( , F) usually depends
on F and G( , Fo) cannot be calculated if, as is usually the case in applications, Fo is
unknown The bootstrap is a method for estimating Gn( , Fo) or features of Gn( , Fo)
such as its quantiles when Fo is unknown.

Asymptotic distribution theory is another method for estimating G,( ,Fo) The
asymptotic distributions of many econometric statistics are standard normal or chi-
square, possibly after centering and normalization, regardless of the distribution from
which the data were sampled Such statistics are called asymptotically pivotal, meaning
that their asymptotic distributions do not depend on unknown population parameters.
Let Goo( ,Fo) denote the asymptotic distribution of Tn Let G,( ,F) denote the
asymptotic CDF of Tn when the data are sampled from the distribution whose CDF
is F If Tn is asymptotically pivotal, then Go( , F)_ Go ( ) does not depend on E
Therefore, if N is sufficiently large, Gn( ,Fo) can be estimated by G,( ) without
knowing F This method for estimating G,(,Fo) is often easy to implement and
is widely used However, as was discussed in Section 1, Go(-) can be a very poor
approximation to Gn,(, F) with samples of the sizes encountered in applications.

Econometric parameter estimators usually are not asymptotically pivotal (that is,
their asymptotic distributions usually depend on one or more unknown population
parameters), but many are asymptotically normally distributed If an estimator is
asymptotically normally distributed, then its asymptotic distribution depends on at
most two unknown parameters, the mean and the variance, that can often be estimated
without great difficulty The normal distribution with the estimated mean and variance
can then be used to approximate the unknown G,( , Fo) if N is sufficiently large.

The bootstrap provides an alternative approximation to the finite-sample distribution
of a statistic T,(X,, ,Xn) Whereas first-order asymptotic approximations replace
the unknown distribution function G, with the known function G, the bootstrap
replaces the unknown distribution function F O with a known estimator Let F, denote
the estimator of F O Two possible choices of F, are:
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Ch 52: The Bootstrap

( 1) The empirical distribution function (EDF) of the data:

n

Fn(x) = I(Xi < x),
n

i=l

where I is the indicator function It follows from the Glivenko-Cantelli theorem
that Fn(x) Fo(x) as N oo uniformly over x almost surely.

( 2) A parametric estimator of F O Suppose that Fo()=F( , Oo) for some finite-
dimensional 00 that is estimated consistently by On If F( , 0) is a continuous
function of O in a neighborhood of 00, then F(x, On) F(x, o 00) as N oc at each x.
The convergence is in probability or almost sure according to whether 0,n in
probability or almost surely.

Other possible Fn's are discussed in Section 3 7.
Regardless of the choice of F,, the bootstrap estimator of Gn( ,Fo) is Gn( ,Fn).

Usually, Gn( , Fn) cannot be evaluated analytically It can, however, be estimated with
arbitrary accuracy by carrying out a Monte Carlo simulation in which random samples
are drawn from F, Thus, the bootstrap is usually implemented by Monte Carlo
simulation The Monte Carlo procedure for estimating Gn(T, Fo) is as follows:

Monte Carlo Procedure for Bootstrap Estimation of Gn(T, Fo)
Step 1: Generate a bootstrap sample of size n, {X*: i= 1, , n}, by sampling the

distribution corresponding to F, randomly If Fn is the EDF of the estimation
data set, then the bootstrap sample can be obtained by sampling the estimation
data randomly with replacement.

Step 2: Compute T* T,(X*, ,X*).
Step 3: Use the results of many repetitions of steps 1 and 2 to compute the empirical

probability of the event T* < r (that is, the proportion of repetitions in which
this event occurs).

Procedures for using the bootstrap to compute other statistical objects are described
in Sections 3 1 and 3 3 Brown ( 1999) and Hall ( 1992 a, Appendix II) discuss
simulation methods that take advantage of techniques for reducing sampling variation
in Monte Carlo simulation The essential characteristic of the bootstrap, however, is
the use of Fn to approximate Fo in G,( , Fo), not the method that is used to evaluate
Gn(',Fn).

Since F, and F O are different functions, Gn(,Fn) and Gn,(,Fo) are also different
functions unless Tn is pivotal Therefore, the bootstrap estimator Gn(, Fn) is only an
approximation to the exact finite-sample CDF of Tn, G,(, Fo) Section 3 discusses
the accuracy of this approximation The remainder of this section is concerned with
conditions under which Gn( ,F,) satisfies the minimal criterion for adequacy as an
estimator of Gn(, F 0), namely consistency Roughly speaking, Gn(,F,) is consistent
if it converges in probability to the asymptotic CDF of Tn, Go(-,Fo), as N O o.
Section 2 1 defines consistency precisely and gives conditions under which it holds.
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Section 2 2 describes some resampling procedures that can be used to estimate
G,( , Fo) when the bootstrap is not consistent.

2.1 Consistency of the bootstrap

Suppose that F, is a consistent estimator of Fo This means that at each x in the support
of X, Fn(x) Fo(x) in probability or almost surely as N oc If F O is a continuous
function, then it follows from Polya's theorem that Fn F O in probability or almost
surely uniformly over x Thus, F, and F O are uniformly close to one another if n
is large If, in addition, Gn(, F) considered as a functional of F is continuous in
an appropriate sense, it can be expected that G(r, F) is close to Gn(r, Fo) when
n is large On the other hand, if N is large, then G,(,Fo) is uniformly close to the
asymptotic distribution Go( ,Fo) if Go( ,Fo) is continuous This suggests that the
bootstrap estimator Gn,(, F,) and the asymptotic distribution function Go( , F 0) should
be uniformly close if N is large and suitable continuity conditions hold The definition
of consistency of the bootstrap formalizes this idea in a way that takes account of the
randomness of the function G,( , Fn) Let 3 denote the space of permitted distribution
functions.

Definition 2 1 Let Pn denote the joint probability distribution of the sample {Xi:
i=l, ,n} The bootstrap estimator G,( ,F,) is consistent if for each > O and
Fo E 3

lim P lsup Gn(T, Fn) G,(r, Fo) >l = O

A theorem by Beran and Ducharme ( 1991) gives conditions under which the bootstrap
estimator is consistent This theorem is fundamental to understanding the bootstrap.
Let p denote a metric on the space 3 of permitted distribution functions.

Theorem 2 1 (Beran and Ducharme 1991) Gn( , Fn) is consistent iffor any > O
and Fo G 3: (i) lim,,-Pnlp(F,,Fo) > el = O ; (ii) G (,F) is a continuous
function of r for each F E 3 ; and (iii) for any and any sequence {H,} E 3 such
that lim, p(H, Fo) = 0, G,(r, Hn) Go(T, F 0).

The following is an example in which the conditions of Theorem 2 1 are satisfied:

Example 2 1 The distribution of the sample average: Let 3 be the set of distribution
functions F corresponding to populations with finite variances Let X be the average
of the random sample {Xi: i= 1, ,n} Define Tn = nl/ 2(X-), where u=E(X) Let
G,(T, Fo) = P, lnl/2 (X y) r Tl Consider using the bootstrap to estimate Gn(r, Fo).
Let F, be the EDF of the data Then the bootstrap analog of Tn is T* = nl/2 (X* -X),
where X* is the average of a random sample of size N drawn from F, (the bootstrap
sample) The bootstrap sample can be obtained by sampling the data {Xi} randomly
with replacement T* is centered at X because X is the mean of the distribution
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from which the bootstrap sample is drawn The bootstrap estimator of Gn(r, Fo) is
Gn(r, Fn)= Pn lnl/2 ( ' * X) < trl, where P* is the probability distribution induced by
the bootstrap sampling process G,(r, Fn) satisfies the conditions of Theorem 2 1 and,
therefore, is consistent Let p be the Mallows metric 2 The Glivenko-Cantelli theorem
and the strong law of large numbers imply that condition (i) of Theorem 2 1 is satisfied.
The Lindeberg-Levy central limit theorem implies that Tn is asymptotically normally
distributed The cumulative normal distribution function is continuous, so condition (ii)
holds By using arguments similar to those used to prove the Lindeberg-Levy theorem,
it can be shown that condition (iii) holds ·

A theorem by Mammen ( 1992) gives necessary and sufficient conditions for the
bootstrap to consistently estimate the distribution of a linear functional of Fo when
Fn is the EDF of the data This theorem is important because the conditions are often
easy to check, and many estimators and test statistics of interest in econometrics are
asymptotically equivalent to linear functionals of some Fo Hall ( 1990) and Gill ( 1989)
give related theorems.

Theorem 2 2 (Mammen 1992) Let {X : i = 1, n} be a random sample from
a population For a sequence of functions gn and sequences of numbers tn
and an, define g, = n-' n= 1 l gn(Xi) and Tn = (gn t)/On For the bootstrap
sample {X*: i = 1, , n}, define l* = N i= g(X*) and T = (g gn)/ 5 .
Let Gn(r) = P(T, < T) and G*(r) = P*(T* < r), where P* is the probability
distribution induced by bootstrap sampling Then G*( ) consistently estimates Gn if
and only if T, N(O, 1) ·

If Elg,(X)l and Varlg,(X)l exist for each n, then the asymptotic normality condition of
Theorem 2 2 holds with t = E(gn) and a 2 = Var(gn) or O N 2 = n-2 Ei" lgn(X) gnl 2

Thus, consistency of the bootstrap estimator of the distribution of the centered,
normalized sample average in Example 2 1 follows trivially from Theorem 2 2.

The bootstrap need not be consistent if the conditions of Theorem 2 1 are not
satisfied and is inconsistent if the asymptotic normality condition of Theorem 2 2
is not satisfied In particular, the bootstrap tends to be inconsistent if Fo is a
point of discontinuity of the asymptotic distribution function Go(r, ) or a point of
superefficiency Section 2 2 describes resampling methods that can sometimes be used
to overcome these difficulties.

The following examples illustrate conditions under which the bootstrap is in-
consistent The conditions that cause inconsistency in the examples are unusual in
econometric practice The bootstrap is consistent in most applications Nonetheless,
inconsistency sometimes occurs, and it is important to be aware of its causes Donald

2 The Mallows metric is defined by p(P, Q)2 = inf {Elj Y -X 1 12 : Y P,X Q} The infimum is over
all joint distributions of (YX) whose marginals are P and Q Weak convergence of a sequence of
distributions in the Mallows metric implies convergence of the corresponding sequences of first and
second moments See Bickel and Freedman ( 1981) for a detailed discussion of this metric.
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and Paarsch ( 1996), Flinn and Heckman ( 1982), and Heckman, Smith and Clements
( 1997) describe econometric applications that have features similar to those of some
of the examples, though the consistency of the bootstrap in these applications has not
been investigated.

Example 2 2 Heavy-tailed distributions: Let F O be the standard Cauchy distribution
function and {Xi) be a random sample from this distribution Set Tn = X, the sample
average Then Tn has the standard Cauchy distribution Let F, be the EDF of the
sample A bootstrap analog of T, is T* = * m, where X* is the average of a
bootstrap sample that is drawn randomly with replacement from the data {X}i and
m, is a median or trimmed mean of the data The asymptotic normality condition of
Theorem 2 2 is not satisfied, and the bootstrap estimator of the distribution of T is
inconsistent Athreya ( 1987) and Hall ( 1990) provide further discussion of the behavior
of the bootstrap with heavy-tailed distributions ·

Example 2 3 The distribution of the square of the sample average: Let {Xi:
i= 1, , n) be a random sample from a distribution with mean / and variance a 2 Let
X denote the sample average Let Fn be the EDF of the sample Set T, = N 1/2 (X 2 12)
if y • O and T, = n X 2 otherwise T is asymptotically normally distributed if P X 0,
but T/oa 2 is asymptotically chi-square distributed with one degree of freedom if = 0.
The bootstrap analog of Tn is Tn* = nal(X*)2 X 2 l, where a = 1/2 if y O and a= 
otherwise The bootstrap estimator of Gn(r, Fo) =P(Tn T) is Gn(r, F,) =P*(T* < ).
If g • 0, then T is asymptotically equivalent to a normalized sample average that
satisfies the asymptotic normality condition of Theorem 2 2 Therefore, G( ,F,)
consistently estimates Go( ,Fo) if • O If u= 0, then Tn is not a sample average
even asymptotically, so Theorem 2 2 does not apply Condition (iii) of Theorem 2 1
is not satisfied, however, if y = 0, and it can be shown that the bootstrap distribution
function Gn( ,Fn) does not consistently estimate G ( ,Fo) lDatta ( 1995)l ·

The following example is due to Bickel and Freedman ( 1981):

Example 2 4 Distribution of the maximum of a sample: Let {(X: i= 1, , n} be a
random sample from a distribution with absolutely continuous CDF F Oo and support
l 0, 00 l Let On =max(X 1, ,X,), and define T, = n(On 80) Let Fn be the EDF of
the sample The bootstrap analog of Tn is T,* = n(O,* ), where 0,* is the maximum
of the bootstrap sample {X*} that is obtained by sampling {Xj} randomly with
replacement The bootstrap does not consistently estimate G,(-r, Fo) =Pn(T < -r)
(r 0) To see why, observe that P,*(T*= O O)= 1-( 1-1 In) *l-e t as noo.
It is easily shown, however, that the asymptotic distribution function of T is
G.(-T, F 0) = 1 expl-rf( O o)l, where f(x) = d F(x)/dx is the probability density
function of X Therefore, P(T, = 0) 0, and the bootstrap estimator of G,( ,Fo) is
inconsistent ·
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Example 2 5 Parameter on a boundary of the parameter space: The bootstrap
does not consistently estimate the distribution of a parameter estimator when the true
parameter point is on the boundary of the parameter space To illustrate, consider
estimation of the population mean t subject to the constraint # > O Estimate bt by
mn = XI(X > 0), where X is the average of the random sample {Xi: i= 1, , n}.
Set Tn = n/ 2(mn ) Let F, be the EDF of the sample The bootstrap analog of
T, is T* = n/ 2 (m mn), where m* is the estimator of M that is obtained from
a bootstrap sample The bootstrap sample is obtained by sampling {Xi} randomly
with replacement If Mu > 0 and Var(X)< oc, then Tn is asymptotically equivalent to
a normalized sample average and is asymptotically normally distributed Therefore,
it follows from Theorem 2 2 that the bootstrap consistently estimates the distribution
of Tn If u = 0, then the asymptotic distribution of Tn is censored normal, and it can
be proved that the bootstrap distribution function Gn(', Fn) does not estimate Gn(', Fo)
consistently lAndrews ( 2000)l ·

The next section describes resampling methods that often are consistent when the
bootstrap is not They provide consistent estimators of Gn( ,Fo) in each of the
foregoing examples.

2.2 Alternative resampling procedures

This section describes two resampling methods whose requirements for consistency
are weaker than those of the bootstrap Each is based on drawing subsamples of
size m < N from the original data In one method, the subsamples are drawn randomly
with replacement In the other, the subsamples are drawn without replacement These
subsampling methods often estimate Gn( ,Fo) consistently even when the bootstrap
does not They are not perfect substitutes for the bootstrap, however, because they
tend to be less accurate than the bootstrap when the bootstrap is consistent.

In the first subsampling method, which will be called replacement subsampling,
a bootstrap sample is obtained by drawing m <n observations from the estimation
sample {Xi: i= 1, , n} In other respects, it is identical to the standard bootstrap
based on sampling F, Thus, the replacement subsampling estimator of G,( ,Fo) is
Gmn(, F,) Swanepoel ( 1986) gives conditions under which the replacement bootstrap
consistently estimates the distribution of Tn in Example 2 4 (the distribution of the
maximum of a sample) Andrews ( 2000) gives conditions under which it consistently
estimates the distribution of T, in Example 2 5 (parameter on the boundary of the
parameter space) Bickel et al ( 1997) provide a detailed discussion of the consistency
and rates of convergence of replacement bootstrap estimators To obtain some intuition
into why replacement subsampling works, let Fmn be the EDF of a sample of size m
drawn from the empirical distribution of the estimation data Observe that if m -* oo,
n oc, and m/n O, then the random sampling error of F, as an estimator of F O is
smaller than the random sampling error of Fn,, as an estimator of F, This makes the
subsampling method less sensitive than the bootstrap to the behavior of G,( , F) for
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F's in a neighborhood of FO and, therefore, less sensitive to violations of continuity
conditions such as condition (iii) of Theorem 2 1.

The method of subsampling without replacement will be called non-replacement
subsampling This method has been investigated in detail by Politis and Romano
( 1994) and Politis et al ( 1999), who show that it consistently estimates the distribution
of a statistic under very weak conditions In particular, the conditions required for
consistency of the non-replacement subsampling estimator are much weaker than those
required for consistency of the bootstrap estimator Politis et al ( 1997) extend the
subsampling method to heteroskedastic time series.

To describe the non-replacement subsampling method, let t,=t,(X 1, ,Xn) be
an estimator of the population parameter 0, and set T =p(n)(tn 0), where the
normalizing factor p(n) is chosen so that G(r,Fo)=P(Tn < r) converges to a
nondegenerate limit G (r, F 0) at continuity points of the latter In Example 2 1
(estimating the distribution of the sample average), for instance, O is the population
mean, t = X, and p(n) = N 1/2 Let {Xj :j = 1, , m} be a subset of m < N observations
taken from the sample {Xi: i= 1, n} Define Nmn = () to be the total number of
subsets that can be formed Let t k denote the estimator t evaluated at the kth subset.
The non-replacement subsampling method estimates G(r T, Fo) by

1 N,
G,m() = EIlp(m)(tm,k -,) < T ( 2 1)

Nn k=l

The intuition behind this method is as follows Each subsample {Xij } is a random
sample of size m from the population distribution whose CDF is F Therefore,
Gm(, Fo) is the exact sampling distribution of p(m)(t,, 0), and

Gm(T, Fo) = E{Ilp(m)(tm 0) < Tl} ( 2 2)

The quantity on the right-hand side of Equation ( 2 2) cannot be calculated in an
application because FO and O are unknown Equation ( 2 1) is the estimator of the right-
hand side of Equation ( 2 2) that is obtained by replacing the population expectation
by the average over subsamples and O by t, If N is large but m/n is small, then
random fluctuations in t, are small relative to those in tin Accordingly, the sampling
distributions of p(m)(tm t,) and p(m)(tm 0) are close Similarly, if Nmn is large, the
average over subsamples is a good approximation to the population average These
ideas are formalized in the following theorem of Politis and Romano ( 1994).

Theorem 2 3 Assume that G,(r, Fo) G (r, Fo) as n-*oo at each continuity point
of the latter function Also assume that p(m)/p(n)-O, m-*oo, and m/n-*O as
n oc Let be a continuity point of Go(r, FO) Then (i) G,,(T) Go(r T, Fo);
(ii) if GO( , Fo) is continuous, then sup, I Gnm(T) G,(r,Fo)) P O ; (iii) let
c,(l a) = inf {r: Gin(r) > 1 a} and c( 1 a, F) = inf {r: GO(T, F) > 1 a).
If G ( , F) is continuous at c( a, Fo), then Plp(n)(t, 0) < c( 11 a)l 1 a,

3170 JL Horowitz



Ch 52: The Bootstrap

and the asymptotic coverage probability of the confidence interval lt p(n) l
c,(l a), oo), is a.

Essentially, this theorem states that if Tn has a well-behaved asymptotic distribution,
then the non-replacement subsampling method consistently estimates this distribution.
The non-replacement subsampling method also consistently estimates asymptotic
critical values for Tn and asymptotic confidence intervals for t.

In practice, Nnm is likely to be very large, which makes Gnm hard to compute This
problem can be overcome by replacing the average over all N,m subsamples with the
average over a random sample of subsamples lPolitis and Romano ( 1994)l These can
be obtained by sampling the data {Xi: i = 1, , n} randomly without replacement.

It is not difficult to show that the conditions of Theorem 2 3 are satisfied in all
of the statistics considered in Examples 2 1, 2 2, 2 4, and 2 5 The conditions are
also satisfied by the statistic considered in Example 2 3 if the normalization constant
is known Bertail et al ( 1999) describe a subsampling method for estimating the
normalization constant p(n) when it is unknown and provide Monte Carlo evidence
on the numerical performance of the non-replacement subsampling method with an
estimated normalization constant In each of the foregoing examples, the replacement
subsampling method works because the subsamples are random samples of the true
population distribution of X rather than an estimator of the population distribution.
Therefore, replacement subsampling, in contrast to the bootstrap, does not require
assumptions such as condition (iii) of Theorem 2 1 that restrict the behavior of Gn( , F)
for F's in a neighborhood of Fo.

The non-replacement subsampling method enables the asymptotic distributions of
statistics to be estimated consistently under very weak conditions However, the
standard bootstrap is typically more accurate than non-replacement subsampling
when the former is consistent Suppose that G,( ,Fo) has an Edgeworth expansion
through O(n-U 2), as is the case with the distributions of most asymptotically normal
statistics encountered in applied econometrics Then, as will be discussed in Section 3,
IG,(r, Fn) G,(r, Fo), the error made by the bootstrap estimator of G,(T, Fo), is
at most O(n /2) almost surely In contrast, the error made by the non-replacement
subsampling estimator, Gnm(T)-G(r, Fo)l, is no smaller than Op(n- 1/3 ) lPolitis
and Romano ( 1994), Politis et al ( 1999)l 3 Thus, the standard bootstrap estimator
of G(r, Fo) is more accurate than the non-replacement subsampling estimator in
a setting that arises frequently in applications Similar results can be obtained for
statistics that are asymptotically chi-square distributed Thus, the standard bootstrap is
more attractive than the non-replacement subsampling method in most applications in
econometrics The subsampling method may be used, however, if characteristics of the
sampled population or the statistic of interest cause the standard bootstrap estimator

3 Hall and Jing ( 1996) show how certain types of asymptotic refinements can be obtained through
non-replacement subsampling The rate of convergence of resulting error is, however, slower than the
rate achieved with the standard bootstrap.
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to be inconsistent Non-replacement subsampling may also be useful in situations
where checking the consistency of the bootstrap is difficult Examples of this include
inference about the parameters of certain kinds of structural search models lFlinn and
Heckman ( 1982)l, auction models lDonald and Paarsch ( 1996)l, and binary-response
models that are estimated by Manski's ( 1975, 1985) maximum score method.

3 Asymptotic refinements

The previous section described conditions under which the bootstrap yields a consistent
estimator of the distribution of a statistic Roughly speaking, this means that the
bootstrap gets the statistic's asymptotic distribution right, at least if the sample size
is sufficiently large As was discussed in Section 1, however, the bootstrap often
does much more than get the asymptotic distribution right In a large number of
situations that are important in applied econometrics, it provides a higher-order
asymptotic approximation to the distribution of a statistic This section explains how
the bootstrap can be used to obtain asymptotic refinements Section 3 1 describes
the use of the bootstrap to reduce the finite-sample bias of an estimator Section 3 2
explains how the bootstrap obtains higher-order approximations to the distributions of
statistics The results of Section 3 2 are used in Sections 3 3 and 3 4 to show how the
bootstrap obtains higher-order refinements to the rejection probabilities of tests and
the coverage probabilities of confidence intervals Sections 3 5-3 7 address additional
issues associated with the use of the bootstrap to obtain asymptotic refinements It
is assumed throughout this section that the data are a simple random sample from
some distribution Methods for implementing the bootstrap and obtaining asymptotic
refinements with time-series data are discussed in Section 4 1.

3.1 Bias reduction

This section explains how the bootstrap can be used to reduce the finite-sample bias of
an estimator The theoretical results are illustrated with a simple numerical example To
minimize the complexity of the discussion, it is assumed that the inferential problem
is to obtain a point estimate of a scalar parameter O that can be expressed as a
smooth function of a vector of population moments It is also assumed that O can be
estimated consistently by substituting sample moments in place of population moments
in the smooth function Many important econometric estimators, including maximum-
likelihood and generalized-method-of-moments estimators, are either functions of
sample moments or can be approximated by functions of sample moments with an
approximation error that approaches zero very rapidly as the sample size increases.
Thus, the theory outlined in this section applies to a wide variety of estimators that
are important in applications.

To be specific, let X be a random vector, and set = E(X) Assume that the true
value of O is 00 = g(p), where g is a known, continuous function Suppose that the data
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consist of a random sample {Xi: i = 1, , n} of X Define the vector X = n- l Xi= 1 Xi.
Then O is estimated consistently by

n = g(X) ( 3 1)

If 0, has a finite mean, then E(On) = Elg(X)l However, Elg(X)l g(p) in general
unless g is a linear function Therefore, E(On) • 00, and On is a biased estimator of 0.
In particular, E(O,,) • 00 if O N is any of a variety of familiar maximum likelihood or
generalized method of moments estimators.

To see how the bootstrap can reduce the bias of O,, suppose that g is four times
continuously differentiable in a neighborhood of p and that the components of X have
finite fourth absolute moments Let Gi denote the vector of first derivatives of g and
G 2 denote the matrix of second derivatives A Taylor series expansion of the right-hand
side of Equation ( 3 1) about X = y gives

0 N o = G (/)'(X-/2) + (X-/2)'G 2 (P)( -) +Rn, ( 3 2)

where R, is a remainder term that satisfies E(R,) = O(n 2) Therefore, taking expecta-
tions on both sides of Equation ( 3 2) gives

E(On 00) = El(X )'G 2 (U)(X P)l + O(n 2) ( 3 3)

The first term on the right-hand side of Equation ( 3 3) has size O(n-l) Therefore,
through O(n-') the bias of O N is

Bn = El(X -/ )'G 2 (/)(X P)l ( 3 4)

Now consider the bootstrap The bootstrap samples the empirical distribution of the
data Let {Xj*: i = 1, , n} be a bootstrap sample that is obtained this way Define
X* = n-Z En= X * to be the vector of bootstrap sample means The bootstrap estimator
of O is 0,* = g(X*) Conditional on the data, the true mean of the distribution sampled
by the bootstrap is X Therefore, X is the bootstrap analog of P, and On = g(X) is the
bootstrap analog of 00 The bootstrap analog of Equation ( 3 2) is

n On = GO(X)'(X* -X) + (X* -X)G 2(X)(* -X)+R*, ( 3 5)

where R* is the bootstrap remainder term Let E* denote the expectation under
bootstrap sampling, that is, the expectation relative to the empirical distribution of
the estimation data Let B* E*(* On,) denote the bias of O,* as an estimator of n,.
Taking E* expectations on both sides of Equation ( 3 5) shows that

B = E* l(X* -X)G 2 (X)(X* -X)l + O(n 2) ( 3 6)

almost surely Because the distribution sampled by the bootstrap is known, B* can be
computed with arbitrary accuracy by Monte Carlo simulation Thus, B* is a feasible
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estimator of the bias of On The details of the simulation procedure are described
below.

By comparing Equations ( 3 4) and ( 3 6), it can be seen that the only differences
between B, and the leading term of B* are that X replaces Y in B* and the empirical
expectation, E*, replaces the population expectation, E Moreover, E(B*) = B, + O(n-2 ).
Therefore, through O(n l), use of the bootstrap bias estimate B* provides the same bias
reduction that would be obtained if the infeasible population value B, could be used.
This is the source of the bootstrap's ability to reduce the bias of On, The resulting bias-
corrected estimator of O is 0, B* It satisfies E(n, 00 B*) = O(n 2) Thus, the bias
of the bias-corrected estimator is O(n-2), whereas the bias of the uncorrected estimator
on is O(n 1)4.

The Monte Carlo procedure for computing B* is as follows:

Monte Carlo Procedure for Bootstrap Bias Estimation
B 1: Use the estimation data to compute n,.
B 2: Generate a bootstrap sample of size N by sampling the estimation data randomly

with replacement Compute O * = g(X*).
B 3: Compute E* O * by averaging the results of many repetitions of step B 2 Set

B =E* n,.

To implement this procedure it is necessary to choose the number of repetitions, m,
of step B 2 It usually suffices to choose m sufficiently large that the estimate of E* *
does not change significantly if m is increased further Andrews and Buchinsky ( 2000)
discuss more formal methods for choosing the number of bootstrap replications 5.

The following simple numerical example illustrates the bootstrap's ability to reduce
bias Examples that are more realistic but also more complicated are presented in
Horowitz ( 1998 a).

Example 3 1 lHorowitz ( 1998 a)l: Let X-N( 0,6) and N = 10 Let g(Y) = exp(Y) Then
00 = 1, and 0, = exp(X) B, and the bias of 0, B* can be found through the following
Monte Carlo procedure:

MC 1 Generate an estimation data set of size N by sampling from the N( 0,6) dis-
tribution Use this data set to compute n,.

MC 2 Compute B* by carrying out steps B 1-B 3 Form 0,n -B*.
MC 3 Estimate E(n, O o) and E(On -B* O o) by averaging the results of many

repetitions of steps MC 1-MC 2 Estimate the mean square errors of On and O N B by
averaging the realizations of (On 00)2 and (On B* 00)2.

4 If E( 0,) does not exist, then the "bias reduction" procedure described here centers a higher-order
approximation to the distribution of On 00 o.
5 It is not difficult to show that the bootstrap provides bias reduction even if m= 1 However, the
bias-corrected estimator of O may have a large variance if m is too small The asymptotic distribution of
the bias-corrected estimator is the same as that of the uncorrected estimator if m increases sufficiently
rapidly as N increases See Brown ( 1999) for further discussion.
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The following are the results obtained with 1000 Monte Carlo replications and
100 repetitions of step B 2 at each Monte Carlo replication:

Bias Mean-Square Error

0 N 0 356 1 994

0, B -0 063 1 246

In this example, the bootstrap reduces the magnitude of the bias of the estimator of O
by nearly a factor of 6 The mean-square estimation error is reduced by 38 percent ·

3.2 The distributions of statistics

This section explains why the bootstrap provides an improved approximation to the
finite-sample distribution of an asymptotically pivotal statistic As before, the data
are a random sample {Xi: i= 1, , n} from a probability distribution whose CDF
is F O Let Tn = T,(X 1, ,X,) be a statistic Let Gn(r, Fo) =P(T, < ) denote the
exact, finite-sample CDF of T As was discussed in Section 2, G,(T, Fo) cannot be
calculated analytically unless Tn is pivotal The objective of this section is to obtain
an approximation to Gn(r, Fo) that is applicable when Tn is not pivotal.

To obtain useful approximations to G,(T, Fo), it is necessary to make certain
assumptions about the form of the function T,(XI, ,X,) It is assumed in this
section that T, is a smooth function of sample moments of X or sample moments
of functions of X (the smooth function model) Specifically Tn = nl/2 lH( 21, , Zj)
-H(tz,, , iz J)l, where the scalar-valued function H is smooth in a sense that
is defined precisely below, Zj = n-l En=l Zj(Xi) for each j= 1, ,J and some
nonstochastic function Zj, and /t Z = E(Zj) After centering and normalization,
most estimators and test statistics used in applied econometrics are either smooth
functions of sample moments or can be approximated by such functions with an
approximation error that is asymptotically negligible 6 The ordinary least-squares
estimator of the slope coefficients in a linear mean-regression model and the
t statistic for testing a hypothesis about a coefficient are exact functions of sample
moments Maximum-likelihood and generalized-method-of-moments estimators of the
parameters of nonlinear models can be approximated with asymptotically negligible
error by smooth functions of sample moments if the log-likelihood function or moment
conditions have sufficiently many derivatives with respect to the unknown parameters.

6 The meaning of asymptotic negligibility in this context may be stated precisely as follows Let
n=fn(Xl, ,Xn) be a statistic, and let T=nl/2 lH(Zl, ,Zj)-H(pz, ,/zj)l Then the error

made by approximating Tn with T is asymptotically negligible if there is a constant c > O such that
n 2Pln 2 I Tn Tn I >cl = O ( 1) as N oc.
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Some important econometric estimators and test statistics do not satisfy the
assumptions of the smooth function model Quantile estimators, such as the least-
absolute-deviations (LAD) estimator of the slope coefficients of a median-regression
model do not satisfy the assumptions of the smooth function model because their
objective functions are not sufficiently smooth Nonparametric density and mean-
regression estimators and semiparametric estimators that require kernel or other forms
of smoothing also do not fit within the smooth function model Bootstrap methods for
such estimators are discussed in Section 4 3.

Now return to the problem of approximating G(r,Fo) First-order asymptotic
theory provides one approximation To obtain this approximation, write H(ZI, , Zj)
= H(Z), where Z = (ZI, , ZJ)' Define z = E(Z), OH(z) = OH(z)/&z, and
Q = El(Z y Lz)(Z pz)'l whenever these quantities exist Assume that:

SFM: (i) T, = nl/ 2lH(Z) H(Clz)l, where H(z) is 6 times continuously partially
differentiable with respect to any mixture of components of z in a neighborhood of

z (ii) OH(tlz) • O (iii) The expected value of the product of any 16 components of
Z exists 7.

Under assumption SFM, a Taylor series approximation gives

n l/2 lH(Z) H(yz)l = OH(pz)'nl/2 (Z _ l Z) + O( 1) ( 3 7)
Application of the Lindeberg-Levy central limit theorem to the right hand side of
Equation ( 3 7) shows that n/2 lH(Z) H(uz)l -d N(O, V), where V = OH(luz)'
2 a H(ltz) Thus, the asymptotic CDF of Tn is GO(T,FO) = (r/Vt/2), where is

the standard normal CDF This is just the usual result of the delta method Moreover,
it follows from the Berry-Esseen theorem that

sup IG,(r, F) G (r, Fo) = (n-l/2).
T

Thus, under assumption SFM of the smooth function model, first-order asymptotic
approximations to the exact finite-sample distribution of Tn make an error of size

(n-l/2 ) 8.

7 The proof that the bootstrap provides asymptotic refinements is based on an Edgeworth expansion of a
sufficiently high-order Taylor-series approximation to T, Assumption SFM insures that H has derivatives
and Z has moments of sufficiently high order to obtain the Taylor series and Edgeworth expansions that
are used to obtain a bootstrap approximation to the distribution of Tn that has an error of size O(n 2).
SFM may not be the weakest condition needed to obtain this result It certainly assumes the existence
of more derivatives of H and moments of Z than needed to obtain less accurate approximations For
example, asymptotic normality of Tn can be proved if H has only one continuous derivative and Z has
only two moments See Hall ( 1992 a, pp 52-56 ; 238-259) for a statement of the regularity conditions
needed to obtain various levels of asymptotic and bootstrap approximations.
8 Some statistics that are important in econometrics have asymptotic chi-square distributions Such
statistics often satisfy the assumptions of the smooth function model but with H(pz)=O and
a 2H(z)/zazz =tz O Versions of the results described here for asymptotically normal statistics are also
available for asymptotic chi-square statistics First-order asymptotic approximations to the finite-sample
distributions of asymptotic chi-square statistics typically make errors of size O(n' ) Chandra and Ghosh
( 1979) give a formal presentation of higher-order asymptotic theory for asymptotic chi-square statistics.
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Now consider the bootstrap The bootstrap approximation to the CDF of T is
Gn( ,F,) Under the smooth function model with assumption SFM, it follows from
Theorem 3 2 that the bootstrap is consistent Indeed, it is possible to prove the stronger
result that sup, IG,(r,F) G,(T,Fo)l O almost surely This result insures that
the bootstrap provides a good approximation to the asymptotic distribution of T if
n is sufficiently large It says nothing, however, about the accuracy of G( , F,) as an
approximation to the exact finite-sample distribution function G,( , Fo) To investigate
this question, it is necessary to develop higher-order asymptotic approximations to
G,( ,Fo) and G,(,Fn) The following theorem, which is proved in Hall ( 1992 a),
provides an essential result.

Theorem 3 1 Let assumption SFM hold Assume also that

lim sup IElexp(it'Z)l < 1, ( 3 8)
Itllto

where i = v/- Then

1 1
G,(r,Fo) = G (r,Fo)+ I/2 gl(r,Fo)+ -g 2(r,Fo) + 2g 3(r, Fo)+ O(n-2)

( 3.9)
uniformly over and

1 1 1
G,(r, Fn) = G (r, Fn)+ I gi(T,)+ N -g 2 (,Fn)+ g 3 (T, Fn)+ (n 2)

1/2 N g3/2
( 3.10)

uniformly over r almost surely Moreover; gl and g 3 are even, differentiable functions
of theirfirst arguments, g 2 is an odd, differentiable, function of itsfirst argument, and
G,, gl, g 2, and g 3 are continuous functions of their second arguments relative to the
supremum norm on the space of distribution functions.

If Tn is asymptotically pivotal, then G, is the standard normal distribution function.
Otherwise, Go( , FO) is the N( 0, V) distribution function, and GO(-, F,) is the N( 0, V,)
distribution function, where V, is the quantity obtained from V by replacing population
expectations and moments with expectations and moments relative to Fn.

Condition ( 3 8) is called the Cramer condition It is satisfied if the random vector Z
has a probability density with respect to Lebesgue measure 9.

9 More generally, Equation ( 3 8) is satisfied if the distribution of Z has a non-degenerate absolutely
continuous component in the sense of the Lebesgue decomposition There are also circumstances in which
Equation ( 3 8) is satisfied even when the distribution of Z does not have a non-degenerate absolutely
continuous component See Hall ( 1992 a, pp 66-67) for examples In addition, Equation ( 3 8) can be
modified to deal with econometric models that have a continuously distributed dependent variable but
discrete covariates See Hall ( 1992 a, p 266).
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It is now possible to evaluate the accuracy of the bootstrap estimator G,(r, F,)
as an approximation to the exact, finite-sample CDF G(r, Fo) It follows from
Equations ( 3 9) and ( 3 10) that

Gj(r, F) Gn(r, Fo) = lG(Tr,F,) G (r, Fo)l + 1/2 lg (r, F) gl(r, Fo)l

1
+ -lg 2(r, Fn) g 2 (r, F)l + O(n- 3/ 2 )

n
( 3.11)

almost surely uniformly over The leading term on the right-hand side of
Equation ( 3 11) is lGO(r, F,) G(r, Fo)l The size of this term is O(n 1/2) almost
surely uniformly over r because F -Fo = O(n- 1/2) almost surely uniformly over the
support of Fo Thus, the bootstrap makes an error of size O(n-1/ 2 ) almost surely, which
is the same as the size of the error made by first-order asymptotic approximations In
terms of rate of convergence to zero of the approximation error, the bootstrap has the
same accuracy as first-order asymptotic approximations In this sense, nothing is lost
in terms of accuracy by using the bootstrap instead of first-order approximations, but
nothing is gained either.

Now suppose that T, is asymptotically pivotal Then the asymptotic distribution of
T, is independent of FO, and G,(r, F,)= GO,(T, Fo) for all r Equations ( 3 9) and
( 3.10) now yield

G,(r, Fn) G,(, Fo) = lgl(r,F,) gl (T, Fo)l
1/2

+ -lg 2 (r, F) g 2 (T, Fo)l + O(n- 3/ 2)

n

almost surely The leading term on the right-hand side of Equation ( 3 12) is
n 1 /2 lg 1(, Fn) -gl (T, Fo)l It follows from continuity of gl with respect to its second
argument that this term has size O(n' ) almost surely uniformly over Now the
bootstrap makes an error of size O(n-l), which is smaller as N * c than the error made
by first-order asymptotic approximations Thus, the bootstrap is more accurate than
first-order asymptotic theory for estimating the distribution of a smooth asymptotically
pivotal statistic.

If T, is asymptotically pivotal, then the accuracy of the bootstrap is even greater for
estimating the symmetrical distribution function P( T I < r) = G,(r, Fo) G,( T, Fo).
This quantity is important for obtaining the RP's of symmetrical tests and the coverage
probabilities of symmetrical confidence intervals Let P denote the standard normal
distribution function Then, it follows from Equation ( 3 9) and the symmetry of gl,
g 2, and g 3 in their first arguments that

2
G,(, Fo) G,(-, Fo) = lG (r, Fo) G(-r, Fo)l + g 2(r, Fo) + O(n 2 )

n

= 2 (r)) 1 + 2 g 2 (r, Fo) + O(n 2).
n

( 3.13)
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Similarly, it follows from Equation ( 3 10) that

G,(r, Fn) G,(-T, Fn) = lG(T,F,) G(-T, F)l + -g 2(T,Fn) + O(n 2 )

= 2 ¢(r) 1 + 2 g 2 (r,Fn) + O(n- 2)

( 3.14)
almost surely The remainder terms in Equations ( 3 13) and ( 3 14) are O(n-2 ) and
not O(n-3/ 2 ) because the O(n-3 /2) term of an Edgeworth expansion, n-3/2 g 3 (r,F), is
an even function that, like gl, cancels out in the subtractions used to obtain Equa-
tions ( 3 13) and ( 3 14) from Equations ( 3 9) and ( 3 10) Now subtract Equation ( 3 13)
from Equation ( 3 14) and use the fact that Fn Fo = O(n- 1/ 2 ) almost surely to obtain

l G,(r,F,) G(-r, F,)l lG,(r, Fo) G(-T, Fo)l

2 lg 2(r, Fn) g 2 (T, Fo)l + O(n- 2) ( 3 15)
n

= O(n 3/2)

almost surely if Tn is asymptotically pivotal Thus, the error made by the bootstrap
approximation to the symmetrical distribution function P(I Tn < r) is O(n-3 /2)
compared to the error of O(n- l) made by first-order asymptotic approximations.

In summary, when T is asymptotically pivotal, the error of the bootstrap
approximation to a one-sided distribution function is

G,(T, F,) G(T, Fo) = O(n- l ) ( 3 16)

almost surely uniformly over r The error in the bootstrap approximation to a
symmetrical distribution function is

l G(r, F,) Gn(-T,F)l lGn(T,Fo) G(-, Fo)l = O(n-3/ 2 ) ( 3 17)

almost surely uniformly over r In contrast, the errors made by first-order asymptotic
approximations are O(n- 1/ 2 ) and O(n-'), respectively, for one-sided and symmetrical
distribution functions Equations ( 3 16) and ( 3 17) provide the basis for the bootstrap's
ability to reduce the finite-sample errors in the RP's of tests and the coverage
probabilities of confidence intervals Section 3 3 discusses the use of the bootstrap
in hypothesis testing Confidence intervals are discussed in Section 3 4.

3.3 Bootstrap critical values for hypothesis tests

This section shows how the bootstrap can be used to reduce the errors in the RP's of
hypothesis tests relative to the errors made by first-order asymptotic approximations.

Let T be a statistic for testing a hypothesis Ho about the sampled population.
Assume that under Ho, T is asymptotically pivotal and satisfies assumptions SFM
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and Equation ( 3 8) Consider a symmetrical, two-tailed test of Ho This test rejects Ho
at the a level if T, > Z,, a/2, where Z,, a/2, the exact, finite-sample, a-level critical
value, is the 1 a/2 quantile of the distribution of T 10 The critical value solves the
equation

Gn(Zn, a/2, Fo) G,(-z,, a/2, Fo) = 1 a ( 3 18)

Unless T is exactly pivotal, however, Equation ( 3 18) cannot be solved in an
application because F O is unknown Therefore, the exact, finite-sample critical value
cannot be obtained in an application if T, is not pivotal.

First-order asymptotic approximations obtain a feasible version of Equation ( 3 18)
by replacing G, with Goo Thus, the asymptotic critical value, zo, a/2, solves

Goo(zoo, a/2, Fo) Goo(-Zoo, a/2 , Fo) = a ( 3 19)

Since Go, is the standard normal distribution function when T is asymptotically
pivotal, zoo, ,/2 can be obtained from tables of standard normal quantiles Combining
Equations ( 3 13), ( 3 18), and ( 3 19) gives

lGoo(z,, a/2, Fo)-Go (-z,, a/2, Fo)l-lGo (zo, a/2, Fo)-Go (-zoo, a/2, Fo)l = O(n-l),

which implies that Zn,a/2 Z,a/2 = O(n-1) Thus, the asymptotic critical value
approximates the exact finite sample critical value with an error whose size is O(n-l).

The bootstrap obtains a feasible version of Equation ( 3 18) by replacing F Oo with F,.
Thus, the bootstrap critical value, Z* a/2 , solves

Gn(Zn, a/2, Fn) Gn(-Zn, /2 , Fn) = a ( 3 20)

Equation ( 3 20) 11 usually cannot be solved analytically, but z* a/2 can be estimated
with any desired accuracy by Monte Carlo simulation To illustrate, suppose, as often

10 Another form of two-tailed test is the equal-tailed test An equal-tailed test rejects Ho if Tn >Zn,,, a/2

or Tn <Zn,( 1 a/2), where Zn,,(I -a/2) is the a/2-quantile of the finite-sample distribution of T, If the
distribution of Tn is symmetrical about 0, then equal-tailed and symmetrical tests are the same Otherwise,
they are different Most test statistics used in econometrics have symmetrical asymptotic distributions,
so the distinction between equal-tailed and symmetrical tests is not relevant when the RP is obtained
from first-order asymptotic theory Many test statistics have asymmetrical finite-sample distributions
however Higher-order approximations to these distributions, such as the approximation provided by the
bootstrap, are also asymmetrical Therefore, the distinction between equal-tailed and symmetrical tests
is important in the analysis of asymptotic refinements Note that "symmetrical" in a symmetrical test
refers to the way in which the critical value is obtained, not to the finite-sample distribution of T,, which
is asymmetrical in general.
1 The empirical distribution of the data is discrete, so Equation ( 3 20) may not have a solution if Fn
is the EDF of the data However, Hall ( 1992 a, pp 283-286) shows that there is a solution at a point an
whose difference from a decreases exponentially fast as N oo The error introduced into the analysis
by ignoring the difference between an and a is o(n 2) and, therefore, negligible for purposes of the
discussion in this chapter.
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happens in applications, that Tn is an asymptotically normal, Studentized estimator of
a parameter O whose value under Ho is 00 That is,

n /2 ( n o 0)
Tn=

Sn

where 0, is the estimator of 0, nl/2(On 00) N( 0, a 2 ) under Ho and S 2 is a consistent
estimator of a 2 Then the Monte Carlo procedure for evaluating z a,/2 is as follows:

Monte Carlo Procedure for Computing the Bootstrap Critical Value
TI: Use the estimation data to compute O,.

T 2: Generate a bootstrap sample of size N by sampling the distribution corresponding
to Fn For example, if Fn is the EDF of the data, then the bootstrap sample can be
obtained by sampling the data randomly with replacement If Fn is parametric
so that Fn(-)=F( , O n) for some function E then the bootstrap sample can be
generated by sampling the distribution whose CDF is F( , On) Compute the
estimators of O and a from the bootstrap sample Call the results O * and s* The
bootstrap version of Tn is Tn* = n'/2 ( *O n)/s.

T 3: Use the results of many repetitions of T 2 to compute the empirical distribution
of I T* Set z*, a/2 equal to the 1 a quantile of this distribution.

The foregoing procedure does not specify the number of bootstrap replications
that should be carried out in step T 3 In practice, it often suffices to choose a value
sufficiently large that further increases have no important effect on Z*, a/2 Hall ( 1 986 a)
and Andrews and Buchinsky ( 2000) describe the results of formal investigations of the
problem of choosing the number of bootstrap replications Repeatedly estimating O in
step T 2 can be computationally burdensome if On is an extremum estimator Davidson
and Mac Kinnon ( 1999 a) and Andrews ( 1999) show that the computational burden can
be reduced by replacing the extremum estimator with an estimator that is obtained by
taking a small number of Newton or quasi-Newton steps from the On value obtained
in step T 1.

To evaluate the accuracy of the bootstrap critical value z* 2 as an estimator of
the exact finite-sample critical value z,a/2, combine Equations ( 3 13) and ( 3 18) to
obtain

2 (zn,a 2) 1 + -g 2 (zn, a/2,FO) = 1 a + O(n-2) ( 3 21)n

Similarly, combining Equations ( 3 14) and ( 3 20) yields

22),2 ((Zn /2) 1 + 2 g 2 (z 2,a/2 ,Fn) = 1 a+O(n 2 ), ( 3 22)
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almost surely Equations ( 3 21) and ( 3 22) can be solved to yield Cornish-Fisher
expansions for Zn, a/2 and z*, a/2 The results are lHall ( 1992 a, p 111)l

1 g 2 (zo~a/2, Fo)
Zn, a/2 = Zoo, a/2 (Zoa/2 ) +O(n-2, ( 3 23)

n O(z , /2)

where is the standard normal density function, and

Z f 1 g 2 (Zoo, a/2,Fn) O(n 2 ), ( 3 24)
z, a/2 = zoo, a/2 N ¢(z , 2)

almost surely It follows from Equations ( 3 23) and ( 3 24) that

zn,a/2 = zn, a/2 + O ( 3/2), ( 3 25)

almost surely Thus, the bootstrap critical value for a symmetrical, two-tailed test
differs from the exact, finite-sample critical value by O(n-3/ 2 ) almost surely The
bootstrap critical value is more accurate than the asymptotic critical value, Zc,a/2,

whose error is O(n- l).
Now consider the rejection probability of the test based on T, when Ho is true With

the exact but infeasible a-level critical value, the RP is P( Tn I > zn, a/2)= a With the
asymptotic critical value, the RP is

P(I Tnl > Zo, a/2) = 1 lGn(z, a/2,Fo) Gn(-Za/2 ,FOl ( 3 26)
= a + O(n-l),

where the last line follows from setting r = zo, a/2 in Equation ( 3 13) Thus, with the
asymptotic critical value, the true and nominal RP's differ by O(n-l).

Now consider the RP with the bootstrap critical value, P(J Tn I 1 zn* a/2) Because
zna/2 is a random variable, P(I T, zn* /2) • 1 lG(zn, a/2, FO) Gn(-zn a/2, Fo)l.

This fact complicates the calculation of the difference between the true and nominal
RP's with the bootstrap critical value The calculation is outlined in the Appendix of
this chapter The result is that

P( Tn > Z*, a/2) = a + O(n-2) ( 3 27)

In other words, the nominal RP of a symmetrical, two-tailed test with a bootstrap
critical value differs from the true RP by O(n-2 ) when the test statistic is asymptotically
pivotal In contrast, the difference between the nominal and true RP's is O(n- l) when
the asymptotic critical value is used.

The bootstrap does not achieve the same accuracy for one-tailed tests For such
tests, the difference between the nominal and true RP's with a bootstrap critical value
is usually O(n-1), whereas the difference with asymptotic critical values is O(n 12).
See Hall ( 1992 a, pp 102-103) for details There are, however, circumstances in which
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the difference between the nominal and true RP's with a bootstrap critical value is
O(n-3/2) Hall ( 1992 a, pp 178-179) shows that this is true for a one-sided t test
of a hypothesis about a slope (but not intercept) coefficient in a homoskedastic,
linear, mean-regression model Davidson and Mac Kinnon ( 1999 b) show that it is true
whenever T, is asymptotically independent of g 2(z, a/2, Fn) They further show that
many familiar test statistics satisfy this condition.

Tests based on statistics that are asymptotically chi-square distributed behave like
symmetrical, two-tailed tests Therefore, the differences between their nominal and true
RP's under Ho are O(n-1) with asymptotic critical values and O(n 2) with bootstrap
critical values.

Singh ( 1981), who considered a one-tailed test of a hypothesis about a population
mean, apparently was the first to show that the bootstrap provides a higher-order
asymptotic approximation to the distribution of an asymptotically pivotal statistic.
Singh's test was based on the standardized sample mean Early papers giving results on
higher-order approximations for Studentized means and for more general hypotheses
and test statistics include Babu and Singh ( 1983, 1984), Beran ( 1988) and Hall ( 1986 b,
1988).

3.4 Confidence intervals

Let O be a population parameter whose true but unknown value is 00 Let On be
a nl/2-consistent, asymptotically normal estimator of 0, and let sn be a consistent
estimator of the standard deviation of the asymptotic distribution of nl/2 (On 00).
Then an asymptotic -a confidence interval for 00 is O,n-z, ,a/2 s/n 1/2 < 00 

n +Zoo,a/2 Sn/n 11/ 2 Define Tn =nl/2 (On O 0)/Sn Then the coverage probability of the
asymptotic confidence interval is P(I Tn I < Z, a/2) It follows from Equation ( 3 26)
that the difference between the true coverage probability of the interval and the nominal
coverage probability, 1 a, is O(n 1).

If Tn satisfies the assumptions of Theorem 3 1, then the difference between the
nominal and true coverage probabilities of the confidence interval can be reduced
by replacing the asymptotic critical value with the bootstrap critical value z* a/2

With the bootstrap critical value, the confidence interval is On Z* ,a/2 ln/22 < O o 

On +z*a/2Sn/n 1/2 The coverage probability of this interval is P(I Tn I < z*a/2) By
Equation ( 3 27), P(I Tn <z* a/2 )= 1 a+O(n-2), so the true and nominal coverage
probabilities differ by O(n-2 ) when the bootstrap critical value is used, whereas they
differ by O(n- 1) when the asymptotic critical value is used.

Analogous results can be obtained for one-sided and equal-tailed confidence
intervals With asymptotic critical values, the true and nominal coverage probabilities
of these intervals differ by O(n-l/2) With bootstrap critical values, the differences are
O(n 1) In special cases such as the slope coefficients of homoskedastic, linear, mean-
regressions, the differences with bootstrap critical values are O(n-3/2).
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The bootstrap's ability to reduce the differences between the true and nominal
coverage probabilities of a confidence interval is illustrated by the following example,
which is an extension of Example 3 1.

Example 3 2 lHorowitz ( 1998 a)l: This example uses Monte Carlo simulation to
compare the true coverage probabilities of asymptotic and bootstrap nominal 95 %
confidence intervals for O o in the model of Example 3 1 The Monte Carlo procedure
is:
MC 4: Generate an estimation data set of size N = 10 by sampling from the N( 0,6)

distribution Use this data set to compute 0,.
MC 5: Compute z* a/2 by carrying out steps T 2-T 3 of Section 3 3 Determine whether

00 is contained in the confidence intervals based on the asymptotic and
bootstrap critical values.

MC 6: Determine the empirical coverage probabilities of the asymptotic and bootstrap
confidence intervals from the results of 1000 repetitions of steps MC 4-MC 5.

The empirical coverage probability of the asymptotic confidence interval was 0 886 in
this experiment, whereas the empirical coverage probability of the bootstrap interval
was 0 943 The asymptotic coverage probability is statistically significantly different
from the nominal probability of 0 95 (p< 0 01), whereas the bootstrap coverage
probability is not (p > O 10) ·

3.5 The importance of asymptotically pivotal statistics

The arguments in Sections 3 2-3 4 show that the bootstrap provides higher-order
asymptotic approximations to distributions, RP's of tests, and coverage probabilities of
confidence intervals based on smooth, asymptotically pivotal statistics These include
test statistics whose asymptotic distributions are standard normal or chi-square and,
thus, most statistics that are used for testing hypotheses about the parameters of econo-
metric models Models that satisfy the required smoothness conditions include linear
and nonlinear mean-regression models, error-components mean-regression models for
panel data, logit and probit models that have at least one continuously distributed
explanatory variable, and tobit models The smoothness conditions are also satisfied by
parametric sample-selection models in which the selection equation is a logit or probit
model with at least one continuously distributed explanatory variable Asymptotically
pivotal statistics based on median-regression models do not satisfy the smoothness con-
ditions Bootstrap methods for such statistics are discussed in Section 4 3 The ability
of the bootstrap to provide asymptotic refinements for smooth, asymptotically pivotal
statistics provides a powerful argument for using them in applications of the bootstrap.

The bootstrap may also be applied to statistics that are not asymptotically pivotal,
but it does not provide higher-order approximations to their distributions Estimators of
the structural parameters of econometric models (e g , slope and intercept parameters,
including regression coefficients; standard errors, covariance matrix elements, and
autoregressive coefficients) usually are not asymptotically pivotal The asymptotic
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distributions of centered structural parameter estimators are often normal with means
of zero but have variances that depend on the unknown population distribution of the
data The errors of bootstrap estimates of the distributions of statistics that are not
asymptotically pivotal converge to zero at the same rate as the errors made by first-
order asymptotic approximations 12

Higher-order approximations to the distributions of statistics that are not asymptoti-
cally pivotal can be obtained through the use of bootstrap iteration lBeran ( 1987, 1988);
Hall ( 1992 a)l or bias-correction methods lEfron ( 1987)l Bias correction methods are
not applicable to symmetrical tests and confidence intervals Bootstrap iteration is
discussed in Section 4 4 Bootstrap iteration is highly computationally intensive, which
makes it unattractive when an asymptotically pivotal statistic is available.

3.6 The parametric versus the nonparametric bootstrap

The size of the error in the bootstrap estimate of a RP or coverage probability is
determined by the size of F,-Fo Thus, F, should be the most efficient available
estimator If Fo belongs to a known parametric family F( , 0), F( , On) should be used
to generate bootstrap samples, rather than the EDF Although the bootstrap provides
asymptotic refinements regardless of whether F( , On,) or the EDF is used, the results
of Monte Carlo experiments have shown that the numerical accuracy of the bootstrap
tends to be much higher with F(-, O n) than with the EDE If the objective is to test a
hypothesis Ho about 0, further gains in efficiency and performance can be obtained
by imposing the constraints of Ho when obtaining the estimate ,On.

To illustrate, consider testing the hypothesis Ho: l = O in the Box-Cox regression
model

Y() = f O x + U, ( 3 28)

where (A) is the Box and Cox ( 1964) transformation of YX is an observed,
scalar explanatory variable, U is an unobserved random variable, and fio and Pl are
parameters Suppose that U N(O, Ca 2) 13 Then bootstrap sampling can be carried out
in the following ways:
( 1) Sample (YX) pairs from the data randomly with replacement.

12 Under mild regularity conditions, the constant that multiplies the rate of convergence of the error of the
bootstrap estimate of the distribution function of a non-asymptotically-pivotal statistic is smaller than the
constant that multiplies the rate of convergence of the error that is made by the normal approximation.
This need not happen, however, with the errors in the RP's of tests and coverage probabilities of
confidence intervals See Beran ( 1982) and Liu and Singh ( 1987).
13 Strictly speaking, U cannot be normally distributed unless 3 = O or 1, but the error made by assuming
normality is negligibly small if the right-hand side of the model has a negligibly small probability of
being negative Amemiya and Powell ( 1981) discuss ways to avoid assuming normality.
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( 2) Estimate , 1 fo, and i 1 in Equation ( 3 28) by maximum likelihood, and obtain
residuals U Generate Y values from Y = lA,(bo + bl X + U*) + 1 ll/A-, where ,,
bo, and bl are the estimates of A, flo, and Pi; and U* is sampled randomly with
replacement from the U.

( 3) Same as method 2 except U* is sampled randomly from the distribution N(O, S 2),
where S 2 is the maximum likelihood estimate of a 2.

( 4) Estimate A, o, and a 2 in Equation ( 3 28) by maximum likelihood subject to the
constraint fi = O Then proceed as in method 2.

( 5) Estimate A, /5 o, and 2 in Equation ( 3 28) by maximum likelihood subject to the
constraint /53 = O Then proceed as in method 3.

In methods 2-5, the values of X may be fixed in repeated samples or sampled
independently of U from the empirical distribution of X

Method 1 provides the least efficient estimator of F, and typically has the poorest
numerical accuracy Method 5 has the greatest numerical accuracy Method 3 will
usually have greater numerical accuracy than method 2 If the distribution of U
is not assumed to belong to a known parametric family, then methods 3 and 5
are not available, and method 4 will usually have greater numerical accuracy than
methods 1-2 Of course, parametric maximum likelihood cannot be used to estimate
i O o, il, and Ag if the distribution of U is not specified parametrically.

If the objective is to obtain a confidence interval for 51 rather than to test a
hypothesis, methods 4 and 5 are not available Method 3 will usually provide the
greatest numerical accuracy if the distribution of U is assumed to belong to a known
parametric family, and method 2 if not.

One reason for the relatively poor performance of method 1 is that it does not impose
the condition E(Ul X =x)= O This problem is discussed further in Section 5 2, where
heteroskedastic regression models are considered.

3.7 Recentering

The bootstrap provides asymptotic refinements for asymptotically pivotal statistics
because, under the assumptions of the smooth function model, sup Gn(,F,,)
-G,(r,Fo)l converges to zero as n oo more rapidly than supr G,(,Fo) -
Gn(, Fo)l One important situation in which this does not necessarily happen is
generalized method of moments (GMM) estimation of an overidentified parameter
when Fn is the EDF of the sample.

To see why, let 00 o be the true value of a parameter O that is identified by the
moment condition Eh(X 0) = O Assume that dim(h) > dim(O) If, as is often the case
in applications, the distribution of X is not assumed to belong to a known parametric
family, the EDF of X is the most obvious candidate for F, The sample analog of
Eh(X 0) is then

n

E*h(X, 0) = h(X, , 0),
i=l
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where E* denotes the expectation relative to Fn The sample analog of O o is On,
the GMM estimator of O In general, E*h(X, On) O in an overidentified model, so
bootstrap estimation based on the EDF of X implements a moment condition that
does not hold in the population the bootstrap samples As a result, the bootstrap
estimator of the distribution of the statistic for testing the overidentifying restrictions
is inconsistent lBrown et al ( 1997)l The bootstrap does consistently estimate the
distributions of nl/2(On o 00) lHahn ( 1996)l and the t statistic for testing a hypothesis
about a component of O However, it does not provide asymptotic refinements for the
RP of the t test or the coverage probability of a confidence interval.

This problem can be solved by basing bootstrap estimation on the recentered
moment condition E*h*(X, 0,)= 0, where

n
h*(X, 0) = h(X, 0) h(X,, n) ( 3 29)

Hall and Horowitz ( 1996) show that the bootstrap with recentering provides asymptotic
refinements for the RP's of t tests of hypotheses about components of O and the test of
overidentifying restrictions The bootstrap with recentering also provides asymptotic
refinements for confidence intervals Intuitively, the recentering procedure works
by replacing the misspecified moment condition E*h(X 0)= 0 with the condition
E*h*(X 0)= 0, which does hold in the population that the bootstrap samples.

Freedman ( 1981) recognized the need for recentering residuals in regression models
without intercepts See also Efron ( 1979).

Brown et al ( 1997) propose an alternative approach to recentering Instead of
replacing h with h* for bootstrap estimation, they replace the empirical distribution of
X with an empirical likelihood estimator that is constructed so that E*h(X, On) = O 14
The empirical likelihood estimator assigns a probability mass gr,i to observation
Xi (i = 1, , n) The rni's are determined by solving the problem

n

maximize E log Tni
n I , X nn i=i

n n

subject to Zrnih(Xi, n) = 0, ni = 1, ni > O.

In general, the solution to this problem yields rni n- l, so the empirical likelihood
estimator of the distribution of X is not the same as the empirical distribution Brown
et al ( 1997) implement the bootstrap by sampling {Xi} with probability weights n,i

14 The empirical-likelihood estimator is one of a larger class of estimators of F that are described
by Brown et al ( 1997) and that impose the restriction E*h(X, ,)= O All estimators in the class are
asymptotically efficient.
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instead of randomly with replacement They argue that the bootstrap is more accurate
with empirical-likelihood recentering than with recentering by Equation ( 3 29) because
the empirical-likelihood estimator of the distribution of X is asymptotically efficient
under the moment conditions Eh(X, 0) = O With either method of recentering, however,
the differences between the nominal and true RP's of symmetrical tests and between the
nominal and true coverage probabilities of symmetrical confidence intervals are O(n-2 ).
Thus, the differences between the errors made with the two recentering methods are
likely to be small with samples of the sizes typically encountered in applications.

Brown et al ( 1997) develop the empirical-likelihood recentering method only for
simple random samples Kitamura ( 1997) has shown how to carry out empirical-
likelihood estimation with dependent data It is likely, therefore, that empirical-
likelihood recentering can be extended to GMM estimation with dependent data The
recentering method based on Equation ( 3 29) requires no modification for use with
dependent data lHall and Horowitz ( 1996)l Section 4 1 provides further discussion of
the use of the bootstrap with dependent data.

4 Extensions

This section explains how the bootstrap can be used to obtain asymptotic refinements
in certain situations where the assumptions of Section 3 are not satisfied Section 4 1
treats dependent data Section 4 2 treats kernel density and nonparametric mean-
regression estimators Section 4 3 shows how the bootstrap can be applied to certain
non-smooth estimators Section 4 4 describes how bootstrap iteration can be used to
obtain asymptotic refinements without an asymptotically pivotal statistic Section 4 5
discusses additional special problems that can arise in implementing the bootstrap.
Section 4 6 discusses the properties of bootstrap critical values for testing a hypothesis
that is false.

4.1 Dependent data

With dependent data, asymptotic refinements cannot be obtained by using independent
bootstrap samples Bootstrap sampling must be carried out in a way that suitably
captures the dependence of the data-generation process This section describes several
methods for doing this It also explains how the bootstrap can be used to obtain
asymptotic refinements in GMM estimation with dependent data At present, higher-
order asymptotic approximations and asymptotic refinements are available only when
the data-generation process is stationary and strongly geometrically mixing Except
when stated otherwise, it is assumed here that this requirement is satisfied Non-
stationary data-generation processes are discussed in Section 4 1 3.

4.1 1 Methods for bootstrap sampling with dependent data

Bootstrap sampling that captures the dependence of the data can be carried out
relatively easily if there is a parametric model, such as an ARMA model, that reduces
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the data-generation process to a transformation of independent random variables For
example, suppose that the series {X, } is generated by the stationary, invertible, finite-
order ARMA model

A(L, a)X, = B(L, P) Ut, ( 4 1)

where A and B are known functions, L is the backshift operator, a and 3 are vectors of
parameters, and {U,t} is a sequence of independently and identically distributed (i i d )
random variables Let an and P, be N l/ 2-consistent, asymptotically normal estimators
of a and fi, and let {, t} be the centered residuals of the estimated model ( 4 1) Then
a bootstrap sample {X } can be generated as

A(L, an)X,* = B(L, fn) Ut*,

where { Ut } is a random sample from the empirical distribution of the residuals { Ut }.
If the distribution of Ut is assumed to belong to a known parametric family (e g , the
normal distribution), then {U; } can be generated by independent sampling from the
estimated parametric distribution Bose ( 1988) provides a rigorous discussion of the
use of the bootstrap with autoregressions Bose ( 1990) treats moving average models.

When there is no parametric model that reduces the data-generation process
to independent sampling from some probability distribution, the bootstrap can be
implemented by dividing the data into blocks and sampling the blocks randomly with
replacement The block bootstrap is important in GMM estimation with dependent
data, because the moment conditions on which GMM estimation is based usually do
not specify the dependence structure of the GMM residuals The blocks may be non-
overlapping lCarlstein ( 1986)1 or overlapping lHall ( 1985), Kiinsch ( 1989), Politis
and Romano ( 1994)l To describe these blocking methods more precisely, let the data
consist of observations {Xj: i = 1, , n} With non-overlapping blocks of length l,
block 1 is observations {Xj: j= 1, , l}, block 2 is observations {Xl+j : j= 1, ,l},
and so forth With overlapping blocks of length , block 1 is observations {Xj:
j = l, , l}, block 2 is observations {Xj : j= 1 l, , l}, and so forth The bootstrap
sample is obtained by sampling blocks randomly with replacement and laying them
end-to-end in the order sampled It is also possible to use overlapping blocks with
lengths that are sampled randomly from the geometric distribution lPolitis and Romano
( 1994)l The block bootstrap with random block lengths is also called the stationary
bootstrap because the resulting bootstrap data series is stationary, whereas it is not
with overlapping or non-overlapping blocks of fixed (non-random) lengths.

Regardless of the blocking method that is used, the block length (or average block
length in the stationary bootstrap) must increase with increasing sample size N to
make bootstrap estimators of moments and distribution functions consistent The
asymptotically optimal block length is defined as the one that minimizes the asymptotic
mean-square error of the block bootstrap estimator The asymptotically optimal block
length and its rate of increase with increasing N depend on what is being estimated.
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Hall et al ( 1995) showed that with either overlapping or non-overlapping blocks with
non-random lengths, the asymptotically optimal block-length is 1 n r , where r= 1/3
for estimating bias or variance, r = 1/4 for estimating a one-sided distribution function
(e.g , P(T, < r)), and r= 1/5 for estimating a symmetrical distribution function (e g ,
P(I T I < T)) Hall et al ( 1995) also show that overlapping blocks provide somewhat
higher estimation efficiency than non-overlapping ones The efficiency difference is
likely to be very small in applications, however For estimating a two-sided distribution
function, for example, the root-mean-square estimation error (RMSE) with either
blocking method is O(n-6/ 5) The numerical difference between the RMSE's can be
illustrated by considering the case of a normalized sample average Let T, = ( P)/ra,
where X is the sample average of observations {Xi}, # = E(X), and a 2 = Var(X) Then
the results of Hall et al ( 1995) imply that for estimating P(I T, I< r), the reduction
in asymptotic RMSE from using overlapping blocks instead of nonoverlapping ones
is less than 10 percent.

Lahiri ( 1999) investigated the asymptotic efficiency of the stationary bootstrap He
showed that the asymptotic relative efficiency of the stationary bootstrap compared
to the block bootstrap with non-random block lengths is always less than one
and can be arbitrarily close to zero More precisely, let RMSESB and RMSENR,
respectively, denote the asymptotic RMSE's of the stationary bootstrap and the block
bootstrap with overlapping or non-overlapping blocks with non-random lengths Then
RMSENR/RMSESB < I 1 always and can be arbitrarily close to zero Thus, at least in
terms of asymptotic RMSE, the stationary bootstrap is unattractive relative to the block
bootstrap with fixed-length blocks.

Implementation of the block bootstrap in an application requires a method for
choosing the block length with a finite sample Hall et al ( 1995) describe a
subsampling method for doing this when the block lengths are non-random The
idea of the method is to use subsamples to create an empirical analog of the mean-
square error of the bootstrap estimator of the quantity of interest Let p denote this
quantity (e g , a two-sided distribution function) Let ip, be the bootstrap estimator of
ip that is obtained using a preliminary block-length estimate Let m < n Let I Pm, i(l')
(i = 1, , N m) denote the bootstrap estimates of ip that are computed using all the
n-m runs of length m in the data and block length 1 ' Let Im be the value of 1 '
that minimizes Ei l,, i(l) p,l 2 The estimator of the asymptotically optimal block
length is (n/lm)rlm, where r = 1/3 for estimating bias or variance, r = 1/4 for estimating
a one-sided distribution function, and r= 1/5 for estimating a two-sided distribution
function.

Kreiss ( 1992) and Bihlmann ( 1997) have proposed an alternative to blocking for
use when the data-generation process can be represented as an infinite-order autore-
gression In this method, called the sieve bootstrap, the infinite-order autoregression
is replaced by an approximating autoregression with a finite-order that increases at a
suitable rate as N oc The coefficients of the finite-order autoregression are estimated,
and the bootstrap is implemented by sampling the centered residuals from the estimated
finite-order model Buihlmann ( 1997) gives conditions under which this procedure
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yields consistent estimators of variances and distribution functions Biihlmann ( 1998)
shows that the sieve bootstrap provides an asymptotic refinement for estimating the
CDF of the t statistic for testing a one-sided hypothesis about the trend function in
an AR(oo) process with a deterministic trend Choi and Hall ( 2000) show that the
error in the coverage probability of a one-sided confidence interval based on the sieve
bootstrap for an AR(oo) process is O(nl+E) for any e > 0, which is only slightly larger
than the error of O(n-1) that is available when the data are a random sample.

If the data are generated by a Markov process, then the bootstrap can be implemented
by sampling the process generated by a nonparametric estimate of the Markov
transition density This approach has been investigated by Rajarshi ( 1990), Datta and
McCormick ( 1995), and Paparoditis and Politis ( 2000) Its ability to achieve asymptotic
refinements for Studentized statistics is unknown.

4.1 2 Asymptotic refinements in GMM estimation with dependent data

This section discusses the use of the block bootstrap to obtain asymptotic refinements
in GMM estimation with dependent data Lahiri ( 1992) showed that the block bootstrap
provides asymptotic refinements through O(n-'/ 2 ) for normalized sample moments and
for a Studentized sample moment with m-dependent data Hall and Horowitz ( 1996)
showed that the block bootstrap provides asymptotic refinements through O(n- l) for
symmetrical tests and confidence intervals based on GMM estimators Their methods
can also be used to show that the bootstrap provides refinements through O(n 1/2) for
one-sided tests and confidence intervals Hall and Horowitz ( 1996) do not assume that
the data-generation process is m-dependent 15

Regardless of whether overlapping or nonoverlapping blocks are used, block
bootstrap sampling does not exactly replicate the dependence structure of the original
data-generation process For example, if nonoverlapping blocks are used, bootstrap
observations that belong to the same block are deterministically related, whereas
observations that belong to different blocks are independent This dependence structure
is unlikely to be present in the original data-generation process As a result, the
finite-sample covariance matrices of the asymptotic forms of parameter estimators
obtained from the original sample and from the bootstrap sample are different The
practical consequence of this difference is that asymptotic refinements through O(n- l )

cannot be obtained by applying the "usual" formulae for test statistics to the block-
bootstrap sample It is necessary to develop special formulae for the bootstrap versions
of test statistics These formulae contain factors that correct for the differences
between the asymptotic covariances of the original-sample and bootstrap versions of

15 The regularity conditions required to achieve asymptotic refinements in GMM estimation with
dependent data include the existence of considerably more higher-order moments than are needed with
i.i d data as well as a modified version of the Cram 6 r condition that takes account of the dependence.
See Hall and Horowitz ( 1996) for a precise statement of the conditions.
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test statistics without distorting the higher-order terms of asymptotic expansions that
produce refinements.

Lahiri ( 1992) derived the bootstrap version of a Studentized sample mean for
m-dependent data Hall and Horowitz ( 1996) derived formulae for the bootstrap
versions of the GMM symmetrical, two-tailed t statistic and the statistic for testing
overidentifying restrictions As an illustration of the form of the bootstrap statistics,
consider the GMM t statistic for testing a hypothesis about a component of a
parameter O that is identified by the moment condition Eh(X 0) = O Hall and Horowitz
( 1996) showed that the corrected formula for the bootstrap version of the GMM
t statistic is

T* = (S/Sb)T,

where T 7 is the "usual" GMM t statistic applied to the bootstrap sample, S, is the
"usual" GMM standard error of the estimate of the component of O that is being
tested, and Sh is the exact standard deviation of the asymptotic form of the bootstrap
estimate of this component S, is computed from the original estimation sample, not
the bootstrap sample Hansen ( 1982) gives formulae for the usual GMM t statistic
and standard error Sb can be calculated because the process generating bootstrap
data is known exactly An analogous formula is available for the bootstrap version
of the statistic for testing overidentifying restrictions but is much more complicated
algebraically than the formula for the t statistic See Hall and Horowitz ( 1996) for
details.

At present, the block bootstrap is known to provide asymptotic refinements for
symmetrical tests and confidence intervals based on GMM estimators only if the
residuals {h(Xi, 00): i = 1,2, } at the true parameter point, 00, are uncorrelated after
finitely many lags That is,

Elh(X, Oo)h(Xj, Oo)'l = O if li-j > M ( 4 2)

for some M < oc 16 This restriction is not equivalent to m-dependence because it does
not preclude correlations among higher powers of components of h that persist at
arbitrarily large lags (e g , stochastic volatility) Although the restriction is satisfied
in many econometric applications lsee, e g , Hansen ( 1982), Hansen and Singleton
( 1982)l, there are others in which relaxing it would be useful The main problem in
doing so is that without Equation ( 4 2), it is necessary to use a kernel-type estimator
of the GMM covariance matrix lsee, e g , Newey and West ( 1987, 1994), Andrews
( 1991), Andrews and Monahan ( 1992)l Kernel-type estimators are not functions of
sample moments and converge at rates that are slower than n- 1/ 2 However, present

16 Tests and confidence regions based on asymptotic chi-square statistics, including the test of
overidentifying restrictions, are symmetrical Therefore, restriction ( 4 2) also applies to them.
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results on the existence of asymptotic expansions that achieve O(n-l) accuracy with
dependent data apply only to functions of sample moments that have n- 1/ 2 rates of
convergence lGotze and Hipp ( 1983, 1994)l It will be necessary to extend existing
theory of asymptotic expansions with dependent data before Equation ( 4 2) can be
relaxed for symmetrical tests and confidence intervals.

Condition ( 4 2) is not needed for one-sided tests and confidence intervals, where
the bootstrap provides only O(n- '/ 2 ) refinements G 6 tze and Kiinsch ( 1996) and Lahiri
( 1996) give conditions under which the moving-block-bootstrap approximation to the
distribution of a statistic that is Studentized with a kernel-type variance estimator is
accurate through Op(n-1/2 ) When the conditions are satisfied,

sup IP(T, < r)-P*(T,* < T) = op(n/1 2), ( 4 3)
T

where T* is the bootstrap analog of the Studentized statistic T,, and the moving block
bootstrap is used to generate bootstrap samples In G 6 tze and Kiinsch ( 1996), T is
the Studentized form of a smooth function of sample moments In Lahiri ( 1996), Tn
is a Studentized statistic for testing a hypothesis about a slope coefficient in a linear
mean-regression model Achieving the result ( 4 3) requires, among other things, use
of a suitable kernel or weight function in the variance estimator G 6 tze and Kiinsch
( 1996) show that Equation ( 4 3) holds with a rectangular or quadratic kernel but not
with a triangular one.

4.1 3 The bootstrap with non-stationary processes

The foregoing results assume that the data-generation process is stationary Most
research to date on using the bootstrap with non-stationary data has been concerned
with establishing consistency of bootstrap estimators of distribution functions, not
with obtaining asymptotic refinements An exception is Lahiri ( 1992), who gives
conditions under which the bootstrap estimator of the distribution of the normalized
sample average of non-stationary data differs from the true distribution by o(n- 1/ 2 )
almost surely Thus, under Lahiri's conditions, the bootstrap is more accurate than
first-order asymptotic approximations Lahiri's result requires a priori knowledge of
the covariance function of the data and does not apply to Studentized sample averages.
Moreover Lahiri assumes the existence of the covariance function, so his result does
not apply to unit-root processes.

The consistency of the bootstrap estimator of the distribution of the slope coefficient
or Studentized slope coefficient in a simple unit-root model has been investigated by
Basawa et al ( 1991 a,b), Datta ( 1996), and Ferretti and Romo ( 1996) The model is

Xi = Xi + Ui; i = 1,2, , n, ( 4 4)

where Xo=O and {Ui} is an i i d sequence with E(Uj) = O and E(U,2) = a 2 < oc.
Let b, denote the ordinary least-squares estimator of fi in Equation ( 4 4):

n I Xi Xi_

bn = 2 ( 45)
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Let fi O denote the true but unknown value of fl Consider using the bootstrap to estimate
the sampling distribution of(b, -/5 o) or the t statistic for testing Ho: = o It turns out
that when O o = 1 is possible, the consistency of the bootstrap estimator is much more
sensitive to how the bootstrap sample is drawn than when it is known that I ol < 1.

Basawa et al ( 1991 a) investigate the consistency of a bootstrap estimator of the
distribution of the t statistic in the special case that U~N(O,1) In this case, the
t statistic is

tn= (X 2 1 ( ( bn -fi) ( 4 6)

In Basawa et al ( 1991 a), the bootstrap sample {X*: i= 1, ,n is generated
recursively from the estimated model

X* = bn X* + Ui*, ( 4 7)

where X* = O and { U? } is an independent random sample from the N(O, 1) distribution.
The bootstrap version of the t statistic is

t* = (E~x* )2) (b* n),

where b is obtained by replacing Xi with X* in Equation ( 4 5) Basawa et al.
( 1991 a) show that the bootstrap distribution function P*(t* < r) does not consistently
estimate the population distribution function P,(t < r) This result is not surprising.
The asymptotic distribution of t is discontinuous at o O = 1 Therefore, condition (iii) of
Theorem 2 1 is not satisfied if the set of data-generation processes under consideration
includes ones with and without o = 1.

This problem can be overcome by specifying that N 5 o= 1, thereby removing the
source of the discontinuity Basawa et al ( 1991 b) investigate the consistency of the
bootstrap estimator of the distribution of the statistic Z = n(bn 1) for testing the unit-
root hypothesis Ho: o = 1 in Equation ( 4 4) The bootstrap sample is generated by the
recursion

Xi* = Xi* + Ui*, ( 4 8)

where X*=O and {U*} is a random sample from the centered residuals of
Equation ( 4 4) under Ho The centered residuals are Ui = X -Xil U, where
U = N lin= l (Xi X ) The bootstrap analog of Zn is Z = n(b 1), where b is
obtained by replacing Xi with X* in Equation ( 4 5) Basawa et al ( 199 lb) show that
if Ho is true, then lPn*(Zn* < )-Pn(Zn <z)l =op(l) uniformly over z.

The discontinuity problem can be overcome without the restriction o = by
using bootstrap samples consisting of m<n observations lDatta ( 1996)l This
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approach has the advantage of yielding a confidence interval for Po that is valid
for any fo e (-oo, oc) Consider model ( 4 4) with the additional assumption that
El Ui 12 + < oo for some > O Let b be the ordinary least-squares estimator of /3,
and define t, as in Equation ( 4 6) Let U, = Xi b Xil N l= 1 (Xi b Xi l)
(i=l, , n) denote the centered residuals from the estimated model, and let {U*:
i= 1, , m} be a random sample of { i} for some m <n The bootstrap sample is
generated by the recursion ( 4 7) but with i = 1, , m instead of i = 1, , n Let b*
denote the ordinary least-squares estimator of /3 that is obtained from the bootstrap
sample Define the bootstrap version of t, by

t = ( X 1)2) (b 1 * -bn).

Datta ( 1996) proves that if lm(log logn)2l/n O as N +o, then P,*(t, < T)-

P,(tn, < ) =o(l) almost surely as N oo uniformly over z for any f 3 o e (-oo, o 0).
Ferretti and Romo ( 1996) consider a test of Ho: /o = 1 in Equation ( 4 4) Let b, be

the ordinary least-squares estimator of /3, and let

n

an 2 = 1 (Xi b Xi_ 1)2 ( 4 9)
i=l

The test statistic is

n= i 2 (bn 1) ( 4 10)

The bootstrap sample is generated from the centered residuals of the estimated model
by using the recursion ( 4 8) Let b* denote the ordinary least-squares estimator of /3
that is obtained from the bootstrap sample The bootstrap version of the test statistic,
t*, is obtained by replacing Xi and b, with X* and b* in Equations ( 4 9) and ( 4 10).
Ferretti and Romo ( 1996) show that P*(n* < r) P,(, < )l = o(l), almost surely
as N o Ferretti and Romo ( 1996) also show how this result can be extended to the
case in which {Ui} in Equation ( 4 4) follows an AR( 1) process.

The results of Monte Carlo experiments lLi and Maddala ( 1996, 1997)l suggest
that the differences between the true and nominal RP's of tests of hypotheses about
integrated or cointegrated data-generation processes are smaller with bootstrap-based
critical values than with asymptotic ones At present, however, there are no theoretical
results on the ability of the bootstrap to provide asymptotic refinements for tests or
confidence intervals when the data are integrated or cointegrated.

4.2 Kernel density and regression estimators

This section describes the use of the bootstrap to carry out inference about kernel
nonparametric density and mean-regression estimators These are not smooth functions
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of sample moments, even approximately, so the results of Section 3 do not apply
to them In particular, kernel density and mean-regression estimators converge
more slowly than n-

1
/2 , and their distributions have unconventional asymptotic

expansions that are not in powers of n-1/ 2 Consequently, the sizes of the asymptotic
refinements provided by the bootstrap are also not powers of n- 1/2 Sections 4 2 1-
4.2 3 discuss bootstrap methods for nonparametric density estimation Nonparametric
mean regression is discussed in Section 4 2 4.

4.2 1 Nonparametric density estimation

Letf denote the probability density function (with respect to Lebesgue measure) of
the scalar random variable X The problem addressed in this section is inferring f
from a random sample of X, {Xi: i = 1 , n}, without assuming that f belongs to
a known, finite-dimensional family of functions Point estimation off can be carried
out by the kernel method The kernel estimator off(x) is

f( x)= h K x-Xi K ) 

where K is a kernel function with properties that are discussed below and {hn:
n = 1,2, } is a strictly positive sequence of bandwidths.

The properties of kernel density estimators are described by Silverman ( 1986),
among others To state the properties that are relevant here, let r > 2 be an even integer.
Assume thatf has r bounded, continuous derivatives in a neighborhood of x Let K be
a bounded function that is symmetrical about O and has support l-1, 1 l 17 In addition,
let K satisfy

1 if j=
u JK(u)du Oif 1 j r 1 ( 4 11)

AK O ifj = r.

Define

BK = K(u)2 du.

Also define bn(x)=El f(x)-f(x)l and o(x)= Varlf,(x)l Then

AK (r) b,(x) = hn -Kf()(x) + o(hn)

17 The results stated in this section do not require assuming that r is even or that K is a symmetrical
function, but these assumptions simplify the exposition and are not highly restrictive in applications.
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and

BK
n 2 (x) = f (x)+ ol(nh-)l ( 4 12)

nh

Moreover, if nh 2 r+l is bounded as N oc, then

Z(X) f(x) -f( (x) ) fn(x)-Elfn(x)l A 4 N( 0, 1) ( 4 13)
a.(x) an(x)

The fastest possible rate of convergence of fn(x) to f(x) is achieved by setting
hn ccn - l/( 2 r + 1) When this happens, fn(x) -f(x) = Opln-r/( 2 r + )l, bn(x) oc nr/( 2 r+ I), and
an(x) oc N r/( 2 r+ 1)

A Studentized statistic that is asymptotically pivotal and can be used to test a
hypothesis about f(x) or form a confidence interval for f(x) can be obtained from
Equation ( 4 13) if suitable estimators of o,2 (x) and b,(x) are available The need for
estimating an asymptotic variance is familiar An estimator of 02 (x) can be formed
by replacingf(x) withfn(x) on the right-hand side of Equation ( 4 12) However, the
asymptotic expansions required to obtain asymptotic refinements are simpler if a 2 (x)
is estimated by a sample analog of the exact, finite-sample variance Offn(x) instead of a
sample analog of Equation ( 4 12), which is the variance of the asymptotic distribution
offn(x) A sample analog of the exact finite-sample variance off,(x) is given by

s(x) n-)2 K(x hi) _ 

If h O O and nhn sc as N co, then (nhn)lsn(x) a 2 (x)l = Op(l) as N oo Define
the Studentized form of Zn by

fn(x) Elfn(x)l ( 4 14)

Sn(X)

Then t, is the asymptotic t statistic for testing a hypothesis about Elfn(x)l or
forming a confidence interval for Elf,(x)l The asymptotic distribution of t is
N( 0, 1) However, unless the asymptotic bias bn(x) is negligibly small, tn cannot
be used to test a hypothesis about f(x) or form a confidence interval for f(x).
Because a)nl(x) =Ol(nhn)1/ 2l and sl(x) =Opl(nhn)l/2l, bn(x) is negligibly small only
if (nhn)l/2 bn(x) = o(l) as N Co The problem of asymptotic bias cannot be solved by
replacing Elfn(x)l with f(x) on the right-hand side of Equation ( 4 14) because the
asymptotic distribution of the resulting version of t is not centered at O unless bn(x)
is negligibly small Section 4 2 2 discusses ways to deal with asymptotic bias.

4.2 2 Asymptotic bias and methods for controlling it

Asymptotic bias is a characteristic of nonparametric estimators that is not shared by
estimators that are smooth functions of sample moments As has just been explained,
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asymptotic bias may prevent t, from being suitable for testing a hypothesis about
f(x) or constructing a confidence interval forf(x) Asymptotic bias also affects the
performance of the bootstrap To see why, let {X*: i = 1, , n} be a bootstrap sample
that is obtained by sampling the data {(Xi randomly with replacement Then the
bootstrap estimator off is

fn* W (x K ( * h i)( 4 15)

The bootstrap analog of S 2 (x) is

s NX() h )2 K ( I

Define the bootstrap analog of t by

t* fn (x) n(x)
s* (x)

It is clear from Equation ( 4 15) that E*lf,(x)-f(x)l= O Thus, f,*(x) an unbiased
estimator offn(x) in a finite sample as well as asymptotically, whereas fn(x) is an
asymptotically biased estimator off(x) It can be shown that the bootstrap distribution
of t converges in probability to N(O, 1) Therefore, despite the unbiasedness off,*(x),
t* is a bootstrap t statistic for testing a hypothesis about Elfn(x)l or forming a
confidence interval for Elfn(x)l It is not a bootstrap t statistic for testing a hypothesis
aboutf(x) or forming a confidence interval forf(x) unless bn(x) is negligibly small.

There are two ways to overcome the difficulties posed by asymptotic bias so
that t and t* become statistics for testing hypotheses about f(x) and forming
confidence intervals for f(x) instead of Ef(x)l One is the method of explicit
bias removal It consists of forming an estimator of bn(x), say bn(x), that can be
subtracted fromf (x) to form the asymptotically unbiased estimatorfn(x) b(x) The
other method is undersmoothing This consists of setting h, oc n-" with K > 1/( 2 r + 1).
With undersmoothing, (nhn)1 2b,(x)= o( 1) as N oo, so that b,(x) is asymptotically
negligible Neither method is compatible with achieving the fastest rate of convergence
of a point-estimator off(x) With undersmoothing, the rate of convergence offn(x) is
that of an(x) This is n- ( -)/2, which is slower than n- r

/( 
2 r + 1) Explicit bias removal

with h oc N l/( 2 r+ 1) and rate of convergence n-
r/( 

2 r + 1) for fn(x) requires f(x) to have
more than r derivatives Whenf (x) has the required number of derivatives, the fastest
possible rate of convergence offn(x) is n

- /( 
2
s

+ ) for some S > r This rate is achieved
with h oc N /( 2

s+ 1), but the resulting estimator off(x) is asymptotically biased Thus,
regardless of the method that is used to remove asymptotic bias, testing a hypothesis
aboutf(x) or forming a confidence interval requires using a bandwidth sequence that
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converges more rapidly than the one that maximizes the rate of convergence of a
point estimator off(x) Nonparametric point estimation and nonparametric interval
estimation or testing of hypotheses are different tasks that require different degrees of
smoothing.

Hall ( 1992 b) compares the errors in the coverage probabilities of bootstrap
confidence intervals with undersmoothing and explicit bias removal He shows that
when the number of derivatives off(x) is held constant, undersmoothing achieves a
smaller error in coverage probability than does explicit bias removal This conclusion
also applies to the rejection probabilities of hypothesis tests; the difference between
true and nominal rejection probabilities can be made smaller with undersmoothing than
with explicit bias removal Thus, undersmoothing is the better method for handling
asymptotic bias when the aim is to minimize differences between true and nominal
rejection and coverage probabilities of bootstrap-based hypothesis tests and confidence
intervals Accordingly, undersmoothing is used for bias removal in the remainder of
this section.

4.2 3 Asymptotic refinements

The argument showing that the bootstrap provides asymptotic refinements for tests of
hypotheses and confidence intervals in nonparametric density estimation is similar to
that made in Section 3 for the smooth function model The main step is proving that
the distributions of t, and t have Edgeworth expansions that are identical up to a
sufficiently small remainder The result is stated in Theorem 4 1, which is proved in
Hall ( 1992 a, pp 268-282).

Theorem 4 1 Assume thatf has r bounded, continuous derivatives in a neighborhood
of x Let h,-*O and (nh,)/(log n)-*oc as N -4 oo Let K be a boundedfunction that is
symmetrical about 0, has support l-1, 1 l, and satisfies Equation ( 4 1 ) for some r 2.
Also, assume that there is a partition ofl-1, 1 l, u O = < ul < < um = 1 such
that K' exists, is bounded, and is either strictly positive or strictly negative on each
interval (uj, ujy+) Then there are even functions ql and q 3 and an odd function q 2
such that

P(tn < T)=((r)+ I(nh)qr) + N q 2 ( r)+ ( q 3 (T)+Ol(nhn)-3/2 +n- 1l

( 4.16)
uniformly over T Moreover there are even functions q and qn 3 and an odd
function q 2 such that qj(T) q(r)->O as n oc uniformly over almost surely
(j = 1, , 3), and

p 1 )h N 2 ( ) P*(t* < r) = P(r)+ (nhqn 2 fl(r)+ h q ,2 (r)+ q 3 (r)+Ol(nhn)3 2 +n-1l

uniformly over r almost surely.
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Hall ( 1992 a, pp 211-216) gives explicit expressions for the functions qj and qnj .
To see the implications of Theorem 4 1, consider a symmetrical test of a hypothesis

about f(x) The results that will be obtained for this test also apply to symmetrical
confidence intervals Let the hypothesis be Ho:f(x) =fo A symmetrical test rejects Ho
if Ifn(x) -fo I is large Suppose that nh '+l as N oo This rate of convergence of
h, insures that the asymptotic bias offn(x) has a negligibly small effect on the error
made by the higher-order approximation to the distribution of t, that is used to obtain
asymptotic refinements 18 It also makes the effects of asymptotic bias sufficiently small
that t, can be used to test Ho Rejecting Ho if Ifn(x)-fo is large is then equivalent
to rejecting Ho if Itn l is large, thereby yielding a symmetrical t test of Ho.

Now suppose that the critical value of the symmetrical t test is obtained from
the asymptotic distribution of t,, which is N( 0, 1) The asymptotic a-level critical
value of the symmetrical t test is Za/2, the 1 a/2 quantile of the standard normal
distribution Theorem 4 1 shows that P(Itl >za/2)=a+Ol(nh,)-ll In other words,
when the asymptotic critical value is used, the difference between the true and nominal
rejection probabilities of the symmetrical t test is Ol(nh,)- ll.

Now consider the symmetrical t test with a bootstrap critical value The bootstrap
a-level critical value, z*a 2, satisfies P*(I t* I z* a/2 )= a By Theorem 4 1,

P*(Itn* > r)-P(Itn I > T) = ol(nh,)- 'l ( 4 17)

almost surely uniformly over It can also be shown that P(tn I >z, /2) =a+
ol(nhn) l Thus, with the bootstrap critical value, the difference between the true and
nominal rejection probabilities of the symmetrical t test is ol(nh,)-ll The bootstrap
reduces the difference between the true and nominal rejection probabilities because
it accounts for the effects of the Ol(nh,)-'l term of the Edgeworth expansion of the
distribution of t First-order asymptotic approximations ignore this term Thus, the
bootstrap provides asymptotic refinements for hypothesis tests and confidence intervals
based on a kernel nonparametric density estimator provided that the bandwidth h,
converges sufficiently rapidly to make the asymptotic bias of the density estimator
negligibly small.

The conclusion that first-order asymptotic approximations make an error of size
Ol(nh,)' l assumes that nhr+ _ O O If this condition is not satisfied, the error made
by first-order approximations is dominated by the effect of asymptotic bias and is larger
than Ol(nh,)' l This result is derived at the end of this section.

The bootstrap can also be used to obtain asymptotic refinements for one-sided and
equal-tailed tests and confidence intervals For one-sided tests and confidence intervals

18 The asymptotic bias contributes a term of size l(nh,)/2 bn(x)l 2 = O(nhn, l) to the Edgeworth expansion
of the distribution of Itnl Because t* is unbiased, this term is not present in the expansion of the
distribution of I t* Therefore, the expansions of the distributions of tn I and I t* l agree through Ol(nhn ) l

only if nh r+ O O as N -* co.
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with bootstrap critical values, the differences between the true and nominal rejection
and coverage probabilities are Ol(nhn) + (nhn)l/2 hrl These are minimized by setting
hn Oc N 3 /( 2r+ 3), in which case the errors are Oln 2 r/( 2r+ 3)l For equal-tailed tests and
confidence intervals with bootstrap critical values, the differences between the true and
nominal rejection probabilities and coverage probabilities are Ol(nhn)- ' + nhnr + hnl.
These are minimized by setting hn cx n-l/(r + 1), in which case the errors are Oln-r/(r+ )l.
In contrast, the error made by first-order asymptotic approximations is Ol(nhn)-/ 2l in
both the one-sided and equal-tailed cases Hall ( 1992 a, pp 220-224) provides details
and a discussion of certain exceptional cases in which smaller errors can be achieved.
In contrast to the situation with the smooth function model, the orders of refinement
achievable in nonparametric density estimation are different for one-sided and equal-
tailed tests and confidence intervals.

4.2 3 1 The error made by first-order asymptotics when nh r+
1 does not converge to 0.

The effects of having h, O too slowly are most easily seen by assuming that on(x)
is known so that tn is replaced by

fn(x) -f(x) bn(x)z =
an(x)

A symmetrical test of Ho rejects if If,(x)-fol/an(x) is large If Ho is true, then

p (n(X)fo < A ) =P ( bn(X)j

for any ~, and

lfn(X) -fo I l=p lZ < bn()l _p Zn < (x)l ( 4 18)
l Un(X) o = n(X) a, (x)J

Each term on the right-hand side of Equation ( 4 18) has an asymptotic expansion of
the form ( 4 16) except without the q 3 term and the O(n-1) remainder term, which arise
from random sampling error in S 2 (X) Specifically,

o I n(X) f I o(x)J I n(x)l

+ (nh)1 /2 l n(x)l l n(X) }(n{ 2 lJn(x)l } + W Qn W

n(X) (x)}+ P 2 5 ,(xa,(n(X)o J }X + l(nh)-/2 l
( 4.19)
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where p I is an even function and P 2 is an odd function Hall ( 1992 a, p 212) provides
a proof and the details of p and P 2 A Taylor series expansion of the right-hand side
of Equation ( 4 19) combined with bn(x)= O(hr) and U,(x)= Ol(nhn) 1 /2 l yields

Pl n(x fo = P( ) ) (( + +Olhr+ (nh)h 2 r +(nh)-l 1 ( 4 20)

The remainder term on the right-hand side of Equation ( 4 20) is dominated by h,
which is the effect of asymptotic bias, unless nhr + O Thus, the error made by
first-order asymptotic approximations exceeds Ol(nhn) - 'l unless fn(x) is sufficiently
undersmoothed to make the asymptotic bias bn(x) negligible, which is equivalent to
requiring nh +L O as N -* oo.

4.2 4 Kernel nonparametric mean regression

In nonparametric mean-regression, the aim is to infer the mean of a random variable Y
conditional on a covariate X without assuming that the conditional mean function
belongs to a known finite-dimensional family of functions Define G(x)= E(YIX =x) to
be the conditional mean function Let X be a scalar random variable whose distribution
has a probability density function f This section explains how the bootstrap can
be used to obtain asymptotic refinements for tests of hypotheses about G(x) and
confidence intervals that are based on kernel estimation of G.

Let the data consist of a random sample, {Yi,Xi: i= 1, ,n}, of the joint
distribution of (YX) The kernel nonparametric estimator of G(x) is

n
G,(x) h () E Yi K(x h X)

nhf~(x)

where

A (x OK (x-X)

K is a kernel function and h J} a sequence of bandwidths The properties of Gn(x)
are discussed by Hirdle ( 1990) To state the ones that are relevant here, let r > 2 be
an even integer Assume that G andf each have r bounded, continuous derivatives in
a neighborhood of x Let K be a bounded function that is symmetrical about 0, has
support l-1, 1 l, and satisfies Equation ( 4 11) Define BK and AK as in Section 4 2 1.
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Set V(z)=Var(YlX=z), and assume that this quantity is finite and continuous in a
neighborhood of z =x Also define

bn(x) = K (n O
b"(x) = An E>( ) {< 9 lG(x)(x)l(r)(x)}

and

o 2 g(x ) BK V(x) ( 4 21)
nhn f(x)'

If nhr+ 1 is bounded as N oc, then

Z(x) G,(x) G(x) bn(x) N( 0, 1).
on(x)

The fastest possible rate of convergence of Gn(x) to G(x) is achieved by setting
hn o n- l/( 2 r+ 1) When this happens, G(x) G(x)= Oplnr/( 2r+ 1)l, bn(x) oc n- r/( 2r + 1)
and on(x) oc N r/( 2 r+)

The issues involved in converting Zn into an asymptotically pivotal statistic that
can be used to test a hypothesis about G(x) or form a confidence interval for G(x)
are the same as in kernel density estimation It is necessary to replace an(x) with
a suitable estimator and to remove the asymptotic bias b(x) As in kernel density
estimation, asymptotic bias can be removed to sufficient order by undersmoothing.
Undersmoothing for a symmetrical test or confidence interval consists of choosing hn
so that nh + O as N o 19.

Now consider estimation of a,2 (x) One possibility is to replace f(x) withfn(x) and
V(x) with a consistent estimator on the right-hand side of Equation ( 4 21) The higher-
order asymptotics of Gn(x) are simpler, however, if a,2 (x) is estimated by a sample
analog of the exact finite-sample variance of the asymptotic form of Gn(x) G(x) With
asymptotic bias removed by undersmoothing, the asymptotic form of Gn(x) G(x) is

Gn(x)-G(x) = nh( ) oi-G(x)lK + (l) ( 4 22)

The variance of the first term on the right-hand side of Equation ( 4 22) is then estimated
by the following sample analog, which will be used here to estimate an 2 (x)20:

Sn(X) lnhnf (x)l 2 lYI Gn(x)l 2K h )

19 It is also possible to carry out explicit bias removal in kernel mean-regression Hardle et al ( 1995)
compare the methods of explicit bias removal and undersmoothing for a one-sided confidence interval.
They show that for a one-sided interval, there are versions of the bootstrap and explicit bias removal
that give better coverage accuracy than the bootstrap with undersmoothing.
20 Hall ( 1992 a, p 226) proposes an estimator of o 2 (x) that is nl/2-consistent when Y is homoskedastic
(that is, Var(YX =x) is independent of x) The estimator used here is consistent (but not N 1/2-consistent)
when Y has heteroskedasticity of unknown form.
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Now define

Gn(x) G(x)

Sn(X)

With asymptotic bias removed through undersmoothing, tn is asymptotically dis-
tributed as N(O, 1) and is an asymptotically pivotal statistic that can be used to test
a hypothesis about G(x) and to form a confidence interval for G(x) The bootstrap
version of t, is

G(x) G ( (x)
S*(x) '

where G*(x) is obtained from G(x) by replacing the sample {Yi,Xi} with the
bootstrap sample { Y*,X* }, and S (x) is obtained from s,(x) by replacing the sample
with the bootstrap sample, fn(x) withf,*(x), and Gn(x) with G,*(x) 21.

The Edgeworth expansions of the distributions of tn and t are similar in structure to
those of the analogous statistic for kernel density estimators The result for symmetrical
tests and confidence intervals can be stated as follows Let E(Y 4 X = z) be finite
and continuous for all z in a neighborhood of x Let K satisfy the conditions of
Theorem 4 1 Then there are functions q and qn such that qn q =o( 1) uniformly and
almost surely as N oo,

P(ltn I < ) = 2 (r) 1 I-q(T)+ ol(nhn) 1 l ( 4 23)

uniformly over , and

P*(lt,*l < T) = 24 (r)-1 + h qn(T)+l(nh ) 'lnh,

uniformly over T almost surely It follows that the bootstrap estimator of the
distribution of Itl is accurate through Ol(nh,)-ll, whereas first-order asymptotic
approximations make an error of this size Let z a/2 be the bootstrap a-level critical
value for testing the hypothesis Ho: G(x)= Go Then P*(Itn*l >* a/2)= a, and it can
be shown that P(It, >Zn*a/,2)=a+ol(nhn)-ll Hall ( 1992 a, Section 4 5) discusses the
mathematical details Thus, with the bootstrap critical value, the true and nominal
rejection probabilities of a symmetrical t test of Ho differ by ol(nh,)- 'l In contrast, it
follows from Equation ( 4 23) that the difference is Ol(nh,)- l l if first-order asymptotic

21 The discussion here assumes that the bootstrap sample is obtained by randomly sampling the empirical
distribution of (YX) If V(z) is a constant (that is, the model is homoskedastic), then bootstrap sampling
can also be carried out by sampling centered regression residuals conditional on the observed values of
X See Hall ( 1992 a, Section 4 5).
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approximations are used to obtain the critical value The same conclusions hold for
the coverage probabilities of symmetrical confidence intervals for G(x).

4.3 Non-smooth estimators

Some estimators are obtained by maximizing or minimizing a function that is
discontinuous or whose first derivative is discontinuous Two important examples are
Manski's ( 1975, 1985) maximum-score (MS) estimator of the slope coefficients of
a binary-response model and the least-absolute-deviations (LAD) estimator of the
slope coefficients of a linear median-regression model The objective function of the
MS estimator and the first derivative of the objective function of the LAD estimator
are step functions and, therefore, discontinuous The LAD and MS estimators cannot
be approximated by smooth functions of sample moments, so they do not satisfy the
assumptions of the smooth function model Moreover, the Taylor-series methods of
asymptotic distribution theory do not apply to the LAD and MS estimators, which
greatly complicates the analysis of their asymptotic distributional properties As a
consequence, little is known about the ability of the bootstrap to provide asymptotic
refinements for hypothesis tests and confidence intervals based on these estimators.
Indeed it is not known whether the bootstrap even provides a consistent approximation
to the asymptotic distribution of the MS estimator.

This section explains how the LAD and MS estimators can be smoothed in a
way that greatly simplifies the analysis of their asymptotic distributional properties.
The bootstrap provides asymptotic refinements for hypothesis tests and confidence
intervals based on the smoothed LAD and MS estimators In addition, smoothing
accelerates the rate of convergence of the MS estimator and simplifies even its first-
order asymptotic distribution Smoothing does not change the rate of convergence or
first-order asymptotic distribution of the LAD estimator The LAD estimator is treated
in Section 4 3 1, and the MS estimator is treated in Section 4 3 2

4.3 1 The LAD estimator for a linear median-regression model

A linear median-regression model has the form

Y = Xf + U, ( 4 24)

where Y is an observed scalar, X is an observed xq vector, /3 is a qx vector of
constants, and U is an unobserved random variable that satisfies median(UIX =x)= O
almost surely Let {Yi,Xi: i = 1 , n} be a random sample from the joint distribution
of (YX) in Equation ( 4 24) The LAD estimator of/3, b , solves

minimize H,(b) IY -Xbl

b N ( 4 25)

(Y, -Xb)l 2 I(Y, -Xb > O) 1 l,
n

i i
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where B is the parameter set and I( ) is the indicator function Bassett and Koenker
( 1978) and Koenker and Bassett ( 1978) give conditions under which the LAD estimator
is nl/2-consistent and nl/2 (b, -f ) is asymptotically normal.

/,n(b) has cusps and, therefore, a discontinuous first derivative, at points b such
that Yi =Xib for some i This non-smoothness causes the Edgeworth expansion of the
LAD estimator to be non-standard and very complicated lDe Angelis et al ( 1993)l.
The bootstrap is known to estimate the distribution of nl/2 (bn P) consistently lDe
Angelis et al ( 1993), Hahn ( 1995)l, but it is not known whether the bootstrap provides
asymptotic refinements for hypothesis tests and confidence intervals based on b 22

Horowitz ( 1998 b) suggests removing the cusps in f I by replacing the indicator
function with a smooth function, thereby producing a modified objective function
whose derivatives are continuous The resulting smoothed LAD (SLAD) estimator
is first-order asymptotically equivalent to the unsmoothed LAD estimator but has
much simpler higher-order asymptotics Specifically, let K be a bounded, differentiable
function satisfying K(v) = O if v < -1 and K(v) = 1 if v ) 1 Let {h, } be a sequence of
bandwidths that converges to O as N o The SLAD estimator solves

minimize H,(b) (Y-Xb) 2 K 1 l ( 4 26)
b EB n B

K is analogous to the integral of a kernel function for nonparametric density estimation.
K is not a kernel function itself.

Let b, be a solution to Equation ( 4 26) Horowitz ( 1998 b) gives conditions under
which n/ 2(bn bn) = op(l) Thus, the smoothed and unsmoothed LAD estimators
are first-order asymptotically equivalent It follows from this asymptotic equivalence
and the asymptotic normality of LAD estimators that N /2 (bn 3) -d N(O, V), where
V = D-'E(X'X)D-', D = 2 ElX'Xf(O x)l, and f( x) is the probability density function
of U conditional on X =x.

A t statistic for testing a hypothesis about a component of i or forming a confidence
interval can be constructed from consistent estimators of D and E(Xt X) D can be
estimated consistently by D,(b,), where

D,(b)= ,EXXK' Yi-Xbhi) ( 4 27)

E(X'X) can be estimated consistently by the sample average of X'X However, the
asymptotic expansion of the distribution of the t statistic is simpler if E(X'X) is

22 Janas ( 1993) shows that a smoothed version of the bootstrap provides asymptotic refinements for a
symmetrical t test of a hypothesis about a population median (no covariates).
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estimated by the sample analog of the exact finite-sample variance of OH,(b)/Ob at
b=fi This estimator is T(bn), where

an -X) h (Yi Xtt Y O, X 2.
T ,(b) X'X { 2 K ( h ) + hn K' he

( 4.28)
It is not difficult to show that V is estimated consistently by V =D,(b )-l T,(bn)
D,(bn)- l Now let bj and fij, respectively, be the jth components of b and i
(j=l, ,q) Let V be the (j,j) component of V The t statistic for testing
Ho: fij=ijo is t=n 1/2 (bj-3 fijo)1/V 2 If Ho is true, then tn N(O,1), so t is
asymptotically pivotal.

To obtain a bootstrap version of t,, let {Y*,X*: i = 1, , n} be a bootstrap sample
that is obtained by sampling the data {Yi,Xi} randomly with replacement Let b be
the estimator of fi that is obtained by solving Equation ( 4 26) with Y ,X* } in place
of {Yi,Xi} Let V*j be the version of Vj that is obtained by replacing bn and {Yi,Xi},
respectively, with b*, and {Y*,X *} in Equations ( 4 27) and ( 4 28) Then the bootstrap
analog of tn is t* = N 1/ 2 (b* bnj)l(V) 1/ 2 .

By using methods similar to those used with kernel density and mean-regression
estimators, it can be shown that under regularity conditions, tn and t have Edgeworth
expansions that are identical almost surely through Ol(nh,)-ll Horowitz ( 1998 b)
gives the details of the argument In addition, reasoning similar to that used in
Section 4 2 3 shows that the bootstrap provides asymptotic refinements for hypothesis
tests and confidence intervals based on the SLAD estimator For example, consider a
symmetrical t test of Ho Let z* a/2 be the bootstrap a-level critical value for this test.

That is, Z* a/2 satisfies P*(It*l >Zn, a 2)=a Then P(Itnl >z*,a/2)=a+ol(nhn)-ll In
contrast, first-order asymptotic approximations make an error of size Ol(nhn) 'l This
is because first-order approximations ignore a term in the Edgeworth expansion of the
distribution of tn, I whose size is Ol(nhn)- ll, whereas the bootstrap captures the effects
of this term.

The conditions under which this result holds include: ( 1) for almost every x and
every u in a neighborhood of 0, f(u Ix) is r 1 times continuously differentiable
with respect to u; ( 2) K satisfies Equation ( 4 11) and has four bounded, Lipschitz
continuous derivatives everywhere; and ( 3) hnocn - r , where 2/( 2 r + 1) < < 1/3.
Complete regularity conditions are given in Horowitz ( 1998 b) Condition ( 3) implies
that r ) 4 Therefore, the size of the refinement obtained by the bootstrap is O(n-C),
where < c < 1.

The bootstrap also provides asymptotic refinements for one-sided tests and con-
fidence intervals and for asymptotic chi-square tests of hypotheses about several
components of f In addition, it is possible to construct a smoothed version of
Powell's ( 1984, 1986) censored LAD estimator and to show that the bootstrap provides
asymptotic refinements for tests and confidence intervals based on the smoothed
censored LAD estimator Horowitz ( 1998 b) provides details, a method for choosing hn
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in applications, and Monte Carlo evidence on the numerical performance of the t test
with bootstrap critical values.

4.3 2 The maximum score estimator for a binary-response model

The most frequently used binary-response model has the form Y = I(Xfl + U > 0),
where X is an observed random vector, f 3 is a conformable vector of constants, and U
is an unobserved random variable The parameter vector fi is identified only up to scale,
so a scale normalization is needed Here, scale normalization will be accomplished by
assuming that Jl, I = 1, where fil is the first component of if Let f 3 and b denote the
vectors consisting of all components of 3 and b except the first The maximum-score
estimator of fl, b, (bl, b)', solves

n

maximize Rh,(b) = ( 2 Y 1)I(Xb 0), ( 4 29)
bs B N i= 1

where {Yi,Xi: i = 1 n} is a random sample from the joint distribution of (YX),
and B is a compact parameter set in which the scale normalization holds.

Manski ( 1975, 1985) shows that if median(UIX=x)=O almost surely, the first
component of X is continuously distributed with a non-zero coefficient, and certain
other conditions are satisfied, then (b, b)' t almost surely Because bl= 1,
bl converges to /3 i faster than any power of n Cavanagh ( 1987) and Kim and Pollard
( 1990) show that b, converges in probability at the rate n- 1/3 and that nl/3 (bn ) has
a complicated, non-normal asymptotic distribution The MS estimator is important
despite its slow rate of convergence and complicated limiting distribution because
it is semiparametric (that is, it does not require the distribution of U to belong to
a known, finite-dimensional family) and it permits the distribution of U to have
arbitrary heteroskedasticity of unknown form provided that the centering assumption
median(UIX =x) = O holds.

The asymptotic distribution of the MS estimator is too complex for use in testing
hypotheses about /f or constructing confidence intervals Manski and Thompson ( 1986)
suggested using the bootstrap to estimate the mean-square error of the MS estimator
and presented Monte Carlo evidence suggesting that the bootstrap works well for this
purpose However, it is not known whether the bootstrap consistently estimates the
asymptotic distribution of the MS estimator.

The MS estimator converges slowly and has a complicated limiting distribution
because it is obtained by maximizing a step function Horowitz ( 1992) proposed
replacing the indicator function on the right-hand side of Equation ( 4 29) by a
differentiable function The resulting estimator is called the smoothed maximum
score (SMS) estimator It solves

maximize Hn(b) = E( 2 Yi I)K (Xb, ( 4 30)
be B nfl
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where K is a bounded, differentiable function satisfying K(v) = 0 if v < 1 and K(v) = 1
if v> 1, and {hn} is a sequence of bandwidths that converges to 0 as N oo.
As in SLAD estimation, K is analogous to the integral of a kernel function Let
3 again be the vector of all components of but the first Let b, (bnl, bn)'
be the SMS estimator of (,')' Horowitz ( 1992) gives conditions under which
(nhn)l/2 (n hl A) d N(O, V), where r 2 is an integer that is related to the
number of times that the CDF of U and the density function of X,8 are continuously
differentiable, nh 2r +l is bounded as n oc, A is an asymptotic bias, and V is a
covariance matrix The rate of convergence of the SMS estimator of /i is at least n-2/ 5

and can be arbitrarily close to N 1/2 if the CDF of U and density function of X/ have
sufficiently many derivatives Thus, smoothing increases the rate of convergence of the
MS estimator.

To obtain an asymptotically pivotal t statistic for testing a hypothesis about
a component of or forming a confidence interval, it is necessary to remove
the asymptotic bias of ba and construct a consistent estimator of V Asymptotic
bias can be removed by undersmoothing For first-order asymptotic approximations,
undersmoothing consists of choosing h, so that nh 2r + 0 as N oc However, for
the reasons explained in the discussion of Equation ( 4 20), the stronger condition
nh+ l O is needed to obtain asymptotic refinements through Ol(nh,)-'l V can be
estimated consistently by V, = Qn(bn)-l Dn(bn)Q,(b,) l, where for any b E B

1 , ( 2/ I)n'/K " (Xib'
Qn(b) = I E ( 2 Yj l)Xl 1 K" ( 4 31)

DO(b) = K' Xn) ( 4 32)

and X consists of all components of X but the first.
Now let bj and S-, respectively, be the jth components of ba and Let Vj

be the (j,j) component of V, The t statistic for testing H: /3 j = ij is t =
(nhn)l/2 (bj -/jo)/V/ 2 If Ho is true, then tn A N( 0, 1), so t is asymptotically pivotal.

To obtain a bootstrap version of tn, let {Y*,X*: i= 1 , , n} be a bootstrap sample
that is obtained by sampling the data {Yi,Xi} randomly with replacement Let b be
the estimator of/ that is obtained by solving Equation ( 4 30) with {Y*,X* } in place
of {Yi,Xj} Let V*j be the version of Vnj that is obtained by replacing bn and {Yi,Xi},
respectively, with b* and {Y*,X* } in Equations ( 4 31) and ( 4 32) Then the bootstrap
analog of t is t* = (nh,) 12 (b* n(V )/2

By using methods similar to those used with kernel density and mean-regression
estimators, it can be shown that t and t* have Edgeworth expansions that are identical
almost surely through Ol(nh) l See Horowitz ( 1998 c) for the details of the argument.
It follows that the bootstrap provides asymptotic refinements for hypothesis tests and
confidence intervals based on the SMS estimator For a symmetrical t test or confidence
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interval, the true and nominal rejection or coverage probabilities differ by ol(nh,)- ll

when bootstrap critical values are used, whereas they differ by Ol(nh,)- 'l when first-
order asymptotic critical values are used First-order approximations ignore a term in
the Edgeworth expansion of the distribution of It, I whose size is Ol(nh,)-'l, whereas
the bootstrap captures the effects of this term.

The conditions under which this result holds include: ( 1) the CDF of U conditional
on X and the density of X 3 conditional on X have sufficiently many derivatives; ( 2) K
satisfies Equation ( 4 11) for some r > 8 ; and ( 3) h, oc n- , where 1/(r + 1) < < 1/7.
Complete regularity conditions are given in Horowitz ( 1998 c) Conditions ( 2) and
( 3) imply that the size of the refinement obtained by the bootstrap is O(n-C), where

< 7 < 1 The bootstrap also provides asymptotic refinements for one-sided tests and
confidence intervals and for asymptotic chi-square tests of hypotheses about several
components of if Horowitz ( 1998 c) discusses methods for choosing h, in applications
and gives Monte Carlo evidence on the numerical performance of the t test with
bootstrap critical values.

4.4 Bootstrap iteration

The discussion of asymptotic refinements in this chapter has emphasized the
importance of applying the bootstrap to asymptotically pivotal statistics This section
explains how the bootstrap can be used to create an asymptotic pivot when one is not
available Asymptotic refinements can be obtained by applying the bootstrap to the
bootstrap-generated asymptotic pivot The computational procedure is called bootstrap
iteration or prepivoting because it entails drawing bootstrap samples from bootstrap
samples as well as using the bootstrap to create an asymptotically pivotal statistic.
The discussion here concentrates on the use of prepivoting to test hypotheses lBeran
( 1988)l Beran ( 1987) explains how to use prepivoting to form confidence regions.
Hall ( 1986 b) describes an alternative approach to bootstrap iteration.

Let Tn be a statistic for testing a hypothesis Ho about a sampled population whose
CDF is Fo Assume that under Ho, T satisfies assumptions SFM and Equation ( 3 8)
of the smooth function model Define F=Fo if Ho is true, and define F to be the
CDF of a distribution that satisfies Ho otherwise Let G,(r,F) PF(Tn < ) denote
the exact, finite-sample CDF of Tn under sampling from the population whose CDF
is F Suppose that Ho is rejected if Tn is large Then the exact a-level critical value
of Tn, za, is the solution to G(zna, F) = 1 a under Ho An exact a-level test based
on Tn can be obtained by rejecting Ho if G (T, F) > 1 a Thus, if F were known,
gn, G,(T,, F) could be used as a statistic for testing Ho Prepivoting is based on the
idea of using gn as a test statistic.

A test based on g, cannot be implemented in an application unless T is pivotal
because F and, therefore, gn are unknown A feasible test statistic can be obtained
by replacing F with an estimator F, that imposes the restrictions of Ho and is N /2-

consistent for Fo if Ho is true Replacing F with F, produces the bootstrap statistic
g* = G(T,F,) G,( ,F ) and, therefore, G,(T,,F,) can be estimated with arbitrary
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accuracy by carrying out a Monte Carlo simulation in which random samples are
drawn from F, Given any r, let Hn(r,Fo) = PF(g,* < ) = P FolGn(T,Fn) Tl.
An exact test based on g* rejects Ho at the a level if Hn(g*,Fo) > 1 a This test
cannot be implemented because Fo is unknown If the bootstrap is consistent, however,
the asymptotic distribution of g* is uniform on l 0, 1 l Therefore, Ho is rejected at the
asymptotic a level if g* > I a Now observe that g* is asymptotically pivotal even if
Tn is not; the asymptotic distribution of g* is Ul 0, 1 l regardless of Fo This suggests
that asymptotic refinements can be obtained by carrying out a second stage of bootstrap
sampling in which the bootstrap is used to estimate the finite-sample distribution of
gn.

The second stage of bootstrapping consists of drawing samples from each of the
first-stage bootstrap samples that are used to compute g* Suppose that there are M
first-stage samples The mth such sample yields a bootstrap version of T,, say Tnm,
and an estimator Fnm of Fn that is consistent with Ho Fnm can be sampled repeatedly to
obtain G,(, Fn,,), the EDF of Tn under sampling from Fnm, and gm Gn(Tnm, Fnm).

Now estimate Hn( ,Fo) by H,( ,Fn), which is the EDF of gnm (m= 1, ,M) The
iterated bootstrap test rejects Ho at the a level if H,(g*, F,) > 1 a.

Beran ( 1988) shows that when prepivoting and bootstrap iteration are applied to a
statistic T,, the true and nominal probabilities of rejecting a correct null hypothesis
differ by o(n- / 2) for a one-sided test and o(n-') for a symmetrical test even if Tn
is not asymptotically pivotal By creating an asymptotic pivot in the first stage of
bootstrapping, prepivoting and bootstrap iteration enable asymptotic refinements to
be obtained for a non-asymptotically-pivotal T, The same conclusions apply to the
coverage probabilities of confidence intervals Beran ( 1988) presents the results of
Monte Carlo experiments that illustrate the numerical performance of this procedure.

The computational procedure for carrying out prepivoting and bootstrap iteration is
given by Beran ( 1988) and is as follows:
( 1) Obtain T and Fn from the estimation data {Xi: i= 1, , n}, which are assumed

to be a random sample of a possibly vector-valued random variable X.
( 2) Let X 1, ,X be M bootstrap samples of size N that are drawn from the

population whose distribution is F, Let Fnm denote the estimate of Fn that is
obtained from Xm Let Tm be the version of T, that is obtained from Xm The EDF
of {T,,nm: m = 1, ,M} estimates G,( ,F,) Set g* = Ml' m= I I(T,m T,).

( 3) For each m, let Xm, 1 Xm, K be K further bootstrap samples of size n, each
drawn from the population whose CDF is Fnm Let Tnmk be the version of Tn that
is obtained from Xmk Set Gn(Tm,,Fm) = K -1 k= l I(Tmk < Tnm) Each of the
Gn(Tnm, Fnm) (m = 1, , n) is a second-stage estimate of g, Estimate Hn(g*, Fo)
by Hn(g*,Fn) = Ml Em= IllG(T,,m,Fnm) gn*l Reject Ho at the a level if
Hn(gn*,Fn) > 1 a.
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4.5 Special problems

The bootstrap provides asymptotic refinements because it amounts to a one-term
Edgeworth expansion The bootstrap cannot be expected to perform well when an
Edgeworth expansion provides a poor approximation to the distribution of interest.
An important case of this is instrumental-variables estimation with poorly correlated
instruments and regressors It is well known that first-order asymptotic approximations
are especially poor in this situation lHillier ( 1985), Nelson and Startz ( 1990 a,b),
Phillips ( 1983)l The bootstrap does not offer a solution to this problem With poorly
correlated instruments and regressors, Edgeworth expansions of estimators and test
statistics involve denominator terms that are close to zero As a result, the higher-order
terms of the expansions may dominate the lower-order ones for a given sample size,
in which case the bootstrap may provide little improvement over first-order asymptotic
approximations Indeed, with small samples the numerical accuracy of the bootstrap
may be even worse than that of first-order asymptotic approximations.

The bootstrap also does not perform well when the variance estimator used for
Studentization has a high variance itself This problem can be especially severe when
the parameters being estimated or tested are variances or covariances of a distribution.
This happens, for example, in estimation of covariance structures of economic
processes lAbowd and Card ( 1987, 1989), Behrman et al ( 1994), Griliches ( 1979),
Hall and Mishkin ( 1982)l In such cases Studentization is carried out with an estimator
of the variance of an estimated variance Imprecise estimation of a variance also affects
the finite-sample performance of asymptotically efficient GMM estimators because
the asymptotically optimal weight matrix is the inverse of the covariance matrix
of the GMM residuals The finite-sample mean-square error of the asymptotically
efficient estimator can greatly exceed the mean-square error of an asymptotically
inefficient estimator that is obtained with a non-stochastic weight matrix Horowitz
( 1998 a) shows that in the case of estimating covariance structures, this problem can
be greatly mitigated by using a trimmed version of the covariance estimator that
excludes "outlier" observations See Horowitz ( 1998 a) for details Section 5 5 presents
a numerical illustration of the effects of trimming.

4.6 The bootstrap when the null hypothesis is false

To understand the power of a test based on a bootstrap critical value, it is necessary to
investigate the behavior of the bootstrap when the null hypothesis being tested, Ho,
is false Suppose that bootstrap samples are generated by a model that satisfies a
false Ho and, therefore, is misspecified relative to the true data-generation process.
If Ho is simple, meaning that it completely specifies the data-generation process, then
the bootstrap amounts to Monte Carlo estimation of the exact finite-sample critical
value for testing Ho against the true data-generation process Indeed, the bootstrap
provides the exact critical value, rather than a Monte Carlo estimate, if G( ,Fn)
can be calculated analytically Tests of simple hypotheses are rarely encountered in
econometrics, however.
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In most applications, Ho is composite That is, it does not specify the value of a
finite or infinite-dimensional "nuisance" parameter V' In the remainder of this section,
it is shown that a test of a composite hypothesis using a bootstrap-based critical value
is a higher-order approximation to a certain exact test The power of the test with a
bootstrap critical value is a higher-order approximation to the power of the exact test.

Except in the case of a test based on a pivotal statistic, the exact finite-sample
distribution of the test statistic depends on 4 p Therefore, except in the pivotal case,
it is necessary to specify the value of ip to obtain exact finite-sample critical values.
The higher-order approximation to power provided by the bootstrap applies to a value
of 4 ' that will be called the pseudo-true value To define the pseudo-true value, let ',n
be an estimator of 4 p that is obtained under the incorrect assumption that Ho is true.
Under regularity conditions lsee, e g , Amemiya ( 1985), White ( 1982)l, in, converges
in probability to a limit p*, and nl/2(V'n V*)=Op(l) A* is the pseudo-true value of

Now let Tn be a statistic that is asymptotically pivotal under Ho Suppose that its
exact CDF with an arbitrary value of 4 p is G,( , lp), and that under Ho its asymptotic
CDF is Go( ) Suppose that bootstrap sampling is carried out subject to the constraints
of Ho Then the bootstrap generates samples from a model whose parameter value is
i,, so the exact distribution of the bootstrap version of Tn is Gn(', 4 'n) Under Ho and
subject to regularity conditions, Gn( , n,) has an asymptotic expansion of the form

Gn(z, n,) = Go(z) + N j/2 gj(z, 4 '*) + op(n -j / 2) ( 4 33)

uniformly over z, where j= 1 or 2 depending on the symmetry of T, Usually j= 1 if
T, is a statistic for a one-tailed test andj = 2 if T, is a statistic for a symmetrical, two-
tailed test G(z, p*) has an expansion identical to Equation ( 4 33) through O(n-i/2).
Therefore, through Op(n-/2), bootstrap sampling when Ho is false is equivalent
to generating data from a model that satisfies Ho with pseudo-true values of the
parameters not specified by Ho It follows that when Ho is false, bootstrap-based critical
values are equivalent through Op(n -/ 2) to the critical values that would be obtained if
the model satisfying Ho with pseudo-true parameter values were correct Moreover, the
power of a test of Ho using a bootstrap-based critical value is equal through O(n-j/ 2 ) to
the power against the true data-generation process that would be obtained by using the
exact finite-sample critical value for testing Ho with pseudo-true parameter values.

5 Monte Carlo experiments

This section presents the results of some Monte Carlo experiments that illustrate the
numerical performance of the bootstrap as a means of reducing differences between
the true and nominal rejection probabilities of tests of statistical hypotheses.
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5.1 The information-matrix test

White's ( 1982) information-matrix (IM) test is a specification test for parametric
models estimated by maximum likelihood It tests the hypothesis that the Hessian
and outer-product forms of the information matrix are equal Rejection implies that
the model is misspecified The test statistic is asymptotically chi-square distributed,
but Monte Carlo experiments carried out by many investigators have shown that
the asymptotic distribution is a very poor approximation to the true, finite-sample
distribution With sample sizes in the range found in applications, the true and nominal
probabilities that the IM test with asymptotic critical values rejects a correct model
can differ by a factor of 10 or more lHorowitz ( 1994), Kennan and Neumann ( 1988),
Orme ( 1990), Taylor ( 1987)l.

Horowitz ( 1994) reports the results of Monte Carlo experiments that investigate the
ability of the bootstrap to provide improved finite-sample critical values for the IM test,
thereby reducing the distortions of RP's that occur with asymptotic critical values.
Three forms of the test were used: the Chesher ( 1983) and Lancaster ( 1984) form,
White's ( 1982) original form, and Orme's ( 1990) 0)3 The Chesher-Lancaster form is
relatively easy to compute because, in contrast to the other forms, it does not require
third derivatives of the log-density function or analytic expected values of derivatives
of the log-density However, first-order asymptotic theory gives an especially poor
approximation to its finite-sample distribution Orme ( 1990) found through Monte
Carlo experimentation that the distortions of RP's are smaller with 03 than with many
other forms of the IM test statistic Orme's W 3 uses expected values of third derivatives
of the log-density, however, so it is relatively difficult to compute.

Table 1
Empirical rejection probabilities of nominal 0 05-level information-matrix tests of probit and tobit

models 1

n Distribution RP using asymptotic critical values RP using bootstrap-based critical values

of X White Chesh -Lan Orme White Chesh -Lan Orme

Binary probit models

50 N( 0, 1) 0 385 0 904 0 006 0 064 0 056 0 033

U(-2,2) 0 498 0 920 0 017 0 066 0 036 0 031

100 N( 0, 1) 0 589 0 848 0 007 0 053 0 059 0 054

U(-2, 2) 0 632 0 875 0 027 0 058 0 056 0 049

Tobit models

50 N( 0, 1) 0 112 0 575 0 038 0 083 0 047 0 045

U(-2,2) 0 128 0 737 0 174 0 051 0 059 0 054

100 N( 0, 1) 0 065 0 470 0 167 0 038 0 039 0 047

U(-2,2) 0 090 0 501 0 163 0 046 0 052 0 039

1 Source: Horowitz ( 1994).
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Horowitz's ( 1994) experiments consisted of applying the three forms of the IM test
to Tobit and binary probit models Each model had either one or two explanatory
variables X that were obtained by sampling either the N( 0, 1) or the Ul 0, 1 l
distribution There were 1000 replications in each experiment Other details of the
Monte Carlo procedure are described in Horowitz ( 1994) Table I summarizes the
results of the experiments As expected, the differences between empirical and nominal
RP's are very large when asymptotic critical values are used This is especially true
for the Chesher-Lancaster form of the test When bootstrap critical values are used,
however, the differences between empirical and nominal RP's are very small The
bootstrap essentially eliminates the distortions of the RP's of the three forms of the
IM test.

5.2 The t test in a heteroskedastic regression model

In this section, the heteroskedasticity-consistent covariance matrix estimator (HCCME)
of Eicker ( 1963, 1967) and White ( 1980) is used to carry out a t test of a hypothesis
about /3 in the model

Y =X 3 + U ( 5 1)

In this model, U is an unobserved random variable whose probability distribution is
unknown and that may have heteroskedasticity of unknown form It is assumed that
E(UIX=x)=O and Var(UIX=x) <oo for all x in the support of X.

Let b, be the ordinary least-squares (OLS) estimator of/3 in Equation ( 5 1), bnj and
f 3 i be the ith components of b, and , and Sni be the square root of the (i, i) element
of the HCCME The t statistic for testing Ho: /3 i=/3io is Tn=(bni -io)sni Under
regularity conditions, T, N( 0, 1) as N ~ co However, Chesher and Jewitt ( 1987)
have shown that S 2 i can be seriously biased downward Therefore, the true RP of a test
based on Tn is likely to exceed the nominal RP As is shown later in this section, the
differences between the true and nominal RP's can be very large when N is small.

The bootstrap can be implemented for model ( 5 1) by sampling observations of
(YX) randomly with replacement The resulting bootstrap sample is used to estimate
/3 by OLS and compute T, the t statistic for testing Ho: /3 i =b, The empirical
distribution of T* is obtained by repeating this process many times, and the a-level
bootstrap critical value for T* is estimated from this distribution Since U may be
heteroskedastic, the bootstrap cannot be implemented by resampling OLS residuals
independently of X Similarly, one cannot implement the bootstrap by sampling U
from a parametric model because Equation ( 5 1) does not specify the distribution of
U or the form of any heteroskedasticity.

Randomly resampling (Y, X) pairs does not impose the restriction E(UIX =x)= 0 on
the bootstrap sample As will be seen later in this section, the numerical performance
of the bootstrap can be improved greatly through the use of an alternative resampling
procedure, called the wild bootstrap, that imposes this restriction The wild bootstrap
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was introduced by Liu ( 1988) following a suggestion of Wu ( 1986) Mammen ( 1993)
establishes the ability of the wild bootstrap to provide asymptotic refinements for the
model ( 5 1) Cao-Abad ( 1991), Hirdle and Mammen ( 1993), and Hirdle and Marron
( 1991) use the wild bootstrap in nonparametric regression.

To describe the wild bootstrap, write the estimated form of Equation ( 5 1) as

Yi = Xib, + U,i; i = 1, 2, , n,

where Yi and Xi are the ith observed values of Y and X, and U,i is the ith OLS
residual For each i = 1 , n, let Fi be the unique 2-point distribution that satisfies
E(ZI Fi) = O, E(Z 2 1 Fi) = U 2 i, and E(Z 3 l Fi) = U 3 i, where Z is a random variable
with the CDF Fi Then, Z = ( 1 V 5)U,i/2 with probability ( 1 + v/5)/( 2 v/5), and
Z = ( 1 + V 5)U/2 with probability I (I + /5)/( 2 x/) The wild bootstrap is
implemented as follows:
( 1) For each i= 1, , n, sample U* randomly from Fi Set Y* =Xibn + U*.
( 2) Estimate Equation ( 5 1) by OLS using the bootstrap sample {Y*,Xi: i = 1 , , n}.

Compute the resulting t statistic, T.
( 3) Obtain the empirical distribution of the wild-bootstrap version of T* by repeating

steps 1 and 2 many times Obtain the wild-bootstrap critical value of T* from the
empirical distribution.

Horowitz ( 1997) reports the results of a Monte Carlo investigation of the ability
of the bootstrap and wild bootstrap to reduce the distortions in the RP of a
symmetrical, two-tailed t test that occur when asymptotic critical values are used.
The bootstrap was implemented by resampling (X) pairs, and the wild bootstrap
was implemented as described above The experiments also investigate the RP of
the t test when the HCCME is used with asymptotic critical values and when a
jackknife version of the HCCME is used with asymptotic critical values lMac Kinnon
and White ( 1985)l Mac Kinnon and White ( 1985) found through Monte Carlo
experimentation that with the jackknife HCCME and asymptotic critical values, the
t test had smaller distortions of RP than it did with several other versions of the
HCCME.

The experiments use N = 25 X consists of an intercept and either 1 or 2 explanatory
variables In experiments in which X has an intercept and one explanatory variable,

= ( 1, 0)' In experiments in which X has an intercept and two explanatory variables,
= ( 1,0, 1)' The hypothesis tested in all experiments is Ho: 2 = O The components

of X were obtained by independent sampling from a mixture of normal distributions
in which N( 0, I 1) was sampled with probability 0 9 and N( 2,9) was sampled
with probability 0 1 The resulting distribution of X is skewed and leptokurtotic.
Experiments were carried out using homoskedastic and heteroskedastic U's When
U was homoskedastic, it was sampled randomly from N( 0, 1) When U was
heteroskedastic, the U value corresponding to X =x was sampled from N( 0, Qx), where
Qx = 1 +x 2 or = 1 +x 2 +x 2, depending on whether X consists of 1 or 2 components
in addition to an intercept Qx is the covariance matrix of U corresponding to the
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Table 2
Empirical rejection probabilities of t tests using heteroskedasticity-consistent covariance matrix

estimators 1,2 (n= 25)

Form of test 1-Variable 1-Variable 2-Variable 2-Variable
homoskedastic random coeff homoskedastic random coeff.

model model model model

Asymptotic 0 156 0 306 0 192 0 441

Jackknife 0 096 0 140 0 081 0 186

Bootstrap (YX) pairs 0 100 0 103 0 114 0 124

Wild bootstrap 0 050 0 034 0 062 0 057

i Source: Horowitz ( 1997).
2 Empirical RP at nominal 0 05 level.

random-coefficients model Y = Xf + X 6 + V, where V and the components of 6
are independently distributed as N( 0, 1) There were 1000 Monte Carlo replications in
each experiment.

Table 2 shows the empirical RP's of nominal 0 05-level t tests of Ho The differences
between the empirical and nominal RP's using the HCCME and asymptotic critical
values are very large Using the jackknife version of the HCCME or critical values
obtained from the bootstrap greatly reduces the differences between the empirical
and nominal RP's, but the empirical RP's are still 2-3 times the nominal ones.
With critical values obtained from the wild bootstrap, the differences between
the empirical and nominal RP's are very small In these experiments, the wild
bootstrap essentially removes the distortions of RP that occur with asymptotic critical
values.

5.3 The t test in a Box-Cox regression model

The t statistic for testing a hypothesis about a slope coefficient in a linear regression
model with a Box-Cox ( 1964) transformed dependent variable is not invariant to
changes in the measurement units, or scale, of the dependent variable lSpitzer ( 1984)l.
The numerical value of the t statistic and the finite-sample RP's of the t test with
asymptotic critical values vary according to the measurement units or scale that is
used As a result, the finite-sample RP's of the t test with asymptotic critical values
can be far from the nominal RP's The bootstrap provides a better approximation to
the finite-sample distribution and, therefore, better finite-sample critical values.

Horowitz ( 1997) reports the results of a Monte Carlo investigation of the finite-
sample RP of a symmetrical t test of a hypothesis about a slope coefficient in a
linear regression model with a Box-Cox transformed dependent variable The model
generating the data is

y(A) = + 11X + U,
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Table 3
Empirical rejection probabilities of t tests for Box-Cox regression model 1 (nominal RP = 0 05)

n A Scale factor RP using critical values from Empirical Bootstrap critical
critical values values

Asymptotic Bootstrap

50 0 01 0 2 0 048 0 066 1 930 1 860

1.0 0 000 0 044 0 911 0 909

5.0 0 000 0 055 0 587 0 571

100 0 01 0 2 0 047 0 053 1 913 1 894

1.0 0 000 0 070 1 201 1 165

5.0 0 000 0 056 0 767 0 759

50 1 0 0 2 0 000 0 057 1 132 1 103

1.0 0 000 0 037 0 625 0 633

5.0 0 000 0 036 0 289 0 287

100 1 0 0 2 0 000 0 051 1 364 1 357

1.0 0 000 0 044 0 836 0 835

5.0 0 000 0 039 0 401 0 391

1 Source: Horowitz ( 1997).

where Y(A) is the Box-Cox transformed value of the dependent variable Y, U-N(O, 02),

i O o = 2, f 3 I = O and U 2 = 0 0625 X was sampled from N( 4, 4) and was fixed in repeated
samples The hypothesis being tested is Ho: ll = O The value of A is either 0 01 or 1,
depending on the experiment, and the scale of Y was 0 2, 1, or 5 The sample sizes
were n= 50 and 100 There were 1000 replications in each experiment.

The results of the experiments are summarized in Table 3 The empirical critical
value of the t test tends to be much smaller than the asymptotic critical value of 1 96,
especially in the experiments with a scale factor of 5 As a result, the empirical RP
of the t test is usually much smaller than its nominal RP The mean bootstrap critical
values, however, are very close to the empirical critical values, and the RP's based on
bootstrap critical values are very close to the nominal ones.

5.4 Estimation of covariance structures

In estimation of covariance structures, the objective is to estimate the covariance
matrix of a k x 1 vector X subject to restrictions that reduce the number of unique,
unknown elements to r <k(k+ 1)/2 Estimates of the r unknown elements can be
obtained by minimizing the weighted distance between sample moments and the
estimated population moments Weighting all sample moments equally produces
the equally-weighted minimum distance (EWMD) estimator, whereas choosing the
weights to maximize asymptotic estimation efficiency produces the optimal minimum
distance (OMD) estimator.
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The OMD estimator dominates the EWMD estimator in terms of asymptotic
efficiency, but it has been found to have poor finite-sample properties in applications
lAbowd and Card ( 1989)l Altonji and Segal ( 1994, 1996) carried out an extensive
Monte Carlo investigation of the finite-sample performance of the OMD estimator.
They found that the estimator is badly biased with samples of the sizes often found in
applications and that its finite-sample root-mean-square estimation error (RMSE) often
greatly exceeds the RMSE of the asymptotically inefficient EWMD estimator Altonji
and Segal also found that the true coverage probabilities of asymptotic confidence
intervals based on the OMD estimator tend to be much lower than the nominal coverage
probabilities Thus, estimation and inference based on the OMD estimator can be
highly misleading with finite samples.

Horowitz ( 1998 a) reports the results of a Monte Carlo investigation the ability
of the bootstrap to reduce the bias and RMSE of the OMD estimator and reduce
the differences between true and nominal coverage probabilities of nominal 95 %
confidence intervals based on this estimator The data-generation processes used in
the Monte Carlo experiments were taken from Altonji and Segal ( 1994) In each
experiment, X has 10 components, and the sample size is N = 500 The jth component
of X, Xj (j = 1, , 10) is generated by Xj = (Zj +p Zj+ 1)/(l + p 2 )1/ 2, where Z 1, ,Zl I
are i i d random variables with means of 0 and variances of 1, and p= 0 5 The Z's
are sampled from five different distributions depending on the experiment These are
Ul 0, 1 l, N( 0, 1), Student t with 10 degrees of freedom, exponential, and lognormal It
is assumed that p is known and that the components of X are known to be identically
distributed and to follow MA( 1) processes The estimation problem is to infer the scalar
parameter O that is identified by the moment conditions Var(X) = O (j= 1, ,10)
and Cov(Xj,X_ 1)=p 0/(l + p 2 ) (j = 2, ,10) Experiments were carried out with the
EWMD and OMD estimators as well as a version of the OMD estimator that uses a
trimmed estimator of the asymptotically optimal weight matrix See Horowitz ( 1998 a)
for an explanation of the trimming procedure.

The results of the experiments are summarized in Table 4 The OMD estimator,
,, OMD is biased and its RMSE exceeds that of the EWMD estimator, O n,EWMD for

all distributions of Z except the uniform Moreover, the coverage probabilities of
confidence intervals based on n, OMD with asymptotic critical values are far below
the nominal value of 0 95 except in the experiment with uniform Z's Bootstrap bias
reduction greatly reduces both the bias and RMSE of O n,OMD In addition, the use
of bootstrap critical values greatly reduces the errors in the coverage probabilities of
confidence intervals based on n, OMD In the experiments with normal, Student t, or
uniform Z's, the bootstrap essentially eliminates the bias of 0,,OMD and the errors
in the coverage probabilities of the confidence intervals Moreover, the RMSE of the
bias-corrected O n, OMD in these experiments is 12-50 % less than that of O n, EWMD-

When Z is exponential or lognormal, the bootstrap reduces but does not eliminate
the bias of O n, OMD and the errors in the coverage probabilities of confidence intervals.
Horowitz ( 1998 a) shows that the poor performance of the bootstrap in these cases is
caused by imprecise estimation of the OMD weight and covariance matrices This
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Table 4
Results of Monte Carlo experiments with estimators of covariance structures 1,2

Dist EWMD OMD without bootstrap OMD with bootstrap Trimmed OMD 5

RMSE Bias RMSE Cov 3 Bias RMSE Cov 4 Bias RMSE Cov 4

Uniform 0 019 0 005 0 015 0 93 0 002 0 014 0 96

Normal 0 024 0 016 0 025 0 85 0 0 0 021 0 95

Student t 0 029 0 024 0 034 0 79 0 002 0 026 0 95

Exponential 0 042 0 061 0 073 0 54 0 014 0 048 0 91 0 004 0 042 0 96

Lognormal 0 138 0 274 0 285 0 03 0 136 0 173 0 76 0 046 0 126 0 91

I Source: Horowitz ( 1998 a); nominal coverage probability is 0 95 ; based on 1000 replications.
2 Abbreviations: Dist , distribution; EWMD, equally-weighted minimum distance; OMD, optimal
minimum distance; RMSE, root-mean-square estimation error.
3 Coverage probability with asymptotic critical value.
4 Coverage probability with bootstrap critical value.
5 Trimmed OMD with bootstrap.

problem is largely eliminated through the use of the trimmed estimator of these
matrices With trimming, On, OMD with exponential or lognormal Z's has a RMSE that
is the same as or less than that of the EWMD estimator, and the empirical coverage
probabilities of confidence intervals are close to the nominal values.

6 Conclusions

The bootstrap consistently estimates the asymptotic distributions of econometric esti-
mators and test statistics under conditions that are sufficiently general to accommodate
most applications Subsampling methods usually can be used in place of the standard
bootstrap when the latter is not consistent Together, the bootstrap and subsampling
methods provide ways to substitute computation for mathematical analysis if analytical
calculation of the asymptotic distribution of an estimator or test statistic is difficult or
impossible.

Under conditions that are stronger than those required for consistency but still gen-
eral enough to accommodate a wide variety of econometric applications, the bootstrap
reduces the finite-sample biases of estimators and provides a better approximation
to the finite-sample distribution of an estimator or test statistic than does first-order
asymptotic theory The approximations of first-order asymptotic theory are often quite
inaccurate with samples of the sizes encountered in applications As a result, the true
and nominal probabilities that a test rejects a correct hypothesis can be very different
when critical values based on first-order approximations are used Similarly, the true
and nominal coverage probabilities of confidence intervals based on asymptotic critical
values can be very different The bootstrap can provide dramatic reductions in the
differences between true and nominal rejection and coverage probabilities of tests and
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confidence intervals In many cases of practical importance, the bootstrap essentially
eliminates finite-sample errors in rejection and coverage probabilities.

This chapter has also emphasized the need for care in applying the bootstrap The
importance of asymptotically pivotal statistics for obtaining asymptotic refinements
has been stressed Proper attention also must be given to matters such as recentering,
correction of test statistics in the block bootstrap for dependent data, smoothing, and
choosing the distribution from which bootstrap samples are drawn These qualifications
do not, however, detract from the importance of the bootstrap as a practical tool for
improving inference in applied econometrics.
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Appendix A Informal derivation of Equation ( 3 27)

To derive Equation ( 3 27), write P(( T, I z* a/2) in the form

P(Tnl > n,a/2)= 1-lP(Tn -< zn,a/2) P(T -n*,a/2)l

= 1 {PlT (Z, a/2 -zoo, a/2) < Zo, a/2 l (A 1)

PlTn + (Z, a/2 Zoo, a/2) -Zoo, a/2 l}.

With an error whose size is almost surely O(n-2 ), (Zn*, a/2 -z,a/2) on the right-hand
side of (A 1) can be replaced with a Cornish-Fisher expansion that retains terms
through O(n 3 /2 ) This expansion can be obtained by applying the delta method to
the difference between Equations ( 3 23) and ( 3 24) The result is

1 g 2 (zoo, a/2,Fo) 1/2
Z* a/2 -Za/2 = N O(Zoo,a/2) + N 13/2 r 3(Z) +O(n-2 (A 2)

where r 3 is a smooth function, r 3 (pz) = 0, and N 1/2 r 3(Z) = Op( 1) as N oo.
Substituting Equation (A 2) into Equation (A 1) yields

P(I Tn I > Zn* /2) = 1 {PlT n- 3
/
2nl/ 2r 3(Z) < Zoo,a/2 + N lr 2 (Z, a/2)l

PlTn + n-3/2 N 1 /2 r 3 (Z) < -zoo, a/2 n-lr 2 (zo, a/2)l} + O(n-2),
(A.3)

where

r 2 (z) (A 4)
¢(z)

The next step is to replace the right-hand side of Equation (A 3) with an Edgeworth
approximation To do this, it is necessary to provide a detailed specification of the
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function g 2 in Equations ( 3 9) and ( 3 13) Let icj, , denote the jth cumulant of Tn 23,

Under assumption SFM, cj,,, can be expanded in a power series For a statistic such
as T, whose asymptotic distribution has a variance of 1,

Kl n= k 1 2k + 13 +O (n_ 5/2
n l/ 2 N 3/ +

K 2,n = I + + O(n-2),

k 31 k 32
IC 3,n = -+ + O(n-5/2),n 1/2 + 3/2

and

K 4 , N = k + O(n-2),
n

where the coefficients kjk are functions of moments of products of components of Z.
The function g 2 is then

g 2(T, Fo) = -T l(k 22 + k 22) + 1 (k 4 1 + 4 k 12k 31)(T 2 -3) + k 1 (T 4 10 2 + 15)l (r).
(A.5)

See Hall ( 1992 a, pp 46-56) for details Denote the quantity on the right-hand side of
Equation (A 5) by g 2 (T, Ko), where Ko denotes the kjk coefficients that are associated
with cumulants of the distribution of T, Let kn denote the kjk coefficients that are
associated with cumulants of Tn, n-3/2nl/2 r 3(Z), and let g 2 (T, k,n) denote the version
of g 2 that is obtained by replacing Ko with fk, The difference between the + and

coefficients is asymptotically negligible Now replace g 2 (T, Fo) in Equation ( 3 13)
with g 2 (T,',) Also, replace r with z, 0a/2 + nr 2(zoo a/2) in Equation ( 3 13).
Substituting the result into the right-hand side of Equation (A 3) gives the following
Edgeworth approximation to P(I Tn, > n, /2):

P(Tnl > z*,a/2) = 2 { 1 Olz, a/2 + n-lr 2(oo, a/2)l}

2 n-'g 2 lzoo, a/2 + n-lr 2 (z, a/2), nl + O(n-2) (A 6)
A Taylor-series expansion of the right-hand side of Equation (A 6) combined with
Equation (A 4) and the fact that 2 l 1 P(zoo a/2)l = a gives

P(l T I > Z,, a/2) = a + -lg 2 (Zoo, a/2, Ko) 2(o /2, Kn)l + O(n-2) (A 7)

It is not difficult to show that g 2(z, a/2, co) 2 (Zo, a/2, k,) = o(n') (Roughly
speaking, this is because n-lr 3 (Z) = o(n- l) almost surely ) Therefore, the second term
on the right-hand side of Equation (A 7) is o(n-2), which yields Equation ( 3 27).

23 The cumulants of a distribution are coefficients in a power-series expansion of the logarithm of its
characteristic function The first three cumulants are the mean, variance, and third moment about the
mean The fourth cumulant is the fourth moment about the mean minus three times the square of the
variance.
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